/external/tensorflow/tensorflow/core/kernels/ |
D | ctc_decoder_ops.cc | 66 const TensorShape& inputs_shape = (*inputs)->shape(); in ValidateInputsGenerateOutputs() local 68 if (inputs_shape.dims() != 3) { in ValidateInputsGenerateOutputs() 72 const int64 max_time = inputs_shape.dim_size(0); in ValidateInputsGenerateOutputs() 73 const int64 batch_size = inputs_shape.dim_size(1); in ValidateInputsGenerateOutputs() 190 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 193 const int64 max_time = inputs_shape.dim_size(0); in Compute() 194 const int64 batch_size = inputs_shape.dim_size(1); in Compute() 195 const int64 num_classes_raw = inputs_shape.dim_size(2); in Compute() 282 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 284 const int64 max_time = inputs_shape.dim_size(0); in Compute() [all …]
|
D | ctc_loss_op.cc | 68 const TensorShape& inputs_shape = inputs->shape(); in Compute() local 69 const int64 max_time = inputs_shape.dim_size(0); in Compute() 70 const int64 batch_size = inputs_shape.dim_size(1); in Compute() 71 const int64 num_classes_raw = inputs_shape.dim_size(2); in Compute() 144 ctx->allocate_output("gradient", inputs_shape, &gradient)); in Compute()
|
/external/tensorflow/tensorflow/lite/experimental/examples/lstm/ |
D | rnn_cell.py | 94 def build(self, inputs_shape): argument 103 if inputs_shape[-1] is None: 105 (inputs_shape,)) 107 input_depth = inputs_shape[-1] 284 def build(self, inputs_shape): argument 294 if len(inputs_shape) != 2: 296 "inputs_shape must be 2-dimensional, saw shape: %s" % inputs_shape) 298 inputs_shape[1] 299 if isinstance(inputs_shape[1], int) else inputs_shape[1].value) 301 raise ValueError("Invalid inputs_shape, saw shape: %s" % inputs_shape)
|
/external/tensorflow/tensorflow/contrib/rnn/python/ops/ |
D | lstm_ops.py | 399 def build(self, inputs_shape): argument 400 if not inputs_shape.dims[1].value: 402 "Expecting inputs_shape[1] to be set: %s" % str(inputs_shape)) 403 input_size = inputs_shape.dims[1].value 516 inputs_shape = inputs.get_shape().with_rank(3) 517 if not inputs_shape[2]: 518 raise ValueError("Expecting inputs_shape[2] to be set: %s" % inputs_shape) 519 batch_size = inputs_shape.dims[1].value 522 time_len = inputs_shape.dims[0].value 681 inputs_shape = inputs.get_shape().with_rank(3) [all …]
|
D | rnn_cell.py | 1518 def build(self, inputs_shape): argument 1520 tensor_shape.TensorShape(inputs_shape).with_rank(2)[1]) 2780 def build(self, inputs_shape): argument 2781 if tensor_shape.dimension_value(inputs_shape[1]) is None: 2783 "Expected inputs.shape[-1] to be known, saw shape: %s" % inputs_shape) 2785 input_depth = tensor_shape.dimension_value(inputs_shape[1]) 3120 def build(self, inputs_shape): argument 3121 if tensor_shape.dimension_value(inputs_shape[1]) is None: 3123 "Expected inputs.shape[-1] to be known, saw shape: %s" % inputs_shape) 3125 input_depth = tensor_shape.dimension_value(inputs_shape[1]) [all …]
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/layers/ |
D | rnn_cells.py | 91 def build(self, inputs_shape): argument 93 super(MaskedBasicLSTMCell, self).build(inputs_shape) 97 input_depth = inputs_shape.dims[1].value 240 def build(self, inputs_shape): argument 242 super(MaskedLSTMCell, self).build(inputs_shape) 246 input_depth = inputs_shape.dims[1].value
|
/external/tensorflow/tensorflow/contrib/specs/python/ |
D | summaries_test.py | 38 inputs_shape = (1, 18, 19, 5) 39 inputs = constant_op.constant(_rand(*inputs_shape)) 47 spec, input_shape=inputs_shape),
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | normalization.py | 94 inputs_shape = inputs.shape 110 [1, inputs_shape[1].value] + [1 for _ in range(2, inputs_rank)]) 117 params_shape = inputs_shape[reduction_axis:reduction_axis + 1] 309 inputs_shape = (axes_before_channels + [groups, channels // groups] + 311 inputs = array_ops.reshape(inputs, inputs_shape)
|
D | layers.py | 285 inputs_shape = inputs.get_shape() 287 params_shape = inputs_shape[-1:] 289 params_shape = inputs_shape[1:2] 421 outputs.set_shape(inputs_shape) 677 inputs_shape = inputs.get_shape() 678 inputs_rank = inputs_shape.ndims 684 inputs_shape[0:1].assert_is_compatible_with(batch_weights.get_shape()) 691 params_shape = inputs_shape[1:2] 696 [1, inputs_shape.dims[1].value] + [1 for _ in range(2, inputs_rank)]) 699 params_shape = inputs_shape[-1:] [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | rnn_cell_impl.py | 444 def build(self, inputs_shape): argument 445 if inputs_shape[-1] is None: 447 % str(inputs_shape)) 450 input_depth = inputs_shape[-1] 545 def build(self, inputs_shape): argument 546 if inputs_shape[-1] is None: 548 % str(inputs_shape)) 550 input_depth = inputs_shape[-1] 724 def build(self, inputs_shape): argument 725 if inputs_shape[-1] is None: [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | convolutional.py | 779 inputs_shape = array_ops.shape(inputs) 780 batch_size = inputs_shape[0] 786 height, width = inputs_shape[h_axis], inputs_shape[w_axis] 1052 inputs_shape = array_ops.shape(inputs) 1053 batch_size = inputs_shape[0] 1059 depth = inputs_shape[d_axis] 1060 height = inputs_shape[h_axis] 1061 width = inputs_shape[w_axis]
|
D | recurrent_test.py | 1412 def build(self, inputs_shape): argument 1415 input_1 = inputs_shape.t1[1] 1416 input_2, input_3 = inputs_shape.t2[1:] 1418 input_1 = inputs_shape[0][1] 1419 input_2, input_3 = inputs_shape[1][1:]
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/ops/ |
D | cudnn_rnn_ops.py | 118 def build(self, inputs_shape): argument 119 if inputs_shape[1].value is None: 121 % inputs_shape) 123 input_depth = inputs_shape[1].value
|
/external/tensorflow/tensorflow/core/grappler/optimizers/ |
D | arithmetic_optimizer_test.cc | 897 Output inputs_shape = ops::Shape(s, inputs); in TEST_F() local 900 Output batch_size = ops::Slice(s, inputs_shape, ops::Const(s, {0}, {1}), in TEST_F() 932 Output inputs_shape = ops::Shape(s, inputs); in TEST_F() local 935 Output batch_size = ops::Slice(s, inputs_shape, ops::Const(s, {0}, {1}), in TEST_F() 937 Output height = ops::Slice(s, inputs_shape, ops::Const(s, {2}, {1}), in TEST_F() 939 Output width = ops::Slice(s, inputs_shape, ops::Const(s, {3}, {1}), in TEST_F() 1359 Output inputs_shape = in TEST_F() local 1362 ops::RandomUniform(s.WithOpName("inputs"), inputs_shape, DT_FLOAT); in TEST_F() 1392 Output inputs_shape = in TEST_F() local 1469 Output inputs_shape = in TEST_F() local [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.lite.experimental.nn.-t-f-lite-l-s-t-m-cell.pbtxt | 136 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.nn.-r-n-n-cell-device-wrapper.pbtxt | 128 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.lite.experimental.nn.-tf-lite-r-n-n-cell.pbtxt | 136 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.nn.-r-n-n-cell-dropout-wrapper.pbtxt | 132 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.nn.-r-n-n-cell-residual-wrapper.pbtxt | 128 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.lite.experimental.nn.-tf-lite-r-n-n-cell.pbtxt | 136 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|
D | tensorflow.lite.experimental.nn.-t-f-lite-l-s-t-m-cell.pbtxt | 136 argspec: "args=[\'self\', \'inputs_shape\'], varargs=None, keywords=None, defaults=None"
|