1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33 
34 using namespace brw;
35 
36 /** @file brw_fs_schedule_instructions.cpp
37  *
38  * List scheduling of FS instructions.
39  *
40  * The basic model of the list scheduler is to take a basic block,
41  * compute a DAG of the dependencies (RAW ordering with latency, WAW
42  * ordering with latency, WAR ordering), and make a list of the DAG heads.
43  * Heuristically pick a DAG head, then put all the children that are
44  * now DAG heads into the list of things to schedule.
45  *
46  * The heuristic is the important part.  We're trying to be cheap,
47  * since actually computing the optimal scheduling is NP complete.
48  * What we do is track a "current clock".  When we schedule a node, we
49  * update the earliest-unblocked clock time of its children, and
50  * increment the clock.  Then, when trying to schedule, we just pick
51  * the earliest-unblocked instruction to schedule.
52  *
53  * Note that often there will be many things which could execute
54  * immediately, and there are a range of heuristic options to choose
55  * from in picking among those.
56  */
57 
58 static bool debug = false;
59 
60 class instruction_scheduler;
61 
62 class schedule_node : public exec_node
63 {
64 public:
65    schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66    void set_latency_gen4();
67    void set_latency_gen7(bool is_haswell);
68 
69    backend_instruction *inst;
70    schedule_node **children;
71    int *child_latency;
72    int child_count;
73    int parent_count;
74    int child_array_size;
75    int unblocked_time;
76    int latency;
77 
78    /**
79     * Which iteration of pushing groups of children onto the candidates list
80     * this node was a part of.
81     */
82    unsigned cand_generation;
83 
84    /**
85     * This is the sum of the instruction's latency plus the maximum delay of
86     * its children, or just the issue_time if it's a leaf node.
87     */
88    int delay;
89 
90    /**
91     * Preferred exit node among the (direct or indirect) successors of this
92     * node.  Among the scheduler nodes blocked by this node, this will be the
93     * one that may cause earliest program termination, or NULL if none of the
94     * successors is an exit node.
95     */
96    schedule_node *exit;
97 };
98 
99 /**
100  * Lower bound of the scheduling time after which one of the instructions
101  * blocked by this node may lead to program termination.
102  *
103  * exit_unblocked_time() determines a strict partial ordering relation '«' on
104  * the set of scheduler nodes as follows:
105  *
106  *   n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107  *
108  * which can be used to heuristically order nodes according to how early they
109  * can unblock an exit node and lead to program termination.
110  */
111 static inline int
exit_unblocked_time(const schedule_node * n)112 exit_unblocked_time(const schedule_node *n)
113 {
114    return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116 
117 void
set_latency_gen4()118 schedule_node::set_latency_gen4()
119 {
120    int chans = 8;
121    int math_latency = 22;
122 
123    switch (inst->opcode) {
124    case SHADER_OPCODE_RCP:
125       this->latency = 1 * chans * math_latency;
126       break;
127    case SHADER_OPCODE_RSQ:
128       this->latency = 2 * chans * math_latency;
129       break;
130    case SHADER_OPCODE_INT_QUOTIENT:
131    case SHADER_OPCODE_SQRT:
132    case SHADER_OPCODE_LOG2:
133       /* full precision log.  partial is 2. */
134       this->latency = 3 * chans * math_latency;
135       break;
136    case SHADER_OPCODE_INT_REMAINDER:
137    case SHADER_OPCODE_EXP2:
138       /* full precision.  partial is 3, same throughput. */
139       this->latency = 4 * chans * math_latency;
140       break;
141    case SHADER_OPCODE_POW:
142       this->latency = 8 * chans * math_latency;
143       break;
144    case SHADER_OPCODE_SIN:
145    case SHADER_OPCODE_COS:
146       /* minimum latency, max is 12 rounds. */
147       this->latency = 5 * chans * math_latency;
148       break;
149    default:
150       this->latency = 2;
151       break;
152    }
153 }
154 
155 void
set_latency_gen7(bool is_haswell)156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158    switch (inst->opcode) {
159    case BRW_OPCODE_MAD:
160       /* 2 cycles
161        *  (since the last two src operands are in different register banks):
162        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163        *
164        * 3 cycles on IVB, 4 on HSW
165        *  (since the last two src operands are in the same register bank):
166        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167        *
168        * 18 cycles on IVB, 16 on HSW
169        *  (since the last two src operands are in different register banks):
170        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171        * mov(8) null   g4<4,5,1>F                     { align16 WE_normal 1Q };
172        *
173        * 20 cycles on IVB, 18 on HSW
174        *  (since the last two src operands are in the same register bank):
175        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
177        */
178 
179       /* Our register allocator doesn't know about register banks, so use the
180        * higher latency.
181        */
182       latency = is_haswell ? 16 : 18;
183       break;
184 
185    case BRW_OPCODE_LRP:
186       /* 2 cycles
187        *  (since the last two src operands are in different register banks):
188        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189        *
190        * 3 cycles on IVB, 4 on HSW
191        *  (since the last two src operands are in the same register bank):
192        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193        *
194        * 16 cycles on IVB, 14 on HSW
195        *  (since the last two src operands are in different register banks):
196        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
198        *
199        * 16 cycles
200        *  (since the last two src operands are in the same register bank):
201        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
203        */
204 
205       /* Our register allocator doesn't know about register banks, so use the
206        * higher latency.
207        */
208       latency = 14;
209       break;
210 
211    case SHADER_OPCODE_RCP:
212    case SHADER_OPCODE_RSQ:
213    case SHADER_OPCODE_SQRT:
214    case SHADER_OPCODE_LOG2:
215    case SHADER_OPCODE_EXP2:
216    case SHADER_OPCODE_SIN:
217    case SHADER_OPCODE_COS:
218       /* 2 cycles:
219        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
220        *
221        * 18 cycles:
222        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
223        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
224        *
225        * Same for exp2, log2, rsq, sqrt, sin, cos.
226        */
227       latency = is_haswell ? 14 : 16;
228       break;
229 
230    case SHADER_OPCODE_POW:
231       /* 2 cycles:
232        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
233        *
234        * 26 cycles:
235        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
236        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
237        */
238       latency = is_haswell ? 22 : 24;
239       break;
240 
241    case SHADER_OPCODE_TEX:
242    case SHADER_OPCODE_TXD:
243    case SHADER_OPCODE_TXF:
244    case SHADER_OPCODE_TXF_LZ:
245    case SHADER_OPCODE_TXL:
246    case SHADER_OPCODE_TXL_LZ:
247       /* 18 cycles:
248        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
249        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
250        * send(8) g4<1>UW    g114<8,8,1>F
251        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
252        *
253        * 697 +/-49 cycles (min 610, n=26):
254        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
255        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
256        * send(8) g4<1>UW    g114<8,8,1>F
257        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
258        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
259        *
260        * So the latency on our first texture load of the batchbuffer takes
261        * ~700 cycles, since the caches are cold at that point.
262        *
263        * 840 +/- 92 cycles (min 720, n=25):
264        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
265        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
266        * send(8) g4<1>UW    g114<8,8,1>F
267        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
268        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
269        * send(8) g4<1>UW    g114<8,8,1>F
270        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
271        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
272        *
273        * On the second load, it takes just an extra ~140 cycles, and after
274        * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275        *
276        * 683 +/- 49 cycles (min = 602, n=47):
277        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
278        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
279        * send(8) g4<1>UW    g114<8,8,1>F
280        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
281        * send(8) g50<1>UW   g114<8,8,1>F
282        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
283        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
284        *
285        * The unit appears to be pipelined, since this matches up with the
286        * cache-cold case, despite there being two loads here.  If you replace
287        * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288        *
289        * So, take some number between the cache-hot 140 cycles and the
290        * cache-cold 700 cycles.  No particular tuning was done on this.
291        *
292        * I haven't done significant testing of the non-TEX opcodes.  TXL at
293        * least looked about the same as TEX.
294        */
295       latency = 200;
296       break;
297 
298    case SHADER_OPCODE_TXS:
299       /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300        * cycles (n=15):
301        * mov(8)   g114<1>UD  0D                        { align1 WE_normal 1Q };
302        * send(8)  g6<1>UW    g114<8,8,1>F
303        *   sampler (10, 0, 10, 1) mlen 1 rlen 4        { align1 WE_normal 1Q };
304        * mov(16)  g6<1>F     g6<8,8,1>D                { align1 WE_normal 1Q };
305        *
306        *
307        * Two loads was 535 +/- 30 cycles (n=19):
308        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
309        * send(16)  g6<1>UW    g114<8,8,1>F
310        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
311        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
312        * mov(16)   g6<1>F     g6<8,8,1>D               { align1 WE_normal 1H };
313        * send(16)  g8<1>UW    g114<8,8,1>F
314        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
315        * mov(16)   g8<1>F     g8<8,8,1>D               { align1 WE_normal 1H };
316        * add(16)   g6<1>F     g6<8,8,1>F   g8<8,8,1>F  { align1 WE_normal 1H };
317        *
318        * Since the only caches that should matter are just the
319        * instruction/state cache containing the surface state, assume that we
320        * always have hot caches.
321        */
322       latency = 100;
323       break;
324 
325    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
327    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
328    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
329    case VS_OPCODE_PULL_CONSTANT_LOAD:
330       /* testing using varying-index pull constants:
331        *
332        * 16 cycles:
333        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
334        * send(8) g4<1>F  g4<8,8,1>D
335        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
336        *
337        * ~480 cycles:
338        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
339        * send(8) g4<1>F  g4<8,8,1>D
340        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
341        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
342        *
343        * ~620 cycles:
344        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
345        * send(8) g4<1>F  g4<8,8,1>D
346        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
347        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
348        * send(8) g4<1>F  g4<8,8,1>D
349        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
350        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
351        *
352        * So, if it's cache-hot, it's about 140.  If it's cache cold, it's
353        * about 460.  We expect to mostly be cache hot, so pick something more
354        * in that direction.
355        */
356       latency = 200;
357       break;
358 
359    case SHADER_OPCODE_GEN7_SCRATCH_READ:
360       /* Testing a load from offset 0, that had been previously written:
361        *
362        * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
363        * mov(8)  null      g114<8,8,1>F { align1 WE_normal 1Q };
364        *
365        * The cycles spent seemed to be grouped around 40-50 (as low as 38),
366        * then around 140.  Presumably this is cache hit vs miss.
367        */
368       latency = 50;
369       break;
370 
371    case SHADER_OPCODE_UNTYPED_ATOMIC:
372    case SHADER_OPCODE_TYPED_ATOMIC:
373       /* Test code:
374        *   mov(8)    g112<1>ud       0x00000000ud       { align1 WE_all 1Q };
375        *   mov(1)    g112.7<1>ud     g1.7<0,1,0>ud      { align1 WE_all };
376        *   mov(8)    g113<1>ud       0x00000000ud       { align1 WE_normal 1Q };
377        *   send(8)   g4<1>ud         g112<8,8,1>ud
378        *             data (38, 5, 6) mlen 2 rlen 1      { align1 WE_normal 1Q };
379        *
380        * Running it 100 times as fragment shader on a 128x128 quad
381        * gives an average latency of 13867 cycles per atomic op,
382        * standard deviation 3%.  Note that this is a rather
383        * pessimistic estimate, the actual latency in cases with few
384        * collisions between threads and favorable pipelining has been
385        * seen to be reduced by a factor of 100.
386        */
387       latency = 14000;
388       break;
389 
390    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
391    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
392    case SHADER_OPCODE_TYPED_SURFACE_READ:
393    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
394       /* Test code:
395        *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
396        *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
397        *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
398        *   send(8)   g4<1>UD         g112<8,8,1>UD
399        *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
400        *   .
401        *   . [repeats 8 times]
402        *   .
403        *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
404        *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
405        *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
406        *   send(8)   g4<1>UD         g112<8,8,1>UD
407        *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
408        *
409        * Running it 100 times as fragment shader on a 128x128 quad
410        * gives an average latency of 583 cycles per surface read,
411        * standard deviation 0.9%.
412        */
413       latency = is_haswell ? 300 : 600;
414       break;
415 
416    default:
417       /* 2 cycles:
418        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
419        *
420        * 16 cycles:
421        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
422        * mov(8) null   g4<8,8,1>F                      { align1 WE_normal 1Q };
423        */
424       latency = 14;
425       break;
426    }
427 }
428 
429 class instruction_scheduler {
430 public:
instruction_scheduler(backend_shader * s,int grf_count,int hw_reg_count,int block_count,instruction_scheduler_mode mode)431    instruction_scheduler(backend_shader *s, int grf_count,
432                          int hw_reg_count, int block_count,
433                          instruction_scheduler_mode mode)
434    {
435       this->bs = s;
436       this->mem_ctx = ralloc_context(NULL);
437       this->grf_count = grf_count;
438       this->hw_reg_count = hw_reg_count;
439       this->instructions.make_empty();
440       this->instructions_to_schedule = 0;
441       this->post_reg_alloc = (mode == SCHEDULE_POST);
442       this->mode = mode;
443       if (!post_reg_alloc) {
444          this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
445 
446          this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
447          for (int i = 0; i < block_count; i++)
448             this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
449                                             BITSET_WORDS(grf_count));
450 
451          this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
452          for (int i = 0; i < block_count; i++)
453             this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
454                                              BITSET_WORDS(grf_count));
455 
456          this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
457          for (int i = 0; i < block_count; i++)
458             this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
459                                                 BITSET_WORDS(hw_reg_count));
460 
461          this->written = rzalloc_array(mem_ctx, bool, grf_count);
462 
463          this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
464 
465          this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
466       } else {
467          this->reg_pressure_in = NULL;
468          this->livein = NULL;
469          this->liveout = NULL;
470          this->hw_liveout = NULL;
471          this->written = NULL;
472          this->reads_remaining = NULL;
473          this->hw_reads_remaining = NULL;
474       }
475    }
476 
~instruction_scheduler()477    ~instruction_scheduler()
478    {
479       ralloc_free(this->mem_ctx);
480    }
481    void add_barrier_deps(schedule_node *n);
482    void add_dep(schedule_node *before, schedule_node *after, int latency);
483    void add_dep(schedule_node *before, schedule_node *after);
484 
485    void run(cfg_t *cfg);
486    void add_insts_from_block(bblock_t *block);
487    void compute_delays();
488    void compute_exits();
489    virtual void calculate_deps() = 0;
490    virtual schedule_node *choose_instruction_to_schedule() = 0;
491 
492    /**
493     * Returns how many cycles it takes the instruction to issue.
494     *
495     * Instructions in gen hardware are handled one simd4 vector at a time,
496     * with 1 cycle per vector dispatched.  Thus SIMD8 pixel shaders take 2
497     * cycles to dispatch and SIMD16 (compressed) instructions take 4.
498     */
499    virtual int issue_time(backend_instruction *inst) = 0;
500 
501    virtual void count_reads_remaining(backend_instruction *inst) = 0;
502    virtual void setup_liveness(cfg_t *cfg) = 0;
503    virtual void update_register_pressure(backend_instruction *inst) = 0;
504    virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
505 
506    void schedule_instructions(bblock_t *block);
507 
508    void *mem_ctx;
509 
510    bool post_reg_alloc;
511    int instructions_to_schedule;
512    int grf_count;
513    int hw_reg_count;
514    int reg_pressure;
515    int block_idx;
516    exec_list instructions;
517    backend_shader *bs;
518 
519    instruction_scheduler_mode mode;
520 
521    /*
522     * The register pressure at the beginning of each basic block.
523     */
524 
525    int *reg_pressure_in;
526 
527    /*
528     * The virtual GRF's whose range overlaps the beginning of each basic block.
529     */
530 
531    BITSET_WORD **livein;
532 
533    /*
534     * The virtual GRF's whose range overlaps the end of each basic block.
535     */
536 
537    BITSET_WORD **liveout;
538 
539    /*
540     * The hardware GRF's whose range overlaps the end of each basic block.
541     */
542 
543    BITSET_WORD **hw_liveout;
544 
545    /*
546     * Whether we've scheduled a write for this virtual GRF yet.
547     */
548 
549    bool *written;
550 
551    /*
552     * How many reads we haven't scheduled for this virtual GRF yet.
553     */
554 
555    int *reads_remaining;
556 
557    /*
558     * How many reads we haven't scheduled for this hardware GRF yet.
559     */
560 
561    int *hw_reads_remaining;
562 };
563 
564 class fs_instruction_scheduler : public instruction_scheduler
565 {
566 public:
567    fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
568                             int block_count,
569                             instruction_scheduler_mode mode);
570    void calculate_deps();
571    bool is_compressed(fs_inst *inst);
572    schedule_node *choose_instruction_to_schedule();
573    int issue_time(backend_instruction *inst);
574    fs_visitor *v;
575 
576    void count_reads_remaining(backend_instruction *inst);
577    void setup_liveness(cfg_t *cfg);
578    void update_register_pressure(backend_instruction *inst);
579    int get_register_pressure_benefit(backend_instruction *inst);
580 };
581 
fs_instruction_scheduler(fs_visitor * v,int grf_count,int hw_reg_count,int block_count,instruction_scheduler_mode mode)582 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
583                                                    int grf_count, int hw_reg_count,
584                                                    int block_count,
585                                                    instruction_scheduler_mode mode)
586    : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
587      v(v)
588 {
589 }
590 
591 static bool
is_src_duplicate(fs_inst * inst,int src)592 is_src_duplicate(fs_inst *inst, int src)
593 {
594    for (int i = 0; i < src; i++)
595      if (inst->src[i].equals(inst->src[src]))
596        return true;
597 
598   return false;
599 }
600 
601 void
count_reads_remaining(backend_instruction * be)602 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
603 {
604    fs_inst *inst = (fs_inst *)be;
605 
606    if (!reads_remaining)
607       return;
608 
609    for (int i = 0; i < inst->sources; i++) {
610       if (is_src_duplicate(inst, i))
611          continue;
612 
613       if (inst->src[i].file == VGRF) {
614          reads_remaining[inst->src[i].nr]++;
615       } else if (inst->src[i].file == FIXED_GRF) {
616          if (inst->src[i].nr >= hw_reg_count)
617             continue;
618 
619          for (unsigned j = 0; j < regs_read(inst, i); j++)
620             hw_reads_remaining[inst->src[i].nr + j]++;
621       }
622    }
623 }
624 
625 void
setup_liveness(cfg_t * cfg)626 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
627 {
628    /* First, compute liveness on a per-GRF level using the in/out sets from
629     * liveness calculation.
630     */
631    for (int block = 0; block < cfg->num_blocks; block++) {
632       for (int i = 0; i < v->live_intervals->num_vars; i++) {
633          if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
634             int vgrf = v->live_intervals->vgrf_from_var[i];
635             if (!BITSET_TEST(livein[block], vgrf)) {
636                reg_pressure_in[block] += v->alloc.sizes[vgrf];
637                BITSET_SET(livein[block], vgrf);
638             }
639          }
640 
641          if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
642             BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
643       }
644    }
645 
646    /* Now, extend the live in/live out sets for when a range crosses a block
647     * boundary, which matches what our register allocator/interference code
648     * does to account for force_writemask_all and incompatible exec_mask's.
649     */
650    for (int block = 0; block < cfg->num_blocks - 1; block++) {
651       for (int i = 0; i < grf_count; i++) {
652          if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
653              v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
654             if (!BITSET_TEST(livein[block + 1], i)) {
655                 reg_pressure_in[block + 1] += v->alloc.sizes[i];
656                 BITSET_SET(livein[block + 1], i);
657             }
658 
659             BITSET_SET(liveout[block], i);
660          }
661       }
662    }
663 
664    int payload_last_use_ip[hw_reg_count];
665    v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
666 
667    for (int i = 0; i < hw_reg_count; i++) {
668       if (payload_last_use_ip[i] == -1)
669          continue;
670 
671       for (int block = 0; block < cfg->num_blocks; block++) {
672          if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
673             reg_pressure_in[block]++;
674 
675          if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
676             BITSET_SET(hw_liveout[block], i);
677       }
678    }
679 }
680 
681 void
update_register_pressure(backend_instruction * be)682 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
683 {
684    fs_inst *inst = (fs_inst *)be;
685 
686    if (!reads_remaining)
687       return;
688 
689    if (inst->dst.file == VGRF) {
690       written[inst->dst.nr] = true;
691    }
692 
693    for (int i = 0; i < inst->sources; i++) {
694       if (is_src_duplicate(inst, i))
695           continue;
696 
697       if (inst->src[i].file == VGRF) {
698          reads_remaining[inst->src[i].nr]--;
699       } else if (inst->src[i].file == FIXED_GRF &&
700                  inst->src[i].nr < hw_reg_count) {
701          for (unsigned off = 0; off < regs_read(inst, i); off++)
702             hw_reads_remaining[inst->src[i].nr + off]--;
703       }
704    }
705 }
706 
707 int
get_register_pressure_benefit(backend_instruction * be)708 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
709 {
710    fs_inst *inst = (fs_inst *)be;
711    int benefit = 0;
712 
713    if (inst->dst.file == VGRF) {
714       if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
715           !written[inst->dst.nr])
716          benefit -= v->alloc.sizes[inst->dst.nr];
717    }
718 
719    for (int i = 0; i < inst->sources; i++) {
720       if (is_src_duplicate(inst, i))
721          continue;
722 
723       if (inst->src[i].file == VGRF &&
724           !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
725           reads_remaining[inst->src[i].nr] == 1)
726          benefit += v->alloc.sizes[inst->src[i].nr];
727 
728       if (inst->src[i].file == FIXED_GRF &&
729           inst->src[i].nr < hw_reg_count) {
730          for (unsigned off = 0; off < regs_read(inst, i); off++) {
731             int reg = inst->src[i].nr + off;
732             if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
733                 hw_reads_remaining[reg] == 1) {
734                benefit++;
735             }
736          }
737       }
738    }
739 
740    return benefit;
741 }
742 
743 class vec4_instruction_scheduler : public instruction_scheduler
744 {
745 public:
746    vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
747    void calculate_deps();
748    schedule_node *choose_instruction_to_schedule();
749    int issue_time(backend_instruction *inst);
750    vec4_visitor *v;
751 
752    void count_reads_remaining(backend_instruction *inst);
753    void setup_liveness(cfg_t *cfg);
754    void update_register_pressure(backend_instruction *inst);
755    int get_register_pressure_benefit(backend_instruction *inst);
756 };
757 
vec4_instruction_scheduler(vec4_visitor * v,int grf_count)758 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
759                                                        int grf_count)
760    : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
761      v(v)
762 {
763 }
764 
765 void
count_reads_remaining(backend_instruction * be)766 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be)
767 {
768 }
769 
770 void
setup_liveness(cfg_t * cfg)771 vec4_instruction_scheduler::setup_liveness(cfg_t *cfg)
772 {
773 }
774 
775 void
update_register_pressure(backend_instruction * be)776 vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
777 {
778 }
779 
780 int
get_register_pressure_benefit(backend_instruction * be)781 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
782 {
783    return 0;
784 }
785 
schedule_node(backend_instruction * inst,instruction_scheduler * sched)786 schedule_node::schedule_node(backend_instruction *inst,
787                              instruction_scheduler *sched)
788 {
789    const struct gen_device_info *devinfo = sched->bs->devinfo;
790 
791    this->inst = inst;
792    this->child_array_size = 0;
793    this->children = NULL;
794    this->child_latency = NULL;
795    this->child_count = 0;
796    this->parent_count = 0;
797    this->unblocked_time = 0;
798    this->cand_generation = 0;
799    this->delay = 0;
800    this->exit = NULL;
801 
802    /* We can't measure Gen6 timings directly but expect them to be much
803     * closer to Gen7 than Gen4.
804     */
805    if (!sched->post_reg_alloc)
806       this->latency = 1;
807    else if (devinfo->gen >= 6)
808       set_latency_gen7(devinfo->is_haswell);
809    else
810       set_latency_gen4();
811 }
812 
813 void
add_insts_from_block(bblock_t * block)814 instruction_scheduler::add_insts_from_block(bblock_t *block)
815 {
816    foreach_inst_in_block(backend_instruction, inst, block) {
817       schedule_node *n = new(mem_ctx) schedule_node(inst, this);
818 
819       instructions.push_tail(n);
820    }
821 
822    this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
823 }
824 
825 /** Computation of the delay member of each node. */
826 void
compute_delays()827 instruction_scheduler::compute_delays()
828 {
829    foreach_in_list_reverse(schedule_node, n, &instructions) {
830       if (!n->child_count) {
831          n->delay = issue_time(n->inst);
832       } else {
833          for (int i = 0; i < n->child_count; i++) {
834             assert(n->children[i]->delay);
835             n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
836          }
837       }
838    }
839 }
840 
841 void
compute_exits()842 instruction_scheduler::compute_exits()
843 {
844    /* Calculate a lower bound of the scheduling time of each node in the
845     * graph.  This is analogous to the node's critical path but calculated
846     * from the top instead of from the bottom of the block.
847     */
848    foreach_in_list(schedule_node, n, &instructions) {
849       for (int i = 0; i < n->child_count; i++) {
850          n->children[i]->unblocked_time =
851             MAX2(n->children[i]->unblocked_time,
852                  n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
853       }
854    }
855 
856    /* Calculate the exit of each node by induction based on the exit nodes of
857     * its children.  The preferred exit of a node is the one among the exit
858     * nodes of its children which can be unblocked first according to the
859     * optimistic unblocked time estimate calculated above.
860     */
861    foreach_in_list_reverse(schedule_node, n, &instructions) {
862       n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
863 
864       for (int i = 0; i < n->child_count; i++) {
865          if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
866             n->exit = n->children[i]->exit;
867       }
868    }
869 }
870 
871 /**
872  * Add a dependency between two instruction nodes.
873  *
874  * The @after node will be scheduled after @before.  We will try to
875  * schedule it @latency cycles after @before, but no guarantees there.
876  */
877 void
add_dep(schedule_node * before,schedule_node * after,int latency)878 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
879                                int latency)
880 {
881    if (!before || !after)
882       return;
883 
884    assert(before != after);
885 
886    for (int i = 0; i < before->child_count; i++) {
887       if (before->children[i] == after) {
888          before->child_latency[i] = MAX2(before->child_latency[i], latency);
889          return;
890       }
891    }
892 
893    if (before->child_array_size <= before->child_count) {
894       if (before->child_array_size < 16)
895          before->child_array_size = 16;
896       else
897          before->child_array_size *= 2;
898 
899       before->children = reralloc(mem_ctx, before->children,
900                                   schedule_node *,
901                                   before->child_array_size);
902       before->child_latency = reralloc(mem_ctx, before->child_latency,
903                                        int, before->child_array_size);
904    }
905 
906    before->children[before->child_count] = after;
907    before->child_latency[before->child_count] = latency;
908    before->child_count++;
909    after->parent_count++;
910 }
911 
912 void
add_dep(schedule_node * before,schedule_node * after)913 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
914 {
915    if (!before)
916       return;
917 
918    add_dep(before, after, before->latency);
919 }
920 
921 static bool
is_scheduling_barrier(const backend_instruction * inst)922 is_scheduling_barrier(const backend_instruction *inst)
923 {
924    return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
925           inst->is_control_flow() ||
926           inst->has_side_effects();
927 }
928 
929 /**
930  * Sometimes we really want this node to execute after everything that
931  * was before it and before everything that followed it.  This adds
932  * the deps to do so.
933  */
934 void
add_barrier_deps(schedule_node * n)935 instruction_scheduler::add_barrier_deps(schedule_node *n)
936 {
937    schedule_node *prev = (schedule_node *)n->prev;
938    schedule_node *next = (schedule_node *)n->next;
939 
940    if (prev) {
941       while (!prev->is_head_sentinel()) {
942          add_dep(prev, n, 0);
943          if (is_scheduling_barrier(prev->inst))
944             break;
945          prev = (schedule_node *)prev->prev;
946       }
947    }
948 
949    if (next) {
950       while (!next->is_tail_sentinel()) {
951          add_dep(n, next, 0);
952          if (is_scheduling_barrier(next->inst))
953             break;
954          next = (schedule_node *)next->next;
955       }
956    }
957 }
958 
959 /* instruction scheduling needs to be aware of when an MRF write
960  * actually writes 2 MRFs.
961  */
962 bool
is_compressed(fs_inst * inst)963 fs_instruction_scheduler::is_compressed(fs_inst *inst)
964 {
965    return inst->exec_size == 16;
966 }
967 
968 void
calculate_deps()969 fs_instruction_scheduler::calculate_deps()
970 {
971    /* Pre-register-allocation, this tracks the last write per VGRF offset.
972     * After register allocation, reg_offsets are gone and we track individual
973     * GRF registers.
974     */
975    schedule_node *last_grf_write[grf_count * 16];
976    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
977    schedule_node *last_conditional_mod[4] = {};
978    schedule_node *last_accumulator_write = NULL;
979    /* Fixed HW registers are assumed to be separate from the virtual
980     * GRFs, so they can be tracked separately.  We don't really write
981     * to fixed GRFs much, so don't bother tracking them on a more
982     * granular level.
983     */
984    schedule_node *last_fixed_grf_write = NULL;
985 
986    memset(last_grf_write, 0, sizeof(last_grf_write));
987    memset(last_mrf_write, 0, sizeof(last_mrf_write));
988 
989    /* top-to-bottom dependencies: RAW and WAW. */
990    foreach_in_list(schedule_node, n, &instructions) {
991       fs_inst *inst = (fs_inst *)n->inst;
992 
993       if (is_scheduling_barrier(inst))
994          add_barrier_deps(n);
995 
996       /* read-after-write deps. */
997       for (int i = 0; i < inst->sources; i++) {
998          if (inst->src[i].file == VGRF) {
999             if (post_reg_alloc) {
1000                for (unsigned r = 0; r < regs_read(inst, i); r++)
1001                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1002             } else {
1003                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1004                   add_dep(last_grf_write[inst->src[i].nr * 16 +
1005                                          inst->src[i].offset / REG_SIZE + r], n);
1006                }
1007             }
1008          } else if (inst->src[i].file == FIXED_GRF) {
1009             if (post_reg_alloc) {
1010                for (unsigned r = 0; r < regs_read(inst, i); r++)
1011                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1012             } else {
1013                add_dep(last_fixed_grf_write, n);
1014             }
1015          } else if (inst->src[i].is_accumulator()) {
1016             add_dep(last_accumulator_write, n);
1017          } else if (inst->src[i].file == ARF) {
1018             add_barrier_deps(n);
1019          }
1020       }
1021 
1022       if (inst->base_mrf != -1) {
1023          for (int i = 0; i < inst->mlen; i++) {
1024             /* It looks like the MRF regs are released in the send
1025              * instruction once it's sent, not when the result comes
1026              * back.
1027              */
1028             add_dep(last_mrf_write[inst->base_mrf + i], n);
1029          }
1030       }
1031 
1032       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1033          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1034 
1035          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1036             if (mask & (1 << i))
1037                add_dep(last_conditional_mod[i], n);
1038          }
1039       }
1040 
1041       if (inst->reads_accumulator_implicitly()) {
1042          add_dep(last_accumulator_write, n);
1043       }
1044 
1045       /* write-after-write deps. */
1046       if (inst->dst.file == VGRF) {
1047          if (post_reg_alloc) {
1048             for (unsigned r = 0; r < regs_written(inst); r++) {
1049                add_dep(last_grf_write[inst->dst.nr + r], n);
1050                last_grf_write[inst->dst.nr + r] = n;
1051             }
1052          } else {
1053             for (unsigned r = 0; r < regs_written(inst); r++) {
1054                add_dep(last_grf_write[inst->dst.nr * 16 +
1055                                       inst->dst.offset / REG_SIZE + r], n);
1056                last_grf_write[inst->dst.nr * 16 +
1057                               inst->dst.offset / REG_SIZE + r] = n;
1058             }
1059          }
1060       } else if (inst->dst.file == MRF) {
1061          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1062 
1063          add_dep(last_mrf_write[reg], n);
1064          last_mrf_write[reg] = n;
1065          if (is_compressed(inst)) {
1066             if (inst->dst.nr & BRW_MRF_COMPR4)
1067                reg += 4;
1068             else
1069                reg++;
1070             add_dep(last_mrf_write[reg], n);
1071             last_mrf_write[reg] = n;
1072          }
1073       } else if (inst->dst.file == FIXED_GRF) {
1074          if (post_reg_alloc) {
1075             for (unsigned r = 0; r < regs_written(inst); r++)
1076                last_grf_write[inst->dst.nr + r] = n;
1077          } else {
1078             last_fixed_grf_write = n;
1079          }
1080       } else if (inst->dst.is_accumulator()) {
1081          add_dep(last_accumulator_write, n);
1082          last_accumulator_write = n;
1083       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1084          add_barrier_deps(n);
1085       }
1086 
1087       if (inst->mlen > 0 && inst->base_mrf != -1) {
1088          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1089             add_dep(last_mrf_write[inst->base_mrf + i], n);
1090             last_mrf_write[inst->base_mrf + i] = n;
1091          }
1092       }
1093 
1094       if (const unsigned mask = inst->flags_written()) {
1095          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1096 
1097          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1098             if (mask & (1 << i)) {
1099                add_dep(last_conditional_mod[i], n, 0);
1100                last_conditional_mod[i] = n;
1101             }
1102          }
1103       }
1104 
1105       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1106           !inst->dst.is_accumulator()) {
1107          add_dep(last_accumulator_write, n);
1108          last_accumulator_write = n;
1109       }
1110    }
1111 
1112    /* bottom-to-top dependencies: WAR */
1113    memset(last_grf_write, 0, sizeof(last_grf_write));
1114    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1115    memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1116    last_accumulator_write = NULL;
1117    last_fixed_grf_write = NULL;
1118 
1119    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1120       fs_inst *inst = (fs_inst *)n->inst;
1121 
1122       /* write-after-read deps. */
1123       for (int i = 0; i < inst->sources; i++) {
1124          if (inst->src[i].file == VGRF) {
1125             if (post_reg_alloc) {
1126                for (unsigned r = 0; r < regs_read(inst, i); r++)
1127                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1128             } else {
1129                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1130                   add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1131                                             inst->src[i].offset / REG_SIZE + r], 0);
1132                }
1133             }
1134          } else if (inst->src[i].file == FIXED_GRF) {
1135             if (post_reg_alloc) {
1136                for (unsigned r = 0; r < regs_read(inst, i); r++)
1137                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1138             } else {
1139                add_dep(n, last_fixed_grf_write, 0);
1140             }
1141          } else if (inst->src[i].is_accumulator()) {
1142             add_dep(n, last_accumulator_write, 0);
1143          } else if (inst->src[i].file == ARF) {
1144             add_barrier_deps(n);
1145          }
1146       }
1147 
1148       if (inst->base_mrf != -1) {
1149          for (int i = 0; i < inst->mlen; i++) {
1150             /* It looks like the MRF regs are released in the send
1151              * instruction once it's sent, not when the result comes
1152              * back.
1153              */
1154             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1155          }
1156       }
1157 
1158       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1159          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1160 
1161          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1162             if (mask & (1 << i))
1163                add_dep(n, last_conditional_mod[i]);
1164          }
1165       }
1166 
1167       if (inst->reads_accumulator_implicitly()) {
1168          add_dep(n, last_accumulator_write);
1169       }
1170 
1171       /* Update the things this instruction wrote, so earlier reads
1172        * can mark this as WAR dependency.
1173        */
1174       if (inst->dst.file == VGRF) {
1175          if (post_reg_alloc) {
1176             for (unsigned r = 0; r < regs_written(inst); r++)
1177                last_grf_write[inst->dst.nr + r] = n;
1178          } else {
1179             for (unsigned r = 0; r < regs_written(inst); r++) {
1180                last_grf_write[inst->dst.nr * 16 +
1181                               inst->dst.offset / REG_SIZE + r] = n;
1182             }
1183          }
1184       } else if (inst->dst.file == MRF) {
1185          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1186 
1187          last_mrf_write[reg] = n;
1188 
1189          if (is_compressed(inst)) {
1190             if (inst->dst.nr & BRW_MRF_COMPR4)
1191                reg += 4;
1192             else
1193                reg++;
1194 
1195             last_mrf_write[reg] = n;
1196          }
1197       } else if (inst->dst.file == FIXED_GRF) {
1198          if (post_reg_alloc) {
1199             for (unsigned r = 0; r < regs_written(inst); r++)
1200                last_grf_write[inst->dst.nr + r] = n;
1201          } else {
1202             last_fixed_grf_write = n;
1203          }
1204       } else if (inst->dst.is_accumulator()) {
1205          last_accumulator_write = n;
1206       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1207          add_barrier_deps(n);
1208       }
1209 
1210       if (inst->mlen > 0 && inst->base_mrf != -1) {
1211          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1212             last_mrf_write[inst->base_mrf + i] = n;
1213          }
1214       }
1215 
1216       if (const unsigned mask = inst->flags_written()) {
1217          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1218 
1219          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1220             if (mask & (1 << i))
1221                last_conditional_mod[i] = n;
1222          }
1223       }
1224 
1225       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1226          last_accumulator_write = n;
1227       }
1228    }
1229 }
1230 
1231 void
calculate_deps()1232 vec4_instruction_scheduler::calculate_deps()
1233 {
1234    schedule_node *last_grf_write[grf_count];
1235    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1236    schedule_node *last_conditional_mod = NULL;
1237    schedule_node *last_accumulator_write = NULL;
1238    /* Fixed HW registers are assumed to be separate from the virtual
1239     * GRFs, so they can be tracked separately.  We don't really write
1240     * to fixed GRFs much, so don't bother tracking them on a more
1241     * granular level.
1242     */
1243    schedule_node *last_fixed_grf_write = NULL;
1244 
1245    memset(last_grf_write, 0, sizeof(last_grf_write));
1246    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1247 
1248    /* top-to-bottom dependencies: RAW and WAW. */
1249    foreach_in_list(schedule_node, n, &instructions) {
1250       vec4_instruction *inst = (vec4_instruction *)n->inst;
1251 
1252       if (is_scheduling_barrier(inst))
1253          add_barrier_deps(n);
1254 
1255       /* read-after-write deps. */
1256       for (int i = 0; i < 3; i++) {
1257          if (inst->src[i].file == VGRF) {
1258             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1259                add_dep(last_grf_write[inst->src[i].nr + j], n);
1260          } else if (inst->src[i].file == FIXED_GRF) {
1261             add_dep(last_fixed_grf_write, n);
1262          } else if (inst->src[i].is_accumulator()) {
1263             assert(last_accumulator_write);
1264             add_dep(last_accumulator_write, n);
1265          } else if (inst->src[i].file == ARF) {
1266             add_barrier_deps(n);
1267          }
1268       }
1269 
1270       if (inst->reads_g0_implicitly())
1271          add_dep(last_fixed_grf_write, n);
1272 
1273       if (!inst->is_send_from_grf()) {
1274          for (int i = 0; i < inst->mlen; i++) {
1275             /* It looks like the MRF regs are released in the send
1276              * instruction once it's sent, not when the result comes
1277              * back.
1278              */
1279             add_dep(last_mrf_write[inst->base_mrf + i], n);
1280          }
1281       }
1282 
1283       if (inst->reads_flag()) {
1284          assert(last_conditional_mod);
1285          add_dep(last_conditional_mod, n);
1286       }
1287 
1288       if (inst->reads_accumulator_implicitly()) {
1289          assert(last_accumulator_write);
1290          add_dep(last_accumulator_write, n);
1291       }
1292 
1293       /* write-after-write deps. */
1294       if (inst->dst.file == VGRF) {
1295          for (unsigned j = 0; j < regs_written(inst); ++j) {
1296             add_dep(last_grf_write[inst->dst.nr + j], n);
1297             last_grf_write[inst->dst.nr + j] = n;
1298          }
1299       } else if (inst->dst.file == MRF) {
1300          add_dep(last_mrf_write[inst->dst.nr], n);
1301          last_mrf_write[inst->dst.nr] = n;
1302      } else if (inst->dst.file == FIXED_GRF) {
1303          last_fixed_grf_write = n;
1304       } else if (inst->dst.is_accumulator()) {
1305          add_dep(last_accumulator_write, n);
1306          last_accumulator_write = n;
1307       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1308          add_barrier_deps(n);
1309       }
1310 
1311       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1312          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1313             add_dep(last_mrf_write[inst->base_mrf + i], n);
1314             last_mrf_write[inst->base_mrf + i] = n;
1315          }
1316       }
1317 
1318       if (inst->writes_flag()) {
1319          add_dep(last_conditional_mod, n, 0);
1320          last_conditional_mod = n;
1321       }
1322 
1323       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1324           !inst->dst.is_accumulator()) {
1325          add_dep(last_accumulator_write, n);
1326          last_accumulator_write = n;
1327       }
1328    }
1329 
1330    /* bottom-to-top dependencies: WAR */
1331    memset(last_grf_write, 0, sizeof(last_grf_write));
1332    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1333    last_conditional_mod = NULL;
1334    last_accumulator_write = NULL;
1335    last_fixed_grf_write = NULL;
1336 
1337    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1338       vec4_instruction *inst = (vec4_instruction *)n->inst;
1339 
1340       /* write-after-read deps. */
1341       for (int i = 0; i < 3; i++) {
1342          if (inst->src[i].file == VGRF) {
1343             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1344                add_dep(n, last_grf_write[inst->src[i].nr + j]);
1345          } else if (inst->src[i].file == FIXED_GRF) {
1346             add_dep(n, last_fixed_grf_write);
1347          } else if (inst->src[i].is_accumulator()) {
1348             add_dep(n, last_accumulator_write);
1349          } else if (inst->src[i].file == ARF) {
1350             add_barrier_deps(n);
1351          }
1352       }
1353 
1354       if (!inst->is_send_from_grf()) {
1355          for (int i = 0; i < inst->mlen; i++) {
1356             /* It looks like the MRF regs are released in the send
1357              * instruction once it's sent, not when the result comes
1358              * back.
1359              */
1360             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1361          }
1362       }
1363 
1364       if (inst->reads_flag()) {
1365          add_dep(n, last_conditional_mod);
1366       }
1367 
1368       if (inst->reads_accumulator_implicitly()) {
1369          add_dep(n, last_accumulator_write);
1370       }
1371 
1372       /* Update the things this instruction wrote, so earlier reads
1373        * can mark this as WAR dependency.
1374        */
1375       if (inst->dst.file == VGRF) {
1376          for (unsigned j = 0; j < regs_written(inst); ++j)
1377             last_grf_write[inst->dst.nr + j] = n;
1378       } else if (inst->dst.file == MRF) {
1379          last_mrf_write[inst->dst.nr] = n;
1380       } else if (inst->dst.file == FIXED_GRF) {
1381          last_fixed_grf_write = n;
1382       } else if (inst->dst.is_accumulator()) {
1383          last_accumulator_write = n;
1384       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1385          add_barrier_deps(n);
1386       }
1387 
1388       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1389          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1390             last_mrf_write[inst->base_mrf + i] = n;
1391          }
1392       }
1393 
1394       if (inst->writes_flag()) {
1395          last_conditional_mod = n;
1396       }
1397 
1398       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1399          last_accumulator_write = n;
1400       }
1401    }
1402 }
1403 
1404 schedule_node *
choose_instruction_to_schedule()1405 fs_instruction_scheduler::choose_instruction_to_schedule()
1406 {
1407    schedule_node *chosen = NULL;
1408 
1409    if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1410       int chosen_time = 0;
1411 
1412       /* Of the instructions ready to execute or the closest to being ready,
1413        * choose the one most likely to unblock an early program exit, or
1414        * otherwise the oldest one.
1415        */
1416       foreach_in_list(schedule_node, n, &instructions) {
1417          if (!chosen ||
1418              exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1419              (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1420               n->unblocked_time < chosen_time)) {
1421             chosen = n;
1422             chosen_time = n->unblocked_time;
1423          }
1424       }
1425    } else {
1426       /* Before register allocation, we don't care about the latencies of
1427        * instructions.  All we care about is reducing live intervals of
1428        * variables so that we can avoid register spilling, or get SIMD16
1429        * shaders which naturally do a better job of hiding instruction
1430        * latency.
1431        */
1432       foreach_in_list(schedule_node, n, &instructions) {
1433          fs_inst *inst = (fs_inst *)n->inst;
1434 
1435          if (!chosen) {
1436             chosen = n;
1437             continue;
1438          }
1439 
1440          /* Most important: If we can definitely reduce register pressure, do
1441           * so immediately.
1442           */
1443          int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1444          int chosen_register_pressure_benefit =
1445             get_register_pressure_benefit(chosen->inst);
1446 
1447          if (register_pressure_benefit > 0 &&
1448              register_pressure_benefit > chosen_register_pressure_benefit) {
1449             chosen = n;
1450             continue;
1451          } else if (chosen_register_pressure_benefit > 0 &&
1452                     (register_pressure_benefit <
1453                      chosen_register_pressure_benefit)) {
1454             continue;
1455          }
1456 
1457          if (mode == SCHEDULE_PRE_LIFO) {
1458             /* Prefer instructions that recently became available for
1459              * scheduling.  These are the things that are most likely to
1460              * (eventually) make a variable dead and reduce register pressure.
1461              * Typical register pressure estimates don't work for us because
1462              * most of our pressure comes from texturing, where no single
1463              * instruction to schedule will make a vec4 value dead.
1464              */
1465             if (n->cand_generation > chosen->cand_generation) {
1466                chosen = n;
1467                continue;
1468             } else if (n->cand_generation < chosen->cand_generation) {
1469                continue;
1470             }
1471 
1472             /* On MRF-using chips, prefer non-SEND instructions.  If we don't
1473              * do this, then because we prefer instructions that just became
1474              * candidates, we'll end up in a pattern of scheduling a SEND,
1475              * then the MRFs for the next SEND, then the next SEND, then the
1476              * MRFs, etc., without ever consuming the results of a send.
1477              */
1478             if (v->devinfo->gen < 7) {
1479                fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1480 
1481                /* We use size_written > 4 * exec_size as our test for the kind
1482                 * of send instruction to avoid -- only sends generate many
1483                 * regs, and a single-result send is probably actually reducing
1484                 * register pressure.
1485                 */
1486                if (inst->size_written <= 4 * inst->exec_size &&
1487                    chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1488                   chosen = n;
1489                   continue;
1490                } else if (inst->size_written > chosen_inst->size_written) {
1491                   continue;
1492                }
1493             }
1494          }
1495 
1496          /* For instructions pushed on the cands list at the same time, prefer
1497           * the one with the highest delay to the end of the program.  This is
1498           * most likely to have its values able to be consumed first (such as
1499           * for a large tree of lowered ubo loads, which appear reversed in
1500           * the instruction stream with respect to when they can be consumed).
1501           */
1502          if (n->delay > chosen->delay) {
1503             chosen = n;
1504             continue;
1505          } else if (n->delay < chosen->delay) {
1506             continue;
1507          }
1508 
1509          /* Prefer the node most likely to unblock an early program exit.
1510           */
1511          if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1512             chosen = n;
1513             continue;
1514          } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1515             continue;
1516          }
1517 
1518          /* If all other metrics are equal, we prefer the first instruction in
1519           * the list (program execution).
1520           */
1521       }
1522    }
1523 
1524    return chosen;
1525 }
1526 
1527 schedule_node *
choose_instruction_to_schedule()1528 vec4_instruction_scheduler::choose_instruction_to_schedule()
1529 {
1530    schedule_node *chosen = NULL;
1531    int chosen_time = 0;
1532 
1533    /* Of the instructions ready to execute or the closest to being ready,
1534     * choose the oldest one.
1535     */
1536    foreach_in_list(schedule_node, n, &instructions) {
1537       if (!chosen || n->unblocked_time < chosen_time) {
1538          chosen = n;
1539          chosen_time = n->unblocked_time;
1540       }
1541    }
1542 
1543    return chosen;
1544 }
1545 
1546 int
issue_time(backend_instruction * inst)1547 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1548 {
1549    const unsigned overhead = v->bank_conflict_cycles((fs_inst *)inst);
1550    if (is_compressed((fs_inst *)inst))
1551       return 4 + overhead;
1552    else
1553       return 2 + overhead;
1554 }
1555 
1556 int
issue_time(backend_instruction * inst)1557 vec4_instruction_scheduler::issue_time(backend_instruction *inst)
1558 {
1559    /* We always execute as two vec4s in parallel. */
1560    return 2;
1561 }
1562 
1563 void
schedule_instructions(bblock_t * block)1564 instruction_scheduler::schedule_instructions(bblock_t *block)
1565 {
1566    const struct gen_device_info *devinfo = bs->devinfo;
1567    int time = 0;
1568    if (!post_reg_alloc)
1569       reg_pressure = reg_pressure_in[block->num];
1570    block_idx = block->num;
1571 
1572    /* Remove non-DAG heads from the list. */
1573    foreach_in_list_safe(schedule_node, n, &instructions) {
1574       if (n->parent_count != 0)
1575          n->remove();
1576    }
1577 
1578    unsigned cand_generation = 1;
1579    while (!instructions.is_empty()) {
1580       schedule_node *chosen = choose_instruction_to_schedule();
1581 
1582       /* Schedule this instruction. */
1583       assert(chosen);
1584       chosen->remove();
1585       chosen->inst->exec_node::remove();
1586       block->instructions.push_tail(chosen->inst);
1587       instructions_to_schedule--;
1588 
1589       if (!post_reg_alloc) {
1590          reg_pressure -= get_register_pressure_benefit(chosen->inst);
1591          update_register_pressure(chosen->inst);
1592       }
1593 
1594       /* If we expected a delay for scheduling, then bump the clock to reflect
1595        * that.  In reality, the hardware will switch to another hyperthread
1596        * and may not return to dispatching our thread for a while even after
1597        * we're unblocked.  After this, we have the time when the chosen
1598        * instruction will start executing.
1599        */
1600       time = MAX2(time, chosen->unblocked_time);
1601 
1602       /* Update the clock for how soon an instruction could start after the
1603        * chosen one.
1604        */
1605       time += issue_time(chosen->inst);
1606 
1607       if (debug) {
1608          fprintf(stderr, "clock %4d, scheduled: ", time);
1609          bs->dump_instruction(chosen->inst);
1610          if (!post_reg_alloc)
1611             fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1612       }
1613 
1614       /* Now that we've scheduled a new instruction, some of its
1615        * children can be promoted to the list of instructions ready to
1616        * be scheduled.  Update the children's unblocked time for this
1617        * DAG edge as we do so.
1618        */
1619       for (int i = chosen->child_count - 1; i >= 0; i--) {
1620          schedule_node *child = chosen->children[i];
1621 
1622          child->unblocked_time = MAX2(child->unblocked_time,
1623                                       time + chosen->child_latency[i]);
1624 
1625          if (debug) {
1626             fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1627             bs->dump_instruction(child->inst);
1628          }
1629 
1630          child->cand_generation = cand_generation;
1631          child->parent_count--;
1632          if (child->parent_count == 0) {
1633             if (debug) {
1634                fprintf(stderr, "\t\tnow available\n");
1635             }
1636             instructions.push_head(child);
1637          }
1638       }
1639       cand_generation++;
1640 
1641       /* Shared resource: the mathbox.  There's one mathbox per EU on Gen6+
1642        * but it's more limited pre-gen6, so if we send something off to it then
1643        * the next math instruction isn't going to make progress until the first
1644        * is done.
1645        */
1646       if (devinfo->gen < 6 && chosen->inst->is_math()) {
1647          foreach_in_list(schedule_node, n, &instructions) {
1648             if (n->inst->is_math())
1649                n->unblocked_time = MAX2(n->unblocked_time,
1650                                         time + chosen->latency);
1651          }
1652       }
1653    }
1654 
1655    assert(instructions_to_schedule == 0);
1656 
1657    block->cycle_count = time;
1658 }
1659 
get_cycle_count(cfg_t * cfg)1660 static unsigned get_cycle_count(cfg_t *cfg)
1661 {
1662    unsigned count = 0, multiplier = 1;
1663    foreach_block(block, cfg) {
1664       if (block->start()->opcode == BRW_OPCODE_DO)
1665          multiplier *= 10; /* assume that loops execute ~10 times */
1666 
1667       count += block->cycle_count * multiplier;
1668 
1669       if (block->end()->opcode == BRW_OPCODE_WHILE)
1670          multiplier /= 10;
1671    }
1672 
1673    return count;
1674 }
1675 
1676 void
run(cfg_t * cfg)1677 instruction_scheduler::run(cfg_t *cfg)
1678 {
1679    if (debug && !post_reg_alloc) {
1680       fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1681               post_reg_alloc);
1682          bs->dump_instructions();
1683    }
1684 
1685    if (!post_reg_alloc)
1686       setup_liveness(cfg);
1687 
1688    foreach_block(block, cfg) {
1689       if (reads_remaining) {
1690          memset(reads_remaining, 0,
1691                 grf_count * sizeof(*reads_remaining));
1692          memset(hw_reads_remaining, 0,
1693                 hw_reg_count * sizeof(*hw_reads_remaining));
1694          memset(written, 0, grf_count * sizeof(*written));
1695 
1696          foreach_inst_in_block(fs_inst, inst, block)
1697             count_reads_remaining(inst);
1698       }
1699 
1700       add_insts_from_block(block);
1701 
1702       calculate_deps();
1703 
1704       compute_delays();
1705       compute_exits();
1706 
1707       schedule_instructions(block);
1708    }
1709 
1710    if (debug && !post_reg_alloc) {
1711       fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1712               post_reg_alloc);
1713       bs->dump_instructions();
1714    }
1715 
1716    cfg->cycle_count = get_cycle_count(cfg);
1717 }
1718 
1719 void
schedule_instructions(instruction_scheduler_mode mode)1720 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1721 {
1722    if (mode != SCHEDULE_POST)
1723       calculate_live_intervals();
1724 
1725    int grf_count;
1726    if (mode == SCHEDULE_POST)
1727       grf_count = grf_used;
1728    else
1729       grf_count = alloc.count;
1730 
1731    fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1732                                   cfg->num_blocks, mode);
1733    sched.run(cfg);
1734 
1735    invalidate_live_intervals();
1736 }
1737 
1738 void
opt_schedule_instructions()1739 vec4_visitor::opt_schedule_instructions()
1740 {
1741    vec4_instruction_scheduler sched(this, prog_data->total_grf);
1742    sched.run(cfg);
1743 
1744    invalidate_live_intervals();
1745 }
1746