/external/tensorflow/tensorflow/compiler/tests/ |
D | ftrl_test.py | 50 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 65 adagrad_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 85 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 100 sgd_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 124 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 158 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 191 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 225 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 264 ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 304 update0 = opt0.apply_gradients([(grads0, var0)]) [all …]
|
D | proximal_gradient_descent_test.py | 42 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 64 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 86 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 108 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 127 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
D | proximal_adagrad_test.py | 45 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 76 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 100 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 124 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 143 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
D | adagrad_test.py | 41 ada_update = ada_opt.apply_gradients( 69 ada_update = ada_opt.apply_gradients( 98 ada_update1 = ada_opt.apply_gradients( 100 ada_update2 = ada_opt.apply_gradients(
|
/external/tensorflow/tensorflow/python/training/ |
D | adagrad_test.py | 61 ada_update = ada_opt.apply_gradients( 75 ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 130 ada_update = ada_opt.apply_gradients( 164 ada_update = ada_opt.apply_gradients( 197 repeated_update = adagrad.AdagradOptimizer(3.0).apply_gradients( 199 aggregated_update = adagrad.AdagradOptimizer(3.0).apply_gradients( 257 ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) 283 ada_update1 = ada_opt.apply_gradients( 285 ada_update2 = ada_opt.apply_gradients( 332 ada_update = ada_opt.apply_gradients( [all …]
|
D | adam_test.py | 82 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 145 repeated_update = adam.AdamOptimizer().apply_gradients( 147 aggregated_update = adam.AdamOptimizer().apply_gradients( 193 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 225 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 270 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 309 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 310 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 342 optimizer.apply_gradients([(grads0, var0)]) 349 optimizer.apply_gradients([(grads0, var0)]) [all …]
|
D | ftrl_test.py | 55 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 94 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 143 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 173 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 211 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 248 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 284 update0 = opt0.apply_gradients([(grads0, var0)]) 285 update1 = opt1.apply_gradients([(grads1, var1)]) 322 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
D | gradient_descent_test.py | 48 sgd_op = optimizer.apply_gradients( 71 sgd_op = gradient_descent.GradientDescentOptimizer(3.0).apply_gradients( 98 sgd_op = gradient_descent.GradientDescentOptimizer(lr).apply_gradients( 181 lrate).apply_gradients(zip([grads0, grads1], [var0, var1])) 215 sgd_op = gradient_descent.GradientDescentOptimizer(3.0).apply_gradients( 246 sgd_op = gradient_descent.GradientDescentOptimizer(3.0).apply_gradients( 269 optimizer.apply_gradients([(grad, self.v)])
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | reg_adagrad_optimizer_test.py | 50 ada_update = ada_opt.apply_gradients( 102 ada_update = ada_opt.apply_gradients( 130 ada_update = ada_opt.apply_gradients( 158 3.0).apply_gradients([(grad_repeated_index, 161 3.0).apply_gradients([(grad_aggregated, aggregated_update_var)]) 216 ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) 241 ada_update1 = ada_opt.apply_gradients( 243 ada_update2 = ada_opt.apply_gradients( 287 ada_update = ada_opt.apply_gradients( 321 ada_update = ada_opt.apply_gradients(
|
D | lazy_adam_optimizer_test.py | 85 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 151 repeated_update = repeated_update_opt.apply_gradients( 154 aggregated_update = aggregated_update_opt.apply_gradients( 197 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 221 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 265 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 302 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 303 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 334 optimizer.apply_gradients([(grads0, var0)]) 341 optimizer.apply_gradients([(grads0, var0)]) [all …]
|
D | adamax_test.py | 101 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 160 repeated_update = adamax.AdaMaxOptimizer().apply_gradients( 162 aggregated_update = adamax.AdaMaxOptimizer().apply_gradients( 195 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 218 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 258 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 294 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 295 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 326 optimizer.apply_gradients([(grads0, var0)]) 336 optimizer.apply_gradients([(grads0, var0)])
|
D | lazy_adam_gs_optimizer_test.py | 89 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 169 repeated_update = repeated_update_opt.apply_gradients( 174 aggregated_update = aggregated_update_opt.apply_gradients( 222 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 250 opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 297 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 337 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 339 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 371 optimizer.apply_gradients([(grads0, var0)]) 378 optimizer.apply_gradients([(grads0, var0)]) [all …]
|
D | adam_gs_optimizer_test.py | 86 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 151 global_step=repeated_index_global_step).apply_gradients( 155 global_step=aggregated_global_step).apply_gradients( 203 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 231 opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 278 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 318 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 320 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 353 optimizer.apply_gradients([(grads0, var0)]) 360 optimizer.apply_gradients([(grads0, var0)]) [all …]
|
D | addsign_test.py | 96 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 98 neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), 114 opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 120 opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), 204 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 206 neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
|
D | powersign_test.py | 97 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 99 neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), 116 opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 122 opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]), 209 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]), 211 neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
|
D | shampoo_test.py | 65 update = opt.apply_gradients(zip([grad], [var]), 67 update_2 = opt.apply_gradients(zip([grad_2], [var]), 116 update = opt.apply_gradients(zip([grad], [var]), 118 update_2 = opt.apply_gradients(zip([grad_2], [var]), 176 update = opt.apply_gradients(zip([grad], [var]), 178 update_2 = opt.apply_gradients(zip([grad_2], [var]), 265 update = opt.apply_gradients(zip([grad], [var]), 267 update_2 = opt.apply_gradients(zip([grad_2], [var]), 321 update = opt.apply_gradients(zip([grad], [var]), 323 update_2 = opt.apply_gradients(zip([grad_2], [var]), [all …]
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | adagrad_test.py | 50 ada_update = ada_opt.apply_gradients( 99 ada_update = ada_opt.apply_gradients( 130 ada_update = ada_opt.apply_gradients( 162 repeated_update = adagrad.AdagradOptimizer(3.0).apply_gradients( 164 aggregated_update = adagrad.AdagradOptimizer(3.0).apply_gradients( 220 ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) 245 ada_update1 = ada_opt.apply_gradients( 247 ada_update2 = ada_opt.apply_gradients(
|
D | adam_test.py | 82 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 140 repeated_update = adam.AdamOptimizer().apply_gradients( 142 aggregated_update = adam.AdamOptimizer().apply_gradients( 175 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 200 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 240 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 277 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 278 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 310 optimizer.apply_gradients([(grads0, var0)]) 320 optimizer.apply_gradients([(grads0, var0)])
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | adagrad_test.py | 90 ada_update = ada_opt.apply_gradients( 104 ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 141 ada_update = ada_opt.apply_gradients( 155 ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 187 ada_update = ada_opt.apply_gradients( 201 ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 248 ada_update = ada_opt.apply_gradients( 287 ada_update = ada_opt.apply_gradients( 331 repeated_update = adagrad.Adagrad(3.0).apply_gradients( 333 aggregated_update = adagrad.Adagrad(3.0).apply_gradients( [all …]
|
D | adam_test.py | 135 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 190 repeated_update = adam.Adam().apply_gradients( 192 aggregated_update = adam.Adam().apply_gradients( 232 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 245 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 282 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 295 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 328 repeated_update = opt_repeated.apply_gradients( 330 aggregated_update = opt_aggregated.apply_gradients( 341 opt_repeated.apply_gradients( [all …]
|
D | adamax_test.py | 104 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 163 repeated_update = adamax.Adamax().apply_gradients( 165 aggregated_update = adamax.Adamax().apply_gradients( 197 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 213 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 247 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 263 opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 294 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 331 update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 332 update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
D | gradient_descent_test.py | 50 sgd_op = sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) 66 sgd_op = sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) 72 sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) 82 sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) 125 sgd_op = sgd.apply_gradients(zip([grads0, grads1], [var0, var1])) 182 sgd_op = gradient_descent.SGD(lrate).apply_gradients( 216 sgd_op = gradient_descent.SGD(3.0).apply_gradients( 239 3.0, decay=0.5).apply_gradients( 266 optimizer.apply_gradients([(grad, self.v)]) 314 mom_update = mom_opt.apply_gradients( [all …]
|
D | ftrl_test.py | 55 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 94 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 146 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 176 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 214 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 251 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) 287 update0 = opt0.apply_gradients([(grads0, var0)]) 288 update1 = opt1.apply_gradients([(grads1, var1)]) 325 update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | main.py | 32 def apply_gradients(optimizer, grads, vars_, global_step=None): function 34 optimizer.apply_gradients(zip(grads, vars_), global_step=global_step) 59 global apply_gradients # pylint:disable=global-variable-undefined 60 apply_gradients = tfe.defun(apply_gradients) 212 apply_gradients(
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/resnet50/ |
D | resnet50_test.py | 70 def apply_gradients(model, optimizer, gradients): function 71 optimizer.apply_gradients(zip(gradients, model.variables)) 128 apply_gradients(model, optimizer, 153 apply_gradients(model, optimizer, 161 apply_gradients(model, optimizer, 267 apply_grads = apply_gradients 270 apply_grads = tfe.function(apply_gradients)
|