1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_
18 #define ART_COMPILER_UTILS_ASSEMBLER_H_
19 
20 #include <vector>
21 
22 #include <android-base/logging.h>
23 
24 #include "arch/instruction_set.h"
25 #include "arch/instruction_set_features.h"
26 #include "arm/constants_arm.h"
27 #include "base/arena_allocator.h"
28 #include "base/arena_object.h"
29 #include "base/array_ref.h"
30 #include "base/enums.h"
31 #include "base/macros.h"
32 #include "base/memory_region.h"
33 #include "dwarf/debug_frame_opcode_writer.h"
34 #include "label.h"
35 #include "managed_register.h"
36 #include "mips/constants_mips.h"
37 #include "offsets.h"
38 #include "x86/constants_x86.h"
39 #include "x86_64/constants_x86_64.h"
40 
41 namespace art {
42 
43 class Assembler;
44 class AssemblerBuffer;
45 
46 // Assembler fixups are positions in generated code that require processing
47 // after the code has been copied to executable memory. This includes building
48 // relocation information.
49 class AssemblerFixup {
50  public:
51   virtual void Process(const MemoryRegion& region, int position) = 0;
~AssemblerFixup()52   virtual ~AssemblerFixup() {}
53 
54  private:
55   AssemblerFixup* previous_;
56   int position_;
57 
previous()58   AssemblerFixup* previous() const { return previous_; }
set_previous(AssemblerFixup * previous_in)59   void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; }
60 
position()61   int position() const { return position_; }
set_position(int position_in)62   void set_position(int position_in) { position_ = position_in; }
63 
64   friend class AssemblerBuffer;
65 };
66 
67 // Parent of all queued slow paths, emitted during finalization
68 class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> {
69  public:
SlowPath()70   SlowPath() : next_(nullptr) {}
~SlowPath()71   virtual ~SlowPath() {}
72 
Continuation()73   Label* Continuation() { return &continuation_; }
Entry()74   Label* Entry() { return &entry_; }
75   // Generate code for slow path
76   virtual void Emit(Assembler *sp_asm) = 0;
77 
78  protected:
79   // Entry branched to by fast path
80   Label entry_;
81   // Optional continuation that is branched to at the end of the slow path
82   Label continuation_;
83   // Next in linked list of slow paths
84   SlowPath *next_;
85 
86  private:
87   friend class AssemblerBuffer;
88   DISALLOW_COPY_AND_ASSIGN(SlowPath);
89 };
90 
91 class AssemblerBuffer {
92  public:
93   explicit AssemblerBuffer(ArenaAllocator* allocator);
94   ~AssemblerBuffer();
95 
GetAllocator()96   ArenaAllocator* GetAllocator() {
97     return allocator_;
98   }
99 
100   // Basic support for emitting, loading, and storing.
Emit(T value)101   template<typename T> void Emit(T value) {
102     CHECK(HasEnsuredCapacity());
103     *reinterpret_cast<T*>(cursor_) = value;
104     cursor_ += sizeof(T);
105   }
106 
Load(size_t position)107   template<typename T> T Load(size_t position) {
108     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
109     return *reinterpret_cast<T*>(contents_ + position);
110   }
111 
Store(size_t position,T value)112   template<typename T> void Store(size_t position, T value) {
113     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
114     *reinterpret_cast<T*>(contents_ + position) = value;
115   }
116 
Resize(size_t new_size)117   void Resize(size_t new_size) {
118     if (new_size > Capacity()) {
119       ExtendCapacity(new_size);
120     }
121     cursor_ = contents_ + new_size;
122   }
123 
Move(size_t newposition,size_t oldposition,size_t size)124   void Move(size_t newposition, size_t oldposition, size_t size) {
125     // Move a chunk of the buffer from oldposition to newposition.
126     DCHECK_LE(oldposition + size, Size());
127     DCHECK_LE(newposition + size, Size());
128     memmove(contents_ + newposition, contents_ + oldposition, size);
129   }
130 
131   // Emit a fixup at the current location.
EmitFixup(AssemblerFixup * fixup)132   void EmitFixup(AssemblerFixup* fixup) {
133     fixup->set_previous(fixup_);
134     fixup->set_position(Size());
135     fixup_ = fixup;
136   }
137 
EnqueueSlowPath(SlowPath * slowpath)138   void EnqueueSlowPath(SlowPath* slowpath) {
139     if (slow_path_ == nullptr) {
140       slow_path_ = slowpath;
141     } else {
142       SlowPath* cur = slow_path_;
143       for ( ; cur->next_ != nullptr ; cur = cur->next_) {}
144       cur->next_ = slowpath;
145     }
146   }
147 
EmitSlowPaths(Assembler * sp_asm)148   void EmitSlowPaths(Assembler* sp_asm) {
149     SlowPath* cur = slow_path_;
150     SlowPath* next = nullptr;
151     slow_path_ = nullptr;
152     for ( ; cur != nullptr ; cur = next) {
153       cur->Emit(sp_asm);
154       next = cur->next_;
155       delete cur;
156     }
157   }
158 
159   // Get the size of the emitted code.
Size()160   size_t Size() const {
161     CHECK_GE(cursor_, contents_);
162     return cursor_ - contents_;
163   }
164 
contents()165   uint8_t* contents() const { return contents_; }
166 
167   // Copy the assembled instructions into the specified memory block
168   // and apply all fixups.
169   void FinalizeInstructions(const MemoryRegion& region);
170 
171   // To emit an instruction to the assembler buffer, the EnsureCapacity helper
172   // must be used to guarantee that the underlying data area is big enough to
173   // hold the emitted instruction. Usage:
174   //
175   //     AssemblerBuffer buffer;
176   //     AssemblerBuffer::EnsureCapacity ensured(&buffer);
177   //     ... emit bytes for single instruction ...
178 
179 #ifndef NDEBUG
180 
181   class EnsureCapacity {
182    public:
EnsureCapacity(AssemblerBuffer * buffer)183     explicit EnsureCapacity(AssemblerBuffer* buffer) {
184       if (buffer->cursor() > buffer->limit()) {
185         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
186       }
187       // In debug mode, we save the assembler buffer along with the gap
188       // size before we start emitting to the buffer. This allows us to
189       // check that any single generated instruction doesn't overflow the
190       // limit implied by the minimum gap size.
191       buffer_ = buffer;
192       gap_ = ComputeGap();
193       // Make sure that extending the capacity leaves a big enough gap
194       // for any kind of instruction.
195       CHECK_GE(gap_, kMinimumGap);
196       // Mark the buffer as having ensured the capacity.
197       CHECK(!buffer->HasEnsuredCapacity());  // Cannot nest.
198       buffer->has_ensured_capacity_ = true;
199     }
200 
~EnsureCapacity()201     ~EnsureCapacity() {
202       // Unmark the buffer, so we cannot emit after this.
203       buffer_->has_ensured_capacity_ = false;
204       // Make sure the generated instruction doesn't take up more
205       // space than the minimum gap.
206       int delta = gap_ - ComputeGap();
207       CHECK_LE(delta, kMinimumGap);
208     }
209 
210    private:
211     AssemblerBuffer* buffer_;
212     int gap_;
213 
ComputeGap()214     int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
215   };
216 
217   bool has_ensured_capacity_;
HasEnsuredCapacity()218   bool HasEnsuredCapacity() const { return has_ensured_capacity_; }
219 
220 #else
221 
222   class EnsureCapacity {
223    public:
EnsureCapacity(AssemblerBuffer * buffer)224     explicit EnsureCapacity(AssemblerBuffer* buffer) {
225       if (buffer->cursor() > buffer->limit()) {
226         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
227       }
228     }
229   };
230 
231   // When building the C++ tests, assertion code is enabled. To allow
232   // asserting that the user of the assembler buffer has ensured the
233   // capacity needed for emitting, we add a dummy method in non-debug mode.
HasEnsuredCapacity()234   bool HasEnsuredCapacity() const { return true; }
235 
236 #endif
237 
238   // Returns the position in the instruction stream.
GetPosition()239   int GetPosition() { return  cursor_ - contents_; }
240 
Capacity()241   size_t Capacity() const {
242     CHECK_GE(limit_, contents_);
243     return (limit_ - contents_) + kMinimumGap;
244   }
245 
246   // Unconditionally increase the capacity.
247   // The provided `min_capacity` must be higher than current `Capacity()`.
248   void ExtendCapacity(size_t min_capacity);
249 
250  private:
251   // The limit is set to kMinimumGap bytes before the end of the data area.
252   // This leaves enough space for the longest possible instruction and allows
253   // for a single, fast space check per instruction.
254   static const int kMinimumGap = 32;
255 
256   ArenaAllocator* const allocator_;
257   uint8_t* contents_;
258   uint8_t* cursor_;
259   uint8_t* limit_;
260   AssemblerFixup* fixup_;
261 #ifndef NDEBUG
262   bool fixups_processed_;
263 #endif
264 
265   // Head of linked list of slow paths
266   SlowPath* slow_path_;
267 
cursor()268   uint8_t* cursor() const { return cursor_; }
limit()269   uint8_t* limit() const { return limit_; }
270 
271   // Process the fixup chain starting at the given fixup. The offset is
272   // non-zero for fixups in the body if the preamble is non-empty.
273   void ProcessFixups(const MemoryRegion& region);
274 
275   // Compute the limit based on the data area and the capacity. See
276   // description of kMinimumGap for the reasoning behind the value.
ComputeLimit(uint8_t * data,size_t capacity)277   static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) {
278     return data + capacity - kMinimumGap;
279   }
280 
281   friend class AssemblerFixup;
282 };
283 
284 // The purpose of this class is to ensure that we do not have to explicitly
285 // call the AdvancePC method (which is good for convenience and correctness).
286 class DebugFrameOpCodeWriterForAssembler final
287     : public dwarf::DebugFrameOpCodeWriter<> {
288  public:
289   struct DelayedAdvancePC {
290     uint32_t stream_pos;
291     uint32_t pc;
292   };
293 
294   // This method is called the by the opcode writers.
295   void ImplicitlyAdvancePC() final;
296 
DebugFrameOpCodeWriterForAssembler(Assembler * buffer)297   explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer)
298       : dwarf::DebugFrameOpCodeWriter<>(/* enabled= */ false),
299         assembler_(buffer),
300         delay_emitting_advance_pc_(false),
301         delayed_advance_pcs_() {
302   }
303 
~DebugFrameOpCodeWriterForAssembler()304   ~DebugFrameOpCodeWriterForAssembler() {
305     DCHECK(delayed_advance_pcs_.empty());
306   }
307 
308   // Tell the writer to delay emitting advance PC info.
309   // The assembler must explicitly process all the delayed advances.
DelayEmittingAdvancePCs()310   void DelayEmittingAdvancePCs() {
311     delay_emitting_advance_pc_ = true;
312   }
313 
314   // Override the last delayed PC. The new PC can be out of order.
OverrideDelayedPC(size_t pc)315   void OverrideDelayedPC(size_t pc) {
316     DCHECK(delay_emitting_advance_pc_);
317     if (enabled_) {
318       DCHECK(!delayed_advance_pcs_.empty());
319       delayed_advance_pcs_.back().pc = pc;
320     }
321   }
322 
323   // Return the number of delayed advance PC entries.
NumberOfDelayedAdvancePCs()324   size_t NumberOfDelayedAdvancePCs() const {
325     return delayed_advance_pcs_.size();
326   }
327 
328   // Release the CFI stream and advance PC infos so that the assembler can patch it.
329   std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>>
ReleaseStreamAndPrepareForDelayedAdvancePC()330   ReleaseStreamAndPrepareForDelayedAdvancePC() {
331     DCHECK(delay_emitting_advance_pc_);
332     delay_emitting_advance_pc_ = false;
333     std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result;
334     result.first.swap(opcodes_);
335     result.second.swap(delayed_advance_pcs_);
336     return result;
337   }
338 
339   // Reserve space for the CFI stream.
ReserveCFIStream(size_t capacity)340   void ReserveCFIStream(size_t capacity) {
341     opcodes_.reserve(capacity);
342   }
343 
344   // Append raw data to the CFI stream.
AppendRawData(const std::vector<uint8_t> & raw_data,size_t first,size_t last)345   void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) {
346     DCHECK_LE(0u, first);
347     DCHECK_LE(first, last);
348     DCHECK_LE(last, raw_data.size());
349     opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last);
350   }
351 
352  private:
353   Assembler* assembler_;
354   bool delay_emitting_advance_pc_;
355   std::vector<DelayedAdvancePC> delayed_advance_pcs_;
356 };
357 
358 class Assembler : public DeletableArenaObject<kArenaAllocAssembler> {
359  public:
360   // Finalize the code; emit slow paths, fixup branches, add literal pool, etc.
FinalizeCode()361   virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); }
362 
363   // Size of generated code
CodeSize()364   virtual size_t CodeSize() const { return buffer_.Size(); }
CodeBufferBaseAddress()365   virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); }
366   // CodePosition() is a non-const method similar to CodeSize(), which is used to
367   // record positions within the code buffer for the purpose of signal handling
368   // (stack overflow checks and implicit null checks may trigger signals and the
369   // signal handlers expect them right before the recorded positions).
370   // On most architectures CodePosition() should be equivalent to CodeSize(), but
371   // the MIPS assembler needs to be aware of this recording, so it doesn't put
372   // the instructions that can trigger signals into branch delay slots. Handling
373   // signals from instructions in delay slots is a bit problematic and should be
374   // avoided.
CodePosition()375   virtual size_t CodePosition() { return CodeSize(); }
376 
377   // Copy instructions out of assembly buffer into the given region of memory
FinalizeInstructions(const MemoryRegion & region)378   virtual void FinalizeInstructions(const MemoryRegion& region) {
379     buffer_.FinalizeInstructions(region);
380   }
381 
382   // TODO: Implement with disassembler.
Comment(const char * format ATTRIBUTE_UNUSED,...)383   virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {}
384 
385   virtual void Bind(Label* label) = 0;
386   virtual void Jump(Label* label) = 0;
387 
~Assembler()388   virtual ~Assembler() {}
389 
390   /**
391    * @brief Buffer of DWARF's Call Frame Information opcodes.
392    * @details It is used by debuggers and other tools to unwind the call stack.
393    */
cfi()394   DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; }
395 
GetAllocator()396   ArenaAllocator* GetAllocator() {
397     return buffer_.GetAllocator();
398   }
399 
GetBuffer()400   AssemblerBuffer* GetBuffer() {
401     return &buffer_;
402   }
403 
404  protected:
Assembler(ArenaAllocator * allocator)405   explicit Assembler(ArenaAllocator* allocator) : buffer_(allocator), cfi_(this) {}
406 
407   AssemblerBuffer buffer_;
408 
409   DebugFrameOpCodeWriterForAssembler cfi_;
410 };
411 
412 }  // namespace art
413 
414 #endif  // ART_COMPILER_UTILS_ASSEMBLER_H_
415