Searched refs:recurrent_kernel (Results 1 – 14 of 14) sorted by relevance
/external/tensorflow/tensorflow/python/keras/layers/ |
D | recurrent_v2.py | 283 recurrent_kernel=self.cell.recurrent_kernel, 291 recurrent_kernel=self.cell.recurrent_kernel, 308 recurrent_kernel=self.cell.recurrent_kernel, 315 self.cell.kernel, self.cell.recurrent_kernel, 321 def standard_gru(inputs, init_h, kernel, recurrent_kernel, bias, activation, argument 369 matrix_inner = K.dot(h_tm1, recurrent_kernel) 392 def cudnn_gru(inputs, init_h, kernel, recurrent_kernel, bias, time_major): argument 399 weights += array_ops.split(recurrent_kernel, 3, axis=1) 634 self.cell.recurrent_kernel, self.cell.bias, self.time_major) 638 self.cell.recurrent_kernel, self.cell.bias, self.activation, [all …]
|
D | cudnn_recurrent.py | 143 return [self.kernel, self.recurrent_kernel, self.bias] 149 return [self.kernel, self.recurrent_kernel, self.bias] 256 self.recurrent_kernel = self.add_weight( 283 self.recurrent_kernel[:, self.units:self.units * 2], 284 self.recurrent_kernel[:, :self.units], 285 self.recurrent_kernel[:, self.units * 2:], 439 self.recurrent_kernel = self.add_weight( 479 self.recurrent_kernel[:, :self.units], 480 self.recurrent_kernel[:, self.units:self.units * 2], 481 self.recurrent_kernel[:, self.units * 2:self.units * 3], [all …]
|
D | recurrent.py | 1215 self.recurrent_kernel = self.add_weight( 1247 output = h + K.dot(prev_output, self.recurrent_kernel) 1622 self.recurrent_kernel = self.add_weight( 1688 recurrent_z = K.dot(h_tm1_z, self.recurrent_kernel[:, :self.units]) 1690 self.recurrent_kernel[:, self.units:self.units * 2]) 1701 recurrent_h = K.dot(h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) 1707 self.recurrent_kernel[:, self.units * 2:]) 1729 matrix_inner = K.dot(h_tm1, self.recurrent_kernel) 1734 matrix_inner = K.dot(h_tm1, self.recurrent_kernel[:, :2 * self.units]) 1746 self.recurrent_kernel[:, 2 * self.units:]) [all …]
|
D | recurrent_test.py | 158 self.recurrent_kernel = self.add_weight( 167 output = h + keras.backend.dot(prev_output, self.recurrent_kernel) 242 self.recurrent_kernel = self.add_weight( 251 output = h + keras.backend.dot(prev_output, self.recurrent_kernel) 398 self.recurrent_kernel = self.add_weight( 412 h_state = keras.backend.dot(prev_output, self.recurrent_kernel) 528 self.recurrent_kernel = self.add_weight( 542 h_state = keras.backend.dot(prev_output, self.recurrent_kernel)
|
D | simplernn_test.py | 98 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
|
D | gru_test.py | 204 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
|
D | convolutional_recurrent.py | 620 self.recurrent_kernel = self.add_weight( 685 recurrent_kernel_o) = array_ops.split(self.recurrent_kernel, 4, axis=3)
|
D | wrappers_test.py | 48 self.recurrent_kernel = self.add_weight( 62 h_state = keras.backend.dot(prev_output, self.recurrent_kernel)
|
D | lstm_test.py | 117 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
|
D | gru_v2_test.py | 383 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
|
D | lstm_v2_test.py | 375 self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format.py | 420 recurrent_kernel = np.concatenate( 423 weights = [kernel, recurrent_kernel, bias] 431 recurrent_kernel = np.concatenate( 435 weights = [kernel, recurrent_kernel, bias] 441 recurrent_kernel = np.concatenate( 449 recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0)) 450 weights = [kernel, recurrent_kernel, bias]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | rnn_test.py | 603 kernel, recurrent_kernel, bias = keras_weights 604 tf_weights = [np.concatenate((kernel, recurrent_kernel)), bias]
|
/external/tensorflow/tensorflow/contrib/rnn/python/ops/ |
D | rnn_cell.py | 1528 self.recurrent_kernel = self.add_variable( 1573 m_matrix = math_ops.matmul(m_prev, self.recurrent_kernel) 3945 self.recurrent_kernel = self.add_weight( 3984 u = self.recurrent_kernel
|