Home
last modified time | relevance | path

Searched refs:axis0 (Results 1 – 14 of 14) sorted by relevance

/frameworks/ml/nn/runtime/test/generated/models/
Dconcat_float16_1.model.cpp10 auto axis0 = model->addOperand(&type1); in CreateModel() local
14 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis0}, {result}); in CreateModel()
35 auto axis0 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local
39 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
40 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis0}, {result}); in CreateModel_dynamic_output_shape()
Dconcat_float_1.model.cpp10 auto axis0 = model->addOperand(&type1); in CreateModel() local
14 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis0}, {result}); in CreateModel()
35 auto axis0 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local
39 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
40 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis0}, {result}); in CreateModel_dynamic_output_shape()
Dconcat_float_2.model.cpp11 auto axis0 = model->addOperand(&type2); in CreateModel() local
15 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel()
37 auto axis0 = model->addOperand(&type2); in CreateModel_dynamic_output_shape() local
41 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape()
Dconcat_float_1_relaxed.model.cpp10 auto axis0 = model->addOperand(&type1); in CreateModel() local
14 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis0}, {result}); in CreateModel()
37 auto axis0 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local
41 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {op1, op2, axis0}, {result}); in CreateModel_dynamic_output_shape()
Dconcat_float16_2.model.cpp11 auto axis0 = model->addOperand(&type2); in CreateModel() local
15 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel()
37 auto axis0 = model->addOperand(&type2); in CreateModel_dynamic_output_shape() local
41 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape()
Dconcat_quant8_2.model.cpp11 auto axis0 = model->addOperand(&type2); in CreateModel() local
15 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel()
37 auto axis0 = model->addOperand(&type2); in CreateModel_dynamic_output_shape() local
41 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape()
Dconcat_float_2_relaxed.model.cpp11 auto axis0 = model->addOperand(&type2); in CreateModel() local
15 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel()
16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel()
39 auto axis0 = model->addOperand(&type2); in CreateModel_dynamic_output_shape() local
43 model->setOperandValue(axis0, axis0_init, sizeof(int32_t) * 1); in CreateModel_dynamic_output_shape()
44 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape()
/frameworks/ml/nn/runtime/test/specs/V1_2/
Dconcat_float16_1.mod.py21 axis0 = Int32Scalar("axis0", 0) variable
23 model = model.Operation("CONCATENATION", i1, i2, axis0).To(r)
Dconcat_float16_2.mod.py27 axis0 = Int32Scalar("axis0", 0) variable
29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output)
/frameworks/ml/nn/runtime/test/specs/V1_0/
Dconcat_float_1.mod.py21 axis0 = Int32Scalar("axis0", 0) variable
23 model = model.Operation("CONCATENATION", i1, i2, axis0).To(r)
Dconcat_float_2.mod.py27 axis0 = Int32Scalar("axis0", 0) variable
29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output)
Dconcat_quant8_2.mod.py27 axis0 = Int32Scalar("axis0", 0) variable
29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output)
/frameworks/ml/nn/runtime/test/specs/V1_1/
Dconcat_float_1_relaxed.mod.py21 axis0 = Int32Scalar("axis0", 0) variable
23 model = model.Operation("CONCATENATION", i1, i2, axis0).To(r)
Dconcat_float_2_relaxed.mod.py27 axis0 = Int32Scalar("axis0", 0) variable
29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output)