1 /* $Id: tif_getimage.c,v 1.106 2017-05-20 11:29:02 erouault Exp $ */
2 
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include "tiffiop.h"
33 #include <stdio.h>
34 #include <limits.h>
35 
36 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
40 static int PickContigCase(TIFFRGBAImage*);
41 static int PickSeparateCase(TIFFRGBAImage*);
42 
43 static int BuildMapUaToAa(TIFFRGBAImage* img);
44 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
45 
46 static const char photoTag[] = "PhotometricInterpretation";
47 
48 /*
49  * Helper constants used in Orientation tag handling
50  */
51 #define FLIP_VERTICALLY 0x01
52 #define FLIP_HORIZONTALLY 0x02
53 
54 /*
55  * Color conversion constants. We will define display types here.
56  */
57 
58 static const TIFFDisplay display_sRGB = {
59 	{			/* XYZ -> luminance matrix */
60 		{  3.2410F, -1.5374F, -0.4986F },
61 		{  -0.9692F, 1.8760F, 0.0416F },
62 		{  0.0556F, -0.2040F, 1.0570F }
63 	},
64 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
65 	255, 255, 255,		/* Pixel values for ref. white */
66 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
67 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
68 };
69 
70 /*
71  * Check the image to see if TIFFReadRGBAImage can deal with it.
72  * 1/0 is returned according to whether or not the image can
73  * be handled.  If 0 is returned, emsg contains the reason
74  * why it is being rejected.
75  */
76 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])77 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
78 {
79 	TIFFDirectory* td = &tif->tif_dir;
80 	uint16 photometric;
81 	int colorchannels;
82 
83 	if (!tif->tif_decodestatus) {
84 		sprintf(emsg, "Sorry, requested compression method is not configured");
85 		return (0);
86 	}
87 	switch (td->td_bitspersample) {
88 		case 1:
89 		case 2:
90 		case 4:
91 		case 8:
92 		case 16:
93 			break;
94 		default:
95 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
96 			    td->td_bitspersample);
97 			return (0);
98 	}
99         if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
100                 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
101                 return (0);
102         }
103 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
104 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
105 		switch (colorchannels) {
106 			case 1:
107 				photometric = PHOTOMETRIC_MINISBLACK;
108 				break;
109 			case 3:
110 				photometric = PHOTOMETRIC_RGB;
111 				break;
112 			default:
113 				sprintf(emsg, "Missing needed %s tag", photoTag);
114 				return (0);
115 		}
116 	}
117 	switch (photometric) {
118 		case PHOTOMETRIC_MINISWHITE:
119 		case PHOTOMETRIC_MINISBLACK:
120 		case PHOTOMETRIC_PALETTE:
121 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
122 			    && td->td_samplesperpixel != 1
123 			    && td->td_bitspersample < 8 ) {
124 				sprintf(emsg,
125 				    "Sorry, can not handle contiguous data with %s=%d, "
126 				    "and %s=%d and Bits/Sample=%d",
127 				    photoTag, photometric,
128 				    "Samples/pixel", td->td_samplesperpixel,
129 				    td->td_bitspersample);
130 				return (0);
131 			}
132 			/*
133 			 * We should likely validate that any extra samples are either
134 			 * to be ignored, or are alpha, and if alpha we should try to use
135 			 * them.  But for now we won't bother with this.
136 			*/
137 			break;
138 		case PHOTOMETRIC_YCBCR:
139 			/*
140 			 * TODO: if at all meaningful and useful, make more complete
141 			 * support check here, or better still, refactor to let supporting
142 			 * code decide whether there is support and what meaningfull
143 			 * error to return
144 			 */
145 			break;
146 		case PHOTOMETRIC_RGB:
147 			if (colorchannels < 3) {
148 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
149 				    "Color channels", colorchannels);
150 				return (0);
151 			}
152 			break;
153 		case PHOTOMETRIC_SEPARATED:
154 			{
155 				uint16 inkset;
156 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
157 				if (inkset != INKSET_CMYK) {
158 					sprintf(emsg,
159 					    "Sorry, can not handle separated image with %s=%d",
160 					    "InkSet", inkset);
161 					return 0;
162 				}
163 				if (td->td_samplesperpixel < 4) {
164 					sprintf(emsg,
165 					    "Sorry, can not handle separated image with %s=%d",
166 					    "Samples/pixel", td->td_samplesperpixel);
167 					return 0;
168 				}
169 				break;
170 			}
171 		case PHOTOMETRIC_LOGL:
172 			if (td->td_compression != COMPRESSION_SGILOG) {
173 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
174 				    "Compression", COMPRESSION_SGILOG);
175 				return (0);
176 			}
177 			break;
178 		case PHOTOMETRIC_LOGLUV:
179 			if (td->td_compression != COMPRESSION_SGILOG &&
180 			    td->td_compression != COMPRESSION_SGILOG24) {
181 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
182 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
183 				return (0);
184 			}
185 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
186 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
187 				    "Planarconfiguration", td->td_planarconfig);
188 				return (0);
189 			}
190 			if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
191                                 sprintf(emsg,
192                                         "Sorry, can not handle image with %s=%d, %s=%d",
193                                         "Samples/pixel", td->td_samplesperpixel,
194                                         "colorchannels", colorchannels);
195                                 return 0;
196                         }
197 			break;
198 		case PHOTOMETRIC_CIELAB:
199                         if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
200                                 sprintf(emsg,
201                                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
202                                         "Samples/pixel", td->td_samplesperpixel,
203                                         "colorchannels", colorchannels,
204                                         "Bits/sample", td->td_bitspersample);
205                                 return 0;
206                         }
207 			break;
208                 default:
209 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
210 			    photoTag, photometric);
211 			return (0);
212 	}
213 	return (1);
214 }
215 
216 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)217 TIFFRGBAImageEnd(TIFFRGBAImage* img)
218 {
219 	if (img->Map) {
220 		_TIFFfree(img->Map);
221 		img->Map = NULL;
222 	}
223 	if (img->BWmap) {
224 		_TIFFfree(img->BWmap);
225 		img->BWmap = NULL;
226 	}
227 	if (img->PALmap) {
228 		_TIFFfree(img->PALmap);
229 		img->PALmap = NULL;
230 	}
231 	if (img->ycbcr) {
232 		_TIFFfree(img->ycbcr);
233 		img->ycbcr = NULL;
234 	}
235 	if (img->cielab) {
236 		_TIFFfree(img->cielab);
237 		img->cielab = NULL;
238 	}
239 	if (img->UaToAa) {
240 		_TIFFfree(img->UaToAa);
241 		img->UaToAa = NULL;
242 	}
243 	if (img->Bitdepth16To8) {
244 		_TIFFfree(img->Bitdepth16To8);
245 		img->Bitdepth16To8 = NULL;
246 	}
247 
248 	if( img->redcmap ) {
249 		_TIFFfree( img->redcmap );
250 		_TIFFfree( img->greencmap );
251 		_TIFFfree( img->bluecmap );
252                 img->redcmap = img->greencmap = img->bluecmap = NULL;
253 	}
254 }
255 
256 static int
isCCITTCompression(TIFF * tif)257 isCCITTCompression(TIFF* tif)
258 {
259     uint16 compress;
260     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
261     return (compress == COMPRESSION_CCITTFAX3 ||
262 	    compress == COMPRESSION_CCITTFAX4 ||
263 	    compress == COMPRESSION_CCITTRLE ||
264 	    compress == COMPRESSION_CCITTRLEW);
265 }
266 
267 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])268 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
269 {
270 	uint16* sampleinfo;
271 	uint16 extrasamples;
272 	uint16 planarconfig;
273 	uint16 compress;
274 	int colorchannels;
275 	uint16 *red_orig, *green_orig, *blue_orig;
276 	int n_color;
277 
278 	if( !TIFFRGBAImageOK(tif, emsg) )
279 		return 0;
280 
281 	/* Initialize to normal values */
282 	img->row_offset = 0;
283 	img->col_offset = 0;
284 	img->redcmap = NULL;
285 	img->greencmap = NULL;
286 	img->bluecmap = NULL;
287 	img->Map = NULL;
288 	img->BWmap = NULL;
289 	img->PALmap = NULL;
290 	img->ycbcr = NULL;
291 	img->cielab = NULL;
292 	img->UaToAa = NULL;
293 	img->Bitdepth16To8 = NULL;
294 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
295 
296 	img->tif = tif;
297 	img->stoponerr = stop;
298 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
299 	switch (img->bitspersample) {
300 		case 1:
301 		case 2:
302 		case 4:
303 		case 8:
304 		case 16:
305 			break;
306 		default:
307 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
308 			    img->bitspersample);
309 			goto fail_return;
310 	}
311 	img->alpha = 0;
312 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
313 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
314 	    &extrasamples, &sampleinfo);
315 	if (extrasamples >= 1)
316 	{
317 		switch (sampleinfo[0]) {
318 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
319 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
320 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
321 				break;
322 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
323 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
324 				img->alpha = sampleinfo[0];
325 				break;
326 		}
327 	}
328 
329 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
330 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
331 		img->photometric = PHOTOMETRIC_MINISWHITE;
332 
333 	if( extrasamples == 0
334 	    && img->samplesperpixel == 4
335 	    && img->photometric == PHOTOMETRIC_RGB )
336 	{
337 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
338 		extrasamples = 1;
339 	}
340 #endif
341 
342 	colorchannels = img->samplesperpixel - extrasamples;
343 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
344 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
345 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
346 		switch (colorchannels) {
347 			case 1:
348 				if (isCCITTCompression(tif))
349 					img->photometric = PHOTOMETRIC_MINISWHITE;
350 				else
351 					img->photometric = PHOTOMETRIC_MINISBLACK;
352 				break;
353 			case 3:
354 				img->photometric = PHOTOMETRIC_RGB;
355 				break;
356 			default:
357 				sprintf(emsg, "Missing needed %s tag", photoTag);
358                                 goto fail_return;
359 		}
360 	}
361 	switch (img->photometric) {
362 		case PHOTOMETRIC_PALETTE:
363 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
364 			    &red_orig, &green_orig, &blue_orig)) {
365 				sprintf(emsg, "Missing required \"Colormap\" tag");
366                                 goto fail_return;
367 			}
368 
369 			/* copy the colormaps so we can modify them */
370 			n_color = (1U << img->bitspersample);
371 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
372 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
373 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
374 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
375 				sprintf(emsg, "Out of memory for colormap copy");
376                                 goto fail_return;
377 			}
378 
379 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
380 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
381 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
382 
383 			/* fall through... */
384 		case PHOTOMETRIC_MINISWHITE:
385 		case PHOTOMETRIC_MINISBLACK:
386 			if (planarconfig == PLANARCONFIG_CONTIG
387 			    && img->samplesperpixel != 1
388 			    && img->bitspersample < 8 ) {
389 				sprintf(emsg,
390 				    "Sorry, can not handle contiguous data with %s=%d, "
391 				    "and %s=%d and Bits/Sample=%d",
392 				    photoTag, img->photometric,
393 				    "Samples/pixel", img->samplesperpixel,
394 				    img->bitspersample);
395                                 goto fail_return;
396 			}
397 			break;
398 		case PHOTOMETRIC_YCBCR:
399 			/* It would probably be nice to have a reality check here. */
400 			if (planarconfig == PLANARCONFIG_CONTIG)
401 				/* can rely on libjpeg to convert to RGB */
402 				/* XXX should restore current state on exit */
403 				switch (compress) {
404 					case COMPRESSION_JPEG:
405 						/*
406 						 * TODO: when complete tests verify complete desubsampling
407 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
408 						 * favor of tif_getimage.c native handling
409 						 */
410 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
411 						img->photometric = PHOTOMETRIC_RGB;
412 						break;
413 					default:
414 						/* do nothing */;
415 						break;
416 				}
417 			/*
418 			 * TODO: if at all meaningful and useful, make more complete
419 			 * support check here, or better still, refactor to let supporting
420 			 * code decide whether there is support and what meaningfull
421 			 * error to return
422 			 */
423 			break;
424 		case PHOTOMETRIC_RGB:
425 			if (colorchannels < 3) {
426 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
427 				    "Color channels", colorchannels);
428                                 goto fail_return;
429 			}
430 			break;
431 		case PHOTOMETRIC_SEPARATED:
432 			{
433 				uint16 inkset;
434 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
435 				if (inkset != INKSET_CMYK) {
436 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
437 					    "InkSet", inkset);
438                                         goto fail_return;
439 				}
440 				if (img->samplesperpixel < 4) {
441 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
442 					    "Samples/pixel", img->samplesperpixel);
443                                         goto fail_return;
444 				}
445 			}
446 			break;
447 		case PHOTOMETRIC_LOGL:
448 			if (compress != COMPRESSION_SGILOG) {
449 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
450 				    "Compression", COMPRESSION_SGILOG);
451                                 goto fail_return;
452 			}
453 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
454 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
455 			img->bitspersample = 8;
456 			break;
457 		case PHOTOMETRIC_LOGLUV:
458 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
459 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
460 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
461                                 goto fail_return;
462 			}
463 			if (planarconfig != PLANARCONFIG_CONTIG) {
464 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
465 				    "Planarconfiguration", planarconfig);
466 				return (0);
467 			}
468 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
469 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
470 			img->bitspersample = 8;
471 			break;
472 		case PHOTOMETRIC_CIELAB:
473 			break;
474 		default:
475 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
476 			    photoTag, img->photometric);
477                         goto fail_return;
478 	}
479 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
480 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
481 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
482 	img->isContig =
483 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
484 	if (img->isContig) {
485 		if (!PickContigCase(img)) {
486 			sprintf(emsg, "Sorry, can not handle image");
487 			goto fail_return;
488 		}
489 	} else {
490 		if (!PickSeparateCase(img)) {
491 			sprintf(emsg, "Sorry, can not handle image");
492 			goto fail_return;
493 		}
494 	}
495 	return 1;
496 
497   fail_return:
498         TIFFRGBAImageEnd( img );
499         return 0;
500 }
501 
502 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)503 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
504 {
505     if (img->get == NULL) {
506 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
507 		return (0);
508 	}
509 	if (img->put.any == NULL) {
510 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
511 		"No \"put\" routine setupl; probably can not handle image format");
512 		return (0);
513     }
514     return (*img->get)(img, raster, w, h);
515 }
516 
517 /*
518  * Read the specified image into an ABGR-format rastertaking in account
519  * specified orientation.
520  */
521 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)522 TIFFReadRGBAImageOriented(TIFF* tif,
523 			  uint32 rwidth, uint32 rheight, uint32* raster,
524 			  int orientation, int stop)
525 {
526     char emsg[1024] = "";
527     TIFFRGBAImage img;
528     int ok;
529 
530 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
531 		img.req_orientation = (uint16)orientation;
532 		/* XXX verify rwidth and rheight against width and height */
533 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
534 			rwidth, img.height);
535 		TIFFRGBAImageEnd(&img);
536 	} else {
537 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
538 		ok = 0;
539     }
540     return (ok);
541 }
542 
543 /*
544  * Read the specified image into an ABGR-format raster. Use bottom left
545  * origin for raster by default.
546  */
547 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)548 TIFFReadRGBAImage(TIFF* tif,
549 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
550 {
551 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
552 					 ORIENTATION_BOTLEFT, stop);
553 }
554 
555 static int
setorientation(TIFFRGBAImage * img)556 setorientation(TIFFRGBAImage* img)
557 {
558 	switch (img->orientation) {
559 		case ORIENTATION_TOPLEFT:
560 		case ORIENTATION_LEFTTOP:
561 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
562 			    img->req_orientation == ORIENTATION_RIGHTTOP)
563 				return FLIP_HORIZONTALLY;
564 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
565 			    img->req_orientation == ORIENTATION_RIGHTBOT)
566 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
567 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
568 			    img->req_orientation == ORIENTATION_LEFTBOT)
569 				return FLIP_VERTICALLY;
570 			else
571 				return 0;
572 		case ORIENTATION_TOPRIGHT:
573 		case ORIENTATION_RIGHTTOP:
574 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
575 			    img->req_orientation == ORIENTATION_LEFTTOP)
576 				return FLIP_HORIZONTALLY;
577 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
578 			    img->req_orientation == ORIENTATION_RIGHTBOT)
579 				return FLIP_VERTICALLY;
580 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
581 			    img->req_orientation == ORIENTATION_LEFTBOT)
582 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
583 			else
584 				return 0;
585 		case ORIENTATION_BOTRIGHT:
586 		case ORIENTATION_RIGHTBOT:
587 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
588 			    img->req_orientation == ORIENTATION_LEFTTOP)
589 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
590 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
591 			    img->req_orientation == ORIENTATION_RIGHTTOP)
592 				return FLIP_VERTICALLY;
593 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
594 			    img->req_orientation == ORIENTATION_LEFTBOT)
595 				return FLIP_HORIZONTALLY;
596 			else
597 				return 0;
598 		case ORIENTATION_BOTLEFT:
599 		case ORIENTATION_LEFTBOT:
600 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
601 			    img->req_orientation == ORIENTATION_LEFTTOP)
602 				return FLIP_VERTICALLY;
603 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
604 			    img->req_orientation == ORIENTATION_RIGHTTOP)
605 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
606 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
607 			    img->req_orientation == ORIENTATION_RIGHTBOT)
608 				return FLIP_HORIZONTALLY;
609 			else
610 				return 0;
611 		default:	/* NOTREACHED */
612 			return 0;
613 	}
614 }
615 
616 /*
617  * Get an tile-organized image that has
618  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
619  * or
620  *	SamplesPerPixel == 1
621  */
622 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)623 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
624 {
625     TIFF* tif = img->tif;
626     tileContigRoutine put = img->put.contig;
627     uint32 col, row, y, rowstoread;
628     tmsize_t pos;
629     uint32 tw, th;
630     unsigned char* buf = NULL;
631     int32 fromskew, toskew;
632     int64 safeskew;
633     uint32 nrow;
634     int ret = 1, flip;
635     uint32 this_tw, tocol;
636     int32 this_toskew, leftmost_toskew;
637     int32 leftmost_fromskew;
638     uint32 leftmost_tw;
639     tmsize_t bufsize;
640 
641     bufsize = TIFFTileSize(tif);
642     if (bufsize == 0) {
643         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
644         return (0);
645     }
646 
647     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
648     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
649 
650     flip = setorientation(img);
651     if (flip & FLIP_VERTICALLY) {
652 	    y = h - 1;
653 	    safeskew = 0;
654 	    safeskew -= tw;
655 	    safeskew -= w;
656     }
657     else {
658 	    y = 0;
659 	    safeskew = 0;
660 	    safeskew -= tw;
661 	    safeskew +=w;
662     }
663 
664     if(safeskew > INT_MAX || safeskew < INT_MIN){
665        _TIFFfree(buf);
666        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
667        return (0);
668     }
669     toskew = safeskew;
670 
671     /*
672      *	Leftmost tile is clipped on left side if col_offset > 0.
673      */
674     leftmost_fromskew = img->col_offset % tw;
675     leftmost_tw = tw - leftmost_fromskew;
676     safeskew = toskew;
677     safeskew += leftmost_fromskew;
678     if(safeskew > INT_MAX || safeskew < INT_MIN){
679        _TIFFfree(buf);
680        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
681        return (0);
682     }
683     leftmost_toskew = safeskew;
684     for (row = 0; ret != 0 && row < h; row += nrow)
685     {
686         rowstoread = th - (row + img->row_offset) % th;
687     	nrow = (row + rowstoread > h ? h - row : rowstoread);
688 	fromskew = leftmost_fromskew;
689 	this_tw = leftmost_tw;
690 	this_toskew = leftmost_toskew;
691 	tocol = 0;
692 	col = img->col_offset;
693 	while (tocol < w)
694         {
695 	    if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
696 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
697                 (buf == NULL || img->stoponerr))
698             {
699                 ret = 0;
700                 break;
701             }
702             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
703 		   ((tmsize_t) fromskew * img->samplesperpixel);
704 	    if (tocol + this_tw > w)
705 	    {
706 		/*
707 		 * Rightmost tile is clipped on right side.
708 		 */
709 		safeskew = tw;
710 		safeskew -= w;
711 		safeskew += tocol;
712 		if(safeskew > INT_MAX || safeskew < INT_MIN){
713 		        _TIFFfree(buf);
714 		        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
715 		        return (0);
716 		}
717 		fromskew = safeskew;
718 		this_tw = tw - fromskew;
719 		safeskew = toskew;
720 		safeskew += fromskew;
721 		if(safeskew > INT_MAX || safeskew < INT_MIN){
722 		        _TIFFfree(buf);
723 		        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
724 		        return (0);
725 		}
726 		this_toskew = safeskew;
727 	    }
728 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
729 	    tocol += this_tw;
730 	    col += this_tw;
731 	    /*
732 	     * After the leftmost tile, tiles are no longer clipped on left side.
733 	     */
734 	    fromskew = 0;
735 	    this_tw = tw;
736 	    this_toskew = toskew;
737 	}
738 
739         y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
740     }
741     _TIFFfree(buf);
742 
743     if (flip & FLIP_HORIZONTALLY) {
744 	    uint32 line;
745 
746 	    for (line = 0; line < h; line++) {
747 		    uint32 *left = raster + (line * w);
748 		    uint32 *right = left + w - 1;
749 
750 		    while ( left < right ) {
751 			    uint32 temp = *left;
752 			    *left = *right;
753 			    *right = temp;
754 			    left++;
755 				right--;
756 		    }
757 	    }
758     }
759 
760     return (ret);
761 }
762 
763 /*
764  * Get an tile-organized image that has
765  *	 SamplesPerPixel > 1
766  *	 PlanarConfiguration separated
767  * We assume that all such images are RGB.
768  */
769 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)770 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
771 {
772 	TIFF* tif = img->tif;
773 	tileSeparateRoutine put = img->put.separate;
774 	uint32 col, row, y, rowstoread;
775 	tmsize_t pos;
776 	uint32 tw, th;
777 	unsigned char* buf = NULL;
778 	unsigned char* p0 = NULL;
779 	unsigned char* p1 = NULL;
780 	unsigned char* p2 = NULL;
781 	unsigned char* pa = NULL;
782 	tmsize_t tilesize;
783 	tmsize_t bufsize;
784 	int32 fromskew, toskew;
785 	int alpha = img->alpha;
786 	uint32 nrow;
787 	int ret = 1, flip;
788         uint16 colorchannels;
789 	uint32 this_tw, tocol;
790 	int32 this_toskew, leftmost_toskew;
791 	int32 leftmost_fromskew;
792 	uint32 leftmost_tw;
793 
794 	tilesize = TIFFTileSize(tif);
795 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
796 	if (bufsize == 0) {
797 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
798 		return (0);
799 	}
800 
801 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
802 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
803 
804 	flip = setorientation(img);
805 	if (flip & FLIP_VERTICALLY) {
806 		y = h - 1;
807 		toskew = -(int32)(tw + w);
808 	}
809 	else {
810 		y = 0;
811 		toskew = -(int32)(tw - w);
812 	}
813 
814         switch( img->photometric )
815         {
816           case PHOTOMETRIC_MINISWHITE:
817           case PHOTOMETRIC_MINISBLACK:
818           case PHOTOMETRIC_PALETTE:
819             colorchannels = 1;
820             break;
821 
822           default:
823             colorchannels = 3;
824             break;
825         }
826 
827 	/*
828 	 *	Leftmost tile is clipped on left side if col_offset > 0.
829 	 */
830 	leftmost_fromskew = img->col_offset % tw;
831 	leftmost_tw = tw - leftmost_fromskew;
832 	leftmost_toskew = toskew + leftmost_fromskew;
833 	for (row = 0; ret != 0 && row < h; row += nrow)
834 	{
835 		rowstoread = th - (row + img->row_offset) % th;
836 		nrow = (row + rowstoread > h ? h - row : rowstoread);
837 		fromskew = leftmost_fromskew;
838 		this_tw = leftmost_tw;
839 		this_toskew = leftmost_toskew;
840 		tocol = 0;
841 		col = img->col_offset;
842 		while (tocol < w)
843 		{
844                         if( buf == NULL )
845                         {
846                             if (_TIFFReadTileAndAllocBuffer(
847                                     tif, (void**) &buf, bufsize, col,
848                                     row+img->row_offset,0,0)==(tmsize_t)(-1)
849                                 && (buf == NULL || img->stoponerr))
850                             {
851                                     ret = 0;
852                                     break;
853                             }
854                             p0 = buf;
855                             if( colorchannels == 1 )
856                             {
857                                 p2 = p1 = p0;
858                                 pa = (alpha?(p0+3*tilesize):NULL);
859                             }
860                             else
861                             {
862                                 p1 = p0 + tilesize;
863                                 p2 = p1 + tilesize;
864                                 pa = (alpha?(p2+tilesize):NULL);
865                             }
866                         }
867 			else if (TIFFReadTile(tif, p0, col,
868 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
869 			{
870 				ret = 0;
871 				break;
872 			}
873 			if (colorchannels > 1
874                             && TIFFReadTile(tif, p1, col,
875                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
876                             && img->stoponerr)
877 			{
878 				ret = 0;
879 				break;
880 			}
881 			if (colorchannels > 1
882                             && TIFFReadTile(tif, p2, col,
883                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
884                             && img->stoponerr)
885 			{
886 				ret = 0;
887 				break;
888 			}
889 			if (alpha
890                             && TIFFReadTile(tif,pa,col,
891                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
892                             && img->stoponerr)
893                         {
894                             ret = 0;
895                             break;
896 			}
897 
898 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
899 			   ((tmsize_t) fromskew * img->samplesperpixel);
900 			if (tocol + this_tw > w)
901 			{
902 				/*
903 				 * Rightmost tile is clipped on right side.
904 				 */
905 				fromskew = tw - (w - tocol);
906 				this_tw = tw - fromskew;
907 				this_toskew = toskew + fromskew;
908 			}
909 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
910 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
911 			tocol += this_tw;
912 			col += this_tw;
913 			/*
914 			* After the leftmost tile, tiles are no longer clipped on left side.
915 			*/
916 			fromskew = 0;
917 			this_tw = tw;
918 			this_toskew = toskew;
919 		}
920 
921 		y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
922 	}
923 
924 	if (flip & FLIP_HORIZONTALLY) {
925 		uint32 line;
926 
927 		for (line = 0; line < h; line++) {
928 			uint32 *left = raster + (line * w);
929 			uint32 *right = left + w - 1;
930 
931 			while ( left < right ) {
932 				uint32 temp = *left;
933 				*left = *right;
934 				*right = temp;
935 				left++;
936 				right--;
937 			}
938 		}
939 	}
940 
941 	_TIFFfree(buf);
942 	return (ret);
943 }
944 
945 /*
946  * Get a strip-organized image that has
947  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
948  * or
949  *	SamplesPerPixel == 1
950  */
951 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)952 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
953 {
954 	TIFF* tif = img->tif;
955 	tileContigRoutine put = img->put.contig;
956 	uint32 row, y, nrow, nrowsub, rowstoread;
957 	tmsize_t pos;
958 	unsigned char* buf = NULL;
959 	uint32 rowsperstrip;
960 	uint16 subsamplinghor,subsamplingver;
961 	uint32 imagewidth = img->width;
962 	tmsize_t scanline;
963 	int32 fromskew, toskew;
964 	int ret = 1, flip;
965 	tmsize_t maxstripsize;
966 
967 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
968 	if( subsamplingver == 0 ) {
969 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
970 		return (0);
971 	}
972 
973 	maxstripsize = TIFFStripSize(tif);
974 
975 	flip = setorientation(img);
976 	if (flip & FLIP_VERTICALLY) {
977 		y = h - 1;
978 		toskew = -(int32)(w + w);
979 	} else {
980 		y = 0;
981 		toskew = -(int32)(w - w);
982 	}
983 
984 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
985 
986 	scanline = TIFFScanlineSize(tif);
987 	fromskew = (w < imagewidth ? imagewidth - w : 0);
988 	for (row = 0; row < h; row += nrow)
989 	{
990 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
991 		nrow = (row + rowstoread > h ? h - row : rowstoread);
992 		nrowsub = nrow;
993 		if ((nrowsub%subsamplingver)!=0)
994 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
995 		if (_TIFFReadEncodedStripAndAllocBuffer(tif,
996 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
997 		    (void**)(&buf),
998 		    maxstripsize,
999 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
1000 		    && (buf == NULL || img->stoponerr))
1001 		{
1002 			ret = 0;
1003 			break;
1004 		}
1005 
1006 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1007 			((tmsize_t) img->col_offset * img->samplesperpixel);
1008 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
1009 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1010 	}
1011 
1012 	if (flip & FLIP_HORIZONTALLY) {
1013 		uint32 line;
1014 
1015 		for (line = 0; line < h; line++) {
1016 			uint32 *left = raster + (line * w);
1017 			uint32 *right = left + w - 1;
1018 
1019 			while ( left < right ) {
1020 				uint32 temp = *left;
1021 				*left = *right;
1022 				*right = temp;
1023 				left++;
1024 				right--;
1025 			}
1026 		}
1027 	}
1028 
1029 	_TIFFfree(buf);
1030 	return (ret);
1031 }
1032 
1033 /*
1034  * Get a strip-organized image with
1035  *	 SamplesPerPixel > 1
1036  *	 PlanarConfiguration separated
1037  * We assume that all such images are RGB.
1038  */
1039 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)1040 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1041 {
1042 	TIFF* tif = img->tif;
1043 	tileSeparateRoutine put = img->put.separate;
1044 	unsigned char *buf = NULL;
1045 	unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
1046 	uint32 row, y, nrow, rowstoread;
1047 	tmsize_t pos;
1048 	tmsize_t scanline;
1049 	uint32 rowsperstrip, offset_row;
1050 	uint32 imagewidth = img->width;
1051 	tmsize_t stripsize;
1052 	tmsize_t bufsize;
1053 	int32 fromskew, toskew;
1054 	int alpha = img->alpha;
1055 	int ret = 1, flip;
1056         uint16 colorchannels;
1057 
1058 	stripsize = TIFFStripSize(tif);
1059 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
1060 	if (bufsize == 0) {
1061 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
1062 		return (0);
1063 	}
1064 
1065 	flip = setorientation(img);
1066 	if (flip & FLIP_VERTICALLY) {
1067 		y = h - 1;
1068 		toskew = -(int32)(w + w);
1069 	}
1070 	else {
1071 		y = 0;
1072 		toskew = -(int32)(w - w);
1073 	}
1074 
1075         switch( img->photometric )
1076         {
1077           case PHOTOMETRIC_MINISWHITE:
1078           case PHOTOMETRIC_MINISBLACK:
1079           case PHOTOMETRIC_PALETTE:
1080             colorchannels = 1;
1081             break;
1082 
1083           default:
1084             colorchannels = 3;
1085             break;
1086         }
1087 
1088 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1089 	scanline = TIFFScanlineSize(tif);
1090 	fromskew = (w < imagewidth ? imagewidth - w : 0);
1091 	for (row = 0; row < h; row += nrow)
1092 	{
1093 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1094 		nrow = (row + rowstoread > h ? h - row : rowstoread);
1095 		offset_row = row + img->row_offset;
1096                 if( buf == NULL )
1097                 {
1098                     if (_TIFFReadEncodedStripAndAllocBuffer(
1099                             tif, TIFFComputeStrip(tif, offset_row, 0),
1100                             (void**) &buf, bufsize,
1101                             ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1102                         && (buf == NULL || img->stoponerr))
1103                     {
1104                             ret = 0;
1105                             break;
1106                     }
1107                     p0 = buf;
1108                     if( colorchannels == 1 )
1109                     {
1110                         p2 = p1 = p0;
1111                         pa = (alpha?(p0+3*stripsize):NULL);
1112                     }
1113                     else
1114                     {
1115                         p1 = p0 + stripsize;
1116                         p2 = p1 + stripsize;
1117                         pa = (alpha?(p2+stripsize):NULL);
1118                     }
1119                 }
1120 		else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1121 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1122 		    && img->stoponerr)
1123 		{
1124 			ret = 0;
1125 			break;
1126 		}
1127 		if (colorchannels > 1
1128                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1129                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1130 		    && img->stoponerr)
1131 		{
1132 			ret = 0;
1133 			break;
1134 		}
1135 		if (colorchannels > 1
1136                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1137                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1138 		    && img->stoponerr)
1139 		{
1140 			ret = 0;
1141 			break;
1142 		}
1143 		if (alpha)
1144 		{
1145 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1146 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1147 			    && img->stoponerr)
1148 			{
1149 				ret = 0;
1150 				break;
1151 			}
1152 		}
1153 
1154 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1155 			((tmsize_t) img->col_offset * img->samplesperpixel);
1156 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1157 		    p2 + pos, (alpha?(pa+pos):NULL));
1158 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1159 	}
1160 
1161 	if (flip & FLIP_HORIZONTALLY) {
1162 		uint32 line;
1163 
1164 		for (line = 0; line < h; line++) {
1165 			uint32 *left = raster + (line * w);
1166 			uint32 *right = left + w - 1;
1167 
1168 			while ( left < right ) {
1169 				uint32 temp = *left;
1170 				*left = *right;
1171 				*right = temp;
1172 				left++;
1173 				right--;
1174 			}
1175 		}
1176 	}
1177 
1178 	_TIFFfree(buf);
1179 	return (ret);
1180 }
1181 
1182 /*
1183  * The following routines move decoded data returned
1184  * from the TIFF library into rasters filled with packed
1185  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1186  *
1187  * The routines have been created according to the most
1188  * important cases and optimized.  PickContigCase and
1189  * PickSeparateCase analyze the parameters and select
1190  * the appropriate "get" and "put" routine to use.
1191  */
1192 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1193 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1194 #define	REPEAT2(op)	op; op
1195 #define	CASE8(x,op)			\
1196     switch (x) {			\
1197     case 7: op; /*-fallthrough*/ \
1198     case 6: op; /*-fallthrough*/ \
1199     case 5: op; /*-fallthrough*/ \
1200     case 4: op; /*-fallthrough*/ \
1201     case 3: op; /*-fallthrough*/ \
1202     case 2: op; /*-fallthrough*/ \
1203     case 1: op;				\
1204     }
1205 #define	CASE4(x,op)	switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
1206 #define	NOP
1207 
1208 #define	UNROLL8(w, op1, op2) {		\
1209     uint32 _x;				\
1210     for (_x = w; _x >= 8; _x -= 8) {	\
1211 	op1;				\
1212 	REPEAT8(op2);			\
1213     }					\
1214     if (_x > 0) {			\
1215 	op1;				\
1216 	CASE8(_x,op2);			\
1217     }					\
1218 }
1219 #define	UNROLL4(w, op1, op2) {		\
1220     uint32 _x;				\
1221     for (_x = w; _x >= 4; _x -= 4) {	\
1222 	op1;				\
1223 	REPEAT4(op2);			\
1224     }					\
1225     if (_x > 0) {			\
1226 	op1;				\
1227 	CASE4(_x,op2);			\
1228     }					\
1229 }
1230 #define	UNROLL2(w, op1, op2) {		\
1231     uint32 _x;				\
1232     for (_x = w; _x >= 2; _x -= 2) {	\
1233 	op1;				\
1234 	REPEAT2(op2);			\
1235     }					\
1236     if (_x) {				\
1237 	op1;				\
1238 	op2;				\
1239     }					\
1240 }
1241 
1242 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1243 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1244 
1245 #define A1 (((uint32)0xffL)<<24)
1246 #define	PACK(r,g,b)	\
1247 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1248 #define	PACK4(r,g,b,a)	\
1249 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1250 #define W2B(v) (((v)>>8)&0xff)
1251 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1252 #define	PACKW(r,g,b)	\
1253 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1254 #define	PACKW4(r,g,b,a)	\
1255 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1256 
1257 #define	DECLAREContigPutFunc(name) \
1258 static void name(\
1259     TIFFRGBAImage* img, \
1260     uint32* cp, \
1261     uint32 x, uint32 y, \
1262     uint32 w, uint32 h, \
1263     int32 fromskew, int32 toskew, \
1264     unsigned char* pp \
1265 )
1266 
1267 /*
1268  * 8-bit palette => colormap/RGB
1269  */
DECLAREContigPutFunc(put8bitcmaptile)1270 DECLAREContigPutFunc(put8bitcmaptile)
1271 {
1272     uint32** PALmap = img->PALmap;
1273     int samplesperpixel = img->samplesperpixel;
1274 
1275     (void) y;
1276     while (h-- > 0) {
1277 	for (x = w; x-- > 0;)
1278         {
1279 	    *cp++ = PALmap[*pp][0];
1280             pp += samplesperpixel;
1281         }
1282 	cp += toskew;
1283 	pp += fromskew;
1284     }
1285 }
1286 
1287 /*
1288  * 4-bit palette => colormap/RGB
1289  */
DECLAREContigPutFunc(put4bitcmaptile)1290 DECLAREContigPutFunc(put4bitcmaptile)
1291 {
1292     uint32** PALmap = img->PALmap;
1293 
1294     (void) x; (void) y;
1295     fromskew /= 2;
1296     while (h-- > 0) {
1297 	uint32* bw;
1298 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1299 	cp += toskew;
1300 	pp += fromskew;
1301     }
1302 }
1303 
1304 /*
1305  * 2-bit palette => colormap/RGB
1306  */
DECLAREContigPutFunc(put2bitcmaptile)1307 DECLAREContigPutFunc(put2bitcmaptile)
1308 {
1309     uint32** PALmap = img->PALmap;
1310 
1311     (void) x; (void) y;
1312     fromskew /= 4;
1313     while (h-- > 0) {
1314 	uint32* bw;
1315 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1316 	cp += toskew;
1317 	pp += fromskew;
1318     }
1319 }
1320 
1321 /*
1322  * 1-bit palette => colormap/RGB
1323  */
DECLAREContigPutFunc(put1bitcmaptile)1324 DECLAREContigPutFunc(put1bitcmaptile)
1325 {
1326     uint32** PALmap = img->PALmap;
1327 
1328     (void) x; (void) y;
1329     fromskew /= 8;
1330     while (h-- > 0) {
1331 	uint32* bw;
1332 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1333 	cp += toskew;
1334 	pp += fromskew;
1335     }
1336 }
1337 
1338 /*
1339  * 8-bit greyscale => colormap/RGB
1340  */
DECLAREContigPutFunc(putgreytile)1341 DECLAREContigPutFunc(putgreytile)
1342 {
1343     int samplesperpixel = img->samplesperpixel;
1344     uint32** BWmap = img->BWmap;
1345 
1346     (void) y;
1347     while (h-- > 0) {
1348 	for (x = w; x-- > 0;)
1349         {
1350 	    *cp++ = BWmap[*pp][0];
1351             pp += samplesperpixel;
1352         }
1353 	cp += toskew;
1354 	pp += fromskew;
1355     }
1356 }
1357 
1358 /*
1359  * 8-bit greyscale with associated alpha => colormap/RGBA
1360  */
DECLAREContigPutFunc(putagreytile)1361 DECLAREContigPutFunc(putagreytile)
1362 {
1363     int samplesperpixel = img->samplesperpixel;
1364     uint32** BWmap = img->BWmap;
1365 
1366     (void) y;
1367     while (h-- > 0) {
1368 	for (x = w; x-- > 0;)
1369         {
1370             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1371             pp += samplesperpixel;
1372         }
1373 	cp += toskew;
1374 	pp += fromskew;
1375     }
1376 }
1377 
1378 /*
1379  * 16-bit greyscale => colormap/RGB
1380  */
DECLAREContigPutFunc(put16bitbwtile)1381 DECLAREContigPutFunc(put16bitbwtile)
1382 {
1383     int samplesperpixel = img->samplesperpixel;
1384     uint32** BWmap = img->BWmap;
1385 
1386     (void) y;
1387     while (h-- > 0) {
1388         uint16 *wp = (uint16 *) pp;
1389 
1390 	for (x = w; x-- > 0;)
1391         {
1392             /* use high order byte of 16bit value */
1393 
1394 	    *cp++ = BWmap[*wp >> 8][0];
1395             pp += 2 * samplesperpixel;
1396             wp += samplesperpixel;
1397         }
1398 	cp += toskew;
1399 	pp += fromskew;
1400     }
1401 }
1402 
1403 /*
1404  * 1-bit bilevel => colormap/RGB
1405  */
DECLAREContigPutFunc(put1bitbwtile)1406 DECLAREContigPutFunc(put1bitbwtile)
1407 {
1408     uint32** BWmap = img->BWmap;
1409 
1410     (void) x; (void) y;
1411     fromskew /= 8;
1412     while (h-- > 0) {
1413 	uint32* bw;
1414 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1415 	cp += toskew;
1416 	pp += fromskew;
1417     }
1418 }
1419 
1420 /*
1421  * 2-bit greyscale => colormap/RGB
1422  */
DECLAREContigPutFunc(put2bitbwtile)1423 DECLAREContigPutFunc(put2bitbwtile)
1424 {
1425     uint32** BWmap = img->BWmap;
1426 
1427     (void) x; (void) y;
1428     fromskew /= 4;
1429     while (h-- > 0) {
1430 	uint32* bw;
1431 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1432 	cp += toskew;
1433 	pp += fromskew;
1434     }
1435 }
1436 
1437 /*
1438  * 4-bit greyscale => colormap/RGB
1439  */
DECLAREContigPutFunc(put4bitbwtile)1440 DECLAREContigPutFunc(put4bitbwtile)
1441 {
1442     uint32** BWmap = img->BWmap;
1443 
1444     (void) x; (void) y;
1445     fromskew /= 2;
1446     while (h-- > 0) {
1447 	uint32* bw;
1448 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1449 	cp += toskew;
1450 	pp += fromskew;
1451     }
1452 }
1453 
1454 /*
1455  * 8-bit packed samples, no Map => RGB
1456  */
DECLAREContigPutFunc(putRGBcontig8bittile)1457 DECLAREContigPutFunc(putRGBcontig8bittile)
1458 {
1459     int samplesperpixel = img->samplesperpixel;
1460 
1461     (void) x; (void) y;
1462     fromskew *= samplesperpixel;
1463     while (h-- > 0) {
1464 	UNROLL8(w, NOP,
1465 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1466 	    pp += samplesperpixel);
1467 	cp += toskew;
1468 	pp += fromskew;
1469     }
1470 }
1471 
1472 /*
1473  * 8-bit packed samples => RGBA w/ associated alpha
1474  * (known to have Map == NULL)
1475  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1476 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1477 {
1478     int samplesperpixel = img->samplesperpixel;
1479 
1480     (void) x; (void) y;
1481     fromskew *= samplesperpixel;
1482     while (h-- > 0) {
1483 	UNROLL8(w, NOP,
1484 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1485 	    pp += samplesperpixel);
1486 	cp += toskew;
1487 	pp += fromskew;
1488     }
1489 }
1490 
1491 /*
1492  * 8-bit packed samples => RGBA w/ unassociated alpha
1493  * (known to have Map == NULL)
1494  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1495 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1496 {
1497 	int samplesperpixel = img->samplesperpixel;
1498 	(void) y;
1499 	fromskew *= samplesperpixel;
1500 	while (h-- > 0) {
1501 		uint32 r, g, b, a;
1502 		uint8* m;
1503 		for (x = w; x-- > 0;) {
1504 			a = pp[3];
1505 			m = img->UaToAa+((size_t) a<<8);
1506 			r = m[pp[0]];
1507 			g = m[pp[1]];
1508 			b = m[pp[2]];
1509 			*cp++ = PACK4(r,g,b,a);
1510 			pp += samplesperpixel;
1511 		}
1512 		cp += toskew;
1513 		pp += fromskew;
1514 	}
1515 }
1516 
1517 /*
1518  * 16-bit packed samples => RGB
1519  */
DECLAREContigPutFunc(putRGBcontig16bittile)1520 DECLAREContigPutFunc(putRGBcontig16bittile)
1521 {
1522 	int samplesperpixel = img->samplesperpixel;
1523 	uint16 *wp = (uint16 *)pp;
1524 	(void) y;
1525 	fromskew *= samplesperpixel;
1526 	while (h-- > 0) {
1527 		for (x = w; x-- > 0;) {
1528 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1529 			    img->Bitdepth16To8[wp[1]],
1530 			    img->Bitdepth16To8[wp[2]]);
1531 			wp += samplesperpixel;
1532 		}
1533 		cp += toskew;
1534 		wp += fromskew;
1535 	}
1536 }
1537 
1538 /*
1539  * 16-bit packed samples => RGBA w/ associated alpha
1540  * (known to have Map == NULL)
1541  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1542 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1543 {
1544 	int samplesperpixel = img->samplesperpixel;
1545 	uint16 *wp = (uint16 *)pp;
1546 	(void) y;
1547 	fromskew *= samplesperpixel;
1548 	while (h-- > 0) {
1549 		for (x = w; x-- > 0;) {
1550 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1551 			    img->Bitdepth16To8[wp[1]],
1552 			    img->Bitdepth16To8[wp[2]],
1553 			    img->Bitdepth16To8[wp[3]]);
1554 			wp += samplesperpixel;
1555 		}
1556 		cp += toskew;
1557 		wp += fromskew;
1558 	}
1559 }
1560 
1561 /*
1562  * 16-bit packed samples => RGBA w/ unassociated alpha
1563  * (known to have Map == NULL)
1564  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1565 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1566 {
1567 	int samplesperpixel = img->samplesperpixel;
1568 	uint16 *wp = (uint16 *)pp;
1569 	(void) y;
1570 	fromskew *= samplesperpixel;
1571 	while (h-- > 0) {
1572 		uint32 r,g,b,a;
1573 		uint8* m;
1574 		for (x = w; x-- > 0;) {
1575 			a = img->Bitdepth16To8[wp[3]];
1576 			m = img->UaToAa+((size_t) a<<8);
1577 			r = m[img->Bitdepth16To8[wp[0]]];
1578 			g = m[img->Bitdepth16To8[wp[1]]];
1579 			b = m[img->Bitdepth16To8[wp[2]]];
1580 			*cp++ = PACK4(r,g,b,a);
1581 			wp += samplesperpixel;
1582 		}
1583 		cp += toskew;
1584 		wp += fromskew;
1585 	}
1586 }
1587 
1588 /*
1589  * 8-bit packed CMYK samples w/o Map => RGB
1590  *
1591  * NB: The conversion of CMYK->RGB is *very* crude.
1592  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1593 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1594 {
1595     int samplesperpixel = img->samplesperpixel;
1596     uint16 r, g, b, k;
1597 
1598     (void) x; (void) y;
1599     fromskew *= samplesperpixel;
1600     while (h-- > 0) {
1601 	UNROLL8(w, NOP,
1602 	    k = 255 - pp[3];
1603 	    r = (k*(255-pp[0]))/255;
1604 	    g = (k*(255-pp[1]))/255;
1605 	    b = (k*(255-pp[2]))/255;
1606 	    *cp++ = PACK(r, g, b);
1607 	    pp += samplesperpixel);
1608 	cp += toskew;
1609 	pp += fromskew;
1610     }
1611 }
1612 
1613 /*
1614  * 8-bit packed CMYK samples w/Map => RGB
1615  *
1616  * NB: The conversion of CMYK->RGB is *very* crude.
1617  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1618 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1619 {
1620     int samplesperpixel = img->samplesperpixel;
1621     TIFFRGBValue* Map = img->Map;
1622     uint16 r, g, b, k;
1623 
1624     (void) y;
1625     fromskew *= samplesperpixel;
1626     while (h-- > 0) {
1627 	for (x = w; x-- > 0;) {
1628 	    k = 255 - pp[3];
1629 	    r = (k*(255-pp[0]))/255;
1630 	    g = (k*(255-pp[1]))/255;
1631 	    b = (k*(255-pp[2]))/255;
1632 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1633 	    pp += samplesperpixel;
1634 	}
1635 	pp += fromskew;
1636 	cp += toskew;
1637     }
1638 }
1639 
1640 #define	DECLARESepPutFunc(name) \
1641 static void name(\
1642     TIFFRGBAImage* img,\
1643     uint32* cp,\
1644     uint32 x, uint32 y, \
1645     uint32 w, uint32 h,\
1646     int32 fromskew, int32 toskew,\
1647     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1648 )
1649 
1650 /*
1651  * 8-bit unpacked samples => RGB
1652  */
DECLARESepPutFunc(putRGBseparate8bittile)1653 DECLARESepPutFunc(putRGBseparate8bittile)
1654 {
1655     (void) img; (void) x; (void) y; (void) a;
1656     while (h-- > 0) {
1657 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1658 	SKEW(r, g, b, fromskew);
1659 	cp += toskew;
1660     }
1661 }
1662 
1663 /*
1664  * 8-bit unpacked samples => RGBA w/ associated alpha
1665  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1666 DECLARESepPutFunc(putRGBAAseparate8bittile)
1667 {
1668 	(void) img; (void) x; (void) y;
1669 	while (h-- > 0) {
1670 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1671 		SKEW4(r, g, b, a, fromskew);
1672 		cp += toskew;
1673 	}
1674 }
1675 
1676 /*
1677  * 8-bit unpacked CMYK samples => RGBA
1678  */
DECLARESepPutFunc(putCMYKseparate8bittile)1679 DECLARESepPutFunc(putCMYKseparate8bittile)
1680 {
1681 	(void) img; (void) y;
1682 	while (h-- > 0) {
1683 		uint32 rv, gv, bv, kv;
1684 		for (x = w; x-- > 0;) {
1685 			kv = 255 - *a++;
1686 			rv = (kv*(255-*r++))/255;
1687 			gv = (kv*(255-*g++))/255;
1688 			bv = (kv*(255-*b++))/255;
1689 			*cp++ = PACK4(rv,gv,bv,255);
1690 		}
1691 		SKEW4(r, g, b, a, fromskew);
1692 		cp += toskew;
1693 	}
1694 }
1695 
1696 /*
1697  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1698  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1699 DECLARESepPutFunc(putRGBUAseparate8bittile)
1700 {
1701 	(void) img; (void) y;
1702 	while (h-- > 0) {
1703 		uint32 rv, gv, bv, av;
1704 		uint8* m;
1705 		for (x = w; x-- > 0;) {
1706 			av = *a++;
1707 			m = img->UaToAa+((size_t) av<<8);
1708 			rv = m[*r++];
1709 			gv = m[*g++];
1710 			bv = m[*b++];
1711 			*cp++ = PACK4(rv,gv,bv,av);
1712 		}
1713 		SKEW4(r, g, b, a, fromskew);
1714 		cp += toskew;
1715 	}
1716 }
1717 
1718 /*
1719  * 16-bit unpacked samples => RGB
1720  */
DECLARESepPutFunc(putRGBseparate16bittile)1721 DECLARESepPutFunc(putRGBseparate16bittile)
1722 {
1723 	uint16 *wr = (uint16*) r;
1724 	uint16 *wg = (uint16*) g;
1725 	uint16 *wb = (uint16*) b;
1726 	(void) img; (void) y; (void) a;
1727 	while (h-- > 0) {
1728 		for (x = 0; x < w; x++)
1729 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1730 			    img->Bitdepth16To8[*wg++],
1731 			    img->Bitdepth16To8[*wb++]);
1732 		SKEW(wr, wg, wb, fromskew);
1733 		cp += toskew;
1734 	}
1735 }
1736 
1737 /*
1738  * 16-bit unpacked samples => RGBA w/ associated alpha
1739  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1740 DECLARESepPutFunc(putRGBAAseparate16bittile)
1741 {
1742 	uint16 *wr = (uint16*) r;
1743 	uint16 *wg = (uint16*) g;
1744 	uint16 *wb = (uint16*) b;
1745 	uint16 *wa = (uint16*) a;
1746 	(void) img; (void) y;
1747 	while (h-- > 0) {
1748 		for (x = 0; x < w; x++)
1749 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1750 			    img->Bitdepth16To8[*wg++],
1751 			    img->Bitdepth16To8[*wb++],
1752 			    img->Bitdepth16To8[*wa++]);
1753 		SKEW4(wr, wg, wb, wa, fromskew);
1754 		cp += toskew;
1755 	}
1756 }
1757 
1758 /*
1759  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1760  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1761 DECLARESepPutFunc(putRGBUAseparate16bittile)
1762 {
1763 	uint16 *wr = (uint16*) r;
1764 	uint16 *wg = (uint16*) g;
1765 	uint16 *wb = (uint16*) b;
1766 	uint16 *wa = (uint16*) a;
1767 	(void) img; (void) y;
1768 	while (h-- > 0) {
1769 		uint32 r2,g2,b2,a2;
1770 		uint8* m;
1771 		for (x = w; x-- > 0;) {
1772 			a2 = img->Bitdepth16To8[*wa++];
1773 			m = img->UaToAa+((size_t) a2<<8);
1774 			r2 = m[img->Bitdepth16To8[*wr++]];
1775 			g2 = m[img->Bitdepth16To8[*wg++]];
1776 			b2 = m[img->Bitdepth16To8[*wb++]];
1777 			*cp++ = PACK4(r2,g2,b2,a2);
1778 		}
1779 		SKEW4(wr, wg, wb, wa, fromskew);
1780 		cp += toskew;
1781 	}
1782 }
1783 
1784 /*
1785  * 8-bit packed CIE L*a*b 1976 samples => RGB
1786  */
DECLAREContigPutFunc(putcontig8bitCIELab)1787 DECLAREContigPutFunc(putcontig8bitCIELab)
1788 {
1789 	float X, Y, Z;
1790 	uint32 r, g, b;
1791 	(void) y;
1792 	fromskew *= 3;
1793 	while (h-- > 0) {
1794 		for (x = w; x-- > 0;) {
1795 			TIFFCIELabToXYZ(img->cielab,
1796 					(unsigned char)pp[0],
1797 					(signed char)pp[1],
1798 					(signed char)pp[2],
1799 					&X, &Y, &Z);
1800 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1801 			*cp++ = PACK(r, g, b);
1802 			pp += 3;
1803 		}
1804 		cp += toskew;
1805 		pp += fromskew;
1806 	}
1807 }
1808 
1809 /*
1810  * YCbCr -> RGB conversion and packing routines.
1811  */
1812 
1813 #define	YCbCrtoRGB(dst, Y) {						\
1814 	uint32 r, g, b;							\
1815 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1816 	dst = PACK(r, g, b);						\
1817 }
1818 
1819 /*
1820  * 8-bit packed YCbCr samples => RGB
1821  * This function is generic for different sampling sizes,
1822  * and can handle blocks sizes that aren't multiples of the
1823  * sampling size.  However, it is substantially less optimized
1824  * than the specific sampling cases.  It is used as a fallback
1825  * for difficult blocks.
1826  */
1827 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,unsigned char * pp,int h_group,int v_group)1828 static void putcontig8bitYCbCrGenericTile(
1829     TIFFRGBAImage* img,
1830     uint32* cp,
1831     uint32 x, uint32 y,
1832     uint32 w, uint32 h,
1833     int32 fromskew, int32 toskew,
1834     unsigned char* pp,
1835     int h_group,
1836     int v_group )
1837 
1838 {
1839     uint32* cp1 = cp+w+toskew;
1840     uint32* cp2 = cp1+w+toskew;
1841     uint32* cp3 = cp2+w+toskew;
1842     int32 incr = 3*w+4*toskew;
1843     int32   Cb, Cr;
1844     int     group_size = v_group * h_group + 2;
1845 
1846     (void) y;
1847     fromskew = (fromskew * group_size) / h_group;
1848 
1849     for( yy = 0; yy < h; yy++ )
1850     {
1851         unsigned char *pp_line;
1852         int     y_line_group = yy / v_group;
1853         int     y_remainder = yy - y_line_group * v_group;
1854 
1855         pp_line = pp + v_line_group *
1856 
1857 
1858         for( xx = 0; xx < w; xx++ )
1859         {
1860             Cb = pp
1861         }
1862     }
1863     for (; h >= 4; h -= 4) {
1864 	x = w>>2;
1865 	do {
1866 	    Cb = pp[16];
1867 	    Cr = pp[17];
1868 
1869 	    YCbCrtoRGB(cp [0], pp[ 0]);
1870 	    YCbCrtoRGB(cp [1], pp[ 1]);
1871 	    YCbCrtoRGB(cp [2], pp[ 2]);
1872 	    YCbCrtoRGB(cp [3], pp[ 3]);
1873 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1874 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1875 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1876 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1877 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1878 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1879 	    YCbCrtoRGB(cp2[2], pp[10]);
1880 	    YCbCrtoRGB(cp2[3], pp[11]);
1881 	    YCbCrtoRGB(cp3[0], pp[12]);
1882 	    YCbCrtoRGB(cp3[1], pp[13]);
1883 	    YCbCrtoRGB(cp3[2], pp[14]);
1884 	    YCbCrtoRGB(cp3[3], pp[15]);
1885 
1886 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1887 	    pp += 18;
1888 	} while (--x);
1889 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1890 	pp += fromskew;
1891     }
1892 }
1893 #endif
1894 
1895 /*
1896  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1897  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1898 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1899 {
1900     uint32* cp1 = cp+w+toskew;
1901     uint32* cp2 = cp1+w+toskew;
1902     uint32* cp3 = cp2+w+toskew;
1903     int32 incr = 3*w+4*toskew;
1904 
1905     (void) y;
1906     /* adjust fromskew */
1907     fromskew = (fromskew * 18) / 4;
1908     if ((h & 3) == 0 && (w & 3) == 0) {
1909         for (; h >= 4; h -= 4) {
1910             x = w>>2;
1911             do {
1912                 int32 Cb = pp[16];
1913                 int32 Cr = pp[17];
1914 
1915                 YCbCrtoRGB(cp [0], pp[ 0]);
1916                 YCbCrtoRGB(cp [1], pp[ 1]);
1917                 YCbCrtoRGB(cp [2], pp[ 2]);
1918                 YCbCrtoRGB(cp [3], pp[ 3]);
1919                 YCbCrtoRGB(cp1[0], pp[ 4]);
1920                 YCbCrtoRGB(cp1[1], pp[ 5]);
1921                 YCbCrtoRGB(cp1[2], pp[ 6]);
1922                 YCbCrtoRGB(cp1[3], pp[ 7]);
1923                 YCbCrtoRGB(cp2[0], pp[ 8]);
1924                 YCbCrtoRGB(cp2[1], pp[ 9]);
1925                 YCbCrtoRGB(cp2[2], pp[10]);
1926                 YCbCrtoRGB(cp2[3], pp[11]);
1927                 YCbCrtoRGB(cp3[0], pp[12]);
1928                 YCbCrtoRGB(cp3[1], pp[13]);
1929                 YCbCrtoRGB(cp3[2], pp[14]);
1930                 YCbCrtoRGB(cp3[3], pp[15]);
1931 
1932                 cp += 4;
1933                 cp1 += 4;
1934                 cp2 += 4;
1935                 cp3 += 4;
1936                 pp += 18;
1937             } while (--x);
1938             cp += incr;
1939             cp1 += incr;
1940             cp2 += incr;
1941             cp3 += incr;
1942             pp += fromskew;
1943         }
1944     } else {
1945         while (h > 0) {
1946             for (x = w; x > 0;) {
1947                 int32 Cb = pp[16];
1948                 int32 Cr = pp[17];
1949                 switch (x) {
1950                 default:
1951                     switch (h) {
1952                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1953                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1954                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1955                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1956                     }                                    /* FALLTHROUGH */
1957                 case 3:
1958                     switch (h) {
1959                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1960                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1961                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1962                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1963                     }                                    /* FALLTHROUGH */
1964                 case 2:
1965                     switch (h) {
1966                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1967                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1968                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1969                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1970                     }                                    /* FALLTHROUGH */
1971                 case 1:
1972                     switch (h) {
1973                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1974                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1975                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1976                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1977                     }                                    /* FALLTHROUGH */
1978                 }
1979                 if (x < 4) {
1980                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1981                     x = 0;
1982                 }
1983                 else {
1984                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1985                     x -= 4;
1986                 }
1987                 pp += 18;
1988             }
1989             if (h <= 4)
1990                 break;
1991             h -= 4;
1992             cp += incr;
1993             cp1 += incr;
1994             cp2 += incr;
1995             cp3 += incr;
1996             pp += fromskew;
1997         }
1998     }
1999 }
2000 
2001 /*
2002  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
2003  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)2004 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
2005 {
2006     uint32* cp1 = cp+w+toskew;
2007     int32 incr = 2*toskew+w;
2008 
2009     (void) y;
2010     fromskew = (fromskew * 10) / 4;
2011     if ((w & 3) == 0 && (h & 1) == 0) {
2012         for (; h >= 2; h -= 2) {
2013             x = w>>2;
2014             do {
2015                 int32 Cb = pp[8];
2016                 int32 Cr = pp[9];
2017 
2018                 YCbCrtoRGB(cp [0], pp[0]);
2019                 YCbCrtoRGB(cp [1], pp[1]);
2020                 YCbCrtoRGB(cp [2], pp[2]);
2021                 YCbCrtoRGB(cp [3], pp[3]);
2022                 YCbCrtoRGB(cp1[0], pp[4]);
2023                 YCbCrtoRGB(cp1[1], pp[5]);
2024                 YCbCrtoRGB(cp1[2], pp[6]);
2025                 YCbCrtoRGB(cp1[3], pp[7]);
2026 
2027                 cp += 4;
2028                 cp1 += 4;
2029                 pp += 10;
2030             } while (--x);
2031             cp += incr;
2032             cp1 += incr;
2033             pp += fromskew;
2034         }
2035     } else {
2036         while (h > 0) {
2037             for (x = w; x > 0;) {
2038                 int32 Cb = pp[8];
2039                 int32 Cr = pp[9];
2040                 switch (x) {
2041                 default:
2042                     switch (h) {
2043                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
2044                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
2045                     }                                    /* FALLTHROUGH */
2046                 case 3:
2047                     switch (h) {
2048                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
2049                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
2050                     }                                    /* FALLTHROUGH */
2051                 case 2:
2052                     switch (h) {
2053                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
2054                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
2055                     }                                    /* FALLTHROUGH */
2056                 case 1:
2057                     switch (h) {
2058                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
2059                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
2060                     }                                    /* FALLTHROUGH */
2061                 }
2062                 if (x < 4) {
2063                     cp += x; cp1 += x;
2064                     x = 0;
2065                 }
2066                 else {
2067                     cp += 4; cp1 += 4;
2068                     x -= 4;
2069                 }
2070                 pp += 10;
2071             }
2072             if (h <= 2)
2073                 break;
2074             h -= 2;
2075             cp += incr;
2076             cp1 += incr;
2077             pp += fromskew;
2078         }
2079     }
2080 }
2081 
2082 /*
2083  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2084  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)2085 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2086 {
2087     (void) y;
2088     /* XXX adjust fromskew */
2089     do {
2090 	x = w>>2;
2091 	while(x>0) {
2092 	    int32 Cb = pp[4];
2093 	    int32 Cr = pp[5];
2094 
2095 	    YCbCrtoRGB(cp [0], pp[0]);
2096 	    YCbCrtoRGB(cp [1], pp[1]);
2097 	    YCbCrtoRGB(cp [2], pp[2]);
2098 	    YCbCrtoRGB(cp [3], pp[3]);
2099 
2100 	    cp += 4;
2101 	    pp += 6;
2102 		x--;
2103 	}
2104 
2105         if( (w&3) != 0 )
2106         {
2107 	    int32 Cb = pp[4];
2108 	    int32 Cr = pp[5];
2109 
2110             switch( (w&3) ) {
2111               case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
2112               case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
2113               case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
2114               case 0: break;
2115             }
2116 
2117             cp += (w&3);
2118             pp += 6;
2119         }
2120 
2121 	cp += toskew;
2122 	pp += fromskew;
2123     } while (--h);
2124 
2125 }
2126 
2127 /*
2128  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2129  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)2130 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2131 {
2132 	uint32* cp2;
2133 	int32 incr = 2*toskew+w;
2134 	(void) y;
2135 	fromskew = (fromskew / 2) * 6;
2136 	cp2 = cp+w+toskew;
2137 	while (h>=2) {
2138 		x = w;
2139 		while (x>=2) {
2140 			uint32 Cb = pp[4];
2141 			uint32 Cr = pp[5];
2142 			YCbCrtoRGB(cp[0], pp[0]);
2143 			YCbCrtoRGB(cp[1], pp[1]);
2144 			YCbCrtoRGB(cp2[0], pp[2]);
2145 			YCbCrtoRGB(cp2[1], pp[3]);
2146 			cp += 2;
2147 			cp2 += 2;
2148 			pp += 6;
2149 			x -= 2;
2150 		}
2151 		if (x==1) {
2152 			uint32 Cb = pp[4];
2153 			uint32 Cr = pp[5];
2154 			YCbCrtoRGB(cp[0], pp[0]);
2155 			YCbCrtoRGB(cp2[0], pp[2]);
2156 			cp ++ ;
2157 			cp2 ++ ;
2158 			pp += 6;
2159 		}
2160 		cp += incr;
2161 		cp2 += incr;
2162 		pp += fromskew;
2163 		h-=2;
2164 	}
2165 	if (h==1) {
2166 		x = w;
2167 		while (x>=2) {
2168 			uint32 Cb = pp[4];
2169 			uint32 Cr = pp[5];
2170 			YCbCrtoRGB(cp[0], pp[0]);
2171 			YCbCrtoRGB(cp[1], pp[1]);
2172 			cp += 2;
2173 			cp2 += 2;
2174 			pp += 6;
2175 			x -= 2;
2176 		}
2177 		if (x==1) {
2178 			uint32 Cb = pp[4];
2179 			uint32 Cr = pp[5];
2180 			YCbCrtoRGB(cp[0], pp[0]);
2181 		}
2182 	}
2183 }
2184 
2185 /*
2186  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2187  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)2188 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2189 {
2190 	(void) y;
2191 	fromskew = (fromskew * 4) / 2;
2192 	do {
2193 		x = w>>1;
2194 		while(x>0) {
2195 			int32 Cb = pp[2];
2196 			int32 Cr = pp[3];
2197 
2198 			YCbCrtoRGB(cp[0], pp[0]);
2199 			YCbCrtoRGB(cp[1], pp[1]);
2200 
2201 			cp += 2;
2202 			pp += 4;
2203 			x --;
2204 		}
2205 
2206 		if( (w&1) != 0 )
2207 		{
2208 			int32 Cb = pp[2];
2209 			int32 Cr = pp[3];
2210 
2211 			YCbCrtoRGB(cp[0], pp[0]);
2212 
2213 			cp += 1;
2214 			pp += 4;
2215 		}
2216 
2217 		cp += toskew;
2218 		pp += fromskew;
2219 	} while (--h);
2220 }
2221 
2222 /*
2223  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2224  */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)2225 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2226 {
2227 	uint32* cp2;
2228 	int32 incr = 2*toskew+w;
2229 	(void) y;
2230 	fromskew = (fromskew / 2) * 4;
2231 	cp2 = cp+w+toskew;
2232 	while (h>=2) {
2233 		x = w;
2234 		do {
2235 			uint32 Cb = pp[2];
2236 			uint32 Cr = pp[3];
2237 			YCbCrtoRGB(cp[0], pp[0]);
2238 			YCbCrtoRGB(cp2[0], pp[1]);
2239 			cp ++;
2240 			cp2 ++;
2241 			pp += 4;
2242 		} while (--x);
2243 		cp += incr;
2244 		cp2 += incr;
2245 		pp += fromskew;
2246 		h-=2;
2247 	}
2248 	if (h==1) {
2249 		x = w;
2250 		do {
2251 			uint32 Cb = pp[2];
2252 			uint32 Cr = pp[3];
2253 			YCbCrtoRGB(cp[0], pp[0]);
2254 			cp ++;
2255 			pp += 4;
2256 		} while (--x);
2257 	}
2258 }
2259 
2260 /*
2261  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2262  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)2263 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2264 {
2265 	(void) y;
2266 	fromskew *= 3;
2267 	do {
2268 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2269 		do {
2270 			int32 Cb = pp[1];
2271 			int32 Cr = pp[2];
2272 
2273 			YCbCrtoRGB(*cp++, pp[0]);
2274 
2275 			pp += 3;
2276 		} while (--x);
2277 		cp += toskew;
2278 		pp += fromskew;
2279 	} while (--h);
2280 }
2281 
2282 /*
2283  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2284  */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)2285 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2286 {
2287 	(void) y;
2288 	(void) a;
2289 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2290 	while (h-- > 0) {
2291 		x = w;
2292 		do {
2293 			uint32 dr, dg, db;
2294 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2295 			*cp++ = PACK(dr,dg,db);
2296 		} while (--x);
2297 		SKEW(r, g, b, fromskew);
2298 		cp += toskew;
2299 	}
2300 }
2301 #undef YCbCrtoRGB
2302 
isInRefBlackWhiteRange(float f)2303 static int isInRefBlackWhiteRange(float f)
2304 {
2305     return f >= (float)(-0x7FFFFFFF + 128) && f <= (float)0x7FFFFFFF;
2306 }
2307 
2308 static int
initYCbCrConversion(TIFFRGBAImage * img)2309 initYCbCrConversion(TIFFRGBAImage* img)
2310 {
2311 	static const char module[] = "initYCbCrConversion";
2312 
2313 	float *luma, *refBlackWhite;
2314 
2315 	if (img->ycbcr == NULL) {
2316 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2317 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2318 		    + 4*256*sizeof (TIFFRGBValue)
2319 		    + 2*256*sizeof (int)
2320 		    + 3*256*sizeof (int32)
2321 		    );
2322 		if (img->ycbcr == NULL) {
2323 			TIFFErrorExt(img->tif->tif_clientdata, module,
2324 			    "No space for YCbCr->RGB conversion state");
2325 			return (0);
2326 		}
2327 	}
2328 
2329 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2330 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2331 	    &refBlackWhite);
2332 
2333         /* Do some validation to avoid later issues. Detect NaN for now */
2334         /* and also if lumaGreen is zero since we divide by it later */
2335         if( luma[0] != luma[0] ||
2336             luma[1] != luma[1] ||
2337             luma[1] == 0.0 ||
2338             luma[2] != luma[2] )
2339         {
2340             TIFFErrorExt(img->tif->tif_clientdata, module,
2341                 "Invalid values for YCbCrCoefficients tag");
2342             return (0);
2343         }
2344 
2345         if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
2346             !isInRefBlackWhiteRange(refBlackWhite[1]) ||
2347             !isInRefBlackWhiteRange(refBlackWhite[2]) ||
2348             !isInRefBlackWhiteRange(refBlackWhite[3]) ||
2349             !isInRefBlackWhiteRange(refBlackWhite[4]) ||
2350             !isInRefBlackWhiteRange(refBlackWhite[5]) )
2351         {
2352             TIFFErrorExt(img->tif->tif_clientdata, module,
2353                 "Invalid values for ReferenceBlackWhite tag");
2354             return (0);
2355         }
2356 
2357 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2358 		return(0);
2359 	return (1);
2360 }
2361 
2362 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2363 initCIELabConversion(TIFFRGBAImage* img)
2364 {
2365 	static const char module[] = "initCIELabConversion";
2366 
2367 	float   *whitePoint;
2368 	float   refWhite[3];
2369 
2370 	if (!img->cielab) {
2371 		img->cielab = (TIFFCIELabToRGB *)
2372 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2373 		if (!img->cielab) {
2374 			TIFFErrorExt(img->tif->tif_clientdata, module,
2375 			    "No space for CIE L*a*b*->RGB conversion state.");
2376 			return NULL;
2377 		}
2378 	}
2379 
2380 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2381 	refWhite[1] = 100.0F;
2382 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2383 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2384 		      / whitePoint[1] * refWhite[1];
2385 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2386 		TIFFErrorExt(img->tif->tif_clientdata, module,
2387 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2388 		_TIFFfree(img->cielab);
2389 		return NULL;
2390 	}
2391 
2392 	return putcontig8bitCIELab;
2393 }
2394 
2395 /*
2396  * Greyscale images with less than 8 bits/sample are handled
2397  * with a table to avoid lots of shifts and masks.  The table
2398  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2399  * pixel values simply by indexing into the table with one
2400  * number.
2401  */
2402 static int
makebwmap(TIFFRGBAImage * img)2403 makebwmap(TIFFRGBAImage* img)
2404 {
2405     TIFFRGBValue* Map = img->Map;
2406     int bitspersample = img->bitspersample;
2407     int nsamples = 8 / bitspersample;
2408     int i;
2409     uint32* p;
2410 
2411     if( nsamples == 0 )
2412         nsamples = 1;
2413 
2414     img->BWmap = (uint32**) _TIFFmalloc(
2415 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2416     if (img->BWmap == NULL) {
2417 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2418 		return (0);
2419     }
2420     p = (uint32*)(img->BWmap + 256);
2421     for (i = 0; i < 256; i++) {
2422 	TIFFRGBValue c;
2423 	img->BWmap[i] = p;
2424 	switch (bitspersample) {
2425 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2426 	case 1:
2427 	    GREY(i>>7);
2428 	    GREY((i>>6)&1);
2429 	    GREY((i>>5)&1);
2430 	    GREY((i>>4)&1);
2431 	    GREY((i>>3)&1);
2432 	    GREY((i>>2)&1);
2433 	    GREY((i>>1)&1);
2434 	    GREY(i&1);
2435 	    break;
2436 	case 2:
2437 	    GREY(i>>6);
2438 	    GREY((i>>4)&3);
2439 	    GREY((i>>2)&3);
2440 	    GREY(i&3);
2441 	    break;
2442 	case 4:
2443 	    GREY(i>>4);
2444 	    GREY(i&0xf);
2445 	    break;
2446 	case 8:
2447         case 16:
2448 	    GREY(i);
2449 	    break;
2450 	}
2451 #undef	GREY
2452     }
2453     return (1);
2454 }
2455 
2456 /*
2457  * Construct a mapping table to convert from the range
2458  * of the data samples to [0,255] --for display.  This
2459  * process also handles inverting B&W images when needed.
2460  */
2461 static int
setupMap(TIFFRGBAImage * img)2462 setupMap(TIFFRGBAImage* img)
2463 {
2464     int32 x, range;
2465 
2466     range = (int32)((1L<<img->bitspersample)-1);
2467 
2468     /* treat 16 bit the same as eight bit */
2469     if( img->bitspersample == 16 )
2470         range = (int32) 255;
2471 
2472     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2473     if (img->Map == NULL) {
2474 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2475 			"No space for photometric conversion table");
2476 		return (0);
2477     }
2478     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2479 	for (x = 0; x <= range; x++)
2480 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2481     } else {
2482 	for (x = 0; x <= range; x++)
2483 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2484     }
2485     if (img->bitspersample <= 16 &&
2486 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2487 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2488 	/*
2489 	 * Use photometric mapping table to construct
2490 	 * unpacking tables for samples <= 8 bits.
2491 	 */
2492 	if (!makebwmap(img))
2493 	    return (0);
2494 	/* no longer need Map, free it */
2495 	_TIFFfree(img->Map);
2496 	img->Map = NULL;
2497     }
2498     return (1);
2499 }
2500 
2501 static int
checkcmap(TIFFRGBAImage * img)2502 checkcmap(TIFFRGBAImage* img)
2503 {
2504     uint16* r = img->redcmap;
2505     uint16* g = img->greencmap;
2506     uint16* b = img->bluecmap;
2507     long n = 1L<<img->bitspersample;
2508 
2509     while (n-- > 0)
2510 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2511 	    return (16);
2512     return (8);
2513 }
2514 
2515 static void
cvtcmap(TIFFRGBAImage * img)2516 cvtcmap(TIFFRGBAImage* img)
2517 {
2518     uint16* r = img->redcmap;
2519     uint16* g = img->greencmap;
2520     uint16* b = img->bluecmap;
2521     long i;
2522 
2523     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2524 #define	CVT(x)		((uint16)((x)>>8))
2525 	r[i] = CVT(r[i]);
2526 	g[i] = CVT(g[i]);
2527 	b[i] = CVT(b[i]);
2528 #undef	CVT
2529     }
2530 }
2531 
2532 /*
2533  * Palette images with <= 8 bits/sample are handled
2534  * with a table to avoid lots of shifts and masks.  The table
2535  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2536  * pixel values simply by indexing into the table with one
2537  * number.
2538  */
2539 static int
makecmap(TIFFRGBAImage * img)2540 makecmap(TIFFRGBAImage* img)
2541 {
2542     int bitspersample = img->bitspersample;
2543     int nsamples = 8 / bitspersample;
2544     uint16* r = img->redcmap;
2545     uint16* g = img->greencmap;
2546     uint16* b = img->bluecmap;
2547     uint32 *p;
2548     int i;
2549 
2550     img->PALmap = (uint32**) _TIFFmalloc(
2551 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2552     if (img->PALmap == NULL) {
2553 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2554 		return (0);
2555 	}
2556     p = (uint32*)(img->PALmap + 256);
2557     for (i = 0; i < 256; i++) {
2558 	TIFFRGBValue c;
2559 	img->PALmap[i] = p;
2560 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2561 	switch (bitspersample) {
2562 	case 1:
2563 	    CMAP(i>>7);
2564 	    CMAP((i>>6)&1);
2565 	    CMAP((i>>5)&1);
2566 	    CMAP((i>>4)&1);
2567 	    CMAP((i>>3)&1);
2568 	    CMAP((i>>2)&1);
2569 	    CMAP((i>>1)&1);
2570 	    CMAP(i&1);
2571 	    break;
2572 	case 2:
2573 	    CMAP(i>>6);
2574 	    CMAP((i>>4)&3);
2575 	    CMAP((i>>2)&3);
2576 	    CMAP(i&3);
2577 	    break;
2578 	case 4:
2579 	    CMAP(i>>4);
2580 	    CMAP(i&0xf);
2581 	    break;
2582 	case 8:
2583 	    CMAP(i);
2584 	    break;
2585 	}
2586 #undef CMAP
2587     }
2588     return (1);
2589 }
2590 
2591 /*
2592  * Construct any mapping table used
2593  * by the associated put routine.
2594  */
2595 static int
buildMap(TIFFRGBAImage * img)2596 buildMap(TIFFRGBAImage* img)
2597 {
2598     switch (img->photometric) {
2599     case PHOTOMETRIC_RGB:
2600     case PHOTOMETRIC_YCBCR:
2601     case PHOTOMETRIC_SEPARATED:
2602 	if (img->bitspersample == 8)
2603 	    break;
2604 	/* fall through... */
2605     case PHOTOMETRIC_MINISBLACK:
2606     case PHOTOMETRIC_MINISWHITE:
2607 	if (!setupMap(img))
2608 	    return (0);
2609 	break;
2610     case PHOTOMETRIC_PALETTE:
2611 	/*
2612 	 * Convert 16-bit colormap to 8-bit (unless it looks
2613 	 * like an old-style 8-bit colormap).
2614 	 */
2615 	if (checkcmap(img) == 16)
2616 	    cvtcmap(img);
2617 	else
2618 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2619 	/*
2620 	 * Use mapping table and colormap to construct
2621 	 * unpacking tables for samples < 8 bits.
2622 	 */
2623 	if (img->bitspersample <= 8 && !makecmap(img))
2624 	    return (0);
2625 	break;
2626     }
2627     return (1);
2628 }
2629 
2630 /*
2631  * Select the appropriate conversion routine for packed data.
2632  */
2633 static int
PickContigCase(TIFFRGBAImage * img)2634 PickContigCase(TIFFRGBAImage* img)
2635 {
2636 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2637 	img->put.contig = NULL;
2638 	switch (img->photometric) {
2639 		case PHOTOMETRIC_RGB:
2640 			switch (img->bitspersample) {
2641 				case 8:
2642 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2643 						img->samplesperpixel >= 4)
2644 						img->put.contig = putRGBAAcontig8bittile;
2645 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2646 							 img->samplesperpixel >= 4)
2647 					{
2648 						if (BuildMapUaToAa(img))
2649 							img->put.contig = putRGBUAcontig8bittile;
2650 					}
2651 					else if( img->samplesperpixel >= 3 )
2652 						img->put.contig = putRGBcontig8bittile;
2653 					break;
2654 				case 16:
2655 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2656 						img->samplesperpixel >=4 )
2657 					{
2658 						if (BuildMapBitdepth16To8(img))
2659 							img->put.contig = putRGBAAcontig16bittile;
2660 					}
2661 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2662 							 img->samplesperpixel >=4 )
2663 					{
2664 						if (BuildMapBitdepth16To8(img) &&
2665 						    BuildMapUaToAa(img))
2666 							img->put.contig = putRGBUAcontig16bittile;
2667 					}
2668 					else if( img->samplesperpixel >=3 )
2669 					{
2670 						if (BuildMapBitdepth16To8(img))
2671 							img->put.contig = putRGBcontig16bittile;
2672 					}
2673 					break;
2674 			}
2675 			break;
2676 		case PHOTOMETRIC_SEPARATED:
2677 			if (img->samplesperpixel >=4 && buildMap(img)) {
2678 				if (img->bitspersample == 8) {
2679 					if (!img->Map)
2680 						img->put.contig = putRGBcontig8bitCMYKtile;
2681 					else
2682 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2683 				}
2684 			}
2685 			break;
2686 		case PHOTOMETRIC_PALETTE:
2687 			if (buildMap(img)) {
2688 				switch (img->bitspersample) {
2689 					case 8:
2690 						img->put.contig = put8bitcmaptile;
2691 						break;
2692 					case 4:
2693 						img->put.contig = put4bitcmaptile;
2694 						break;
2695 					case 2:
2696 						img->put.contig = put2bitcmaptile;
2697 						break;
2698 					case 1:
2699 						img->put.contig = put1bitcmaptile;
2700 						break;
2701 				}
2702 			}
2703 			break;
2704 		case PHOTOMETRIC_MINISWHITE:
2705 		case PHOTOMETRIC_MINISBLACK:
2706 			if (buildMap(img)) {
2707 				switch (img->bitspersample) {
2708 					case 16:
2709 						img->put.contig = put16bitbwtile;
2710 						break;
2711 					case 8:
2712 						if (img->alpha && img->samplesperpixel == 2)
2713 							img->put.contig = putagreytile;
2714 						else
2715 							img->put.contig = putgreytile;
2716 						break;
2717 					case 4:
2718 						img->put.contig = put4bitbwtile;
2719 						break;
2720 					case 2:
2721 						img->put.contig = put2bitbwtile;
2722 						break;
2723 					case 1:
2724 						img->put.contig = put1bitbwtile;
2725 						break;
2726 				}
2727 			}
2728 			break;
2729 		case PHOTOMETRIC_YCBCR:
2730 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2731 			{
2732 				if (initYCbCrConversion(img)!=0)
2733 				{
2734 					/*
2735 					 * The 6.0 spec says that subsampling must be
2736 					 * one of 1, 2, or 4, and that vertical subsampling
2737 					 * must always be <= horizontal subsampling; so
2738 					 * there are only a few possibilities and we just
2739 					 * enumerate the cases.
2740 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2741 					 * some OJPEG files
2742 					 */
2743 					uint16 SubsamplingHor;
2744 					uint16 SubsamplingVer;
2745 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2746 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2747 						case 0x44:
2748 							img->put.contig = putcontig8bitYCbCr44tile;
2749 							break;
2750 						case 0x42:
2751 							img->put.contig = putcontig8bitYCbCr42tile;
2752 							break;
2753 						case 0x41:
2754 							img->put.contig = putcontig8bitYCbCr41tile;
2755 							break;
2756 						case 0x22:
2757 							img->put.contig = putcontig8bitYCbCr22tile;
2758 							break;
2759 						case 0x21:
2760 							img->put.contig = putcontig8bitYCbCr21tile;
2761 							break;
2762 						case 0x12:
2763 							img->put.contig = putcontig8bitYCbCr12tile;
2764 							break;
2765 						case 0x11:
2766 							img->put.contig = putcontig8bitYCbCr11tile;
2767 							break;
2768 					}
2769 				}
2770 			}
2771 			break;
2772 		case PHOTOMETRIC_CIELAB:
2773 			if (img->samplesperpixel == 3 && buildMap(img)) {
2774 				if (img->bitspersample == 8)
2775 					img->put.contig = initCIELabConversion(img);
2776 				break;
2777 			}
2778 	}
2779 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2780 }
2781 
2782 /*
2783  * Select the appropriate conversion routine for unpacked data.
2784  *
2785  * NB: we assume that unpacked single channel data is directed
2786  *	 to the "packed routines.
2787  */
2788 static int
PickSeparateCase(TIFFRGBAImage * img)2789 PickSeparateCase(TIFFRGBAImage* img)
2790 {
2791 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2792 	img->put.separate = NULL;
2793 	switch (img->photometric) {
2794 	case PHOTOMETRIC_MINISWHITE:
2795 	case PHOTOMETRIC_MINISBLACK:
2796 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2797 	case PHOTOMETRIC_RGB:
2798 		switch (img->bitspersample) {
2799 		case 8:
2800 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2801 				img->put.separate = putRGBAAseparate8bittile;
2802 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2803 			{
2804 				if (BuildMapUaToAa(img))
2805 					img->put.separate = putRGBUAseparate8bittile;
2806 			}
2807 			else
2808 				img->put.separate = putRGBseparate8bittile;
2809 			break;
2810 		case 16:
2811 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2812 			{
2813 				if (BuildMapBitdepth16To8(img))
2814 					img->put.separate = putRGBAAseparate16bittile;
2815 			}
2816 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2817 			{
2818 				if (BuildMapBitdepth16To8(img) &&
2819 				    BuildMapUaToAa(img))
2820 					img->put.separate = putRGBUAseparate16bittile;
2821 			}
2822 			else
2823 			{
2824 				if (BuildMapBitdepth16To8(img))
2825 					img->put.separate = putRGBseparate16bittile;
2826 			}
2827 			break;
2828 		}
2829 		break;
2830 	case PHOTOMETRIC_SEPARATED:
2831 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2832 		{
2833 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2834 			img->put.separate = putCMYKseparate8bittile;
2835 		}
2836 		break;
2837 	case PHOTOMETRIC_YCBCR:
2838 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2839 		{
2840 			if (initYCbCrConversion(img)!=0)
2841 			{
2842 				uint16 hs, vs;
2843 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2844 				switch ((hs<<4)|vs) {
2845 				case 0x11:
2846 					img->put.separate = putseparate8bitYCbCr11tile;
2847 					break;
2848 					/* TODO: add other cases here */
2849 				}
2850 			}
2851 		}
2852 		break;
2853 	}
2854 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2855 }
2856 
2857 static int
BuildMapUaToAa(TIFFRGBAImage * img)2858 BuildMapUaToAa(TIFFRGBAImage* img)
2859 {
2860 	static const char module[]="BuildMapUaToAa";
2861 	uint8* m;
2862 	uint16 na,nv;
2863 	assert(img->UaToAa==NULL);
2864 	img->UaToAa=_TIFFmalloc(65536);
2865 	if (img->UaToAa==NULL)
2866 	{
2867 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2868 		return(0);
2869 	}
2870 	m=img->UaToAa;
2871 	for (na=0; na<256; na++)
2872 	{
2873 		for (nv=0; nv<256; nv++)
2874 			*m++=(uint8)((nv*na+127)/255);
2875 	}
2876 	return(1);
2877 }
2878 
2879 static int
BuildMapBitdepth16To8(TIFFRGBAImage * img)2880 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2881 {
2882 	static const char module[]="BuildMapBitdepth16To8";
2883 	uint8* m;
2884 	uint32 n;
2885 	assert(img->Bitdepth16To8==NULL);
2886 	img->Bitdepth16To8=_TIFFmalloc(65536);
2887 	if (img->Bitdepth16To8==NULL)
2888 	{
2889 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2890 		return(0);
2891 	}
2892 	m=img->Bitdepth16To8;
2893 	for (n=0; n<65536; n++)
2894 		*m++=(uint8)((n+128)/257);
2895 	return(1);
2896 }
2897 
2898 
2899 /*
2900  * Read a whole strip off data from the file, and convert to RGBA form.
2901  * If this is the last strip, then it will only contain the portion of
2902  * the strip that is actually within the image space.  The result is
2903  * organized in bottom to top form.
2904  */
2905 
2906 
2907 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2908 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2909 
2910 {
2911     return TIFFReadRGBAStripExt(tif, row, raster, 0 );
2912 }
2913 
2914 int
TIFFReadRGBAStripExt(TIFF * tif,uint32 row,uint32 * raster,int stop_on_error)2915 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
2916 
2917 {
2918     char 	emsg[1024] = "";
2919     TIFFRGBAImage img;
2920     int 	ok;
2921     uint32	rowsperstrip, rows_to_read;
2922 
2923     if( TIFFIsTiled( tif ) )
2924     {
2925 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2926                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2927 	return (0);
2928     }
2929 
2930     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2931     if( (row % rowsperstrip) != 0 )
2932     {
2933 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2934 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2935 		return (0);
2936     }
2937 
2938     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2939 
2940         img.row_offset = row;
2941         img.col_offset = 0;
2942 
2943         if( row + rowsperstrip > img.height )
2944             rows_to_read = img.height - row;
2945         else
2946             rows_to_read = rowsperstrip;
2947 
2948 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2949 
2950 	TIFFRGBAImageEnd(&img);
2951     } else {
2952 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2953 		ok = 0;
2954     }
2955 
2956     return (ok);
2957 }
2958 
2959 /*
2960  * Read a whole tile off data from the file, and convert to RGBA form.
2961  * The returned RGBA data is organized from bottom to top of tile,
2962  * and may include zeroed areas if the tile extends off the image.
2963  */
2964 
2965 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2966 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2967 
2968 {
2969     return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
2970 }
2971 
2972 
2973 int
TIFFReadRGBATileExt(TIFF * tif,uint32 col,uint32 row,uint32 * raster,int stop_on_error)2974 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
2975 {
2976     char 	emsg[1024] = "";
2977     TIFFRGBAImage img;
2978     int 	ok;
2979     uint32	tile_xsize, tile_ysize;
2980     uint32	read_xsize, read_ysize;
2981     uint32	i_row;
2982 
2983     /*
2984      * Verify that our request is legal - on a tile file, and on a
2985      * tile boundary.
2986      */
2987 
2988     if( !TIFFIsTiled( tif ) )
2989     {
2990 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2991 				  "Can't use TIFFReadRGBATile() with stripped file.");
2992 		return (0);
2993     }
2994 
2995     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2996     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2997     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2998     {
2999 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
3000                   "Row/col passed to TIFFReadRGBATile() must be top"
3001                   "left corner of a tile.");
3002 	return (0);
3003     }
3004 
3005     /*
3006      * Setup the RGBA reader.
3007      */
3008 
3009     if (!TIFFRGBAImageOK(tif, emsg)
3010 	|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
3011 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
3012 	    return( 0 );
3013     }
3014 
3015     /*
3016      * The TIFFRGBAImageGet() function doesn't allow us to get off the
3017      * edge of the image, even to fill an otherwise valid tile.  So we
3018      * figure out how much we can read, and fix up the tile buffer to
3019      * a full tile configuration afterwards.
3020      */
3021 
3022     if( row + tile_ysize > img.height )
3023         read_ysize = img.height - row;
3024     else
3025         read_ysize = tile_ysize;
3026 
3027     if( col + tile_xsize > img.width )
3028         read_xsize = img.width - col;
3029     else
3030         read_xsize = tile_xsize;
3031 
3032     /*
3033      * Read the chunk of imagery.
3034      */
3035 
3036     img.row_offset = row;
3037     img.col_offset = col;
3038 
3039     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
3040 
3041     TIFFRGBAImageEnd(&img);
3042 
3043     /*
3044      * If our read was incomplete we will need to fix up the tile by
3045      * shifting the data around as if a full tile of data is being returned.
3046      *
3047      * This is all the more complicated because the image is organized in
3048      * bottom to top format.
3049      */
3050 
3051     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
3052         return( ok );
3053 
3054     for( i_row = 0; i_row < read_ysize; i_row++ ) {
3055         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
3056                  raster + (read_ysize - i_row - 1) * read_xsize,
3057                  read_xsize * sizeof(uint32) );
3058         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
3059                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
3060     }
3061 
3062     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
3063         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
3064                      0, sizeof(uint32) * tile_xsize );
3065     }
3066 
3067     return (ok);
3068 }
3069 
3070 /* vim: set ts=8 sts=8 sw=8 noet: */
3071 /*
3072  * Local Variables:
3073  * mode: c
3074  * c-basic-offset: 8
3075  * fill-column: 78
3076  * End:
3077  */
3078