1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /**************************** AAC decoder library ******************************
96 
97    Author(s):   Josef Hoepfl
98 
99    Description: perceptual noise substitution tool
100 
101 *******************************************************************************/
102 
103 #include "aacdec_pns.h"
104 
105 #include "aac_ram.h"
106 #include "aac_rom.h"
107 #include "channelinfo.h"
108 #include "block.h"
109 #include "FDK_bitstream.h"
110 
111 #include "genericStds.h"
112 
113 #define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */
114 
115 /*!
116   \brief Reset InterChannel and PNS data
117 
118   The function resets the InterChannel and PNS data
119 */
CPns_ResetData(CPnsData * pPnsData,CPnsInterChannelData * pPnsInterChannelData)120 void CPns_ResetData(CPnsData *pPnsData,
121                     CPnsInterChannelData *pPnsInterChannelData) {
122   FDK_ASSERT(pPnsData != NULL);
123   FDK_ASSERT(pPnsInterChannelData != NULL);
124   /* Assign pointer always, since pPnsData is not persistent data */
125   pPnsData->pPnsInterChannelData = pPnsInterChannelData;
126   pPnsData->PnsActive = 0;
127   pPnsData->CurrentEnergy = 0;
128 
129   FDKmemclear(pPnsData->pnsUsed, (8 * 16) * sizeof(UCHAR));
130   FDKmemclear(pPnsInterChannelData->correlated, (8 * 16) * sizeof(UCHAR));
131 }
132 
133 /*!
134   \brief Update PNS noise generator state.
135 
136   The function sets the seed for PNS noise generation.
137   It can be used to link two or more channels in terms of PNS.
138 */
CPns_UpdateNoiseState(CPnsData * pPnsData,INT * currentSeed,INT * randomSeed)139 void CPns_UpdateNoiseState(CPnsData *pPnsData, INT *currentSeed,
140                            INT *randomSeed) {
141   /* use pointer because seed has to be
142      same, left and right channel ! */
143   pPnsData->currentSeed = currentSeed;
144   pPnsData->randomSeed = randomSeed;
145 }
146 
147 /*!
148   \brief Indicates if PNS is used
149 
150   The function returns a value indicating whether PNS is used or not
151   acordding to the noise energy
152 
153   \return  PNS used
154 */
CPns_IsPnsUsed(const CPnsData * pPnsData,const int group,const int band)155 int CPns_IsPnsUsed(const CPnsData *pPnsData, const int group, const int band) {
156   unsigned pns_band = group * 16 + band;
157 
158   return pPnsData->pnsUsed[pns_band] & (UCHAR)1;
159 }
160 
161 /*!
162   \brief Set correlation
163 
164   The function activates the noise correlation between the channel pair
165 */
CPns_SetCorrelation(CPnsData * pPnsData,const int group,const int band,const int outofphase)166 void CPns_SetCorrelation(CPnsData *pPnsData, const int group, const int band,
167                          const int outofphase) {
168   CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
169   unsigned pns_band = group * 16 + band;
170 
171   pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1;
172 }
173 
174 /*!
175   \brief Indicates if correlation is used
176 
177   The function indicates if the noise correlation between the channel pair
178   is activated
179 
180   \return  PNS is correlated
181 */
CPns_IsCorrelated(const CPnsData * pPnsData,const int group,const int band)182 static int CPns_IsCorrelated(const CPnsData *pPnsData, const int group,
183                              const int band) {
184   CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
185   unsigned pns_band = group * 16 + band;
186 
187   return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0;
188 }
189 
190 /*!
191   \brief Indicates if correlated out of phase mode is used.
192 
193   The function indicates if the noise correlation between the channel pair
194   is activated in out-of-phase mode.
195 
196   \return  PNS is out-of-phase
197 */
CPns_IsOutOfPhase(const CPnsData * pPnsData,const int group,const int band)198 static int CPns_IsOutOfPhase(const CPnsData *pPnsData, const int group,
199                              const int band) {
200   CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
201   unsigned pns_band = group * 16 + band;
202 
203   return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0;
204 }
205 
206 /*!
207   \brief Read PNS information
208 
209   The function reads the PNS information from the bitstream
210 */
CPns_Read(CPnsData * pPnsData,HANDLE_FDK_BITSTREAM bs,const CodeBookDescription * hcb,SHORT * pScaleFactor,UCHAR global_gain,int band,int group)211 void CPns_Read(CPnsData *pPnsData, HANDLE_FDK_BITSTREAM bs,
212                const CodeBookDescription *hcb, SHORT *pScaleFactor,
213                UCHAR global_gain, int band, int group /* = 0 */) {
214   int delta;
215   UINT pns_band = group * 16 + band;
216 
217   if (pPnsData->PnsActive) {
218     /* Next PNS band case */
219     delta = CBlock_DecodeHuffmanWord(bs, hcb) - 60;
220   } else {
221     /* First PNS band case */
222     int noiseStartValue = FDKreadBits(bs, 9);
223 
224     delta = noiseStartValue - 256;
225     pPnsData->PnsActive = 1;
226     pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET;
227   }
228 
229   pPnsData->CurrentEnergy += delta;
230   pScaleFactor[pns_band] = pPnsData->CurrentEnergy;
231 
232   pPnsData->pnsUsed[pns_band] = 1;
233 }
234 
235 /**
236  * \brief Generate a vector of noise of given length. The noise values are
237  *        scaled in order to yield a noise energy of 1.0
238  * \param spec pointer to were the noise values will be written to.
239  * \param size amount of noise values to be generated.
240  * \param pRandomState pointer to the state of the random generator being used.
241  * \return exponent of generated noise vector.
242  */
GenerateRandomVector(FIXP_DBL * RESTRICT spec,int size,int * pRandomState)243 static int GenerateRandomVector(FIXP_DBL *RESTRICT spec, int size,
244                                 int *pRandomState) {
245   int i, invNrg_e = 0, nrg_e = 0;
246   FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f);
247   FIXP_DBL *RESTRICT ptr = spec;
248   int randomState = *pRandomState;
249 
250 #define GEN_NOISE_NRG_SCALE 7
251 
252   /* Generate noise and calculate energy. */
253   for (i = 0; i < size; i++) {
254     randomState =
255         (((INT64)1664525 * randomState) + (INT64)1013904223) & 0xFFFFFFFF;
256     nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState >> GEN_NOISE_NRG_SCALE);
257     *ptr++ = (FIXP_DBL)randomState;
258   }
259   nrg_e = GEN_NOISE_NRG_SCALE * 2 + 1;
260 
261   /* weight noise with = 1 / sqrt_nrg; */
262   invNrg_m = invSqrtNorm2(nrg_m << 1, &invNrg_e);
263   invNrg_e += -((nrg_e - 1) >> 1);
264 
265   for (i = size; i--;) {
266     spec[i] = fMult(spec[i], invNrg_m);
267   }
268 
269   /* Store random state */
270   *pRandomState = randomState;
271 
272   return invNrg_e;
273 }
274 
ScaleBand(FIXP_DBL * RESTRICT spec,int size,int scaleFactor,int specScale,int noise_e,int out_of_phase)275 static void ScaleBand(FIXP_DBL *RESTRICT spec, int size, int scaleFactor,
276                       int specScale, int noise_e, int out_of_phase) {
277   int i, shift, sfExponent;
278   FIXP_DBL sfMatissa;
279 
280   /* Get gain from scale factor value = 2^(scaleFactor * 0.25) */
281   sfMatissa = MantissaTable[scaleFactor & 0x03][0];
282   /* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */
283   /* Note:  ExponentTable[scaleFactor & 0x03][0] is always 1. */
284   sfExponent = (scaleFactor >> 2) + 1;
285 
286   if (out_of_phase != 0) {
287     sfMatissa = -sfMatissa;
288   }
289 
290   /* +1 because of fMultDiv2 below. */
291   shift = sfExponent - specScale + 1 + noise_e;
292 
293   /* Apply gain to noise values */
294   if (shift >= 0) {
295     shift = fixMin(shift, DFRACT_BITS - 1);
296     for (i = size; i-- != 0;) {
297       spec[i] = fMultDiv2(spec[i], sfMatissa) << shift;
298     }
299   } else {
300     shift = fixMin(-shift, DFRACT_BITS - 1);
301     for (i = size; i-- != 0;) {
302       spec[i] = fMultDiv2(spec[i], sfMatissa) >> shift;
303     }
304   }
305 }
306 
307 /*!
308   \brief Apply PNS
309 
310   The function applies PNS (i.e. it generates noise) on the bands
311   flagged as noisy bands
312 
313 */
CPns_Apply(const CPnsData * pPnsData,const CIcsInfo * pIcsInfo,SPECTRAL_PTR pSpectrum,const SHORT * pSpecScale,const SHORT * pScaleFactor,const SamplingRateInfo * pSamplingRateInfo,const INT granuleLength,const int channel)314 void CPns_Apply(const CPnsData *pPnsData, const CIcsInfo *pIcsInfo,
315                 SPECTRAL_PTR pSpectrum, const SHORT *pSpecScale,
316                 const SHORT *pScaleFactor,
317                 const SamplingRateInfo *pSamplingRateInfo,
318                 const INT granuleLength, const int channel) {
319   if (pPnsData->PnsActive) {
320     const short *BandOffsets =
321         GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo);
322 
323     int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo);
324 
325     for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo);
326          group++) {
327       for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group);
328            groupwin++, window++) {
329         FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength);
330 
331         for (int band = 0; band < ScaleFactorBandsTransmitted; band++) {
332           if (CPns_IsPnsUsed(pPnsData, group, band)) {
333             UINT pns_band = window * 16 + band;
334 
335             int bandWidth = BandOffsets[band + 1] - BandOffsets[band];
336             int noise_e;
337 
338             FDK_ASSERT(bandWidth >= 0);
339 
340             if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band)) {
341               noise_e =
342                   GenerateRandomVector(spectrum + BandOffsets[band], bandWidth,
343                                        &pPnsData->randomSeed[pns_band]);
344             } else {
345               pPnsData->randomSeed[pns_band] = *pPnsData->currentSeed;
346 
347               noise_e = GenerateRandomVector(spectrum + BandOffsets[band],
348                                              bandWidth, pPnsData->currentSeed);
349             }
350 
351             int outOfPhase = CPns_IsOutOfPhase(pPnsData, group, band);
352 
353             ScaleBand(spectrum + BandOffsets[band], bandWidth,
354                       pScaleFactor[group * 16 + band], pSpecScale[window],
355                       noise_e, outOfPhase);
356           }
357         }
358       }
359     }
360   }
361 }
362