1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "lang_id/common/embedding-network.h"
18 
19 #include "lang_id/common/lite_base/integral-types.h"
20 #include "lang_id/common/lite_base/logging.h"
21 
22 namespace libtextclassifier3 {
23 namespace mobile {
24 namespace {
25 
CheckNoQuantization(const EmbeddingNetworkParams::Matrix & matrix)26 void CheckNoQuantization(const EmbeddingNetworkParams::Matrix &matrix) {
27   SAFTM_CHECK_EQ(static_cast<int>(QuantizationType::NONE),
28                  static_cast<int>(matrix.quant_type))
29       << "Quantization not allowed here";
30 }
31 
GetMatrixRowSizeInBytes(const EmbeddingNetworkParams::Matrix & matrix)32 int GetMatrixRowSizeInBytes(const EmbeddingNetworkParams::Matrix &matrix) {
33   int cols = matrix.cols;
34   QuantizationType quant_type = matrix.quant_type;
35   switch (quant_type) {
36     case QuantizationType::NONE:
37       return cols * sizeof(float);
38     case QuantizationType::UINT8:
39       return cols * sizeof(uint8);
40     case QuantizationType::UINT4:
41       SAFTM_DCHECK_EQ(cols % 2, 0) << "UINT4 with odd #cols = " << cols;
42       return cols / 2;
43     case QuantizationType::FLOAT16:
44       return cols * sizeof(float16);
45     default:
46       SAFTM_LOG(FATAL) << "Unknown quant type: "
47                        << static_cast<int>(quant_type);
48   }
49 }
50 
51 // Computes y = weights * Relu(x) + b where Relu is optionally applied.
52 //
53 // weights and b are the weight matrix, respectively the bias vector of a neural
54 // network layer.
55 //
56 // Note: in the research literature, usually Relu (the activation function) is
57 // the last part of a neural layer.  From that perspective, this function
58 // computes the Relu part of the previous layer (if any) and next the first half
59 // (the computation of the state) for the current layer.
60 //
61 // Note: weights is expected to be the transposed version of the real weight
62 // matrix.  Hence, instead of computing a linear combination of the columns of
63 // weights, we compute a linear combination of its rows; but we are mindful that
64 // these rows are the columns of the original matrix, hence the name
65 // weights_col_i in the code.
SparseReluProductPlusBias(bool apply_relu,const EmbeddingNetworkParams::Matrix & weights,const EmbeddingNetworkParams::Matrix & b,const std::vector<float> & x,std::vector<float> * y)66 void SparseReluProductPlusBias(bool apply_relu,
67                                const EmbeddingNetworkParams::Matrix &weights,
68                                const EmbeddingNetworkParams::Matrix &b,
69                                const std::vector<float> &x,
70                                std::vector<float> *y) {
71   // Initialize y to b.  b is a column matrix (i.e., nb.cols == 1); we already
72   // CHECK-ed that the EmbeddingNetwork constructor.
73   const float *b_start = reinterpret_cast<const float *>(b.elements);
74   SAFTM_DCHECK_EQ(b.cols, 1);
75   y->assign(b_start, b_start + b.rows);
76 
77   float *const y_data = y->data();
78   const int y_size = y->size();
79   SAFTM_CHECK_EQ(weights.cols, y_size);
80   const int x_size = x.size();
81   SAFTM_CHECK_EQ(weights.rows, x_size);
82 
83   // NOTE: the code below reads x_size * y_size elements from weights; these
84   // reads are safe as long as weights.elements contains weights.rows *
85   // weights.cols elements (where the element size depends on the quantization
86   // type).  That requirement is checked by the params provider, e.g., by
87   // EmbeddingNetworkParamsFromFlatbuffer.
88 
89   // There is some code duplication between the two main cases of the switch
90   // below: the idea was to "lift" the switch outside the loops, to reduce the
91   // number of tests at runtime.
92   switch (weights.quant_type) {
93     case QuantizationType::NONE: {
94       // We compute a linear combination of the rows from |weights|, using
95       // elements of x (optionally, Relu(x)) as scaling factors (the i-th row
96       // gets multiplied by x[i] before being added with the other rows).  Note:
97       // elements of |weights| are stored in row-major order: first the elements
98       // of row #0, next the elements of row #1, etc.  In the comments below, we
99       // write "weights[i][j]" to refer to the j-th element from the i-th row of
100       // weights.
101       const float *weight_ptr =
102           reinterpret_cast<const float *>(weights.elements);
103       for (int i = 0; i < x_size; ++i) {
104         // Invariant 1: weight_ptr points to the beginning of the i-th row from
105         // weights (i.e., weights[i][0]).
106         const float scale = x[i];
107         if (!apply_relu || (scale > 0)) {
108           for (int j = 0; j < y_size; ++j, ++weight_ptr) {
109             // Invariant 2: weight_ptr points to weights[i][j].
110             y_data[j] += (*weight_ptr) * scale;
111           }
112         } else {
113           // We don't update y_data, but we still have to move weight_ptr to the
114           // next row (to satisfy Invariant 1).  We do this by adding y_size ==
115           // weights.cols() (see earlier CHECK_EQ).
116           weight_ptr += y_size;
117         }
118       }
119       break;
120     }
121     case QuantizationType::FLOAT16: {
122       // See comments for the QuantizationType::NONE case: the code is almost
123       // identical, except for float16 (instead of float) and the Float16To32
124       // conversion.  We could unify these two cases using a template, but since
125       // this is a critical loop, don't want to risk that e.g., inlining of the
126       // conversion function doesn't happen.
127       const float16 *weight_ptr =
128           reinterpret_cast<const float16 *>(weights.elements);
129       for (int i = 0; i < x_size; ++i) {
130         const float scale = x[i];
131         if (!apply_relu || (scale > 0)) {
132           for (int j = 0; j < y_size; ++j, ++weight_ptr) {
133             y_data[j] += Float16To32(*weight_ptr) * scale;
134           }
135         } else {
136           weight_ptr += y_size;
137         }
138       }
139       break;
140     }
141     default:
142       SAFTM_LOG(FATAL) << "Unsupported weights quantization type: "
143                        << static_cast<int>(weights.quant_type);
144   }
145 }
146 }  // namespace
147 
ConcatEmbeddings(const std::vector<FeatureVector> & feature_vectors,std::vector<float> * concat) const148 void EmbeddingNetwork::ConcatEmbeddings(
149     const std::vector<FeatureVector> &feature_vectors,
150     std::vector<float> *concat) const {
151   concat->resize(concat_layer_size_);
152 
153   // "es_index" stands for "embedding space index".
154   for (int es_index = 0; es_index < feature_vectors.size(); ++es_index) {
155     const int concat_offset = concat_offset_[es_index];
156 
157     const EmbeddingNetworkParams::Matrix &embedding_matrix =
158         embedding_matrices_[es_index];
159     const int embedding_dim = embedding_matrix.cols;
160     const int embedding_row_size_in_bytes =
161         embedding_row_size_in_bytes_[es_index];
162 
163     const FeatureVector &feature_vector = feature_vectors[es_index];
164     const int num_features = feature_vector.size();
165     for (int fi = 0; fi < num_features; ++fi) {
166       const FeatureType *feature_type = feature_vector.type(fi);
167       int feature_offset = concat_offset + feature_type->base() * embedding_dim;
168       SAFTM_CHECK_LE(feature_offset + embedding_dim, concat->size());
169 
170       // Weighted embeddings will be added starting from this address.
171       float *concat_ptr = concat->data() + feature_offset;
172 
173       // Multiplier for each embedding weight.  Includes feature weight (for
174       // continuous features) and quantization scale (for quantized embeddings).
175       float multiplier;
176       int feature_id;
177       const FeatureValue feature_value = feature_vector.value(fi);
178       if (feature_type->is_continuous()) {
179         // Continuous features (encoded as FloatFeatureValue).
180         FloatFeatureValue float_feature_value(feature_value);
181         feature_id = float_feature_value.id;
182         multiplier = float_feature_value.weight;
183       } else {
184         // Discrete features: every present feature has implicit value 1.0.
185         feature_id = feature_value;
186         multiplier = 1.0;
187       }
188 
189       SAFTM_CHECK_GE(feature_id, 0);
190       SAFTM_CHECK_LT(feature_id, embedding_matrix.rows);
191 
192       // Pointer to float / uint8 weights for relevant embedding.
193       const void *embedding_data =
194           (reinterpret_cast<const char *>(embedding_matrix.elements) +
195            feature_id * embedding_row_size_in_bytes);
196 
197       switch (embedding_matrix.quant_type) {
198         case QuantizationType::NONE: {
199           const float *weights =
200               reinterpret_cast<const float *>(embedding_data);
201           for (int i = 0; i < embedding_dim; ++i, ++weights, ++concat_ptr) {
202             *concat_ptr += *weights * multiplier;
203           }
204           break;
205         }
206         case QuantizationType::UINT8: {
207           multiplier *= Float16To32(embedding_matrix.quant_scales[feature_id]);
208           const uint8 *quant_weights =
209               reinterpret_cast<const uint8 *>(embedding_data);
210           for (int i = 0; i < embedding_dim;
211                ++i, ++quant_weights, ++concat_ptr) {
212             // 128 is bias for UINT8 quantization.
213             *concat_ptr +=
214                 (static_cast<int>(*quant_weights) - 128) * multiplier;
215           }
216           break;
217         }
218         case QuantizationType::UINT4: {
219           multiplier *= Float16To32(embedding_matrix.quant_scales[feature_id]);
220           const uint8 *quant_weights =
221               reinterpret_cast<const uint8 *>(embedding_data);
222           for (int i = 0; i < embedding_dim / 2; ++i, ++quant_weights) {
223             const uint8 qq = *quant_weights;
224             concat_ptr[0] +=
225                 (static_cast<int>((qq & 0xF0) | 0x08) - 128) * multiplier;
226             concat_ptr[1] +=
227                 (static_cast<int>(((qq & 0x0F) << 4) | 0x08) - 128) *
228                 multiplier;
229             concat_ptr += 2;
230           }
231           break;
232         }
233         default:
234           // We already checked (in GetMatrixRowSizeInBytes) that each embedding
235           // matrix has a known quantization type.  Hence, DLOG is enough here.
236           SAFTM_DLOG(ERROR) << "Unknown embeddings quantization type "
237                             << static_cast<int>(embedding_matrix.quant_type);
238           break;
239       }
240     }
241   }
242 }
243 
ComputeFinalScores(const std::vector<FeatureVector> & features,std::vector<float> * scores) const244 void EmbeddingNetwork::ComputeFinalScores(
245     const std::vector<FeatureVector> &features,
246     std::vector<float> *scores) const {
247   ComputeFinalScores(features, {}, scores);
248 }
249 
ComputeFinalScores(const std::vector<FeatureVector> & features,const std::vector<float> & extra_inputs,std::vector<float> * scores) const250 void EmbeddingNetwork::ComputeFinalScores(
251     const std::vector<FeatureVector> &features,
252     const std::vector<float> &extra_inputs, std::vector<float> *scores) const {
253   // Construct the input layer for our feed-forward neural network (FFNN).
254   std::vector<float> input;
255   ConcatEmbeddings(features, &input);
256   if (!extra_inputs.empty()) {
257     input.reserve(input.size() + extra_inputs.size());
258     for (int i = 0; i < extra_inputs.size(); i++) {
259       input.push_back(extra_inputs[i]);
260     }
261   }
262 
263   // Propagate input through all layers of our FFNN.
264 
265   // Alternating storage for activations of the different layers.  We can't use
266   // a single vector because all activations of the previous layer are required
267   // when computing the activations of the next one.
268   std::vector<float> storage[2];
269   const std::vector<float> *v_in = &input;
270   const int num_layers = layer_weights_.size();
271   for (int i = 0; i < num_layers; ++i) {
272     std::vector<float> *v_out = nullptr;
273     if (i == num_layers - 1) {
274       // Final layer: write results directly into |scores|.
275       v_out = scores;
276     } else {
277       // Hidden layer: write results into the alternating storage.  The i % 2
278       // trick ensures the alternation.
279       v_out = &(storage[i % 2]);
280     }
281     const bool apply_relu = i > 0;
282     SparseReluProductPlusBias(
283         apply_relu, layer_weights_[i], layer_bias_[i], *v_in, v_out);
284     v_in = v_out;
285   }
286 }
287 
EmbeddingNetwork(const EmbeddingNetworkParams * model)288 EmbeddingNetwork::EmbeddingNetwork(const EmbeddingNetworkParams *model)
289     : model_(model) {
290   int offset_sum = 0;
291   for (int i = 0; i < model_->embedding_num_features_size(); ++i) {
292     concat_offset_.push_back(offset_sum);
293     EmbeddingNetworkParams::Matrix matrix = model_->GetEmbeddingMatrix(i);
294     offset_sum += matrix.cols * model_->embedding_num_features(i);
295 
296     // NOTE: each Matrix is a small struct that doesn't own the actual matrix
297     // weights.  Hence, the push_back below is fast.
298     embedding_matrices_.push_back(matrix);
299     embedding_row_size_in_bytes_.push_back(GetMatrixRowSizeInBytes(matrix));
300   }
301   concat_layer_size_ = offset_sum;
302 
303   SAFTM_CHECK_EQ(model_->hidden_size(), model_->hidden_bias_size());
304   for (int i = 0; i < model_->hidden_size(); ++i) {
305     layer_weights_.push_back(model_->GetHiddenLayerMatrix(i));
306 
307     EmbeddingNetworkParams::Matrix bias = model_->GetHiddenLayerBias(i);
308     SAFTM_CHECK_EQ(1, bias.cols);
309     CheckNoQuantization(bias);
310     layer_bias_.push_back(bias);
311   }
312 
313   SAFTM_CHECK(model_->HasSoftmax());
314   layer_weights_.push_back(model_->GetSoftmaxMatrix());
315 
316   EmbeddingNetworkParams::Matrix softmax_bias = model_->GetSoftmaxBias();
317   SAFTM_CHECK_EQ(1, softmax_bias.cols);
318   CheckNoQuantization(softmax_bias);
319   layer_bias_.push_back(softmax_bias);
320 }
321 
322 }  // namespace mobile
323 }  // namespace nlp_saft
324