Home
last modified time | relevance | path

Searched refs:fakequant_op (Results 1 – 8 of 8) sorted by relevance

/external/tensorflow/tensorflow/lite/toco/graph_transformations/
Dremove_trivial_fake_quant.cc32 const FakeQuantOperator& fakequant_op) { in IsFakeQuantTrivial() argument
33 CHECK(fakequant_op.type == OperatorType::kFakeQuant); in IsFakeQuantTrivial()
35 if (!fakequant_op.minmax) { in IsFakeQuantTrivial()
42 auto* producing_op = GetOpWithOutput(model, fakequant_op.inputs[0]); in IsFakeQuantTrivial()
53 if (*fakequant_op.minmax == *producing_fakequant_op.minmax && in IsFakeQuantTrivial()
54 fakequant_op.num_bits == producing_fakequant_op.num_bits) { in IsFakeQuantTrivial()
57 LogName(fakequant_op), LogName(producing_fakequant_op)); in IsFakeQuantTrivial()
76 auto* fakequant_op = static_cast<FakeQuantOperator*>(op); in Run() local
78 if (!IsFakeQuantTrivial(this, *model, *fakequant_op)) { in Run()
79 AddMessageF("%s is not trivial", LogName(*fakequant_op)); in Run()
[all …]
Dresolve_fake_quant_args_from_vars.cc37 auto* fakequant_op = static_cast<FakeQuantOperator*>(fakequant_base_op); in Run() local
39 if (fakequant_op->minmax) { in Run()
44 CHECK_EQ(fakequant_op->inputs.size(), 3); in Run()
48 if (!IsConstantParameterArray(*model, fakequant_op->inputs[i])) { in Run()
54 const auto& min_array = model->GetArray(fakequant_op->inputs[1]); in Run()
55 const auto& max_array = model->GetArray(fakequant_op->inputs[2]); in Run()
58 fakequant_op->minmax.reset(new MinMax); in Run()
59 MinMax& minmax = *fakequant_op->minmax; in Run()
64 LOG(WARNING) << "For " << LogName(*fakequant_op) << " the MinMax range " in Run()
77 DeleteArrayIfUsedOnce(fakequant_op->inputs[i], model); in Run()
[all …]
Dresolve_constant_fake_quant.cc72 const auto* fakequant_op = in Run() local
76 if (!fakequant_op->minmax) { in Run()
81 if (!IsConstantParameterArray(*model, fakequant_op->inputs[0])) { in Run()
85 const auto& input_array = model->GetArray(fakequant_op->inputs[0]); in Run()
90 if (!InferQuantizedDataTypeFromFakeQuant(*fakequant_op, in Run()
92 AddMessageF("Unsupported FakeQuant num_bits=%d", fakequant_op->num_bits); in Run()
96 AddMessageF("Resolving constant %s", LogName(*fakequant_op)); in Run()
98 auto& output_array = model->GetArray(fakequant_op->outputs[0]); in Run()
111 output_array.GetOrCreateMinMax() = *fakequant_op->minmax; in Run()
121 if (fakequant_op->narrow_range) { in Run()
[all …]
Ddrop_fake_quant.cc36 auto* fakequant_op = static_cast<FakeQuantOperator*>(fakequant_base_op); in Run() local
38 if (!fakequant_op->minmax) { in Run()
42 const auto& output_array = model->GetArray(fakequant_op->outputs[0]); in Run()
48 for (int i = 1; i < fakequant_op->inputs.size(); i++) { in Run()
49 if (CountOpsWithInput(*model, fakequant_op->inputs[i]) == 1) { in Run()
50 model->EraseArray(fakequant_op->inputs[i]); in Run()
53 fakequant_op->inputs.resize(1); in Run()
Ddequantize.cc152 auto* fakequant_op = new FakeQuantOperator; in DequantizeArray() local
154 fakequant_op); in DequantizeArray()
160 fakequant_op->minmax.reset(new MinMax); in DequantizeArray()
161 *fakequant_op->minmax = array->GetMinMax(); in DequantizeArray()
162 fakequant_op->narrow_range = array->narrow_range; in DequantizeArray()
171 fakequant_op->inputs = {new_array_name}; in DequantizeArray()
172 fakequant_op->outputs = {array_name}; in DequantizeArray()
181 fakequant_op->inputs = {array_name}; in DequantizeArray()
182 fakequant_op->outputs = {new_array_name}; in DequantizeArray()
Dpropagate_fake_quant_num_bits.cc296 auto* fakequant_op = static_cast<FakeQuantOperator*>(op); in Run() local
299 if (!InferQuantizedDataTypeFromFakeQuant(*fakequant_op, in Run()
302 LogName(*op), fakequant_op->num_bits); in Run()
305 const auto& final_minmax = *fakequant_op->minmax; in Run()
309 LogName(*op), fakequant_op->num_bits, final_minmax.min, final_minmax.max, in Run()
/external/tensorflow/tensorflow/lite/toco/
Ddump_graphviz.cc395 const auto& fakequant_op = static_cast<const FakeQuantOperator&>(op); in GetOpAttributes() local
396 attrs["bits"] = StringF("%d", fakequant_op.num_bits); in GetOpAttributes()
397 if (fakequant_op.minmax) { in GetOpAttributes()
398 attrs["range"] = StringF("[%g,%g]", fakequant_op.minmax->min, in GetOpAttributes()
399 fakequant_op.minmax->max); in GetOpAttributes()
Dexport_tensorflow.cc951 tensorflow::NodeDef* fakequant_op = tensorflow_graph->add_node(); in ConvertFakeQuantOperator() local
952 fakequant_op->set_op("FakeQuantWithMinMaxArgs"); in ConvertFakeQuantOperator()
953 fakequant_op->set_name(src_op.outputs[0]); in ConvertFakeQuantOperator()
955 *fakequant_op->add_input() = src_op.inputs[0]; in ConvertFakeQuantOperator()
957 (*fakequant_op->mutable_attr())["min"].set_f(src_op.minmax->min); in ConvertFakeQuantOperator()
958 (*fakequant_op->mutable_attr())["max"].set_f(src_op.minmax->max); in ConvertFakeQuantOperator()
960 (*fakequant_op->mutable_attr())["num_bits"].set_i(src_op.num_bits); in ConvertFakeQuantOperator()
963 (*fakequant_op->mutable_attr())["narrow_range"].set_b(src_op.narrow_range); in ConvertFakeQuantOperator()
2495 FakeQuantOperator* fakequant_op = new FakeQuantOperator; in EncodeConstantArraysMinMaxByWrappingThemInFakeQuantNodes() local
2496 fakequant_op->inputs = {wrapped_array_name}; in EncodeConstantArraysMinMaxByWrappingThemInFakeQuantNodes()
[all …]