1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #ifndef _UAPI__LINUX_BPF_H__ 9 #define _UAPI__LINUX_BPF_H__ 10 11 #include <linux/types.h> 12 #include "bpf_common.h" 13 14 /* Extended instruction set based on top of classic BPF */ 15 16 /* instruction classes */ 17 #define BPF_ALU64 0x07 /* alu mode in double word width */ 18 19 /* ld/ldx fields */ 20 #define BPF_DW 0x18 /* double word (64-bit) */ 21 #define BPF_XADD 0xc0 /* exclusive add */ 22 23 /* alu/jmp fields */ 24 #define BPF_MOV 0xb0 /* mov reg to reg */ 25 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 26 27 /* change endianness of a register */ 28 #define BPF_END 0xd0 /* flags for endianness conversion: */ 29 #define BPF_TO_LE 0x00 /* convert to little-endian */ 30 #define BPF_TO_BE 0x08 /* convert to big-endian */ 31 #define BPF_FROM_LE BPF_TO_LE 32 #define BPF_FROM_BE BPF_TO_BE 33 34 /* jmp encodings */ 35 #define BPF_JNE 0x50 /* jump != */ 36 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 37 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 38 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 39 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 40 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 41 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 42 #define BPF_CALL 0x80 /* function call */ 43 #define BPF_EXIT 0x90 /* function return */ 44 45 /* Register numbers */ 46 enum { 47 BPF_REG_0 = 0, 48 BPF_REG_1, 49 BPF_REG_2, 50 BPF_REG_3, 51 BPF_REG_4, 52 BPF_REG_5, 53 BPF_REG_6, 54 BPF_REG_7, 55 BPF_REG_8, 56 BPF_REG_9, 57 BPF_REG_10, 58 __MAX_BPF_REG, 59 }; 60 61 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 62 #define MAX_BPF_REG __MAX_BPF_REG 63 64 struct bpf_insn { 65 __u8 code; /* opcode */ 66 __u8 dst_reg:4; /* dest register */ 67 __u8 src_reg:4; /* source register */ 68 __s16 off; /* signed offset */ 69 __s32 imm; /* signed immediate constant */ 70 }; 71 72 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 73 struct bpf_lpm_trie_key { 74 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 75 __u8 data[0]; /* Arbitrary size */ 76 }; 77 78 struct bpf_cgroup_storage_key { 79 __u64 cgroup_inode_id; /* cgroup inode id */ 80 __u32 attach_type; /* program attach type */ 81 }; 82 83 /* BPF syscall commands, see bpf(2) man-page for details. */ 84 enum bpf_cmd { 85 BPF_MAP_CREATE, 86 BPF_MAP_LOOKUP_ELEM, 87 BPF_MAP_UPDATE_ELEM, 88 BPF_MAP_DELETE_ELEM, 89 BPF_MAP_GET_NEXT_KEY, 90 BPF_PROG_LOAD, 91 BPF_OBJ_PIN, 92 BPF_OBJ_GET, 93 BPF_PROG_ATTACH, 94 BPF_PROG_DETACH, 95 BPF_PROG_TEST_RUN, 96 BPF_PROG_GET_NEXT_ID, 97 BPF_MAP_GET_NEXT_ID, 98 BPF_PROG_GET_FD_BY_ID, 99 BPF_MAP_GET_FD_BY_ID, 100 BPF_OBJ_GET_INFO_BY_FD, 101 BPF_PROG_QUERY, 102 BPF_RAW_TRACEPOINT_OPEN, 103 BPF_BTF_LOAD, 104 BPF_BTF_GET_FD_BY_ID, 105 BPF_TASK_FD_QUERY, 106 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 107 }; 108 109 enum bpf_map_type { 110 BPF_MAP_TYPE_UNSPEC, 111 BPF_MAP_TYPE_HASH, 112 BPF_MAP_TYPE_ARRAY, 113 BPF_MAP_TYPE_PROG_ARRAY, 114 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 115 BPF_MAP_TYPE_PERCPU_HASH, 116 BPF_MAP_TYPE_PERCPU_ARRAY, 117 BPF_MAP_TYPE_STACK_TRACE, 118 BPF_MAP_TYPE_CGROUP_ARRAY, 119 BPF_MAP_TYPE_LRU_HASH, 120 BPF_MAP_TYPE_LRU_PERCPU_HASH, 121 BPF_MAP_TYPE_LPM_TRIE, 122 BPF_MAP_TYPE_ARRAY_OF_MAPS, 123 BPF_MAP_TYPE_HASH_OF_MAPS, 124 BPF_MAP_TYPE_DEVMAP, 125 BPF_MAP_TYPE_SOCKMAP, 126 BPF_MAP_TYPE_CPUMAP, 127 BPF_MAP_TYPE_XSKMAP, 128 BPF_MAP_TYPE_SOCKHASH, 129 BPF_MAP_TYPE_CGROUP_STORAGE, 130 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 131 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 132 BPF_MAP_TYPE_QUEUE, 133 BPF_MAP_TYPE_STACK, 134 }; 135 136 enum bpf_prog_type { 137 BPF_PROG_TYPE_UNSPEC, 138 BPF_PROG_TYPE_SOCKET_FILTER, 139 BPF_PROG_TYPE_KPROBE, 140 BPF_PROG_TYPE_SCHED_CLS, 141 BPF_PROG_TYPE_SCHED_ACT, 142 BPF_PROG_TYPE_TRACEPOINT, 143 BPF_PROG_TYPE_XDP, 144 BPF_PROG_TYPE_PERF_EVENT, 145 BPF_PROG_TYPE_CGROUP_SKB, 146 BPF_PROG_TYPE_CGROUP_SOCK, 147 BPF_PROG_TYPE_LWT_IN, 148 BPF_PROG_TYPE_LWT_OUT, 149 BPF_PROG_TYPE_LWT_XMIT, 150 BPF_PROG_TYPE_SOCK_OPS, 151 BPF_PROG_TYPE_SK_SKB, 152 BPF_PROG_TYPE_CGROUP_DEVICE, 153 BPF_PROG_TYPE_SK_MSG, 154 BPF_PROG_TYPE_RAW_TRACEPOINT, 155 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 156 BPF_PROG_TYPE_LWT_SEG6LOCAL, 157 BPF_PROG_TYPE_LIRC_MODE2, 158 BPF_PROG_TYPE_SK_REUSEPORT, 159 BPF_PROG_TYPE_FLOW_DISSECTOR, 160 }; 161 162 enum bpf_attach_type { 163 BPF_CGROUP_INET_INGRESS, 164 BPF_CGROUP_INET_EGRESS, 165 BPF_CGROUP_INET_SOCK_CREATE, 166 BPF_CGROUP_SOCK_OPS, 167 BPF_SK_SKB_STREAM_PARSER, 168 BPF_SK_SKB_STREAM_VERDICT, 169 BPF_CGROUP_DEVICE, 170 BPF_SK_MSG_VERDICT, 171 BPF_CGROUP_INET4_BIND, 172 BPF_CGROUP_INET6_BIND, 173 BPF_CGROUP_INET4_CONNECT, 174 BPF_CGROUP_INET6_CONNECT, 175 BPF_CGROUP_INET4_POST_BIND, 176 BPF_CGROUP_INET6_POST_BIND, 177 BPF_CGROUP_UDP4_SENDMSG, 178 BPF_CGROUP_UDP6_SENDMSG, 179 BPF_LIRC_MODE2, 180 BPF_FLOW_DISSECTOR, 181 __MAX_BPF_ATTACH_TYPE 182 }; 183 184 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 185 186 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 187 * 188 * NONE(default): No further bpf programs allowed in the subtree. 189 * 190 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 191 * the program in this cgroup yields to sub-cgroup program. 192 * 193 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 194 * that cgroup program gets run in addition to the program in this cgroup. 195 * 196 * Only one program is allowed to be attached to a cgroup with 197 * NONE or BPF_F_ALLOW_OVERRIDE flag. 198 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 199 * release old program and attach the new one. Attach flags has to match. 200 * 201 * Multiple programs are allowed to be attached to a cgroup with 202 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 203 * (those that were attached first, run first) 204 * The programs of sub-cgroup are executed first, then programs of 205 * this cgroup and then programs of parent cgroup. 206 * When children program makes decision (like picking TCP CA or sock bind) 207 * parent program has a chance to override it. 208 * 209 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 210 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 211 * Ex1: 212 * cgrp1 (MULTI progs A, B) -> 213 * cgrp2 (OVERRIDE prog C) -> 214 * cgrp3 (MULTI prog D) -> 215 * cgrp4 (OVERRIDE prog E) -> 216 * cgrp5 (NONE prog F) 217 * the event in cgrp5 triggers execution of F,D,A,B in that order. 218 * if prog F is detached, the execution is E,D,A,B 219 * if prog F and D are detached, the execution is E,A,B 220 * if prog F, E and D are detached, the execution is C,A,B 221 * 222 * All eligible programs are executed regardless of return code from 223 * earlier programs. 224 */ 225 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 226 #define BPF_F_ALLOW_MULTI (1U << 1) 227 228 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 229 * verifier will perform strict alignment checking as if the kernel 230 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 231 * and NET_IP_ALIGN defined to 2. 232 */ 233 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 234 235 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */ 236 #define BPF_PSEUDO_MAP_FD 1 237 238 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 239 * offset to another bpf function 240 */ 241 #define BPF_PSEUDO_CALL 1 242 243 /* flags for BPF_MAP_UPDATE_ELEM command */ 244 #define BPF_ANY 0 /* create new element or update existing */ 245 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 246 #define BPF_EXIST 2 /* update existing element */ 247 248 /* flags for BPF_MAP_CREATE command */ 249 #define BPF_F_NO_PREALLOC (1U << 0) 250 /* Instead of having one common LRU list in the 251 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 252 * which can scale and perform better. 253 * Note, the LRU nodes (including free nodes) cannot be moved 254 * across different LRU lists. 255 */ 256 #define BPF_F_NO_COMMON_LRU (1U << 1) 257 /* Specify numa node during map creation */ 258 #define BPF_F_NUMA_NODE (1U << 2) 259 260 /* flags for BPF_PROG_QUERY */ 261 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 262 263 #define BPF_OBJ_NAME_LEN 16U 264 265 /* Flags for accessing BPF object */ 266 #define BPF_F_RDONLY (1U << 3) 267 #define BPF_F_WRONLY (1U << 4) 268 269 /* Flag for stack_map, store build_id+offset instead of pointer */ 270 #define BPF_F_STACK_BUILD_ID (1U << 5) 271 272 enum bpf_stack_build_id_status { 273 /* user space need an empty entry to identify end of a trace */ 274 BPF_STACK_BUILD_ID_EMPTY = 0, 275 /* with valid build_id and offset */ 276 BPF_STACK_BUILD_ID_VALID = 1, 277 /* couldn't get build_id, fallback to ip */ 278 BPF_STACK_BUILD_ID_IP = 2, 279 }; 280 281 #define BPF_BUILD_ID_SIZE 20 282 struct bpf_stack_build_id { 283 __s32 status; 284 unsigned char build_id[BPF_BUILD_ID_SIZE]; 285 union { 286 __u64 offset; 287 __u64 ip; 288 }; 289 }; 290 291 union bpf_attr { 292 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 293 __u32 map_type; /* one of enum bpf_map_type */ 294 __u32 key_size; /* size of key in bytes */ 295 __u32 value_size; /* size of value in bytes */ 296 __u32 max_entries; /* max number of entries in a map */ 297 __u32 map_flags; /* BPF_MAP_CREATE related 298 * flags defined above. 299 */ 300 __u32 inner_map_fd; /* fd pointing to the inner map */ 301 __u32 numa_node; /* numa node (effective only if 302 * BPF_F_NUMA_NODE is set). 303 */ 304 char map_name[BPF_OBJ_NAME_LEN]; 305 __u32 map_ifindex; /* ifindex of netdev to create on */ 306 __u32 btf_fd; /* fd pointing to a BTF type data */ 307 __u32 btf_key_type_id; /* BTF type_id of the key */ 308 __u32 btf_value_type_id; /* BTF type_id of the value */ 309 }; 310 311 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 312 __u32 map_fd; 313 __aligned_u64 key; 314 union { 315 __aligned_u64 value; 316 __aligned_u64 next_key; 317 }; 318 __u64 flags; 319 }; 320 321 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 322 __u32 prog_type; /* one of enum bpf_prog_type */ 323 __u32 insn_cnt; 324 __aligned_u64 insns; 325 __aligned_u64 license; 326 __u32 log_level; /* verbosity level of verifier */ 327 __u32 log_size; /* size of user buffer */ 328 __aligned_u64 log_buf; /* user supplied buffer */ 329 __u32 kern_version; /* checked when prog_type=kprobe */ 330 __u32 prog_flags; 331 char prog_name[BPF_OBJ_NAME_LEN]; 332 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 333 /* For some prog types expected attach type must be known at 334 * load time to verify attach type specific parts of prog 335 * (context accesses, allowed helpers, etc). 336 */ 337 __u32 expected_attach_type; 338 }; 339 340 struct { /* anonymous struct used by BPF_OBJ_* commands */ 341 __aligned_u64 pathname; 342 __u32 bpf_fd; 343 __u32 file_flags; 344 }; 345 346 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 347 __u32 target_fd; /* container object to attach to */ 348 __u32 attach_bpf_fd; /* eBPF program to attach */ 349 __u32 attach_type; 350 __u32 attach_flags; 351 }; 352 353 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 354 __u32 prog_fd; 355 __u32 retval; 356 __u32 data_size_in; 357 __u32 data_size_out; 358 __aligned_u64 data_in; 359 __aligned_u64 data_out; 360 __u32 repeat; 361 __u32 duration; 362 } test; 363 364 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 365 union { 366 __u32 start_id; 367 __u32 prog_id; 368 __u32 map_id; 369 __u32 btf_id; 370 }; 371 __u32 next_id; 372 __u32 open_flags; 373 }; 374 375 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 376 __u32 bpf_fd; 377 __u32 info_len; 378 __aligned_u64 info; 379 } info; 380 381 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 382 __u32 target_fd; /* container object to query */ 383 __u32 attach_type; 384 __u32 query_flags; 385 __u32 attach_flags; 386 __aligned_u64 prog_ids; 387 __u32 prog_cnt; 388 } query; 389 390 struct { 391 __u64 name; 392 __u32 prog_fd; 393 } raw_tracepoint; 394 395 struct { /* anonymous struct for BPF_BTF_LOAD */ 396 __aligned_u64 btf; 397 __aligned_u64 btf_log_buf; 398 __u32 btf_size; 399 __u32 btf_log_size; 400 __u32 btf_log_level; 401 }; 402 403 struct { 404 __u32 pid; /* input: pid */ 405 __u32 fd; /* input: fd */ 406 __u32 flags; /* input: flags */ 407 __u32 buf_len; /* input/output: buf len */ 408 __aligned_u64 buf; /* input/output: 409 * tp_name for tracepoint 410 * symbol for kprobe 411 * filename for uprobe 412 */ 413 __u32 prog_id; /* output: prod_id */ 414 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 415 __u64 probe_offset; /* output: probe_offset */ 416 __u64 probe_addr; /* output: probe_addr */ 417 } task_fd_query; 418 } __attribute__((aligned(8))); 419 420 /* The description below is an attempt at providing documentation to eBPF 421 * developers about the multiple available eBPF helper functions. It can be 422 * parsed and used to produce a manual page. The workflow is the following, 423 * and requires the rst2man utility: 424 * 425 * $ ./scripts/bpf_helpers_doc.py \ 426 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 427 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 428 * $ man /tmp/bpf-helpers.7 429 * 430 * Note that in order to produce this external documentation, some RST 431 * formatting is used in the descriptions to get "bold" and "italics" in 432 * manual pages. Also note that the few trailing white spaces are 433 * intentional, removing them would break paragraphs for rst2man. 434 * 435 * Start of BPF helper function descriptions: 436 * 437 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 438 * Description 439 * Perform a lookup in *map* for an entry associated to *key*. 440 * Return 441 * Map value associated to *key*, or **NULL** if no entry was 442 * found. 443 * 444 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 445 * Description 446 * Add or update the value of the entry associated to *key* in 447 * *map* with *value*. *flags* is one of: 448 * 449 * **BPF_NOEXIST** 450 * The entry for *key* must not exist in the map. 451 * **BPF_EXIST** 452 * The entry for *key* must already exist in the map. 453 * **BPF_ANY** 454 * No condition on the existence of the entry for *key*. 455 * 456 * Flag value **BPF_NOEXIST** cannot be used for maps of types 457 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 458 * elements always exist), the helper would return an error. 459 * Return 460 * 0 on success, or a negative error in case of failure. 461 * 462 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 463 * Description 464 * Delete entry with *key* from *map*. 465 * Return 466 * 0 on success, or a negative error in case of failure. 467 * 468 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 469 * Description 470 * Push an element *value* in *map*. *flags* is one of: 471 * 472 * **BPF_EXIST** 473 * If the queue/stack is full, the oldest element is removed to 474 * make room for this. 475 * Return 476 * 0 on success, or a negative error in case of failure. 477 * 478 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 479 * Description 480 * Pop an element from *map*. 481 * Return 482 * 0 on success, or a negative error in case of failure. 483 * 484 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 485 * Description 486 * Get an element from *map* without removing it. 487 * Return 488 * 0 on success, or a negative error in case of failure. 489 * 490 * int bpf_probe_read(void *dst, u32 size, const void *src) 491 * Description 492 * For tracing programs, safely attempt to read *size* bytes from 493 * address *src* and store the data in *dst*. 494 * Return 495 * 0 on success, or a negative error in case of failure. 496 * 497 * u64 bpf_ktime_get_ns(void) 498 * Description 499 * Return the time elapsed since system boot, in nanoseconds. 500 * Return 501 * Current *ktime*. 502 * 503 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 504 * Description 505 * This helper is a "printk()-like" facility for debugging. It 506 * prints a message defined by format *fmt* (of size *fmt_size*) 507 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 508 * available. It can take up to three additional **u64** 509 * arguments (as an eBPF helpers, the total number of arguments is 510 * limited to five). 511 * 512 * Each time the helper is called, it appends a line to the trace. 513 * The format of the trace is customizable, and the exact output 514 * one will get depends on the options set in 515 * *\/sys/kernel/debug/tracing/trace_options* (see also the 516 * *README* file under the same directory). However, it usually 517 * defaults to something like: 518 * 519 * :: 520 * 521 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 522 * 523 * In the above: 524 * 525 * * ``telnet`` is the name of the current task. 526 * * ``470`` is the PID of the current task. 527 * * ``001`` is the CPU number on which the task is 528 * running. 529 * * In ``.N..``, each character refers to a set of 530 * options (whether irqs are enabled, scheduling 531 * options, whether hard/softirqs are running, level of 532 * preempt_disabled respectively). **N** means that 533 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 534 * are set. 535 * * ``419421.045894`` is a timestamp. 536 * * ``0x00000001`` is a fake value used by BPF for the 537 * instruction pointer register. 538 * * ``<formatted msg>`` is the message formatted with 539 * *fmt*. 540 * 541 * The conversion specifiers supported by *fmt* are similar, but 542 * more limited than for printk(). They are **%d**, **%i**, 543 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 544 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 545 * of field, padding with zeroes, etc.) is available, and the 546 * helper will return **-EINVAL** (but print nothing) if it 547 * encounters an unknown specifier. 548 * 549 * Also, note that **bpf_trace_printk**\ () is slow, and should 550 * only be used for debugging purposes. For this reason, a notice 551 * bloc (spanning several lines) is printed to kernel logs and 552 * states that the helper should not be used "for production use" 553 * the first time this helper is used (or more precisely, when 554 * **trace_printk**\ () buffers are allocated). For passing values 555 * to user space, perf events should be preferred. 556 * Return 557 * The number of bytes written to the buffer, or a negative error 558 * in case of failure. 559 * 560 * u32 bpf_get_prandom_u32(void) 561 * Description 562 * Get a pseudo-random number. 563 * 564 * From a security point of view, this helper uses its own 565 * pseudo-random internal state, and cannot be used to infer the 566 * seed of other random functions in the kernel. However, it is 567 * essential to note that the generator used by the helper is not 568 * cryptographically secure. 569 * Return 570 * A random 32-bit unsigned value. 571 * 572 * u32 bpf_get_smp_processor_id(void) 573 * Description 574 * Get the SMP (symmetric multiprocessing) processor id. Note that 575 * all programs run with preemption disabled, which means that the 576 * SMP processor id is stable during all the execution of the 577 * program. 578 * Return 579 * The SMP id of the processor running the program. 580 * 581 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 582 * Description 583 * Store *len* bytes from address *from* into the packet 584 * associated to *skb*, at *offset*. *flags* are a combination of 585 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 586 * checksum for the packet after storing the bytes) and 587 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 588 * **->swhash** and *skb*\ **->l4hash** to 0). 589 * 590 * A call to this helper is susceptible to change the underlaying 591 * packet buffer. Therefore, at load time, all checks on pointers 592 * previously done by the verifier are invalidated and must be 593 * performed again, if the helper is used in combination with 594 * direct packet access. 595 * Return 596 * 0 on success, or a negative error in case of failure. 597 * 598 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 599 * Description 600 * Recompute the layer 3 (e.g. IP) checksum for the packet 601 * associated to *skb*. Computation is incremental, so the helper 602 * must know the former value of the header field that was 603 * modified (*from*), the new value of this field (*to*), and the 604 * number of bytes (2 or 4) for this field, stored in *size*. 605 * Alternatively, it is possible to store the difference between 606 * the previous and the new values of the header field in *to*, by 607 * setting *from* and *size* to 0. For both methods, *offset* 608 * indicates the location of the IP checksum within the packet. 609 * 610 * This helper works in combination with **bpf_csum_diff**\ (), 611 * which does not update the checksum in-place, but offers more 612 * flexibility and can handle sizes larger than 2 or 4 for the 613 * checksum to update. 614 * 615 * A call to this helper is susceptible to change the underlaying 616 * packet buffer. Therefore, at load time, all checks on pointers 617 * previously done by the verifier are invalidated and must be 618 * performed again, if the helper is used in combination with 619 * direct packet access. 620 * Return 621 * 0 on success, or a negative error in case of failure. 622 * 623 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 624 * Description 625 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 626 * packet associated to *skb*. Computation is incremental, so the 627 * helper must know the former value of the header field that was 628 * modified (*from*), the new value of this field (*to*), and the 629 * number of bytes (2 or 4) for this field, stored on the lowest 630 * four bits of *flags*. Alternatively, it is possible to store 631 * the difference between the previous and the new values of the 632 * header field in *to*, by setting *from* and the four lowest 633 * bits of *flags* to 0. For both methods, *offset* indicates the 634 * location of the IP checksum within the packet. In addition to 635 * the size of the field, *flags* can be added (bitwise OR) actual 636 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 637 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 638 * for updates resulting in a null checksum the value is set to 639 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 640 * the checksum is to be computed against a pseudo-header. 641 * 642 * This helper works in combination with **bpf_csum_diff**\ (), 643 * which does not update the checksum in-place, but offers more 644 * flexibility and can handle sizes larger than 2 or 4 for the 645 * checksum to update. 646 * 647 * A call to this helper is susceptible to change the underlaying 648 * packet buffer. Therefore, at load time, all checks on pointers 649 * previously done by the verifier are invalidated and must be 650 * performed again, if the helper is used in combination with 651 * direct packet access. 652 * Return 653 * 0 on success, or a negative error in case of failure. 654 * 655 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 656 * Description 657 * This special helper is used to trigger a "tail call", or in 658 * other words, to jump into another eBPF program. The same stack 659 * frame is used (but values on stack and in registers for the 660 * caller are not accessible to the callee). This mechanism allows 661 * for program chaining, either for raising the maximum number of 662 * available eBPF instructions, or to execute given programs in 663 * conditional blocks. For security reasons, there is an upper 664 * limit to the number of successive tail calls that can be 665 * performed. 666 * 667 * Upon call of this helper, the program attempts to jump into a 668 * program referenced at index *index* in *prog_array_map*, a 669 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 670 * *ctx*, a pointer to the context. 671 * 672 * If the call succeeds, the kernel immediately runs the first 673 * instruction of the new program. This is not a function call, 674 * and it never returns to the previous program. If the call 675 * fails, then the helper has no effect, and the caller continues 676 * to run its subsequent instructions. A call can fail if the 677 * destination program for the jump does not exist (i.e. *index* 678 * is superior to the number of entries in *prog_array_map*), or 679 * if the maximum number of tail calls has been reached for this 680 * chain of programs. This limit is defined in the kernel by the 681 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 682 * which is currently set to 32. 683 * Return 684 * 0 on success, or a negative error in case of failure. 685 * 686 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 687 * Description 688 * Clone and redirect the packet associated to *skb* to another 689 * net device of index *ifindex*. Both ingress and egress 690 * interfaces can be used for redirection. The **BPF_F_INGRESS** 691 * value in *flags* is used to make the distinction (ingress path 692 * is selected if the flag is present, egress path otherwise). 693 * This is the only flag supported for now. 694 * 695 * In comparison with **bpf_redirect**\ () helper, 696 * **bpf_clone_redirect**\ () has the associated cost of 697 * duplicating the packet buffer, but this can be executed out of 698 * the eBPF program. Conversely, **bpf_redirect**\ () is more 699 * efficient, but it is handled through an action code where the 700 * redirection happens only after the eBPF program has returned. 701 * 702 * A call to this helper is susceptible to change the underlaying 703 * packet buffer. Therefore, at load time, all checks on pointers 704 * previously done by the verifier are invalidated and must be 705 * performed again, if the helper is used in combination with 706 * direct packet access. 707 * Return 708 * 0 on success, or a negative error in case of failure. 709 * 710 * u64 bpf_get_current_pid_tgid(void) 711 * Return 712 * A 64-bit integer containing the current tgid and pid, and 713 * created as such: 714 * *current_task*\ **->tgid << 32 \|** 715 * *current_task*\ **->pid**. 716 * 717 * u64 bpf_get_current_uid_gid(void) 718 * Return 719 * A 64-bit integer containing the current GID and UID, and 720 * created as such: *current_gid* **<< 32 \|** *current_uid*. 721 * 722 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 723 * Description 724 * Copy the **comm** attribute of the current task into *buf* of 725 * *size_of_buf*. The **comm** attribute contains the name of 726 * the executable (excluding the path) for the current task. The 727 * *size_of_buf* must be strictly positive. On success, the 728 * helper makes sure that the *buf* is NUL-terminated. On failure, 729 * it is filled with zeroes. 730 * Return 731 * 0 on success, or a negative error in case of failure. 732 * 733 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 734 * Description 735 * Retrieve the classid for the current task, i.e. for the net_cls 736 * cgroup to which *skb* belongs. 737 * 738 * This helper can be used on TC egress path, but not on ingress. 739 * 740 * The net_cls cgroup provides an interface to tag network packets 741 * based on a user-provided identifier for all traffic coming from 742 * the tasks belonging to the related cgroup. See also the related 743 * kernel documentation, available from the Linux sources in file 744 * *Documentation/cgroup-v1/net_cls.txt*. 745 * 746 * The Linux kernel has two versions for cgroups: there are 747 * cgroups v1 and cgroups v2. Both are available to users, who can 748 * use a mixture of them, but note that the net_cls cgroup is for 749 * cgroup v1 only. This makes it incompatible with BPF programs 750 * run on cgroups, which is a cgroup-v2-only feature (a socket can 751 * only hold data for one version of cgroups at a time). 752 * 753 * This helper is only available is the kernel was compiled with 754 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 755 * "**y**" or to "**m**". 756 * Return 757 * The classid, or 0 for the default unconfigured classid. 758 * 759 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 760 * Description 761 * Push a *vlan_tci* (VLAN tag control information) of protocol 762 * *vlan_proto* to the packet associated to *skb*, then update 763 * the checksum. Note that if *vlan_proto* is different from 764 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 765 * be **ETH_P_8021Q**. 766 * 767 * A call to this helper is susceptible to change the underlaying 768 * packet buffer. Therefore, at load time, all checks on pointers 769 * previously done by the verifier are invalidated and must be 770 * performed again, if the helper is used in combination with 771 * direct packet access. 772 * Return 773 * 0 on success, or a negative error in case of failure. 774 * 775 * int bpf_skb_vlan_pop(struct sk_buff *skb) 776 * Description 777 * Pop a VLAN header from the packet associated to *skb*. 778 * 779 * A call to this helper is susceptible to change the underlaying 780 * packet buffer. Therefore, at load time, all checks on pointers 781 * previously done by the verifier are invalidated and must be 782 * performed again, if the helper is used in combination with 783 * direct packet access. 784 * Return 785 * 0 on success, or a negative error in case of failure. 786 * 787 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 788 * Description 789 * Get tunnel metadata. This helper takes a pointer *key* to an 790 * empty **struct bpf_tunnel_key** of **size**, that will be 791 * filled with tunnel metadata for the packet associated to *skb*. 792 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 793 * indicates that the tunnel is based on IPv6 protocol instead of 794 * IPv4. 795 * 796 * The **struct bpf_tunnel_key** is an object that generalizes the 797 * principal parameters used by various tunneling protocols into a 798 * single struct. This way, it can be used to easily make a 799 * decision based on the contents of the encapsulation header, 800 * "summarized" in this struct. In particular, it holds the IP 801 * address of the remote end (IPv4 or IPv6, depending on the case) 802 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 803 * this struct exposes the *key*\ **->tunnel_id**, which is 804 * generally mapped to a VNI (Virtual Network Identifier), making 805 * it programmable together with the **bpf_skb_set_tunnel_key**\ 806 * () helper. 807 * 808 * Let's imagine that the following code is part of a program 809 * attached to the TC ingress interface, on one end of a GRE 810 * tunnel, and is supposed to filter out all messages coming from 811 * remote ends with IPv4 address other than 10.0.0.1: 812 * 813 * :: 814 * 815 * int ret; 816 * struct bpf_tunnel_key key = {}; 817 * 818 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 819 * if (ret < 0) 820 * return TC_ACT_SHOT; // drop packet 821 * 822 * if (key.remote_ipv4 != 0x0a000001) 823 * return TC_ACT_SHOT; // drop packet 824 * 825 * return TC_ACT_OK; // accept packet 826 * 827 * This interface can also be used with all encapsulation devices 828 * that can operate in "collect metadata" mode: instead of having 829 * one network device per specific configuration, the "collect 830 * metadata" mode only requires a single device where the 831 * configuration can be extracted from this helper. 832 * 833 * This can be used together with various tunnels such as VXLan, 834 * Geneve, GRE or IP in IP (IPIP). 835 * Return 836 * 0 on success, or a negative error in case of failure. 837 * 838 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 839 * Description 840 * Populate tunnel metadata for packet associated to *skb.* The 841 * tunnel metadata is set to the contents of *key*, of *size*. The 842 * *flags* can be set to a combination of the following values: 843 * 844 * **BPF_F_TUNINFO_IPV6** 845 * Indicate that the tunnel is based on IPv6 protocol 846 * instead of IPv4. 847 * **BPF_F_ZERO_CSUM_TX** 848 * For IPv4 packets, add a flag to tunnel metadata 849 * indicating that checksum computation should be skipped 850 * and checksum set to zeroes. 851 * **BPF_F_DONT_FRAGMENT** 852 * Add a flag to tunnel metadata indicating that the 853 * packet should not be fragmented. 854 * **BPF_F_SEQ_NUMBER** 855 * Add a flag to tunnel metadata indicating that a 856 * sequence number should be added to tunnel header before 857 * sending the packet. This flag was added for GRE 858 * encapsulation, but might be used with other protocols 859 * as well in the future. 860 * 861 * Here is a typical usage on the transmit path: 862 * 863 * :: 864 * 865 * struct bpf_tunnel_key key; 866 * populate key ... 867 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 868 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 869 * 870 * See also the description of the **bpf_skb_get_tunnel_key**\ () 871 * helper for additional information. 872 * Return 873 * 0 on success, or a negative error in case of failure. 874 * 875 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 876 * Description 877 * Read the value of a perf event counter. This helper relies on a 878 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 879 * the perf event counter is selected when *map* is updated with 880 * perf event file descriptors. The *map* is an array whose size 881 * is the number of available CPUs, and each cell contains a value 882 * relative to one CPU. The value to retrieve is indicated by 883 * *flags*, that contains the index of the CPU to look up, masked 884 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 885 * **BPF_F_CURRENT_CPU** to indicate that the value for the 886 * current CPU should be retrieved. 887 * 888 * Note that before Linux 4.13, only hardware perf event can be 889 * retrieved. 890 * 891 * Also, be aware that the newer helper 892 * **bpf_perf_event_read_value**\ () is recommended over 893 * **bpf_perf_event_read**\ () in general. The latter has some ABI 894 * quirks where error and counter value are used as a return code 895 * (which is wrong to do since ranges may overlap). This issue is 896 * fixed with **bpf_perf_event_read_value**\ (), which at the same 897 * time provides more features over the **bpf_perf_event_read**\ 898 * () interface. Please refer to the description of 899 * **bpf_perf_event_read_value**\ () for details. 900 * Return 901 * The value of the perf event counter read from the map, or a 902 * negative error code in case of failure. 903 * 904 * int bpf_redirect(u32 ifindex, u64 flags) 905 * Description 906 * Redirect the packet to another net device of index *ifindex*. 907 * This helper is somewhat similar to **bpf_clone_redirect**\ 908 * (), except that the packet is not cloned, which provides 909 * increased performance. 910 * 911 * Except for XDP, both ingress and egress interfaces can be used 912 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 913 * to make the distinction (ingress path is selected if the flag 914 * is present, egress path otherwise). Currently, XDP only 915 * supports redirection to the egress interface, and accepts no 916 * flag at all. 917 * 918 * The same effect can be attained with the more generic 919 * **bpf_redirect_map**\ (), which requires specific maps to be 920 * used but offers better performance. 921 * Return 922 * For XDP, the helper returns **XDP_REDIRECT** on success or 923 * **XDP_ABORTED** on error. For other program types, the values 924 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 925 * error. 926 * 927 * u32 bpf_get_route_realm(struct sk_buff *skb) 928 * Description 929 * Retrieve the realm or the route, that is to say the 930 * **tclassid** field of the destination for the *skb*. The 931 * indentifier retrieved is a user-provided tag, similar to the 932 * one used with the net_cls cgroup (see description for 933 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 934 * held by a route (a destination entry), not by a task. 935 * 936 * Retrieving this identifier works with the clsact TC egress hook 937 * (see also **tc-bpf(8)**), or alternatively on conventional 938 * classful egress qdiscs, but not on TC ingress path. In case of 939 * clsact TC egress hook, this has the advantage that, internally, 940 * the destination entry has not been dropped yet in the transmit 941 * path. Therefore, the destination entry does not need to be 942 * artificially held via **netif_keep_dst**\ () for a classful 943 * qdisc until the *skb* is freed. 944 * 945 * This helper is available only if the kernel was compiled with 946 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 947 * Return 948 * The realm of the route for the packet associated to *skb*, or 0 949 * if none was found. 950 * 951 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 952 * Description 953 * Write raw *data* blob into a special BPF perf event held by 954 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 955 * event must have the following attributes: **PERF_SAMPLE_RAW** 956 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 957 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 958 * 959 * The *flags* are used to indicate the index in *map* for which 960 * the value must be put, masked with **BPF_F_INDEX_MASK**. 961 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 962 * to indicate that the index of the current CPU core should be 963 * used. 964 * 965 * The value to write, of *size*, is passed through eBPF stack and 966 * pointed by *data*. 967 * 968 * The context of the program *ctx* needs also be passed to the 969 * helper. 970 * 971 * On user space, a program willing to read the values needs to 972 * call **perf_event_open**\ () on the perf event (either for 973 * one or for all CPUs) and to store the file descriptor into the 974 * *map*. This must be done before the eBPF program can send data 975 * into it. An example is available in file 976 * *samples/bpf/trace_output_user.c* in the Linux kernel source 977 * tree (the eBPF program counterpart is in 978 * *samples/bpf/trace_output_kern.c*). 979 * 980 * **bpf_perf_event_output**\ () achieves better performance 981 * than **bpf_trace_printk**\ () for sharing data with user 982 * space, and is much better suitable for streaming data from eBPF 983 * programs. 984 * 985 * Note that this helper is not restricted to tracing use cases 986 * and can be used with programs attached to TC or XDP as well, 987 * where it allows for passing data to user space listeners. Data 988 * can be: 989 * 990 * * Only custom structs, 991 * * Only the packet payload, or 992 * * A combination of both. 993 * Return 994 * 0 on success, or a negative error in case of failure. 995 * 996 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 997 * Description 998 * This helper was provided as an easy way to load data from a 999 * packet. It can be used to load *len* bytes from *offset* from 1000 * the packet associated to *skb*, into the buffer pointed by 1001 * *to*. 1002 * 1003 * Since Linux 4.7, usage of this helper has mostly been replaced 1004 * by "direct packet access", enabling packet data to be 1005 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1006 * pointing respectively to the first byte of packet data and to 1007 * the byte after the last byte of packet data. However, it 1008 * remains useful if one wishes to read large quantities of data 1009 * at once from a packet into the eBPF stack. 1010 * Return 1011 * 0 on success, or a negative error in case of failure. 1012 * 1013 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1014 * Description 1015 * Walk a user or a kernel stack and return its id. To achieve 1016 * this, the helper needs *ctx*, which is a pointer to the context 1017 * on which the tracing program is executed, and a pointer to a 1018 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1019 * 1020 * The last argument, *flags*, holds the number of stack frames to 1021 * skip (from 0 to 255), masked with 1022 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1023 * a combination of the following flags: 1024 * 1025 * **BPF_F_USER_STACK** 1026 * Collect a user space stack instead of a kernel stack. 1027 * **BPF_F_FAST_STACK_CMP** 1028 * Compare stacks by hash only. 1029 * **BPF_F_REUSE_STACKID** 1030 * If two different stacks hash into the same *stackid*, 1031 * discard the old one. 1032 * 1033 * The stack id retrieved is a 32 bit long integer handle which 1034 * can be further combined with other data (including other stack 1035 * ids) and used as a key into maps. This can be useful for 1036 * generating a variety of graphs (such as flame graphs or off-cpu 1037 * graphs). 1038 * 1039 * For walking a stack, this helper is an improvement over 1040 * **bpf_probe_read**\ (), which can be used with unrolled loops 1041 * but is not efficient and consumes a lot of eBPF instructions. 1042 * Instead, **bpf_get_stackid**\ () can collect up to 1043 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1044 * this limit can be controlled with the **sysctl** program, and 1045 * that it should be manually increased in order to profile long 1046 * user stacks (such as stacks for Java programs). To do so, use: 1047 * 1048 * :: 1049 * 1050 * # sysctl kernel.perf_event_max_stack=<new value> 1051 * Return 1052 * The positive or null stack id on success, or a negative error 1053 * in case of failure. 1054 * 1055 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1056 * Description 1057 * Compute a checksum difference, from the raw buffer pointed by 1058 * *from*, of length *from_size* (that must be a multiple of 4), 1059 * towards the raw buffer pointed by *to*, of size *to_size* 1060 * (same remark). An optional *seed* can be added to the value 1061 * (this can be cascaded, the seed may come from a previous call 1062 * to the helper). 1063 * 1064 * This is flexible enough to be used in several ways: 1065 * 1066 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1067 * checksum, it can be used when pushing new data. 1068 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1069 * checksum, it can be used when removing data from a packet. 1070 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1071 * can be used to compute a diff. Note that *from_size* and 1072 * *to_size* do not need to be equal. 1073 * 1074 * This helper can be used in combination with 1075 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1076 * which one can feed in the difference computed with 1077 * **bpf_csum_diff**\ (). 1078 * Return 1079 * The checksum result, or a negative error code in case of 1080 * failure. 1081 * 1082 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1083 * Description 1084 * Retrieve tunnel options metadata for the packet associated to 1085 * *skb*, and store the raw tunnel option data to the buffer *opt* 1086 * of *size*. 1087 * 1088 * This helper can be used with encapsulation devices that can 1089 * operate in "collect metadata" mode (please refer to the related 1090 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1091 * more details). A particular example where this can be used is 1092 * in combination with the Geneve encapsulation protocol, where it 1093 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1094 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1095 * the eBPF program. This allows for full customization of these 1096 * headers. 1097 * Return 1098 * The size of the option data retrieved. 1099 * 1100 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1101 * Description 1102 * Set tunnel options metadata for the packet associated to *skb* 1103 * to the option data contained in the raw buffer *opt* of *size*. 1104 * 1105 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1106 * helper for additional information. 1107 * Return 1108 * 0 on success, or a negative error in case of failure. 1109 * 1110 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1111 * Description 1112 * Change the protocol of the *skb* to *proto*. Currently 1113 * supported are transition from IPv4 to IPv6, and from IPv6 to 1114 * IPv4. The helper takes care of the groundwork for the 1115 * transition, including resizing the socket buffer. The eBPF 1116 * program is expected to fill the new headers, if any, via 1117 * **skb_store_bytes**\ () and to recompute the checksums with 1118 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1119 * (). The main case for this helper is to perform NAT64 1120 * operations out of an eBPF program. 1121 * 1122 * Internally, the GSO type is marked as dodgy so that headers are 1123 * checked and segments are recalculated by the GSO/GRO engine. 1124 * The size for GSO target is adapted as well. 1125 * 1126 * All values for *flags* are reserved for future usage, and must 1127 * be left at zero. 1128 * 1129 * A call to this helper is susceptible to change the underlaying 1130 * packet buffer. Therefore, at load time, all checks on pointers 1131 * previously done by the verifier are invalidated and must be 1132 * performed again, if the helper is used in combination with 1133 * direct packet access. 1134 * Return 1135 * 0 on success, or a negative error in case of failure. 1136 * 1137 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1138 * Description 1139 * Change the packet type for the packet associated to *skb*. This 1140 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1141 * the eBPF program does not have a write access to *skb*\ 1142 * **->pkt_type** beside this helper. Using a helper here allows 1143 * for graceful handling of errors. 1144 * 1145 * The major use case is to change incoming *skb*s to 1146 * **PACKET_HOST** in a programmatic way instead of having to 1147 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1148 * example. 1149 * 1150 * Note that *type* only allows certain values. At this time, they 1151 * are: 1152 * 1153 * **PACKET_HOST** 1154 * Packet is for us. 1155 * **PACKET_BROADCAST** 1156 * Send packet to all. 1157 * **PACKET_MULTICAST** 1158 * Send packet to group. 1159 * **PACKET_OTHERHOST** 1160 * Send packet to someone else. 1161 * Return 1162 * 0 on success, or a negative error in case of failure. 1163 * 1164 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1165 * Description 1166 * Check whether *skb* is a descendant of the cgroup2 held by 1167 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1168 * Return 1169 * The return value depends on the result of the test, and can be: 1170 * 1171 * * 0, if the *skb* failed the cgroup2 descendant test. 1172 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1173 * * A negative error code, if an error occurred. 1174 * 1175 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1176 * Description 1177 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1178 * not set, in particular if the hash was cleared due to mangling, 1179 * recompute this hash. Later accesses to the hash can be done 1180 * directly with *skb*\ **->hash**. 1181 * 1182 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1183 * prototype with **bpf_skb_change_proto**\ (), or calling 1184 * **bpf_skb_store_bytes**\ () with the 1185 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1186 * the hash and to trigger a new computation for the next call to 1187 * **bpf_get_hash_recalc**\ (). 1188 * Return 1189 * The 32-bit hash. 1190 * 1191 * u64 bpf_get_current_task(void) 1192 * Return 1193 * A pointer to the current task struct. 1194 * 1195 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1196 * Description 1197 * Attempt in a safe way to write *len* bytes from the buffer 1198 * *src* to *dst* in memory. It only works for threads that are in 1199 * user context, and *dst* must be a valid user space address. 1200 * 1201 * This helper should not be used to implement any kind of 1202 * security mechanism because of TOC-TOU attacks, but rather to 1203 * debug, divert, and manipulate execution of semi-cooperative 1204 * processes. 1205 * 1206 * Keep in mind that this feature is meant for experiments, and it 1207 * has a risk of crashing the system and running programs. 1208 * Therefore, when an eBPF program using this helper is attached, 1209 * a warning including PID and process name is printed to kernel 1210 * logs. 1211 * Return 1212 * 0 on success, or a negative error in case of failure. 1213 * 1214 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1215 * Description 1216 * Check whether the probe is being run is the context of a given 1217 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1218 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1219 * Return 1220 * The return value depends on the result of the test, and can be: 1221 * 1222 * * 0, if the *skb* task belongs to the cgroup2. 1223 * * 1, if the *skb* task does not belong to the cgroup2. 1224 * * A negative error code, if an error occurred. 1225 * 1226 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1227 * Description 1228 * Resize (trim or grow) the packet associated to *skb* to the 1229 * new *len*. The *flags* are reserved for future usage, and must 1230 * be left at zero. 1231 * 1232 * The basic idea is that the helper performs the needed work to 1233 * change the size of the packet, then the eBPF program rewrites 1234 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1235 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1236 * and others. This helper is a slow path utility intended for 1237 * replies with control messages. And because it is targeted for 1238 * slow path, the helper itself can afford to be slow: it 1239 * implicitly linearizes, unclones and drops offloads from the 1240 * *skb*. 1241 * 1242 * A call to this helper is susceptible to change the underlaying 1243 * packet buffer. Therefore, at load time, all checks on pointers 1244 * previously done by the verifier are invalidated and must be 1245 * performed again, if the helper is used in combination with 1246 * direct packet access. 1247 * Return 1248 * 0 on success, or a negative error in case of failure. 1249 * 1250 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1251 * Description 1252 * Pull in non-linear data in case the *skb* is non-linear and not 1253 * all of *len* are part of the linear section. Make *len* bytes 1254 * from *skb* readable and writable. If a zero value is passed for 1255 * *len*, then the whole length of the *skb* is pulled. 1256 * 1257 * This helper is only needed for reading and writing with direct 1258 * packet access. 1259 * 1260 * For direct packet access, testing that offsets to access 1261 * are within packet boundaries (test on *skb*\ **->data_end**) is 1262 * susceptible to fail if offsets are invalid, or if the requested 1263 * data is in non-linear parts of the *skb*. On failure the 1264 * program can just bail out, or in the case of a non-linear 1265 * buffer, use a helper to make the data available. The 1266 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1267 * the data. Another one consists in using **bpf_skb_pull_data** 1268 * to pull in once the non-linear parts, then retesting and 1269 * eventually access the data. 1270 * 1271 * At the same time, this also makes sure the *skb* is uncloned, 1272 * which is a necessary condition for direct write. As this needs 1273 * to be an invariant for the write part only, the verifier 1274 * detects writes and adds a prologue that is calling 1275 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1276 * the very beginning in case it is indeed cloned. 1277 * 1278 * A call to this helper is susceptible to change the underlaying 1279 * packet buffer. Therefore, at load time, all checks on pointers 1280 * previously done by the verifier are invalidated and must be 1281 * performed again, if the helper is used in combination with 1282 * direct packet access. 1283 * Return 1284 * 0 on success, or a negative error in case of failure. 1285 * 1286 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1287 * Description 1288 * Add the checksum *csum* into *skb*\ **->csum** in case the 1289 * driver has supplied a checksum for the entire packet into that 1290 * field. Return an error otherwise. This helper is intended to be 1291 * used in combination with **bpf_csum_diff**\ (), in particular 1292 * when the checksum needs to be updated after data has been 1293 * written into the packet through direct packet access. 1294 * Return 1295 * The checksum on success, or a negative error code in case of 1296 * failure. 1297 * 1298 * void bpf_set_hash_invalid(struct sk_buff *skb) 1299 * Description 1300 * Invalidate the current *skb*\ **->hash**. It can be used after 1301 * mangling on headers through direct packet access, in order to 1302 * indicate that the hash is outdated and to trigger a 1303 * recalculation the next time the kernel tries to access this 1304 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1305 * 1306 * int bpf_get_numa_node_id(void) 1307 * Description 1308 * Return the id of the current NUMA node. The primary use case 1309 * for this helper is the selection of sockets for the local NUMA 1310 * node, when the program is attached to sockets using the 1311 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1312 * but the helper is also available to other eBPF program types, 1313 * similarly to **bpf_get_smp_processor_id**\ (). 1314 * Return 1315 * The id of current NUMA node. 1316 * 1317 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1318 * Description 1319 * Grows headroom of packet associated to *skb* and adjusts the 1320 * offset of the MAC header accordingly, adding *len* bytes of 1321 * space. It automatically extends and reallocates memory as 1322 * required. 1323 * 1324 * This helper can be used on a layer 3 *skb* to push a MAC header 1325 * for redirection into a layer 2 device. 1326 * 1327 * All values for *flags* are reserved for future usage, and must 1328 * be left at zero. 1329 * 1330 * A call to this helper is susceptible to change the underlaying 1331 * packet buffer. Therefore, at load time, all checks on pointers 1332 * previously done by the verifier are invalidated and must be 1333 * performed again, if the helper is used in combination with 1334 * direct packet access. 1335 * Return 1336 * 0 on success, or a negative error in case of failure. 1337 * 1338 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1339 * Description 1340 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1341 * it is possible to use a negative value for *delta*. This helper 1342 * can be used to prepare the packet for pushing or popping 1343 * headers. 1344 * 1345 * A call to this helper is susceptible to change the underlaying 1346 * packet buffer. Therefore, at load time, all checks on pointers 1347 * previously done by the verifier are invalidated and must be 1348 * performed again, if the helper is used in combination with 1349 * direct packet access. 1350 * Return 1351 * 0 on success, or a negative error in case of failure. 1352 * 1353 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1354 * Description 1355 * Copy a NUL terminated string from an unsafe address 1356 * *unsafe_ptr* to *dst*. The *size* should include the 1357 * terminating NUL byte. In case the string length is smaller than 1358 * *size*, the target is not padded with further NUL bytes. If the 1359 * string length is larger than *size*, just *size*-1 bytes are 1360 * copied and the last byte is set to NUL. 1361 * 1362 * On success, the length of the copied string is returned. This 1363 * makes this helper useful in tracing programs for reading 1364 * strings, and more importantly to get its length at runtime. See 1365 * the following snippet: 1366 * 1367 * :: 1368 * 1369 * SEC("kprobe/sys_open") 1370 * void bpf_sys_open(struct pt_regs *ctx) 1371 * { 1372 * char buf[PATHLEN]; // PATHLEN is defined to 256 1373 * int res = bpf_probe_read_str(buf, sizeof(buf), 1374 * ctx->di); 1375 * 1376 * // Consume buf, for example push it to 1377 * // userspace via bpf_perf_event_output(); we 1378 * // can use res (the string length) as event 1379 * // size, after checking its boundaries. 1380 * } 1381 * 1382 * In comparison, using **bpf_probe_read()** helper here instead 1383 * to read the string would require to estimate the length at 1384 * compile time, and would often result in copying more memory 1385 * than necessary. 1386 * 1387 * Another useful use case is when parsing individual process 1388 * arguments or individual environment variables navigating 1389 * *current*\ **->mm->arg_start** and *current*\ 1390 * **->mm->env_start**: using this helper and the return value, 1391 * one can quickly iterate at the right offset of the memory area. 1392 * Return 1393 * On success, the strictly positive length of the string, 1394 * including the trailing NUL character. On error, a negative 1395 * value. 1396 * 1397 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1398 * Description 1399 * If the **struct sk_buff** pointed by *skb* has a known socket, 1400 * retrieve the cookie (generated by the kernel) of this socket. 1401 * If no cookie has been set yet, generate a new cookie. Once 1402 * generated, the socket cookie remains stable for the life of the 1403 * socket. This helper can be useful for monitoring per socket 1404 * networking traffic statistics as it provides a unique socket 1405 * identifier per namespace. 1406 * Return 1407 * A 8-byte long non-decreasing number on success, or 0 if the 1408 * socket field is missing inside *skb*. 1409 * 1410 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1411 * Description 1412 * Equivalent to bpf_get_socket_cookie() helper that accepts 1413 * *skb*, but gets socket from **struct bpf_sock_addr** contex. 1414 * Return 1415 * A 8-byte long non-decreasing number. 1416 * 1417 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1418 * Description 1419 * Equivalent to bpf_get_socket_cookie() helper that accepts 1420 * *skb*, but gets socket from **struct bpf_sock_ops** contex. 1421 * Return 1422 * A 8-byte long non-decreasing number. 1423 * 1424 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1425 * Return 1426 * The owner UID of the socket associated to *skb*. If the socket 1427 * is **NULL**, or if it is not a full socket (i.e. if it is a 1428 * time-wait or a request socket instead), **overflowuid** value 1429 * is returned (note that **overflowuid** might also be the actual 1430 * UID value for the socket). 1431 * 1432 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1433 * Description 1434 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1435 * to value *hash*. 1436 * Return 1437 * 0 1438 * 1439 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1440 * Description 1441 * Emulate a call to **setsockopt()** on the socket associated to 1442 * *bpf_socket*, which must be a full socket. The *level* at 1443 * which the option resides and the name *optname* of the option 1444 * must be specified, see **setsockopt(2)** for more information. 1445 * The option value of length *optlen* is pointed by *optval*. 1446 * 1447 * This helper actually implements a subset of **setsockopt()**. 1448 * It supports the following *level*\ s: 1449 * 1450 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1451 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1452 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1453 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1454 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1455 * **TCP_BPF_SNDCWND_CLAMP**. 1456 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1457 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1458 * Return 1459 * 0 on success, or a negative error in case of failure. 1460 * 1461 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1462 * Description 1463 * Grow or shrink the room for data in the packet associated to 1464 * *skb* by *len_diff*, and according to the selected *mode*. 1465 * 1466 * There is a single supported mode at this time: 1467 * 1468 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1469 * (room space is added or removed below the layer 3 header). 1470 * 1471 * All values for *flags* are reserved for future usage, and must 1472 * be left at zero. 1473 * 1474 * A call to this helper is susceptible to change the underlaying 1475 * packet buffer. Therefore, at load time, all checks on pointers 1476 * previously done by the verifier are invalidated and must be 1477 * performed again, if the helper is used in combination with 1478 * direct packet access. 1479 * Return 1480 * 0 on success, or a negative error in case of failure. 1481 * 1482 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1483 * Description 1484 * Redirect the packet to the endpoint referenced by *map* at 1485 * index *key*. Depending on its type, this *map* can contain 1486 * references to net devices (for forwarding packets through other 1487 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1488 * but this is only implemented for native XDP (with driver 1489 * support) as of this writing). 1490 * 1491 * All values for *flags* are reserved for future usage, and must 1492 * be left at zero. 1493 * 1494 * When used to redirect packets to net devices, this helper 1495 * provides a high performance increase over **bpf_redirect**\ (). 1496 * This is due to various implementation details of the underlying 1497 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1498 * () tries to send packet as a "bulk" to the device. 1499 * Return 1500 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1501 * 1502 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1503 * Description 1504 * Redirect the packet to the socket referenced by *map* (of type 1505 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1506 * egress interfaces can be used for redirection. The 1507 * **BPF_F_INGRESS** value in *flags* is used to make the 1508 * distinction (ingress path is selected if the flag is present, 1509 * egress path otherwise). This is the only flag supported for now. 1510 * Return 1511 * **SK_PASS** on success, or **SK_DROP** on error. 1512 * 1513 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1514 * Description 1515 * Add an entry to, or update a *map* referencing sockets. The 1516 * *skops* is used as a new value for the entry associated to 1517 * *key*. *flags* is one of: 1518 * 1519 * **BPF_NOEXIST** 1520 * The entry for *key* must not exist in the map. 1521 * **BPF_EXIST** 1522 * The entry for *key* must already exist in the map. 1523 * **BPF_ANY** 1524 * No condition on the existence of the entry for *key*. 1525 * 1526 * If the *map* has eBPF programs (parser and verdict), those will 1527 * be inherited by the socket being added. If the socket is 1528 * already attached to eBPF programs, this results in an error. 1529 * Return 1530 * 0 on success, or a negative error in case of failure. 1531 * 1532 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1533 * Description 1534 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1535 * *delta* (which can be positive or negative). Note that this 1536 * operation modifies the address stored in *xdp_md*\ **->data**, 1537 * so the latter must be loaded only after the helper has been 1538 * called. 1539 * 1540 * The use of *xdp_md*\ **->data_meta** is optional and programs 1541 * are not required to use it. The rationale is that when the 1542 * packet is processed with XDP (e.g. as DoS filter), it is 1543 * possible to push further meta data along with it before passing 1544 * to the stack, and to give the guarantee that an ingress eBPF 1545 * program attached as a TC classifier on the same device can pick 1546 * this up for further post-processing. Since TC works with socket 1547 * buffers, it remains possible to set from XDP the **mark** or 1548 * **priority** pointers, or other pointers for the socket buffer. 1549 * Having this scratch space generic and programmable allows for 1550 * more flexibility as the user is free to store whatever meta 1551 * data they need. 1552 * 1553 * A call to this helper is susceptible to change the underlaying 1554 * packet buffer. Therefore, at load time, all checks on pointers 1555 * previously done by the verifier are invalidated and must be 1556 * performed again, if the helper is used in combination with 1557 * direct packet access. 1558 * Return 1559 * 0 on success, or a negative error in case of failure. 1560 * 1561 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1562 * Description 1563 * Read the value of a perf event counter, and store it into *buf* 1564 * of size *buf_size*. This helper relies on a *map* of type 1565 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1566 * counter is selected when *map* is updated with perf event file 1567 * descriptors. The *map* is an array whose size is the number of 1568 * available CPUs, and each cell contains a value relative to one 1569 * CPU. The value to retrieve is indicated by *flags*, that 1570 * contains the index of the CPU to look up, masked with 1571 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1572 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1573 * current CPU should be retrieved. 1574 * 1575 * This helper behaves in a way close to 1576 * **bpf_perf_event_read**\ () helper, save that instead of 1577 * just returning the value observed, it fills the *buf* 1578 * structure. This allows for additional data to be retrieved: in 1579 * particular, the enabled and running times (in *buf*\ 1580 * **->enabled** and *buf*\ **->running**, respectively) are 1581 * copied. In general, **bpf_perf_event_read_value**\ () is 1582 * recommended over **bpf_perf_event_read**\ (), which has some 1583 * ABI issues and provides fewer functionalities. 1584 * 1585 * These values are interesting, because hardware PMU (Performance 1586 * Monitoring Unit) counters are limited resources. When there are 1587 * more PMU based perf events opened than available counters, 1588 * kernel will multiplex these events so each event gets certain 1589 * percentage (but not all) of the PMU time. In case that 1590 * multiplexing happens, the number of samples or counter value 1591 * will not reflect the case compared to when no multiplexing 1592 * occurs. This makes comparison between different runs difficult. 1593 * Typically, the counter value should be normalized before 1594 * comparing to other experiments. The usual normalization is done 1595 * as follows. 1596 * 1597 * :: 1598 * 1599 * normalized_counter = counter * t_enabled / t_running 1600 * 1601 * Where t_enabled is the time enabled for event and t_running is 1602 * the time running for event since last normalization. The 1603 * enabled and running times are accumulated since the perf event 1604 * open. To achieve scaling factor between two invocations of an 1605 * eBPF program, users can can use CPU id as the key (which is 1606 * typical for perf array usage model) to remember the previous 1607 * value and do the calculation inside the eBPF program. 1608 * Return 1609 * 0 on success, or a negative error in case of failure. 1610 * 1611 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1612 * Description 1613 * For en eBPF program attached to a perf event, retrieve the 1614 * value of the event counter associated to *ctx* and store it in 1615 * the structure pointed by *buf* and of size *buf_size*. Enabled 1616 * and running times are also stored in the structure (see 1617 * description of helper **bpf_perf_event_read_value**\ () for 1618 * more details). 1619 * Return 1620 * 0 on success, or a negative error in case of failure. 1621 * 1622 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1623 * Description 1624 * Emulate a call to **getsockopt()** on the socket associated to 1625 * *bpf_socket*, which must be a full socket. The *level* at 1626 * which the option resides and the name *optname* of the option 1627 * must be specified, see **getsockopt(2)** for more information. 1628 * The retrieved value is stored in the structure pointed by 1629 * *opval* and of length *optlen*. 1630 * 1631 * This helper actually implements a subset of **getsockopt()**. 1632 * It supports the following *level*\ s: 1633 * 1634 * * **IPPROTO_TCP**, which supports *optname* 1635 * **TCP_CONGESTION**. 1636 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1637 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1638 * Return 1639 * 0 on success, or a negative error in case of failure. 1640 * 1641 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1642 * Description 1643 * Used for error injection, this helper uses kprobes to override 1644 * the return value of the probed function, and to set it to *rc*. 1645 * The first argument is the context *regs* on which the kprobe 1646 * works. 1647 * 1648 * This helper works by setting setting the PC (program counter) 1649 * to an override function which is run in place of the original 1650 * probed function. This means the probed function is not run at 1651 * all. The replacement function just returns with the required 1652 * value. 1653 * 1654 * This helper has security implications, and thus is subject to 1655 * restrictions. It is only available if the kernel was compiled 1656 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1657 * option, and in this case it only works on functions tagged with 1658 * **ALLOW_ERROR_INJECTION** in the kernel code. 1659 * 1660 * Also, the helper is only available for the architectures having 1661 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1662 * x86 architecture is the only one to support this feature. 1663 * Return 1664 * 0 1665 * 1666 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1667 * Description 1668 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1669 * for the full TCP socket associated to *bpf_sock_ops* to 1670 * *argval*. 1671 * 1672 * The primary use of this field is to determine if there should 1673 * be calls to eBPF programs of type 1674 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1675 * code. A program of the same type can change its value, per 1676 * connection and as necessary, when the connection is 1677 * established. This field is directly accessible for reading, but 1678 * this helper must be used for updates in order to return an 1679 * error if an eBPF program tries to set a callback that is not 1680 * supported in the current kernel. 1681 * 1682 * The supported callback values that *argval* can combine are: 1683 * 1684 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1685 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1686 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1687 * 1688 * Here are some examples of where one could call such eBPF 1689 * program: 1690 * 1691 * * When RTO fires. 1692 * * When a packet is retransmitted. 1693 * * When the connection terminates. 1694 * * When a packet is sent. 1695 * * When a packet is received. 1696 * Return 1697 * Code **-EINVAL** if the socket is not a full TCP socket; 1698 * otherwise, a positive number containing the bits that could not 1699 * be set is returned (which comes down to 0 if all bits were set 1700 * as required). 1701 * 1702 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1703 * Description 1704 * This helper is used in programs implementing policies at the 1705 * socket level. If the message *msg* is allowed to pass (i.e. if 1706 * the verdict eBPF program returns **SK_PASS**), redirect it to 1707 * the socket referenced by *map* (of type 1708 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1709 * egress interfaces can be used for redirection. The 1710 * **BPF_F_INGRESS** value in *flags* is used to make the 1711 * distinction (ingress path is selected if the flag is present, 1712 * egress path otherwise). This is the only flag supported for now. 1713 * Return 1714 * **SK_PASS** on success, or **SK_DROP** on error. 1715 * 1716 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1717 * Description 1718 * For socket policies, apply the verdict of the eBPF program to 1719 * the next *bytes* (number of bytes) of message *msg*. 1720 * 1721 * For example, this helper can be used in the following cases: 1722 * 1723 * * A single **sendmsg**\ () or **sendfile**\ () system call 1724 * contains multiple logical messages that the eBPF program is 1725 * supposed to read and for which it should apply a verdict. 1726 * * An eBPF program only cares to read the first *bytes* of a 1727 * *msg*. If the message has a large payload, then setting up 1728 * and calling the eBPF program repeatedly for all bytes, even 1729 * though the verdict is already known, would create unnecessary 1730 * overhead. 1731 * 1732 * When called from within an eBPF program, the helper sets a 1733 * counter internal to the BPF infrastructure, that is used to 1734 * apply the last verdict to the next *bytes*. If *bytes* is 1735 * smaller than the current data being processed from a 1736 * **sendmsg**\ () or **sendfile**\ () system call, the first 1737 * *bytes* will be sent and the eBPF program will be re-run with 1738 * the pointer for start of data pointing to byte number *bytes* 1739 * **+ 1**. If *bytes* is larger than the current data being 1740 * processed, then the eBPF verdict will be applied to multiple 1741 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1742 * consumed. 1743 * 1744 * Note that if a socket closes with the internal counter holding 1745 * a non-zero value, this is not a problem because data is not 1746 * being buffered for *bytes* and is sent as it is received. 1747 * Return 1748 * 0 1749 * 1750 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1751 * Description 1752 * For socket policies, prevent the execution of the verdict eBPF 1753 * program for message *msg* until *bytes* (byte number) have been 1754 * accumulated. 1755 * 1756 * This can be used when one needs a specific number of bytes 1757 * before a verdict can be assigned, even if the data spans 1758 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1759 * case would be a user calling **sendmsg**\ () repeatedly with 1760 * 1-byte long message segments. Obviously, this is bad for 1761 * performance, but it is still valid. If the eBPF program needs 1762 * *bytes* bytes to validate a header, this helper can be used to 1763 * prevent the eBPF program to be called again until *bytes* have 1764 * been accumulated. 1765 * Return 1766 * 0 1767 * 1768 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1769 * Description 1770 * For socket policies, pull in non-linear data from user space 1771 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1772 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1773 * respectively. 1774 * 1775 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1776 * *msg* it can only parse data that the (**data**, **data_end**) 1777 * pointers have already consumed. For **sendmsg**\ () hooks this 1778 * is likely the first scatterlist element. But for calls relying 1779 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1780 * be the range (**0**, **0**) because the data is shared with 1781 * user space and by default the objective is to avoid allowing 1782 * user space to modify data while (or after) eBPF verdict is 1783 * being decided. This helper can be used to pull in data and to 1784 * set the start and end pointer to given values. Data will be 1785 * copied if necessary (i.e. if data was not linear and if start 1786 * and end pointers do not point to the same chunk). 1787 * 1788 * A call to this helper is susceptible to change the underlaying 1789 * packet buffer. Therefore, at load time, all checks on pointers 1790 * previously done by the verifier are invalidated and must be 1791 * performed again, if the helper is used in combination with 1792 * direct packet access. 1793 * 1794 * All values for *flags* are reserved for future usage, and must 1795 * be left at zero. 1796 * Return 1797 * 0 on success, or a negative error in case of failure. 1798 * 1799 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1800 * Description 1801 * Bind the socket associated to *ctx* to the address pointed by 1802 * *addr*, of length *addr_len*. This allows for making outgoing 1803 * connection from the desired IP address, which can be useful for 1804 * example when all processes inside a cgroup should use one 1805 * single IP address on a host that has multiple IP configured. 1806 * 1807 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1808 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1809 * **AF_INET6**). Looking for a free port to bind to can be 1810 * expensive, therefore binding to port is not permitted by the 1811 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1812 * must be set to zero. 1813 * Return 1814 * 0 on success, or a negative error in case of failure. 1815 * 1816 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1817 * Description 1818 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1819 * only possible to shrink the packet as of this writing, 1820 * therefore *delta* must be a negative integer. 1821 * 1822 * A call to this helper is susceptible to change the underlaying 1823 * packet buffer. Therefore, at load time, all checks on pointers 1824 * previously done by the verifier are invalidated and must be 1825 * performed again, if the helper is used in combination with 1826 * direct packet access. 1827 * Return 1828 * 0 on success, or a negative error in case of failure. 1829 * 1830 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1831 * Description 1832 * Retrieve the XFRM state (IP transform framework, see also 1833 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1834 * 1835 * The retrieved value is stored in the **struct bpf_xfrm_state** 1836 * pointed by *xfrm_state* and of length *size*. 1837 * 1838 * All values for *flags* are reserved for future usage, and must 1839 * be left at zero. 1840 * 1841 * This helper is available only if the kernel was compiled with 1842 * **CONFIG_XFRM** configuration option. 1843 * Return 1844 * 0 on success, or a negative error in case of failure. 1845 * 1846 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1847 * Description 1848 * Return a user or a kernel stack in bpf program provided buffer. 1849 * To achieve this, the helper needs *ctx*, which is a pointer 1850 * to the context on which the tracing program is executed. 1851 * To store the stacktrace, the bpf program provides *buf* with 1852 * a nonnegative *size*. 1853 * 1854 * The last argument, *flags*, holds the number of stack frames to 1855 * skip (from 0 to 255), masked with 1856 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1857 * the following flags: 1858 * 1859 * **BPF_F_USER_STACK** 1860 * Collect a user space stack instead of a kernel stack. 1861 * **BPF_F_USER_BUILD_ID** 1862 * Collect buildid+offset instead of ips for user stack, 1863 * only valid if **BPF_F_USER_STACK** is also specified. 1864 * 1865 * **bpf_get_stack**\ () can collect up to 1866 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1867 * to sufficient large buffer size. Note that 1868 * this limit can be controlled with the **sysctl** program, and 1869 * that it should be manually increased in order to profile long 1870 * user stacks (such as stacks for Java programs). To do so, use: 1871 * 1872 * :: 1873 * 1874 * # sysctl kernel.perf_event_max_stack=<new value> 1875 * Return 1876 * A non-negative value equal to or less than *size* on success, 1877 * or a negative error in case of failure. 1878 * 1879 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1880 * Description 1881 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1882 * it provides an easy way to load *len* bytes from *offset* 1883 * from the packet associated to *skb*, into the buffer pointed 1884 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1885 * a fifth argument *start_header* exists in order to select a 1886 * base offset to start from. *start_header* can be one of: 1887 * 1888 * **BPF_HDR_START_MAC** 1889 * Base offset to load data from is *skb*'s mac header. 1890 * **BPF_HDR_START_NET** 1891 * Base offset to load data from is *skb*'s network header. 1892 * 1893 * In general, "direct packet access" is the preferred method to 1894 * access packet data, however, this helper is in particular useful 1895 * in socket filters where *skb*\ **->data** does not always point 1896 * to the start of the mac header and where "direct packet access" 1897 * is not available. 1898 * Return 1899 * 0 on success, or a negative error in case of failure. 1900 * 1901 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1902 * Description 1903 * Do FIB lookup in kernel tables using parameters in *params*. 1904 * If lookup is successful and result shows packet is to be 1905 * forwarded, the neighbor tables are searched for the nexthop. 1906 * If successful (ie., FIB lookup shows forwarding and nexthop 1907 * is resolved), the nexthop address is returned in ipv4_dst 1908 * or ipv6_dst based on family, smac is set to mac address of 1909 * egress device, dmac is set to nexthop mac address, rt_metric 1910 * is set to metric from route (IPv4/IPv6 only), and ifindex 1911 * is set to the device index of the nexthop from the FIB lookup. 1912 * 1913 * *plen* argument is the size of the passed in struct. 1914 * *flags* argument can be a combination of one or more of the 1915 * following values: 1916 * 1917 * **BPF_FIB_LOOKUP_DIRECT** 1918 * Do a direct table lookup vs full lookup using FIB 1919 * rules. 1920 * **BPF_FIB_LOOKUP_OUTPUT** 1921 * Perform lookup from an egress perspective (default is 1922 * ingress). 1923 * 1924 * *ctx* is either **struct xdp_md** for XDP programs or 1925 * **struct sk_buff** tc cls_act programs. 1926 * Return 1927 * * < 0 if any input argument is invalid 1928 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1929 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1930 * packet is not forwarded or needs assist from full stack 1931 * 1932 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 1933 * Description 1934 * Add an entry to, or update a sockhash *map* referencing sockets. 1935 * The *skops* is used as a new value for the entry associated to 1936 * *key*. *flags* is one of: 1937 * 1938 * **BPF_NOEXIST** 1939 * The entry for *key* must not exist in the map. 1940 * **BPF_EXIST** 1941 * The entry for *key* must already exist in the map. 1942 * **BPF_ANY** 1943 * No condition on the existence of the entry for *key*. 1944 * 1945 * If the *map* has eBPF programs (parser and verdict), those will 1946 * be inherited by the socket being added. If the socket is 1947 * already attached to eBPF programs, this results in an error. 1948 * Return 1949 * 0 on success, or a negative error in case of failure. 1950 * 1951 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 1952 * Description 1953 * This helper is used in programs implementing policies at the 1954 * socket level. If the message *msg* is allowed to pass (i.e. if 1955 * the verdict eBPF program returns **SK_PASS**), redirect it to 1956 * the socket referenced by *map* (of type 1957 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1958 * egress interfaces can be used for redirection. The 1959 * **BPF_F_INGRESS** value in *flags* is used to make the 1960 * distinction (ingress path is selected if the flag is present, 1961 * egress path otherwise). This is the only flag supported for now. 1962 * Return 1963 * **SK_PASS** on success, or **SK_DROP** on error. 1964 * 1965 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 1966 * Description 1967 * This helper is used in programs implementing policies at the 1968 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 1969 * if the verdeict eBPF program returns **SK_PASS**), redirect it 1970 * to the socket referenced by *map* (of type 1971 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1972 * egress interfaces can be used for redirection. The 1973 * **BPF_F_INGRESS** value in *flags* is used to make the 1974 * distinction (ingress path is selected if the flag is present, 1975 * egress otherwise). This is the only flag supported for now. 1976 * Return 1977 * **SK_PASS** on success, or **SK_DROP** on error. 1978 * 1979 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 1980 * Description 1981 * Encapsulate the packet associated to *skb* within a Layer 3 1982 * protocol header. This header is provided in the buffer at 1983 * address *hdr*, with *len* its size in bytes. *type* indicates 1984 * the protocol of the header and can be one of: 1985 * 1986 * **BPF_LWT_ENCAP_SEG6** 1987 * IPv6 encapsulation with Segment Routing Header 1988 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 1989 * the IPv6 header is computed by the kernel. 1990 * **BPF_LWT_ENCAP_SEG6_INLINE** 1991 * Only works if *skb* contains an IPv6 packet. Insert a 1992 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 1993 * the IPv6 header. 1994 * 1995 * A call to this helper is susceptible to change the underlaying 1996 * packet buffer. Therefore, at load time, all checks on pointers 1997 * previously done by the verifier are invalidated and must be 1998 * performed again, if the helper is used in combination with 1999 * direct packet access. 2000 * Return 2001 * 0 on success, or a negative error in case of failure. 2002 * 2003 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2004 * Description 2005 * Store *len* bytes from address *from* into the packet 2006 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2007 * inside the outermost IPv6 Segment Routing Header can be 2008 * modified through this helper. 2009 * 2010 * A call to this helper is susceptible to change the underlaying 2011 * packet buffer. Therefore, at load time, all checks on pointers 2012 * previously done by the verifier are invalidated and must be 2013 * performed again, if the helper is used in combination with 2014 * direct packet access. 2015 * Return 2016 * 0 on success, or a negative error in case of failure. 2017 * 2018 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2019 * Description 2020 * Adjust the size allocated to TLVs in the outermost IPv6 2021 * Segment Routing Header contained in the packet associated to 2022 * *skb*, at position *offset* by *delta* bytes. Only offsets 2023 * after the segments are accepted. *delta* can be as well 2024 * positive (growing) as negative (shrinking). 2025 * 2026 * A call to this helper is susceptible to change the underlaying 2027 * packet buffer. Therefore, at load time, all checks on pointers 2028 * previously done by the verifier are invalidated and must be 2029 * performed again, if the helper is used in combination with 2030 * direct packet access. 2031 * Return 2032 * 0 on success, or a negative error in case of failure. 2033 * 2034 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2035 * Description 2036 * Apply an IPv6 Segment Routing action of type *action* to the 2037 * packet associated to *skb*. Each action takes a parameter 2038 * contained at address *param*, and of length *param_len* bytes. 2039 * *action* can be one of: 2040 * 2041 * **SEG6_LOCAL_ACTION_END_X** 2042 * End.X action: Endpoint with Layer-3 cross-connect. 2043 * Type of *param*: **struct in6_addr**. 2044 * **SEG6_LOCAL_ACTION_END_T** 2045 * End.T action: Endpoint with specific IPv6 table lookup. 2046 * Type of *param*: **int**. 2047 * **SEG6_LOCAL_ACTION_END_B6** 2048 * End.B6 action: Endpoint bound to an SRv6 policy. 2049 * Type of param: **struct ipv6_sr_hdr**. 2050 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2051 * End.B6.Encap action: Endpoint bound to an SRv6 2052 * encapsulation policy. 2053 * Type of param: **struct ipv6_sr_hdr**. 2054 * 2055 * A call to this helper is susceptible to change the underlaying 2056 * packet buffer. Therefore, at load time, all checks on pointers 2057 * previously done by the verifier are invalidated and must be 2058 * performed again, if the helper is used in combination with 2059 * direct packet access. 2060 * Return 2061 * 0 on success, or a negative error in case of failure. 2062 * 2063 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2064 * Description 2065 * This helper is used in programs implementing IR decoding, to 2066 * report a successfully decoded key press with *scancode*, 2067 * *toggle* value in the given *protocol*. The scancode will be 2068 * translated to a keycode using the rc keymap, and reported as 2069 * an input key down event. After a period a key up event is 2070 * generated. This period can be extended by calling either 2071 * **bpf_rc_keydown** () again with the same values, or calling 2072 * **bpf_rc_repeat** (). 2073 * 2074 * Some protocols include a toggle bit, in case the button was 2075 * released and pressed again between consecutive scancodes. 2076 * 2077 * The *ctx* should point to the lirc sample as passed into 2078 * the program. 2079 * 2080 * The *protocol* is the decoded protocol number (see 2081 * **enum rc_proto** for some predefined values). 2082 * 2083 * This helper is only available is the kernel was compiled with 2084 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2085 * "**y**". 2086 * Return 2087 * 0 2088 * 2089 * int bpf_rc_repeat(void *ctx) 2090 * Description 2091 * This helper is used in programs implementing IR decoding, to 2092 * report a successfully decoded repeat key message. This delays 2093 * the generation of a key up event for previously generated 2094 * key down event. 2095 * 2096 * Some IR protocols like NEC have a special IR message for 2097 * repeating last button, for when a button is held down. 2098 * 2099 * The *ctx* should point to the lirc sample as passed into 2100 * the program. 2101 * 2102 * This helper is only available is the kernel was compiled with 2103 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2104 * "**y**". 2105 * Return 2106 * 0 2107 * 2108 * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb) 2109 * Description 2110 * Return the cgroup v2 id of the socket associated with the *skb*. 2111 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2112 * helper for cgroup v1 by providing a tag resp. identifier that 2113 * can be matched on or used for map lookups e.g. to implement 2114 * policy. The cgroup v2 id of a given path in the hierarchy is 2115 * exposed in user space through the f_handle API in order to get 2116 * to the same 64-bit id. 2117 * 2118 * This helper can be used on TC egress path, but not on ingress, 2119 * and is available only if the kernel was compiled with the 2120 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2121 * Return 2122 * The id is returned or 0 in case the id could not be retrieved. 2123 * 2124 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2125 * Description 2126 * Return id of cgroup v2 that is ancestor of cgroup associated 2127 * with the *skb* at the *ancestor_level*. The root cgroup is at 2128 * *ancestor_level* zero and each step down the hierarchy 2129 * increments the level. If *ancestor_level* == level of cgroup 2130 * associated with *skb*, then return value will be same as that 2131 * of **bpf_skb_cgroup_id**\ (). 2132 * 2133 * The helper is useful to implement policies based on cgroups 2134 * that are upper in hierarchy than immediate cgroup associated 2135 * with *skb*. 2136 * 2137 * The format of returned id and helper limitations are same as in 2138 * **bpf_skb_cgroup_id**\ (). 2139 * Return 2140 * The id is returned or 0 in case the id could not be retrieved. 2141 * 2142 * u64 bpf_get_current_cgroup_id(void) 2143 * Return 2144 * A 64-bit integer containing the current cgroup id based 2145 * on the cgroup within which the current task is running. 2146 * 2147 * void* get_local_storage(void *map, u64 flags) 2148 * Description 2149 * Get the pointer to the local storage area. 2150 * The type and the size of the local storage is defined 2151 * by the *map* argument. 2152 * The *flags* meaning is specific for each map type, 2153 * and has to be 0 for cgroup local storage. 2154 * 2155 * Depending on the bpf program type, a local storage area 2156 * can be shared between multiple instances of the bpf program, 2157 * running simultaneously. 2158 * 2159 * A user should care about the synchronization by himself. 2160 * For example, by using the BPF_STX_XADD instruction to alter 2161 * the shared data. 2162 * Return 2163 * Pointer to the local storage area. 2164 * 2165 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2166 * Description 2167 * Select a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY map 2168 * It checks the selected sk is matching the incoming 2169 * request in the skb. 2170 * Return 2171 * 0 on success, or a negative error in case of failure. 2172 * 2173 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u32 netns, u64 flags) 2174 * Description 2175 * Look for TCP socket matching *tuple*, optionally in a child 2176 * network namespace *netns*. The return value must be checked, 2177 * and if non-NULL, released via **bpf_sk_release**\ (). 2178 * 2179 * The *ctx* should point to the context of the program, such as 2180 * the skb or socket (depending on the hook in use). This is used 2181 * to determine the base network namespace for the lookup. 2182 * 2183 * *tuple_size* must be one of: 2184 * 2185 * **sizeof**\ (*tuple*\ **->ipv4**) 2186 * Look for an IPv4 socket. 2187 * **sizeof**\ (*tuple*\ **->ipv6**) 2188 * Look for an IPv6 socket. 2189 * 2190 * If the *netns* is zero, then the socket lookup table in the 2191 * netns associated with the *ctx* will be used. For the TC hooks, 2192 * this in the netns of the device in the skb. For socket hooks, 2193 * this in the netns of the socket. If *netns* is non-zero, then 2194 * it specifies the ID of the netns relative to the netns 2195 * associated with the *ctx*. 2196 * 2197 * All values for *flags* are reserved for future usage, and must 2198 * be left at zero. 2199 * 2200 * This helper is available only if the kernel was compiled with 2201 * **CONFIG_NET** configuration option. 2202 * Return 2203 * Pointer to *struct bpf_sock*, or NULL in case of failure. 2204 * 2205 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u32 netns, u64 flags) 2206 * Description 2207 * Look for UDP socket matching *tuple*, optionally in a child 2208 * network namespace *netns*. The return value must be checked, 2209 * and if non-NULL, released via **bpf_sk_release**\ (). 2210 * 2211 * The *ctx* should point to the context of the program, such as 2212 * the skb or socket (depending on the hook in use). This is used 2213 * to determine the base network namespace for the lookup. 2214 * 2215 * *tuple_size* must be one of: 2216 * 2217 * **sizeof**\ (*tuple*\ **->ipv4**) 2218 * Look for an IPv4 socket. 2219 * **sizeof**\ (*tuple*\ **->ipv6**) 2220 * Look for an IPv6 socket. 2221 * 2222 * If the *netns* is zero, then the socket lookup table in the 2223 * netns associated with the *ctx* will be used. For the TC hooks, 2224 * this in the netns of the device in the skb. For socket hooks, 2225 * this in the netns of the socket. If *netns* is non-zero, then 2226 * it specifies the ID of the netns relative to the netns 2227 * associated with the *ctx*. 2228 * 2229 * All values for *flags* are reserved for future usage, and must 2230 * be left at zero. 2231 * 2232 * This helper is available only if the kernel was compiled with 2233 * **CONFIG_NET** configuration option. 2234 * Return 2235 * Pointer to *struct bpf_sock*, or NULL in case of failure. 2236 * 2237 * int bpf_sk_release(struct bpf_sock *sk) 2238 * Description 2239 * Release the reference held by *sock*. *sock* must be a non-NULL 2240 * pointer that was returned from bpf_sk_lookup_xxx\ (). 2241 * Return 2242 * 0 on success, or a negative error in case of failure. 2243 * 2244 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2245 * Description 2246 * For socket policies, insert *len* bytes into msg at offset 2247 * *start*. 2248 * 2249 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2250 * *msg* it may want to insert metadata or options into the msg. 2251 * This can later be read and used by any of the lower layer BPF 2252 * hooks. 2253 * 2254 * This helper may fail if under memory pressure (a malloc 2255 * fails) in these cases BPF programs will get an appropriate 2256 * error and BPF programs will need to handle them. 2257 * 2258 * Return 2259 * 0 on success, or a negative error in case of failure. 2260 */ 2261 #define __BPF_FUNC_MAPPER(FN) \ 2262 FN(unspec), \ 2263 FN(map_lookup_elem), \ 2264 FN(map_update_elem), \ 2265 FN(map_delete_elem), \ 2266 FN(probe_read), \ 2267 FN(ktime_get_ns), \ 2268 FN(trace_printk), \ 2269 FN(get_prandom_u32), \ 2270 FN(get_smp_processor_id), \ 2271 FN(skb_store_bytes), \ 2272 FN(l3_csum_replace), \ 2273 FN(l4_csum_replace), \ 2274 FN(tail_call), \ 2275 FN(clone_redirect), \ 2276 FN(get_current_pid_tgid), \ 2277 FN(get_current_uid_gid), \ 2278 FN(get_current_comm), \ 2279 FN(get_cgroup_classid), \ 2280 FN(skb_vlan_push), \ 2281 FN(skb_vlan_pop), \ 2282 FN(skb_get_tunnel_key), \ 2283 FN(skb_set_tunnel_key), \ 2284 FN(perf_event_read), \ 2285 FN(redirect), \ 2286 FN(get_route_realm), \ 2287 FN(perf_event_output), \ 2288 FN(skb_load_bytes), \ 2289 FN(get_stackid), \ 2290 FN(csum_diff), \ 2291 FN(skb_get_tunnel_opt), \ 2292 FN(skb_set_tunnel_opt), \ 2293 FN(skb_change_proto), \ 2294 FN(skb_change_type), \ 2295 FN(skb_under_cgroup), \ 2296 FN(get_hash_recalc), \ 2297 FN(get_current_task), \ 2298 FN(probe_write_user), \ 2299 FN(current_task_under_cgroup), \ 2300 FN(skb_change_tail), \ 2301 FN(skb_pull_data), \ 2302 FN(csum_update), \ 2303 FN(set_hash_invalid), \ 2304 FN(get_numa_node_id), \ 2305 FN(skb_change_head), \ 2306 FN(xdp_adjust_head), \ 2307 FN(probe_read_str), \ 2308 FN(get_socket_cookie), \ 2309 FN(get_socket_uid), \ 2310 FN(set_hash), \ 2311 FN(setsockopt), \ 2312 FN(skb_adjust_room), \ 2313 FN(redirect_map), \ 2314 FN(sk_redirect_map), \ 2315 FN(sock_map_update), \ 2316 FN(xdp_adjust_meta), \ 2317 FN(perf_event_read_value), \ 2318 FN(perf_prog_read_value), \ 2319 FN(getsockopt), \ 2320 FN(override_return), \ 2321 FN(sock_ops_cb_flags_set), \ 2322 FN(msg_redirect_map), \ 2323 FN(msg_apply_bytes), \ 2324 FN(msg_cork_bytes), \ 2325 FN(msg_pull_data), \ 2326 FN(bind), \ 2327 FN(xdp_adjust_tail), \ 2328 FN(skb_get_xfrm_state), \ 2329 FN(get_stack), \ 2330 FN(skb_load_bytes_relative), \ 2331 FN(fib_lookup), \ 2332 FN(sock_hash_update), \ 2333 FN(msg_redirect_hash), \ 2334 FN(sk_redirect_hash), \ 2335 FN(lwt_push_encap), \ 2336 FN(lwt_seg6_store_bytes), \ 2337 FN(lwt_seg6_adjust_srh), \ 2338 FN(lwt_seg6_action), \ 2339 FN(rc_repeat), \ 2340 FN(rc_keydown), \ 2341 FN(skb_cgroup_id), \ 2342 FN(get_current_cgroup_id), \ 2343 FN(get_local_storage), \ 2344 FN(sk_select_reuseport), \ 2345 FN(skb_ancestor_cgroup_id), \ 2346 FN(sk_lookup_tcp), \ 2347 FN(sk_lookup_udp), \ 2348 FN(sk_release), \ 2349 FN(map_push_elem), \ 2350 FN(map_pop_elem), \ 2351 FN(map_peek_elem), \ 2352 FN(msg_push_data), 2353 2354 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2355 * function eBPF program intends to call 2356 */ 2357 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2358 enum bpf_func_id { 2359 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2360 __BPF_FUNC_MAX_ID, 2361 }; 2362 #undef __BPF_ENUM_FN 2363 2364 /* All flags used by eBPF helper functions, placed here. */ 2365 2366 /* BPF_FUNC_skb_store_bytes flags. */ 2367 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2368 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2369 2370 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2371 * First 4 bits are for passing the header field size. 2372 */ 2373 #define BPF_F_HDR_FIELD_MASK 0xfULL 2374 2375 /* BPF_FUNC_l4_csum_replace flags. */ 2376 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2377 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2378 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2379 2380 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2381 #define BPF_F_INGRESS (1ULL << 0) 2382 2383 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2384 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2385 2386 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2387 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2388 #define BPF_F_USER_STACK (1ULL << 8) 2389 /* flags used by BPF_FUNC_get_stackid only. */ 2390 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2391 #define BPF_F_REUSE_STACKID (1ULL << 10) 2392 /* flags used by BPF_FUNC_get_stack only. */ 2393 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2394 2395 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2396 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2397 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2398 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2399 2400 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2401 * BPF_FUNC_perf_event_read_value flags. 2402 */ 2403 #define BPF_F_INDEX_MASK 0xffffffffULL 2404 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2405 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2406 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2407 2408 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2409 enum bpf_adj_room_mode { 2410 BPF_ADJ_ROOM_NET, 2411 }; 2412 2413 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2414 enum bpf_hdr_start_off { 2415 BPF_HDR_START_MAC, 2416 BPF_HDR_START_NET, 2417 }; 2418 2419 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2420 enum bpf_lwt_encap_mode { 2421 BPF_LWT_ENCAP_SEG6, 2422 BPF_LWT_ENCAP_SEG6_INLINE 2423 }; 2424 2425 /* user accessible mirror of in-kernel sk_buff. 2426 * new fields can only be added to the end of this structure 2427 */ 2428 struct __sk_buff { 2429 __u32 len; 2430 __u32 pkt_type; 2431 __u32 mark; 2432 __u32 queue_mapping; 2433 __u32 protocol; 2434 __u32 vlan_present; 2435 __u32 vlan_tci; 2436 __u32 vlan_proto; 2437 __u32 priority; 2438 __u32 ingress_ifindex; 2439 __u32 ifindex; 2440 __u32 tc_index; 2441 __u32 cb[5]; 2442 __u32 hash; 2443 __u32 tc_classid; 2444 __u32 data; 2445 __u32 data_end; 2446 __u32 napi_id; 2447 2448 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2449 __u32 family; 2450 __u32 remote_ip4; /* Stored in network byte order */ 2451 __u32 local_ip4; /* Stored in network byte order */ 2452 __u32 remote_ip6[4]; /* Stored in network byte order */ 2453 __u32 local_ip6[4]; /* Stored in network byte order */ 2454 __u32 remote_port; /* Stored in network byte order */ 2455 __u32 local_port; /* stored in host byte order */ 2456 /* ... here. */ 2457 2458 __u32 data_meta; 2459 struct bpf_flow_keys *flow_keys; 2460 }; 2461 2462 struct bpf_tunnel_key { 2463 __u32 tunnel_id; 2464 union { 2465 __u32 remote_ipv4; 2466 __u32 remote_ipv6[4]; 2467 }; 2468 __u8 tunnel_tos; 2469 __u8 tunnel_ttl; 2470 __u16 tunnel_ext; /* Padding, future use. */ 2471 __u32 tunnel_label; 2472 }; 2473 2474 /* user accessible mirror of in-kernel xfrm_state. 2475 * new fields can only be added to the end of this structure 2476 */ 2477 struct bpf_xfrm_state { 2478 __u32 reqid; 2479 __u32 spi; /* Stored in network byte order */ 2480 __u16 family; 2481 __u16 ext; /* Padding, future use. */ 2482 union { 2483 __u32 remote_ipv4; /* Stored in network byte order */ 2484 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2485 }; 2486 }; 2487 2488 /* Generic BPF return codes which all BPF program types may support. 2489 * The values are binary compatible with their TC_ACT_* counter-part to 2490 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2491 * programs. 2492 * 2493 * XDP is handled seprately, see XDP_*. 2494 */ 2495 enum bpf_ret_code { 2496 BPF_OK = 0, 2497 /* 1 reserved */ 2498 BPF_DROP = 2, 2499 /* 3-6 reserved */ 2500 BPF_REDIRECT = 7, 2501 /* >127 are reserved for prog type specific return codes */ 2502 }; 2503 2504 struct bpf_sock { 2505 __u32 bound_dev_if; 2506 __u32 family; 2507 __u32 type; 2508 __u32 protocol; 2509 __u32 mark; 2510 __u32 priority; 2511 __u32 src_ip4; /* Allows 1,2,4-byte read. 2512 * Stored in network byte order. 2513 */ 2514 __u32 src_ip6[4]; /* Allows 1,2,4-byte read. 2515 * Stored in network byte order. 2516 */ 2517 __u32 src_port; /* Allows 4-byte read. 2518 * Stored in host byte order 2519 */ 2520 }; 2521 2522 struct bpf_sock_tuple { 2523 union { 2524 struct { 2525 __be32 saddr; 2526 __be32 daddr; 2527 __be16 sport; 2528 __be16 dport; 2529 } ipv4; 2530 struct { 2531 __be32 saddr[4]; 2532 __be32 daddr[4]; 2533 __be16 sport; 2534 __be16 dport; 2535 } ipv6; 2536 }; 2537 }; 2538 2539 #define XDP_PACKET_HEADROOM 256 2540 2541 /* User return codes for XDP prog type. 2542 * A valid XDP program must return one of these defined values. All other 2543 * return codes are reserved for future use. Unknown return codes will 2544 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 2545 */ 2546 enum xdp_action { 2547 XDP_ABORTED = 0, 2548 XDP_DROP, 2549 XDP_PASS, 2550 XDP_TX, 2551 XDP_REDIRECT, 2552 }; 2553 2554 /* user accessible metadata for XDP packet hook 2555 * new fields must be added to the end of this structure 2556 */ 2557 struct xdp_md { 2558 __u32 data; 2559 __u32 data_end; 2560 __u32 data_meta; 2561 /* Below access go through struct xdp_rxq_info */ 2562 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 2563 __u32 rx_queue_index; /* rxq->queue_index */ 2564 }; 2565 2566 enum sk_action { 2567 SK_DROP = 0, 2568 SK_PASS, 2569 }; 2570 2571 /* user accessible metadata for SK_MSG packet hook, new fields must 2572 * be added to the end of this structure 2573 */ 2574 struct sk_msg_md { 2575 void *data; 2576 void *data_end; 2577 2578 __u32 family; 2579 __u32 remote_ip4; /* Stored in network byte order */ 2580 __u32 local_ip4; /* Stored in network byte order */ 2581 __u32 remote_ip6[4]; /* Stored in network byte order */ 2582 __u32 local_ip6[4]; /* Stored in network byte order */ 2583 __u32 remote_port; /* Stored in network byte order */ 2584 __u32 local_port; /* stored in host byte order */ 2585 }; 2586 2587 struct sk_reuseport_md { 2588 /* 2589 * Start of directly accessible data. It begins from 2590 * the tcp/udp header. 2591 */ 2592 void *data; 2593 void *data_end; /* End of directly accessible data */ 2594 /* 2595 * Total length of packet (starting from the tcp/udp header). 2596 * Note that the directly accessible bytes (data_end - data) 2597 * could be less than this "len". Those bytes could be 2598 * indirectly read by a helper "bpf_skb_load_bytes()". 2599 */ 2600 __u32 len; 2601 /* 2602 * Eth protocol in the mac header (network byte order). e.g. 2603 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 2604 */ 2605 __u32 eth_protocol; 2606 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 2607 __u32 bind_inany; /* Is sock bound to an INANY address? */ 2608 __u32 hash; /* A hash of the packet 4 tuples */ 2609 }; 2610 2611 #define BPF_TAG_SIZE 8 2612 2613 struct bpf_prog_info { 2614 __u32 type; 2615 __u32 id; 2616 __u8 tag[BPF_TAG_SIZE]; 2617 __u32 jited_prog_len; 2618 __u32 xlated_prog_len; 2619 __aligned_u64 jited_prog_insns; 2620 __aligned_u64 xlated_prog_insns; 2621 __u64 load_time; /* ns since boottime */ 2622 __u32 created_by_uid; 2623 __u32 nr_map_ids; 2624 __aligned_u64 map_ids; 2625 char name[BPF_OBJ_NAME_LEN]; 2626 __u32 ifindex; 2627 __u32 gpl_compatible:1; 2628 __u64 netns_dev; 2629 __u64 netns_ino; 2630 __u32 nr_jited_ksyms; 2631 __u32 nr_jited_func_lens; 2632 __aligned_u64 jited_ksyms; 2633 __aligned_u64 jited_func_lens; 2634 } __attribute__((aligned(8))); 2635 2636 struct bpf_map_info { 2637 __u32 type; 2638 __u32 id; 2639 __u32 key_size; 2640 __u32 value_size; 2641 __u32 max_entries; 2642 __u32 map_flags; 2643 char name[BPF_OBJ_NAME_LEN]; 2644 __u32 ifindex; 2645 __u32 :32; 2646 __u64 netns_dev; 2647 __u64 netns_ino; 2648 __u32 btf_id; 2649 __u32 btf_key_type_id; 2650 __u32 btf_value_type_id; 2651 } __attribute__((aligned(8))); 2652 2653 struct bpf_btf_info { 2654 __aligned_u64 btf; 2655 __u32 btf_size; 2656 __u32 id; 2657 } __attribute__((aligned(8))); 2658 2659 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 2660 * by user and intended to be used by socket (e.g. to bind to, depends on 2661 * attach attach type). 2662 */ 2663 struct bpf_sock_addr { 2664 __u32 user_family; /* Allows 4-byte read, but no write. */ 2665 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 2666 * Stored in network byte order. 2667 */ 2668 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2669 * Stored in network byte order. 2670 */ 2671 __u32 user_port; /* Allows 4-byte read and write. 2672 * Stored in network byte order 2673 */ 2674 __u32 family; /* Allows 4-byte read, but no write */ 2675 __u32 type; /* Allows 4-byte read, but no write */ 2676 __u32 protocol; /* Allows 4-byte read, but no write */ 2677 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 2678 * Stored in network byte order. 2679 */ 2680 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2681 * Stored in network byte order. 2682 */ 2683 }; 2684 2685 /* User bpf_sock_ops struct to access socket values and specify request ops 2686 * and their replies. 2687 * Some of this fields are in network (bigendian) byte order and may need 2688 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 2689 * New fields can only be added at the end of this structure 2690 */ 2691 struct bpf_sock_ops { 2692 __u32 op; 2693 union { 2694 __u32 args[4]; /* Optionally passed to bpf program */ 2695 __u32 reply; /* Returned by bpf program */ 2696 __u32 replylong[4]; /* Optionally returned by bpf prog */ 2697 }; 2698 __u32 family; 2699 __u32 remote_ip4; /* Stored in network byte order */ 2700 __u32 local_ip4; /* Stored in network byte order */ 2701 __u32 remote_ip6[4]; /* Stored in network byte order */ 2702 __u32 local_ip6[4]; /* Stored in network byte order */ 2703 __u32 remote_port; /* Stored in network byte order */ 2704 __u32 local_port; /* stored in host byte order */ 2705 __u32 is_fullsock; /* Some TCP fields are only valid if 2706 * there is a full socket. If not, the 2707 * fields read as zero. 2708 */ 2709 __u32 snd_cwnd; 2710 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 2711 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 2712 __u32 state; 2713 __u32 rtt_min; 2714 __u32 snd_ssthresh; 2715 __u32 rcv_nxt; 2716 __u32 snd_nxt; 2717 __u32 snd_una; 2718 __u32 mss_cache; 2719 __u32 ecn_flags; 2720 __u32 rate_delivered; 2721 __u32 rate_interval_us; 2722 __u32 packets_out; 2723 __u32 retrans_out; 2724 __u32 total_retrans; 2725 __u32 segs_in; 2726 __u32 data_segs_in; 2727 __u32 segs_out; 2728 __u32 data_segs_out; 2729 __u32 lost_out; 2730 __u32 sacked_out; 2731 __u32 sk_txhash; 2732 __u64 bytes_received; 2733 __u64 bytes_acked; 2734 }; 2735 2736 /* Definitions for bpf_sock_ops_cb_flags */ 2737 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 2738 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 2739 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 2740 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 2741 * supported cb flags 2742 */ 2743 2744 /* List of known BPF sock_ops operators. 2745 * New entries can only be added at the end 2746 */ 2747 enum { 2748 BPF_SOCK_OPS_VOID, 2749 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 2750 * -1 if default value should be used 2751 */ 2752 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 2753 * window (in packets) or -1 if default 2754 * value should be used 2755 */ 2756 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 2757 * active connection is initialized 2758 */ 2759 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 2760 * active connection is 2761 * established 2762 */ 2763 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 2764 * passive connection is 2765 * established 2766 */ 2767 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 2768 * needs ECN 2769 */ 2770 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 2771 * based on the path and may be 2772 * dependent on the congestion control 2773 * algorithm. In general it indicates 2774 * a congestion threshold. RTTs above 2775 * this indicate congestion 2776 */ 2777 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 2778 * Arg1: value of icsk_retransmits 2779 * Arg2: value of icsk_rto 2780 * Arg3: whether RTO has expired 2781 */ 2782 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 2783 * Arg1: sequence number of 1st byte 2784 * Arg2: # segments 2785 * Arg3: return value of 2786 * tcp_transmit_skb (0 => success) 2787 */ 2788 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 2789 * Arg1: old_state 2790 * Arg2: new_state 2791 */ 2792 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 2793 * socket transition to LISTEN state. 2794 */ 2795 }; 2796 2797 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 2798 * changes between the TCP and BPF versions. Ideally this should never happen. 2799 * If it does, we need to add code to convert them before calling 2800 * the BPF sock_ops function. 2801 */ 2802 enum { 2803 BPF_TCP_ESTABLISHED = 1, 2804 BPF_TCP_SYN_SENT, 2805 BPF_TCP_SYN_RECV, 2806 BPF_TCP_FIN_WAIT1, 2807 BPF_TCP_FIN_WAIT2, 2808 BPF_TCP_TIME_WAIT, 2809 BPF_TCP_CLOSE, 2810 BPF_TCP_CLOSE_WAIT, 2811 BPF_TCP_LAST_ACK, 2812 BPF_TCP_LISTEN, 2813 BPF_TCP_CLOSING, /* Now a valid state */ 2814 BPF_TCP_NEW_SYN_RECV, 2815 2816 BPF_TCP_MAX_STATES /* Leave at the end! */ 2817 }; 2818 2819 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 2820 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 2821 2822 struct bpf_perf_event_value { 2823 __u64 counter; 2824 __u64 enabled; 2825 __u64 running; 2826 }; 2827 2828 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 2829 #define BPF_DEVCG_ACC_READ (1ULL << 1) 2830 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 2831 2832 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 2833 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 2834 2835 struct bpf_cgroup_dev_ctx { 2836 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 2837 __u32 access_type; 2838 __u32 major; 2839 __u32 minor; 2840 }; 2841 2842 struct bpf_raw_tracepoint_args { 2843 __u64 args[0]; 2844 }; 2845 2846 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 2847 * OUTPUT: Do lookup from egress perspective; default is ingress 2848 */ 2849 #define BPF_FIB_LOOKUP_DIRECT BIT(0) 2850 #define BPF_FIB_LOOKUP_OUTPUT BIT(1) 2851 2852 enum { 2853 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 2854 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 2855 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 2856 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 2857 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 2858 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 2859 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 2860 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 2861 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 2862 }; 2863 2864 struct bpf_fib_lookup { 2865 /* input: network family for lookup (AF_INET, AF_INET6) 2866 * output: network family of egress nexthop 2867 */ 2868 __u8 family; 2869 2870 /* set if lookup is to consider L4 data - e.g., FIB rules */ 2871 __u8 l4_protocol; 2872 __be16 sport; 2873 __be16 dport; 2874 2875 /* total length of packet from network header - used for MTU check */ 2876 __u16 tot_len; 2877 2878 /* input: L3 device index for lookup 2879 * output: device index from FIB lookup 2880 */ 2881 __u32 ifindex; 2882 2883 union { 2884 /* inputs to lookup */ 2885 __u8 tos; /* AF_INET */ 2886 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 2887 2888 /* output: metric of fib result (IPv4/IPv6 only) */ 2889 __u32 rt_metric; 2890 }; 2891 2892 union { 2893 __be32 ipv4_src; 2894 __u32 ipv6_src[4]; /* in6_addr; network order */ 2895 }; 2896 2897 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 2898 * network header. output: bpf_fib_lookup sets to gateway address 2899 * if FIB lookup returns gateway route 2900 */ 2901 union { 2902 __be32 ipv4_dst; 2903 __u32 ipv6_dst[4]; /* in6_addr; network order */ 2904 }; 2905 2906 /* output */ 2907 __be16 h_vlan_proto; 2908 __be16 h_vlan_TCI; 2909 __u8 smac[6]; /* ETH_ALEN */ 2910 __u8 dmac[6]; /* ETH_ALEN */ 2911 }; 2912 2913 enum bpf_task_fd_type { 2914 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 2915 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 2916 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 2917 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 2918 BPF_FD_TYPE_UPROBE, /* filename + offset */ 2919 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 2920 }; 2921 2922 struct bpf_flow_keys { 2923 __u16 nhoff; 2924 __u16 thoff; 2925 __u16 addr_proto; /* ETH_P_* of valid addrs */ 2926 __u8 is_frag; 2927 __u8 is_first_frag; 2928 __u8 is_encap; 2929 __u8 ip_proto; 2930 __be16 n_proto; 2931 __be16 sport; 2932 __be16 dport; 2933 union { 2934 struct { 2935 __be32 ipv4_src; 2936 __be32 ipv4_dst; 2937 }; 2938 struct { 2939 __u32 ipv6_src[4]; /* in6_addr; network order */ 2940 __u32 ipv6_dst[4]; /* in6_addr; network order */ 2941 }; 2942 }; 2943 }; 2944 2945 #endif /* _UAPI__LINUX_BPF_H__ */ 2946