1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
12 //
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 STATISTIC(NodesCombined , "Number of dag nodes combined");
42 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
45 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
46
47 namespace {
48 static cl::opt<bool>
49 CombinerAA("combiner-alias-analysis", cl::Hidden,
50 cl::desc("Turn on alias analysis during testing"));
51
52 static cl::opt<bool>
53 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54 cl::desc("Include global information in alias analysis"));
55
56 //------------------------------ DAGCombiner ---------------------------------//
57
58 class DAGCombiner {
59 SelectionDAG &DAG;
60 const TargetLowering &TLI;
61 CombineLevel Level;
62 CodeGenOpt::Level OptLevel;
63 bool LegalOperations;
64 bool LegalTypes;
65
66 // Worklist of all of the nodes that need to be simplified.
67 std::vector<SDNode*> WorkList;
68
69 // AA - Used for DAG load/store alias analysis.
70 AliasAnalysis &AA;
71
72 /// AddUsersToWorkList - When an instruction is simplified, add all users of
73 /// the instruction to the work lists because they might get more simplified
74 /// now.
75 ///
AddUsersToWorkList(SDNode * N)76 void AddUsersToWorkList(SDNode *N) {
77 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
78 UI != UE; ++UI)
79 AddToWorkList(*UI);
80 }
81
82 /// visit - call the node-specific routine that knows how to fold each
83 /// particular type of node.
84 SDValue visit(SDNode *N);
85
86 public:
87 /// AddToWorkList - Add to the work list making sure it's instance is at the
88 /// the back (next to be processed.)
AddToWorkList(SDNode * N)89 void AddToWorkList(SDNode *N) {
90 removeFromWorkList(N);
91 WorkList.push_back(N);
92 }
93
94 /// removeFromWorkList - remove all instances of N from the worklist.
95 ///
removeFromWorkList(SDNode * N)96 void removeFromWorkList(SDNode *N) {
97 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
98 WorkList.end());
99 }
100
101 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
102 bool AddTo = true);
103
CombineTo(SDNode * N,SDValue Res,bool AddTo=true)104 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
105 return CombineTo(N, &Res, 1, AddTo);
106 }
107
CombineTo(SDNode * N,SDValue Res0,SDValue Res1,bool AddTo=true)108 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
109 bool AddTo = true) {
110 SDValue To[] = { Res0, Res1 };
111 return CombineTo(N, To, 2, AddTo);
112 }
113
114 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
115
116 private:
117
118 /// SimplifyDemandedBits - Check the specified integer node value to see if
119 /// it can be simplified or if things it uses can be simplified by bit
120 /// propagation. If so, return true.
SimplifyDemandedBits(SDValue Op)121 bool SimplifyDemandedBits(SDValue Op) {
122 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
123 APInt Demanded = APInt::getAllOnesValue(BitWidth);
124 return SimplifyDemandedBits(Op, Demanded);
125 }
126
127 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
128
129 bool CombineToPreIndexedLoadStore(SDNode *N);
130 bool CombineToPostIndexedLoadStore(SDNode *N);
131
132 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
133 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
134 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
135 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
136 SDValue PromoteIntBinOp(SDValue Op);
137 SDValue PromoteIntShiftOp(SDValue Op);
138 SDValue PromoteExtend(SDValue Op);
139 bool PromoteLoad(SDValue Op);
140
141 void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
142 SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
143 ISD::NodeType ExtType);
144
145 /// combine - call the node-specific routine that knows how to fold each
146 /// particular type of node. If that doesn't do anything, try the
147 /// target-specific DAG combines.
148 SDValue combine(SDNode *N);
149
150 // Visitation implementation - Implement dag node combining for different
151 // node types. The semantics are as follows:
152 // Return Value:
153 // SDValue.getNode() == 0 - No change was made
154 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
155 // otherwise - N should be replaced by the returned Operand.
156 //
157 SDValue visitTokenFactor(SDNode *N);
158 SDValue visitMERGE_VALUES(SDNode *N);
159 SDValue visitADD(SDNode *N);
160 SDValue visitSUB(SDNode *N);
161 SDValue visitADDC(SDNode *N);
162 SDValue visitADDE(SDNode *N);
163 SDValue visitMUL(SDNode *N);
164 SDValue visitSDIV(SDNode *N);
165 SDValue visitUDIV(SDNode *N);
166 SDValue visitSREM(SDNode *N);
167 SDValue visitUREM(SDNode *N);
168 SDValue visitMULHU(SDNode *N);
169 SDValue visitMULHS(SDNode *N);
170 SDValue visitSMUL_LOHI(SDNode *N);
171 SDValue visitUMUL_LOHI(SDNode *N);
172 SDValue visitSMULO(SDNode *N);
173 SDValue visitUMULO(SDNode *N);
174 SDValue visitSDIVREM(SDNode *N);
175 SDValue visitUDIVREM(SDNode *N);
176 SDValue visitAND(SDNode *N);
177 SDValue visitOR(SDNode *N);
178 SDValue visitXOR(SDNode *N);
179 SDValue SimplifyVBinOp(SDNode *N);
180 SDValue visitSHL(SDNode *N);
181 SDValue visitSRA(SDNode *N);
182 SDValue visitSRL(SDNode *N);
183 SDValue visitCTLZ(SDNode *N);
184 SDValue visitCTTZ(SDNode *N);
185 SDValue visitCTPOP(SDNode *N);
186 SDValue visitSELECT(SDNode *N);
187 SDValue visitSELECT_CC(SDNode *N);
188 SDValue visitSETCC(SDNode *N);
189 SDValue visitSIGN_EXTEND(SDNode *N);
190 SDValue visitZERO_EXTEND(SDNode *N);
191 SDValue visitANY_EXTEND(SDNode *N);
192 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
193 SDValue visitTRUNCATE(SDNode *N);
194 SDValue visitBITCAST(SDNode *N);
195 SDValue visitBUILD_PAIR(SDNode *N);
196 SDValue visitFADD(SDNode *N);
197 SDValue visitFSUB(SDNode *N);
198 SDValue visitFMUL(SDNode *N);
199 SDValue visitFDIV(SDNode *N);
200 SDValue visitFREM(SDNode *N);
201 SDValue visitFCOPYSIGN(SDNode *N);
202 SDValue visitSINT_TO_FP(SDNode *N);
203 SDValue visitUINT_TO_FP(SDNode *N);
204 SDValue visitFP_TO_SINT(SDNode *N);
205 SDValue visitFP_TO_UINT(SDNode *N);
206 SDValue visitFP_ROUND(SDNode *N);
207 SDValue visitFP_ROUND_INREG(SDNode *N);
208 SDValue visitFP_EXTEND(SDNode *N);
209 SDValue visitFNEG(SDNode *N);
210 SDValue visitFABS(SDNode *N);
211 SDValue visitBRCOND(SDNode *N);
212 SDValue visitBR_CC(SDNode *N);
213 SDValue visitLOAD(SDNode *N);
214 SDValue visitSTORE(SDNode *N);
215 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
216 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
217 SDValue visitBUILD_VECTOR(SDNode *N);
218 SDValue visitCONCAT_VECTORS(SDNode *N);
219 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
220 SDValue visitVECTOR_SHUFFLE(SDNode *N);
221 SDValue visitMEMBARRIER(SDNode *N);
222
223 SDValue XformToShuffleWithZero(SDNode *N);
224 SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
225
226 SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
227
228 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
229 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
230 SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
231 SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
232 SDValue N3, ISD::CondCode CC,
233 bool NotExtCompare = false);
234 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
235 DebugLoc DL, bool foldBooleans = true);
236 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
237 unsigned HiOp);
238 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
239 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
240 SDValue BuildSDIV(SDNode *N);
241 SDValue BuildUDIV(SDNode *N);
242 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
243 bool DemandHighBits = true);
244 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
245 SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
246 SDValue ReduceLoadWidth(SDNode *N);
247 SDValue ReduceLoadOpStoreWidth(SDNode *N);
248 SDValue TransformFPLoadStorePair(SDNode *N);
249
250 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
251
252 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
253 /// looking for aliasing nodes and adding them to the Aliases vector.
254 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
255 SmallVector<SDValue, 8> &Aliases);
256
257 /// isAlias - Return true if there is any possibility that the two addresses
258 /// overlap.
259 bool isAlias(SDValue Ptr1, int64_t Size1,
260 const Value *SrcValue1, int SrcValueOffset1,
261 unsigned SrcValueAlign1,
262 const MDNode *TBAAInfo1,
263 SDValue Ptr2, int64_t Size2,
264 const Value *SrcValue2, int SrcValueOffset2,
265 unsigned SrcValueAlign2,
266 const MDNode *TBAAInfo2) const;
267
268 /// FindAliasInfo - Extracts the relevant alias information from the memory
269 /// node. Returns true if the operand was a load.
270 bool FindAliasInfo(SDNode *N,
271 SDValue &Ptr, int64_t &Size,
272 const Value *&SrcValue, int &SrcValueOffset,
273 unsigned &SrcValueAlignment,
274 const MDNode *&TBAAInfo) const;
275
276 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
277 /// looking for a better chain (aliasing node.)
278 SDValue FindBetterChain(SDNode *N, SDValue Chain);
279
280 public:
DAGCombiner(SelectionDAG & D,AliasAnalysis & A,CodeGenOpt::Level OL)281 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
282 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(Unrestricted),
283 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
284
285 /// Run - runs the dag combiner on all nodes in the work list
286 void Run(CombineLevel AtLevel);
287
getDAG() const288 SelectionDAG &getDAG() const { return DAG; }
289
290 /// getShiftAmountTy - Returns a type large enough to hold any valid
291 /// shift amount - before type legalization these can be huge.
getShiftAmountTy(EVT LHSTy)292 EVT getShiftAmountTy(EVT LHSTy) {
293 return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
294 }
295
296 /// isTypeLegal - This method returns true if we are running before type
297 /// legalization or if the specified VT is legal.
isTypeLegal(const EVT & VT)298 bool isTypeLegal(const EVT &VT) {
299 if (!LegalTypes) return true;
300 return TLI.isTypeLegal(VT);
301 }
302 };
303 }
304
305
306 namespace {
307 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
308 /// nodes from the worklist.
309 class WorkListRemover : public SelectionDAG::DAGUpdateListener {
310 DAGCombiner &DC;
311 public:
WorkListRemover(DAGCombiner & dc)312 explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
313
NodeDeleted(SDNode * N,SDNode * E)314 virtual void NodeDeleted(SDNode *N, SDNode *E) {
315 DC.removeFromWorkList(N);
316 }
317
NodeUpdated(SDNode * N)318 virtual void NodeUpdated(SDNode *N) {
319 // Ignore updates.
320 }
321 };
322 }
323
324 //===----------------------------------------------------------------------===//
325 // TargetLowering::DAGCombinerInfo implementation
326 //===----------------------------------------------------------------------===//
327
AddToWorklist(SDNode * N)328 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
329 ((DAGCombiner*)DC)->AddToWorkList(N);
330 }
331
RemoveFromWorklist(SDNode * N)332 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
333 ((DAGCombiner*)DC)->removeFromWorkList(N);
334 }
335
336 SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode * N,const std::vector<SDValue> & To,bool AddTo)337 CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
338 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
339 }
340
341 SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode * N,SDValue Res,bool AddTo)342 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
343 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
344 }
345
346
347 SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode * N,SDValue Res0,SDValue Res1,bool AddTo)348 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
349 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
350 }
351
352 void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt & TLO)353 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
354 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
355 }
356
357 //===----------------------------------------------------------------------===//
358 // Helper Functions
359 //===----------------------------------------------------------------------===//
360
361 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
362 /// specified expression for the same cost as the expression itself, or 2 if we
363 /// can compute the negated form more cheaply than the expression itself.
isNegatibleForFree(SDValue Op,bool LegalOperations,unsigned Depth=0)364 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
365 unsigned Depth = 0) {
366 // No compile time optimizations on this type.
367 if (Op.getValueType() == MVT::ppcf128)
368 return 0;
369
370 // fneg is removable even if it has multiple uses.
371 if (Op.getOpcode() == ISD::FNEG) return 2;
372
373 // Don't allow anything with multiple uses.
374 if (!Op.hasOneUse()) return 0;
375
376 // Don't recurse exponentially.
377 if (Depth > 6) return 0;
378
379 switch (Op.getOpcode()) {
380 default: return false;
381 case ISD::ConstantFP:
382 // Don't invert constant FP values after legalize. The negated constant
383 // isn't necessarily legal.
384 return LegalOperations ? 0 : 1;
385 case ISD::FADD:
386 // FIXME: determine better conditions for this xform.
387 if (!UnsafeFPMath) return 0;
388
389 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
390 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
391 return V;
392 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
393 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
394 case ISD::FSUB:
395 // We can't turn -(A-B) into B-A when we honor signed zeros.
396 if (!UnsafeFPMath) return 0;
397
398 // fold (fneg (fsub A, B)) -> (fsub B, A)
399 return 1;
400
401 case ISD::FMUL:
402 case ISD::FDIV:
403 if (HonorSignDependentRoundingFPMath()) return 0;
404
405 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
406 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
407 return V;
408
409 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
410
411 case ISD::FP_EXTEND:
412 case ISD::FP_ROUND:
413 case ISD::FSIN:
414 return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1);
415 }
416 }
417
418 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
419 /// returns the newly negated expression.
GetNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOperations,unsigned Depth=0)420 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
421 bool LegalOperations, unsigned Depth = 0) {
422 // fneg is removable even if it has multiple uses.
423 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
424
425 // Don't allow anything with multiple uses.
426 assert(Op.hasOneUse() && "Unknown reuse!");
427
428 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
429 switch (Op.getOpcode()) {
430 default: llvm_unreachable("Unknown code");
431 case ISD::ConstantFP: {
432 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
433 V.changeSign();
434 return DAG.getConstantFP(V, Op.getValueType());
435 }
436 case ISD::FADD:
437 // FIXME: determine better conditions for this xform.
438 assert(UnsafeFPMath);
439
440 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
441 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
442 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
443 GetNegatedExpression(Op.getOperand(0), DAG,
444 LegalOperations, Depth+1),
445 Op.getOperand(1));
446 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
447 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
448 GetNegatedExpression(Op.getOperand(1), DAG,
449 LegalOperations, Depth+1),
450 Op.getOperand(0));
451 case ISD::FSUB:
452 // We can't turn -(A-B) into B-A when we honor signed zeros.
453 assert(UnsafeFPMath);
454
455 // fold (fneg (fsub 0, B)) -> B
456 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
457 if (N0CFP->getValueAPF().isZero())
458 return Op.getOperand(1);
459
460 // fold (fneg (fsub A, B)) -> (fsub B, A)
461 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
462 Op.getOperand(1), Op.getOperand(0));
463
464 case ISD::FMUL:
465 case ISD::FDIV:
466 assert(!HonorSignDependentRoundingFPMath());
467
468 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
469 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
470 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
471 GetNegatedExpression(Op.getOperand(0), DAG,
472 LegalOperations, Depth+1),
473 Op.getOperand(1));
474
475 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
476 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
477 Op.getOperand(0),
478 GetNegatedExpression(Op.getOperand(1), DAG,
479 LegalOperations, Depth+1));
480
481 case ISD::FP_EXTEND:
482 case ISD::FSIN:
483 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
484 GetNegatedExpression(Op.getOperand(0), DAG,
485 LegalOperations, Depth+1));
486 case ISD::FP_ROUND:
487 return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
488 GetNegatedExpression(Op.getOperand(0), DAG,
489 LegalOperations, Depth+1),
490 Op.getOperand(1));
491 }
492 }
493
494
495 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
496 // that selects between the values 1 and 0, making it equivalent to a setcc.
497 // Also, set the incoming LHS, RHS, and CC references to the appropriate
498 // nodes based on the type of node we are checking. This simplifies life a
499 // bit for the callers.
isSetCCEquivalent(SDValue N,SDValue & LHS,SDValue & RHS,SDValue & CC)500 static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
501 SDValue &CC) {
502 if (N.getOpcode() == ISD::SETCC) {
503 LHS = N.getOperand(0);
504 RHS = N.getOperand(1);
505 CC = N.getOperand(2);
506 return true;
507 }
508 if (N.getOpcode() == ISD::SELECT_CC &&
509 N.getOperand(2).getOpcode() == ISD::Constant &&
510 N.getOperand(3).getOpcode() == ISD::Constant &&
511 cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
512 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
513 LHS = N.getOperand(0);
514 RHS = N.getOperand(1);
515 CC = N.getOperand(4);
516 return true;
517 }
518 return false;
519 }
520
521 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
522 // one use. If this is true, it allows the users to invert the operation for
523 // free when it is profitable to do so.
isOneUseSetCC(SDValue N)524 static bool isOneUseSetCC(SDValue N) {
525 SDValue N0, N1, N2;
526 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
527 return true;
528 return false;
529 }
530
ReassociateOps(unsigned Opc,DebugLoc DL,SDValue N0,SDValue N1)531 SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
532 SDValue N0, SDValue N1) {
533 EVT VT = N0.getValueType();
534 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
535 if (isa<ConstantSDNode>(N1)) {
536 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
537 SDValue OpNode =
538 DAG.FoldConstantArithmetic(Opc, VT,
539 cast<ConstantSDNode>(N0.getOperand(1)),
540 cast<ConstantSDNode>(N1));
541 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
542 }
543 if (N0.hasOneUse()) {
544 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
545 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
546 N0.getOperand(0), N1);
547 AddToWorkList(OpNode.getNode());
548 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
549 }
550 }
551
552 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
553 if (isa<ConstantSDNode>(N0)) {
554 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
555 SDValue OpNode =
556 DAG.FoldConstantArithmetic(Opc, VT,
557 cast<ConstantSDNode>(N1.getOperand(1)),
558 cast<ConstantSDNode>(N0));
559 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
560 }
561 if (N1.hasOneUse()) {
562 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
563 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
564 N1.getOperand(0), N0);
565 AddToWorkList(OpNode.getNode());
566 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
567 }
568 }
569
570 return SDValue();
571 }
572
CombineTo(SDNode * N,const SDValue * To,unsigned NumTo,bool AddTo)573 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
574 bool AddTo) {
575 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
576 ++NodesCombined;
577 DEBUG(dbgs() << "\nReplacing.1 ";
578 N->dump(&DAG);
579 dbgs() << "\nWith: ";
580 To[0].getNode()->dump(&DAG);
581 dbgs() << " and " << NumTo-1 << " other values\n";
582 for (unsigned i = 0, e = NumTo; i != e; ++i)
583 assert((!To[i].getNode() ||
584 N->getValueType(i) == To[i].getValueType()) &&
585 "Cannot combine value to value of different type!"));
586 WorkListRemover DeadNodes(*this);
587 DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
588
589 if (AddTo) {
590 // Push the new nodes and any users onto the worklist
591 for (unsigned i = 0, e = NumTo; i != e; ++i) {
592 if (To[i].getNode()) {
593 AddToWorkList(To[i].getNode());
594 AddUsersToWorkList(To[i].getNode());
595 }
596 }
597 }
598
599 // Finally, if the node is now dead, remove it from the graph. The node
600 // may not be dead if the replacement process recursively simplified to
601 // something else needing this node.
602 if (N->use_empty()) {
603 // Nodes can be reintroduced into the worklist. Make sure we do not
604 // process a node that has been replaced.
605 removeFromWorkList(N);
606
607 // Finally, since the node is now dead, remove it from the graph.
608 DAG.DeleteNode(N);
609 }
610 return SDValue(N, 0);
611 }
612
613 void DAGCombiner::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt & TLO)614 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
615 // Replace all uses. If any nodes become isomorphic to other nodes and
616 // are deleted, make sure to remove them from our worklist.
617 WorkListRemover DeadNodes(*this);
618 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
619
620 // Push the new node and any (possibly new) users onto the worklist.
621 AddToWorkList(TLO.New.getNode());
622 AddUsersToWorkList(TLO.New.getNode());
623
624 // Finally, if the node is now dead, remove it from the graph. The node
625 // may not be dead if the replacement process recursively simplified to
626 // something else needing this node.
627 if (TLO.Old.getNode()->use_empty()) {
628 removeFromWorkList(TLO.Old.getNode());
629
630 // If the operands of this node are only used by the node, they will now
631 // be dead. Make sure to visit them first to delete dead nodes early.
632 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
633 if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
634 AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
635
636 DAG.DeleteNode(TLO.Old.getNode());
637 }
638 }
639
640 /// SimplifyDemandedBits - Check the specified integer node value to see if
641 /// it can be simplified or if things it uses can be simplified by bit
642 /// propagation. If so, return true.
SimplifyDemandedBits(SDValue Op,const APInt & Demanded)643 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
644 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
645 APInt KnownZero, KnownOne;
646 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
647 return false;
648
649 // Revisit the node.
650 AddToWorkList(Op.getNode());
651
652 // Replace the old value with the new one.
653 ++NodesCombined;
654 DEBUG(dbgs() << "\nReplacing.2 ";
655 TLO.Old.getNode()->dump(&DAG);
656 dbgs() << "\nWith: ";
657 TLO.New.getNode()->dump(&DAG);
658 dbgs() << '\n');
659
660 CommitTargetLoweringOpt(TLO);
661 return true;
662 }
663
ReplaceLoadWithPromotedLoad(SDNode * Load,SDNode * ExtLoad)664 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
665 DebugLoc dl = Load->getDebugLoc();
666 EVT VT = Load->getValueType(0);
667 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
668
669 DEBUG(dbgs() << "\nReplacing.9 ";
670 Load->dump(&DAG);
671 dbgs() << "\nWith: ";
672 Trunc.getNode()->dump(&DAG);
673 dbgs() << '\n');
674 WorkListRemover DeadNodes(*this);
675 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc, &DeadNodes);
676 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1),
677 &DeadNodes);
678 removeFromWorkList(Load);
679 DAG.DeleteNode(Load);
680 AddToWorkList(Trunc.getNode());
681 }
682
PromoteOperand(SDValue Op,EVT PVT,bool & Replace)683 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
684 Replace = false;
685 DebugLoc dl = Op.getDebugLoc();
686 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
687 EVT MemVT = LD->getMemoryVT();
688 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
689 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
690 : ISD::EXTLOAD)
691 : LD->getExtensionType();
692 Replace = true;
693 return DAG.getExtLoad(ExtType, dl, PVT,
694 LD->getChain(), LD->getBasePtr(),
695 LD->getPointerInfo(),
696 MemVT, LD->isVolatile(),
697 LD->isNonTemporal(), LD->getAlignment());
698 }
699
700 unsigned Opc = Op.getOpcode();
701 switch (Opc) {
702 default: break;
703 case ISD::AssertSext:
704 return DAG.getNode(ISD::AssertSext, dl, PVT,
705 SExtPromoteOperand(Op.getOperand(0), PVT),
706 Op.getOperand(1));
707 case ISD::AssertZext:
708 return DAG.getNode(ISD::AssertZext, dl, PVT,
709 ZExtPromoteOperand(Op.getOperand(0), PVT),
710 Op.getOperand(1));
711 case ISD::Constant: {
712 unsigned ExtOpc =
713 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
714 return DAG.getNode(ExtOpc, dl, PVT, Op);
715 }
716 }
717
718 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
719 return SDValue();
720 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
721 }
722
SExtPromoteOperand(SDValue Op,EVT PVT)723 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
724 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
725 return SDValue();
726 EVT OldVT = Op.getValueType();
727 DebugLoc dl = Op.getDebugLoc();
728 bool Replace = false;
729 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
730 if (NewOp.getNode() == 0)
731 return SDValue();
732 AddToWorkList(NewOp.getNode());
733
734 if (Replace)
735 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
736 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
737 DAG.getValueType(OldVT));
738 }
739
ZExtPromoteOperand(SDValue Op,EVT PVT)740 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
741 EVT OldVT = Op.getValueType();
742 DebugLoc dl = Op.getDebugLoc();
743 bool Replace = false;
744 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
745 if (NewOp.getNode() == 0)
746 return SDValue();
747 AddToWorkList(NewOp.getNode());
748
749 if (Replace)
750 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
751 return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
752 }
753
754 /// PromoteIntBinOp - Promote the specified integer binary operation if the
755 /// target indicates it is beneficial. e.g. On x86, it's usually better to
756 /// promote i16 operations to i32 since i16 instructions are longer.
PromoteIntBinOp(SDValue Op)757 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
758 if (!LegalOperations)
759 return SDValue();
760
761 EVT VT = Op.getValueType();
762 if (VT.isVector() || !VT.isInteger())
763 return SDValue();
764
765 // If operation type is 'undesirable', e.g. i16 on x86, consider
766 // promoting it.
767 unsigned Opc = Op.getOpcode();
768 if (TLI.isTypeDesirableForOp(Opc, VT))
769 return SDValue();
770
771 EVT PVT = VT;
772 // Consult target whether it is a good idea to promote this operation and
773 // what's the right type to promote it to.
774 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
775 assert(PVT != VT && "Don't know what type to promote to!");
776
777 bool Replace0 = false;
778 SDValue N0 = Op.getOperand(0);
779 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
780 if (NN0.getNode() == 0)
781 return SDValue();
782
783 bool Replace1 = false;
784 SDValue N1 = Op.getOperand(1);
785 SDValue NN1;
786 if (N0 == N1)
787 NN1 = NN0;
788 else {
789 NN1 = PromoteOperand(N1, PVT, Replace1);
790 if (NN1.getNode() == 0)
791 return SDValue();
792 }
793
794 AddToWorkList(NN0.getNode());
795 if (NN1.getNode())
796 AddToWorkList(NN1.getNode());
797
798 if (Replace0)
799 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
800 if (Replace1)
801 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
802
803 DEBUG(dbgs() << "\nPromoting ";
804 Op.getNode()->dump(&DAG));
805 DebugLoc dl = Op.getDebugLoc();
806 return DAG.getNode(ISD::TRUNCATE, dl, VT,
807 DAG.getNode(Opc, dl, PVT, NN0, NN1));
808 }
809 return SDValue();
810 }
811
812 /// PromoteIntShiftOp - Promote the specified integer shift operation if the
813 /// target indicates it is beneficial. e.g. On x86, it's usually better to
814 /// promote i16 operations to i32 since i16 instructions are longer.
PromoteIntShiftOp(SDValue Op)815 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
816 if (!LegalOperations)
817 return SDValue();
818
819 EVT VT = Op.getValueType();
820 if (VT.isVector() || !VT.isInteger())
821 return SDValue();
822
823 // If operation type is 'undesirable', e.g. i16 on x86, consider
824 // promoting it.
825 unsigned Opc = Op.getOpcode();
826 if (TLI.isTypeDesirableForOp(Opc, VT))
827 return SDValue();
828
829 EVT PVT = VT;
830 // Consult target whether it is a good idea to promote this operation and
831 // what's the right type to promote it to.
832 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
833 assert(PVT != VT && "Don't know what type to promote to!");
834
835 bool Replace = false;
836 SDValue N0 = Op.getOperand(0);
837 if (Opc == ISD::SRA)
838 N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
839 else if (Opc == ISD::SRL)
840 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
841 else
842 N0 = PromoteOperand(N0, PVT, Replace);
843 if (N0.getNode() == 0)
844 return SDValue();
845
846 AddToWorkList(N0.getNode());
847 if (Replace)
848 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
849
850 DEBUG(dbgs() << "\nPromoting ";
851 Op.getNode()->dump(&DAG));
852 DebugLoc dl = Op.getDebugLoc();
853 return DAG.getNode(ISD::TRUNCATE, dl, VT,
854 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
855 }
856 return SDValue();
857 }
858
PromoteExtend(SDValue Op)859 SDValue DAGCombiner::PromoteExtend(SDValue Op) {
860 if (!LegalOperations)
861 return SDValue();
862
863 EVT VT = Op.getValueType();
864 if (VT.isVector() || !VT.isInteger())
865 return SDValue();
866
867 // If operation type is 'undesirable', e.g. i16 on x86, consider
868 // promoting it.
869 unsigned Opc = Op.getOpcode();
870 if (TLI.isTypeDesirableForOp(Opc, VT))
871 return SDValue();
872
873 EVT PVT = VT;
874 // Consult target whether it is a good idea to promote this operation and
875 // what's the right type to promote it to.
876 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
877 assert(PVT != VT && "Don't know what type to promote to!");
878 // fold (aext (aext x)) -> (aext x)
879 // fold (aext (zext x)) -> (zext x)
880 // fold (aext (sext x)) -> (sext x)
881 DEBUG(dbgs() << "\nPromoting ";
882 Op.getNode()->dump(&DAG));
883 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
884 }
885 return SDValue();
886 }
887
PromoteLoad(SDValue Op)888 bool DAGCombiner::PromoteLoad(SDValue Op) {
889 if (!LegalOperations)
890 return false;
891
892 EVT VT = Op.getValueType();
893 if (VT.isVector() || !VT.isInteger())
894 return false;
895
896 // If operation type is 'undesirable', e.g. i16 on x86, consider
897 // promoting it.
898 unsigned Opc = Op.getOpcode();
899 if (TLI.isTypeDesirableForOp(Opc, VT))
900 return false;
901
902 EVT PVT = VT;
903 // Consult target whether it is a good idea to promote this operation and
904 // what's the right type to promote it to.
905 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
906 assert(PVT != VT && "Don't know what type to promote to!");
907
908 DebugLoc dl = Op.getDebugLoc();
909 SDNode *N = Op.getNode();
910 LoadSDNode *LD = cast<LoadSDNode>(N);
911 EVT MemVT = LD->getMemoryVT();
912 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
913 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
914 : ISD::EXTLOAD)
915 : LD->getExtensionType();
916 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
917 LD->getChain(), LD->getBasePtr(),
918 LD->getPointerInfo(),
919 MemVT, LD->isVolatile(),
920 LD->isNonTemporal(), LD->getAlignment());
921 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
922
923 DEBUG(dbgs() << "\nPromoting ";
924 N->dump(&DAG);
925 dbgs() << "\nTo: ";
926 Result.getNode()->dump(&DAG);
927 dbgs() << '\n');
928 WorkListRemover DeadNodes(*this);
929 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result, &DeadNodes);
930 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1), &DeadNodes);
931 removeFromWorkList(N);
932 DAG.DeleteNode(N);
933 AddToWorkList(Result.getNode());
934 return true;
935 }
936 return false;
937 }
938
939
940 //===----------------------------------------------------------------------===//
941 // Main DAG Combiner implementation
942 //===----------------------------------------------------------------------===//
943
Run(CombineLevel AtLevel)944 void DAGCombiner::Run(CombineLevel AtLevel) {
945 // set the instance variables, so that the various visit routines may use it.
946 Level = AtLevel;
947 LegalOperations = Level >= NoIllegalOperations;
948 LegalTypes = Level >= NoIllegalTypes;
949
950 // Add all the dag nodes to the worklist.
951 WorkList.reserve(DAG.allnodes_size());
952 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
953 E = DAG.allnodes_end(); I != E; ++I)
954 WorkList.push_back(I);
955
956 // Create a dummy node (which is not added to allnodes), that adds a reference
957 // to the root node, preventing it from being deleted, and tracking any
958 // changes of the root.
959 HandleSDNode Dummy(DAG.getRoot());
960
961 // The root of the dag may dangle to deleted nodes until the dag combiner is
962 // done. Set it to null to avoid confusion.
963 DAG.setRoot(SDValue());
964
965 // while the worklist isn't empty, inspect the node on the end of it and
966 // try and combine it.
967 while (!WorkList.empty()) {
968 SDNode *N = WorkList.back();
969 WorkList.pop_back();
970
971 // If N has no uses, it is dead. Make sure to revisit all N's operands once
972 // N is deleted from the DAG, since they too may now be dead or may have a
973 // reduced number of uses, allowing other xforms.
974 if (N->use_empty() && N != &Dummy) {
975 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
976 AddToWorkList(N->getOperand(i).getNode());
977
978 DAG.DeleteNode(N);
979 continue;
980 }
981
982 SDValue RV = combine(N);
983
984 if (RV.getNode() == 0)
985 continue;
986
987 ++NodesCombined;
988
989 // If we get back the same node we passed in, rather than a new node or
990 // zero, we know that the node must have defined multiple values and
991 // CombineTo was used. Since CombineTo takes care of the worklist
992 // mechanics for us, we have no work to do in this case.
993 if (RV.getNode() == N)
994 continue;
995
996 assert(N->getOpcode() != ISD::DELETED_NODE &&
997 RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
998 "Node was deleted but visit returned new node!");
999
1000 DEBUG(dbgs() << "\nReplacing.3 ";
1001 N->dump(&DAG);
1002 dbgs() << "\nWith: ";
1003 RV.getNode()->dump(&DAG);
1004 dbgs() << '\n');
1005
1006 // Transfer debug value.
1007 DAG.TransferDbgValues(SDValue(N, 0), RV);
1008 WorkListRemover DeadNodes(*this);
1009 if (N->getNumValues() == RV.getNode()->getNumValues())
1010 DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
1011 else {
1012 assert(N->getValueType(0) == RV.getValueType() &&
1013 N->getNumValues() == 1 && "Type mismatch");
1014 SDValue OpV = RV;
1015 DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
1016 }
1017
1018 // Push the new node and any users onto the worklist
1019 AddToWorkList(RV.getNode());
1020 AddUsersToWorkList(RV.getNode());
1021
1022 // Add any uses of the old node to the worklist in case this node is the
1023 // last one that uses them. They may become dead after this node is
1024 // deleted.
1025 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1026 AddToWorkList(N->getOperand(i).getNode());
1027
1028 // Finally, if the node is now dead, remove it from the graph. The node
1029 // may not be dead if the replacement process recursively simplified to
1030 // something else needing this node.
1031 if (N->use_empty()) {
1032 // Nodes can be reintroduced into the worklist. Make sure we do not
1033 // process a node that has been replaced.
1034 removeFromWorkList(N);
1035
1036 // Finally, since the node is now dead, remove it from the graph.
1037 DAG.DeleteNode(N);
1038 }
1039 }
1040
1041 // If the root changed (e.g. it was a dead load, update the root).
1042 DAG.setRoot(Dummy.getValue());
1043 }
1044
visit(SDNode * N)1045 SDValue DAGCombiner::visit(SDNode *N) {
1046 switch (N->getOpcode()) {
1047 default: break;
1048 case ISD::TokenFactor: return visitTokenFactor(N);
1049 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1050 case ISD::ADD: return visitADD(N);
1051 case ISD::SUB: return visitSUB(N);
1052 case ISD::ADDC: return visitADDC(N);
1053 case ISD::ADDE: return visitADDE(N);
1054 case ISD::MUL: return visitMUL(N);
1055 case ISD::SDIV: return visitSDIV(N);
1056 case ISD::UDIV: return visitUDIV(N);
1057 case ISD::SREM: return visitSREM(N);
1058 case ISD::UREM: return visitUREM(N);
1059 case ISD::MULHU: return visitMULHU(N);
1060 case ISD::MULHS: return visitMULHS(N);
1061 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1062 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1063 case ISD::SMULO: return visitSMULO(N);
1064 case ISD::UMULO: return visitUMULO(N);
1065 case ISD::SDIVREM: return visitSDIVREM(N);
1066 case ISD::UDIVREM: return visitUDIVREM(N);
1067 case ISD::AND: return visitAND(N);
1068 case ISD::OR: return visitOR(N);
1069 case ISD::XOR: return visitXOR(N);
1070 case ISD::SHL: return visitSHL(N);
1071 case ISD::SRA: return visitSRA(N);
1072 case ISD::SRL: return visitSRL(N);
1073 case ISD::CTLZ: return visitCTLZ(N);
1074 case ISD::CTTZ: return visitCTTZ(N);
1075 case ISD::CTPOP: return visitCTPOP(N);
1076 case ISD::SELECT: return visitSELECT(N);
1077 case ISD::SELECT_CC: return visitSELECT_CC(N);
1078 case ISD::SETCC: return visitSETCC(N);
1079 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1080 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1081 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1082 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1083 case ISD::TRUNCATE: return visitTRUNCATE(N);
1084 case ISD::BITCAST: return visitBITCAST(N);
1085 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1086 case ISD::FADD: return visitFADD(N);
1087 case ISD::FSUB: return visitFSUB(N);
1088 case ISD::FMUL: return visitFMUL(N);
1089 case ISD::FDIV: return visitFDIV(N);
1090 case ISD::FREM: return visitFREM(N);
1091 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1092 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1093 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1094 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1095 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1096 case ISD::FP_ROUND: return visitFP_ROUND(N);
1097 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
1098 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1099 case ISD::FNEG: return visitFNEG(N);
1100 case ISD::FABS: return visitFABS(N);
1101 case ISD::BRCOND: return visitBRCOND(N);
1102 case ISD::BR_CC: return visitBR_CC(N);
1103 case ISD::LOAD: return visitLOAD(N);
1104 case ISD::STORE: return visitSTORE(N);
1105 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1106 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1107 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1108 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1109 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1110 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1111 case ISD::MEMBARRIER: return visitMEMBARRIER(N);
1112 }
1113 return SDValue();
1114 }
1115
combine(SDNode * N)1116 SDValue DAGCombiner::combine(SDNode *N) {
1117 SDValue RV = visit(N);
1118
1119 // If nothing happened, try a target-specific DAG combine.
1120 if (RV.getNode() == 0) {
1121 assert(N->getOpcode() != ISD::DELETED_NODE &&
1122 "Node was deleted but visit returned NULL!");
1123
1124 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1125 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1126
1127 // Expose the DAG combiner to the target combiner impls.
1128 TargetLowering::DAGCombinerInfo
1129 DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
1130
1131 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1132 }
1133 }
1134
1135 // If nothing happened still, try promoting the operation.
1136 if (RV.getNode() == 0) {
1137 switch (N->getOpcode()) {
1138 default: break;
1139 case ISD::ADD:
1140 case ISD::SUB:
1141 case ISD::MUL:
1142 case ISD::AND:
1143 case ISD::OR:
1144 case ISD::XOR:
1145 RV = PromoteIntBinOp(SDValue(N, 0));
1146 break;
1147 case ISD::SHL:
1148 case ISD::SRA:
1149 case ISD::SRL:
1150 RV = PromoteIntShiftOp(SDValue(N, 0));
1151 break;
1152 case ISD::SIGN_EXTEND:
1153 case ISD::ZERO_EXTEND:
1154 case ISD::ANY_EXTEND:
1155 RV = PromoteExtend(SDValue(N, 0));
1156 break;
1157 case ISD::LOAD:
1158 if (PromoteLoad(SDValue(N, 0)))
1159 RV = SDValue(N, 0);
1160 break;
1161 }
1162 }
1163
1164 // If N is a commutative binary node, try commuting it to enable more
1165 // sdisel CSE.
1166 if (RV.getNode() == 0 &&
1167 SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1168 N->getNumValues() == 1) {
1169 SDValue N0 = N->getOperand(0);
1170 SDValue N1 = N->getOperand(1);
1171
1172 // Constant operands are canonicalized to RHS.
1173 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1174 SDValue Ops[] = { N1, N0 };
1175 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1176 Ops, 2);
1177 if (CSENode)
1178 return SDValue(CSENode, 0);
1179 }
1180 }
1181
1182 return RV;
1183 }
1184
1185 /// getInputChainForNode - Given a node, return its input chain if it has one,
1186 /// otherwise return a null sd operand.
getInputChainForNode(SDNode * N)1187 static SDValue getInputChainForNode(SDNode *N) {
1188 if (unsigned NumOps = N->getNumOperands()) {
1189 if (N->getOperand(0).getValueType() == MVT::Other)
1190 return N->getOperand(0);
1191 else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1192 return N->getOperand(NumOps-1);
1193 for (unsigned i = 1; i < NumOps-1; ++i)
1194 if (N->getOperand(i).getValueType() == MVT::Other)
1195 return N->getOperand(i);
1196 }
1197 return SDValue();
1198 }
1199
visitTokenFactor(SDNode * N)1200 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1201 // If N has two operands, where one has an input chain equal to the other,
1202 // the 'other' chain is redundant.
1203 if (N->getNumOperands() == 2) {
1204 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1205 return N->getOperand(0);
1206 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1207 return N->getOperand(1);
1208 }
1209
1210 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1211 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1212 SmallPtrSet<SDNode*, 16> SeenOps;
1213 bool Changed = false; // If we should replace this token factor.
1214
1215 // Start out with this token factor.
1216 TFs.push_back(N);
1217
1218 // Iterate through token factors. The TFs grows when new token factors are
1219 // encountered.
1220 for (unsigned i = 0; i < TFs.size(); ++i) {
1221 SDNode *TF = TFs[i];
1222
1223 // Check each of the operands.
1224 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1225 SDValue Op = TF->getOperand(i);
1226
1227 switch (Op.getOpcode()) {
1228 case ISD::EntryToken:
1229 // Entry tokens don't need to be added to the list. They are
1230 // rededundant.
1231 Changed = true;
1232 break;
1233
1234 case ISD::TokenFactor:
1235 if (Op.hasOneUse() &&
1236 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1237 // Queue up for processing.
1238 TFs.push_back(Op.getNode());
1239 // Clean up in case the token factor is removed.
1240 AddToWorkList(Op.getNode());
1241 Changed = true;
1242 break;
1243 }
1244 // Fall thru
1245
1246 default:
1247 // Only add if it isn't already in the list.
1248 if (SeenOps.insert(Op.getNode()))
1249 Ops.push_back(Op);
1250 else
1251 Changed = true;
1252 break;
1253 }
1254 }
1255 }
1256
1257 SDValue Result;
1258
1259 // If we've change things around then replace token factor.
1260 if (Changed) {
1261 if (Ops.empty()) {
1262 // The entry token is the only possible outcome.
1263 Result = DAG.getEntryNode();
1264 } else {
1265 // New and improved token factor.
1266 Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1267 MVT::Other, &Ops[0], Ops.size());
1268 }
1269
1270 // Don't add users to work list.
1271 return CombineTo(N, Result, false);
1272 }
1273
1274 return Result;
1275 }
1276
1277 /// MERGE_VALUES can always be eliminated.
visitMERGE_VALUES(SDNode * N)1278 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1279 WorkListRemover DeadNodes(*this);
1280 // Replacing results may cause a different MERGE_VALUES to suddenly
1281 // be CSE'd with N, and carry its uses with it. Iterate until no
1282 // uses remain, to ensure that the node can be safely deleted.
1283 do {
1284 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1285 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
1286 &DeadNodes);
1287 } while (!N->use_empty());
1288 removeFromWorkList(N);
1289 DAG.DeleteNode(N);
1290 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1291 }
1292
1293 static
combineShlAddConstant(DebugLoc DL,SDValue N0,SDValue N1,SelectionDAG & DAG)1294 SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1295 SelectionDAG &DAG) {
1296 EVT VT = N0.getValueType();
1297 SDValue N00 = N0.getOperand(0);
1298 SDValue N01 = N0.getOperand(1);
1299 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1300
1301 if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1302 isa<ConstantSDNode>(N00.getOperand(1))) {
1303 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1304 N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1305 DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1306 N00.getOperand(0), N01),
1307 DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1308 N00.getOperand(1), N01));
1309 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1310 }
1311
1312 return SDValue();
1313 }
1314
visitADD(SDNode * N)1315 SDValue DAGCombiner::visitADD(SDNode *N) {
1316 SDValue N0 = N->getOperand(0);
1317 SDValue N1 = N->getOperand(1);
1318 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1319 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1320 EVT VT = N0.getValueType();
1321
1322 // fold vector ops
1323 if (VT.isVector()) {
1324 SDValue FoldedVOp = SimplifyVBinOp(N);
1325 if (FoldedVOp.getNode()) return FoldedVOp;
1326 }
1327
1328 // fold (add x, undef) -> undef
1329 if (N0.getOpcode() == ISD::UNDEF)
1330 return N0;
1331 if (N1.getOpcode() == ISD::UNDEF)
1332 return N1;
1333 // fold (add c1, c2) -> c1+c2
1334 if (N0C && N1C)
1335 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1336 // canonicalize constant to RHS
1337 if (N0C && !N1C)
1338 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1339 // fold (add x, 0) -> x
1340 if (N1C && N1C->isNullValue())
1341 return N0;
1342 // fold (add Sym, c) -> Sym+c
1343 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1344 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1345 GA->getOpcode() == ISD::GlobalAddress)
1346 return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1347 GA->getOffset() +
1348 (uint64_t)N1C->getSExtValue());
1349 // fold ((c1-A)+c2) -> (c1+c2)-A
1350 if (N1C && N0.getOpcode() == ISD::SUB)
1351 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1352 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1353 DAG.getConstant(N1C->getAPIntValue()+
1354 N0C->getAPIntValue(), VT),
1355 N0.getOperand(1));
1356 // reassociate add
1357 SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1358 if (RADD.getNode() != 0)
1359 return RADD;
1360 // fold ((0-A) + B) -> B-A
1361 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1362 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1363 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1364 // fold (A + (0-B)) -> A-B
1365 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1366 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1367 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1368 // fold (A+(B-A)) -> B
1369 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1370 return N1.getOperand(0);
1371 // fold ((B-A)+A) -> B
1372 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1373 return N0.getOperand(0);
1374 // fold (A+(B-(A+C))) to (B-C)
1375 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1376 N0 == N1.getOperand(1).getOperand(0))
1377 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1378 N1.getOperand(1).getOperand(1));
1379 // fold (A+(B-(C+A))) to (B-C)
1380 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1381 N0 == N1.getOperand(1).getOperand(1))
1382 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1383 N1.getOperand(1).getOperand(0));
1384 // fold (A+((B-A)+or-C)) to (B+or-C)
1385 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1386 N1.getOperand(0).getOpcode() == ISD::SUB &&
1387 N0 == N1.getOperand(0).getOperand(1))
1388 return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1389 N1.getOperand(0).getOperand(0), N1.getOperand(1));
1390
1391 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1392 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1393 SDValue N00 = N0.getOperand(0);
1394 SDValue N01 = N0.getOperand(1);
1395 SDValue N10 = N1.getOperand(0);
1396 SDValue N11 = N1.getOperand(1);
1397
1398 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1399 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1400 DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1401 DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1402 }
1403
1404 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1405 return SDValue(N, 0);
1406
1407 // fold (a+b) -> (a|b) iff a and b share no bits.
1408 if (VT.isInteger() && !VT.isVector()) {
1409 APInt LHSZero, LHSOne;
1410 APInt RHSZero, RHSOne;
1411 APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
1412 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1413
1414 if (LHSZero.getBoolValue()) {
1415 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1416
1417 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1418 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1419 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1420 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1421 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1422 }
1423 }
1424
1425 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1426 if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1427 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1428 if (Result.getNode()) return Result;
1429 }
1430 if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1431 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1432 if (Result.getNode()) return Result;
1433 }
1434
1435 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1436 if (N1.getOpcode() == ISD::SHL &&
1437 N1.getOperand(0).getOpcode() == ISD::SUB)
1438 if (ConstantSDNode *C =
1439 dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1440 if (C->getAPIntValue() == 0)
1441 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1442 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1443 N1.getOperand(0).getOperand(1),
1444 N1.getOperand(1)));
1445 if (N0.getOpcode() == ISD::SHL &&
1446 N0.getOperand(0).getOpcode() == ISD::SUB)
1447 if (ConstantSDNode *C =
1448 dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1449 if (C->getAPIntValue() == 0)
1450 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1451 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1452 N0.getOperand(0).getOperand(1),
1453 N0.getOperand(1)));
1454
1455 if (N1.getOpcode() == ISD::AND) {
1456 SDValue AndOp0 = N1.getOperand(0);
1457 ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1458 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1459 unsigned DestBits = VT.getScalarType().getSizeInBits();
1460
1461 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1462 // and similar xforms where the inner op is either ~0 or 0.
1463 if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1464 DebugLoc DL = N->getDebugLoc();
1465 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1466 }
1467 }
1468
1469 // add (sext i1), X -> sub X, (zext i1)
1470 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1471 N0.getOperand(0).getValueType() == MVT::i1 &&
1472 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1473 DebugLoc DL = N->getDebugLoc();
1474 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1475 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1476 }
1477
1478 return SDValue();
1479 }
1480
visitADDC(SDNode * N)1481 SDValue DAGCombiner::visitADDC(SDNode *N) {
1482 SDValue N0 = N->getOperand(0);
1483 SDValue N1 = N->getOperand(1);
1484 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1485 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1486 EVT VT = N0.getValueType();
1487
1488 // If the flag result is dead, turn this into an ADD.
1489 if (N->hasNUsesOfValue(0, 1))
1490 return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0),
1491 DAG.getNode(ISD::CARRY_FALSE,
1492 N->getDebugLoc(), MVT::Glue));
1493
1494 // canonicalize constant to RHS.
1495 if (N0C && !N1C)
1496 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1497
1498 // fold (addc x, 0) -> x + no carry out
1499 if (N1C && N1C->isNullValue())
1500 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1501 N->getDebugLoc(), MVT::Glue));
1502
1503 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1504 APInt LHSZero, LHSOne;
1505 APInt RHSZero, RHSOne;
1506 APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
1507 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1508
1509 if (LHSZero.getBoolValue()) {
1510 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1511
1512 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1513 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1514 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1515 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1516 return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1517 DAG.getNode(ISD::CARRY_FALSE,
1518 N->getDebugLoc(), MVT::Glue));
1519 }
1520
1521 return SDValue();
1522 }
1523
visitADDE(SDNode * N)1524 SDValue DAGCombiner::visitADDE(SDNode *N) {
1525 SDValue N0 = N->getOperand(0);
1526 SDValue N1 = N->getOperand(1);
1527 SDValue CarryIn = N->getOperand(2);
1528 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1529 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1530
1531 // canonicalize constant to RHS
1532 if (N0C && !N1C)
1533 return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1534 N1, N0, CarryIn);
1535
1536 // fold (adde x, y, false) -> (addc x, y)
1537 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1538 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1539
1540 return SDValue();
1541 }
1542
1543 // Since it may not be valid to emit a fold to zero for vector initializers
1544 // check if we can before folding.
tryFoldToZero(DebugLoc DL,const TargetLowering & TLI,EVT VT,SelectionDAG & DAG,bool LegalOperations)1545 static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1546 SelectionDAG &DAG, bool LegalOperations) {
1547 if (!VT.isVector()) {
1548 return DAG.getConstant(0, VT);
1549 }
1550 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1551 // Produce a vector of zeros.
1552 SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1553 std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1554 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1555 &Ops[0], Ops.size());
1556 }
1557 return SDValue();
1558 }
1559
visitSUB(SDNode * N)1560 SDValue DAGCombiner::visitSUB(SDNode *N) {
1561 SDValue N0 = N->getOperand(0);
1562 SDValue N1 = N->getOperand(1);
1563 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1564 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1565 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1566 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1567 EVT VT = N0.getValueType();
1568
1569 // fold vector ops
1570 if (VT.isVector()) {
1571 SDValue FoldedVOp = SimplifyVBinOp(N);
1572 if (FoldedVOp.getNode()) return FoldedVOp;
1573 }
1574
1575 // fold (sub x, x) -> 0
1576 // FIXME: Refactor this and xor and other similar operations together.
1577 if (N0 == N1)
1578 return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1579 // fold (sub c1, c2) -> c1-c2
1580 if (N0C && N1C)
1581 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1582 // fold (sub x, c) -> (add x, -c)
1583 if (N1C)
1584 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1585 DAG.getConstant(-N1C->getAPIntValue(), VT));
1586 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1587 if (N0C && N0C->isAllOnesValue())
1588 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1589 // fold A-(A-B) -> B
1590 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1591 return N1.getOperand(1);
1592 // fold (A+B)-A -> B
1593 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1594 return N0.getOperand(1);
1595 // fold (A+B)-B -> A
1596 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1597 return N0.getOperand(0);
1598 // fold C2-(A+C1) -> (C2-C1)-A
1599 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1600 SDValue NewC = DAG.getConstant((N0C->getAPIntValue() - N1C1->getAPIntValue()), VT);
1601 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1602 N1.getOperand(0));
1603 }
1604 // fold ((A+(B+or-C))-B) -> A+or-C
1605 if (N0.getOpcode() == ISD::ADD &&
1606 (N0.getOperand(1).getOpcode() == ISD::SUB ||
1607 N0.getOperand(1).getOpcode() == ISD::ADD) &&
1608 N0.getOperand(1).getOperand(0) == N1)
1609 return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1610 N0.getOperand(0), N0.getOperand(1).getOperand(1));
1611 // fold ((A+(C+B))-B) -> A+C
1612 if (N0.getOpcode() == ISD::ADD &&
1613 N0.getOperand(1).getOpcode() == ISD::ADD &&
1614 N0.getOperand(1).getOperand(1) == N1)
1615 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1616 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1617 // fold ((A-(B-C))-C) -> A-B
1618 if (N0.getOpcode() == ISD::SUB &&
1619 N0.getOperand(1).getOpcode() == ISD::SUB &&
1620 N0.getOperand(1).getOperand(1) == N1)
1621 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1622 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1623
1624 // If either operand of a sub is undef, the result is undef
1625 if (N0.getOpcode() == ISD::UNDEF)
1626 return N0;
1627 if (N1.getOpcode() == ISD::UNDEF)
1628 return N1;
1629
1630 // If the relocation model supports it, consider symbol offsets.
1631 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1632 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1633 // fold (sub Sym, c) -> Sym-c
1634 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1635 return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1636 GA->getOffset() -
1637 (uint64_t)N1C->getSExtValue());
1638 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1639 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1640 if (GA->getGlobal() == GB->getGlobal())
1641 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1642 VT);
1643 }
1644
1645 return SDValue();
1646 }
1647
visitMUL(SDNode * N)1648 SDValue DAGCombiner::visitMUL(SDNode *N) {
1649 SDValue N0 = N->getOperand(0);
1650 SDValue N1 = N->getOperand(1);
1651 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1652 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1653 EVT VT = N0.getValueType();
1654
1655 // fold vector ops
1656 if (VT.isVector()) {
1657 SDValue FoldedVOp = SimplifyVBinOp(N);
1658 if (FoldedVOp.getNode()) return FoldedVOp;
1659 }
1660
1661 // fold (mul x, undef) -> 0
1662 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1663 return DAG.getConstant(0, VT);
1664 // fold (mul c1, c2) -> c1*c2
1665 if (N0C && N1C)
1666 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1667 // canonicalize constant to RHS
1668 if (N0C && !N1C)
1669 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1670 // fold (mul x, 0) -> 0
1671 if (N1C && N1C->isNullValue())
1672 return N1;
1673 // fold (mul x, -1) -> 0-x
1674 if (N1C && N1C->isAllOnesValue())
1675 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1676 DAG.getConstant(0, VT), N0);
1677 // fold (mul x, (1 << c)) -> x << c
1678 if (N1C && N1C->getAPIntValue().isPowerOf2())
1679 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1680 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1681 getShiftAmountTy(N0.getValueType())));
1682 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1683 if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1684 unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1685 // FIXME: If the input is something that is easily negated (e.g. a
1686 // single-use add), we should put the negate there.
1687 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1688 DAG.getConstant(0, VT),
1689 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1690 DAG.getConstant(Log2Val,
1691 getShiftAmountTy(N0.getValueType()))));
1692 }
1693 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1694 if (N1C && N0.getOpcode() == ISD::SHL &&
1695 isa<ConstantSDNode>(N0.getOperand(1))) {
1696 SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1697 N1, N0.getOperand(1));
1698 AddToWorkList(C3.getNode());
1699 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1700 N0.getOperand(0), C3);
1701 }
1702
1703 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1704 // use.
1705 {
1706 SDValue Sh(0,0), Y(0,0);
1707 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1708 if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1709 N0.getNode()->hasOneUse()) {
1710 Sh = N0; Y = N1;
1711 } else if (N1.getOpcode() == ISD::SHL &&
1712 isa<ConstantSDNode>(N1.getOperand(1)) &&
1713 N1.getNode()->hasOneUse()) {
1714 Sh = N1; Y = N0;
1715 }
1716
1717 if (Sh.getNode()) {
1718 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1719 Sh.getOperand(0), Y);
1720 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1721 Mul, Sh.getOperand(1));
1722 }
1723 }
1724
1725 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1726 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1727 isa<ConstantSDNode>(N0.getOperand(1)))
1728 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1729 DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1730 N0.getOperand(0), N1),
1731 DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1732 N0.getOperand(1), N1));
1733
1734 // reassociate mul
1735 SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1736 if (RMUL.getNode() != 0)
1737 return RMUL;
1738
1739 return SDValue();
1740 }
1741
visitSDIV(SDNode * N)1742 SDValue DAGCombiner::visitSDIV(SDNode *N) {
1743 SDValue N0 = N->getOperand(0);
1744 SDValue N1 = N->getOperand(1);
1745 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1746 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1747 EVT VT = N->getValueType(0);
1748
1749 // fold vector ops
1750 if (VT.isVector()) {
1751 SDValue FoldedVOp = SimplifyVBinOp(N);
1752 if (FoldedVOp.getNode()) return FoldedVOp;
1753 }
1754
1755 // fold (sdiv c1, c2) -> c1/c2
1756 if (N0C && N1C && !N1C->isNullValue())
1757 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1758 // fold (sdiv X, 1) -> X
1759 if (N1C && N1C->getSExtValue() == 1LL)
1760 return N0;
1761 // fold (sdiv X, -1) -> 0-X
1762 if (N1C && N1C->isAllOnesValue())
1763 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1764 DAG.getConstant(0, VT), N0);
1765 // If we know the sign bits of both operands are zero, strength reduce to a
1766 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1767 if (!VT.isVector()) {
1768 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1769 return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1770 N0, N1);
1771 }
1772 // fold (sdiv X, pow2) -> simple ops after legalize
1773 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1774 (isPowerOf2_64(N1C->getSExtValue()) ||
1775 isPowerOf2_64(-N1C->getSExtValue()))) {
1776 // If dividing by powers of two is cheap, then don't perform the following
1777 // fold.
1778 if (TLI.isPow2DivCheap())
1779 return SDValue();
1780
1781 int64_t pow2 = N1C->getSExtValue();
1782 int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1783 unsigned lg2 = Log2_64(abs2);
1784
1785 // Splat the sign bit into the register
1786 SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1787 DAG.getConstant(VT.getSizeInBits()-1,
1788 getShiftAmountTy(N0.getValueType())));
1789 AddToWorkList(SGN.getNode());
1790
1791 // Add (N0 < 0) ? abs2 - 1 : 0;
1792 SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1793 DAG.getConstant(VT.getSizeInBits() - lg2,
1794 getShiftAmountTy(SGN.getValueType())));
1795 SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1796 AddToWorkList(SRL.getNode());
1797 AddToWorkList(ADD.getNode()); // Divide by pow2
1798 SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1799 DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1800
1801 // If we're dividing by a positive value, we're done. Otherwise, we must
1802 // negate the result.
1803 if (pow2 > 0)
1804 return SRA;
1805
1806 AddToWorkList(SRA.getNode());
1807 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1808 DAG.getConstant(0, VT), SRA);
1809 }
1810
1811 // if integer divide is expensive and we satisfy the requirements, emit an
1812 // alternate sequence.
1813 if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) &&
1814 !TLI.isIntDivCheap()) {
1815 SDValue Op = BuildSDIV(N);
1816 if (Op.getNode()) return Op;
1817 }
1818
1819 // undef / X -> 0
1820 if (N0.getOpcode() == ISD::UNDEF)
1821 return DAG.getConstant(0, VT);
1822 // X / undef -> undef
1823 if (N1.getOpcode() == ISD::UNDEF)
1824 return N1;
1825
1826 return SDValue();
1827 }
1828
visitUDIV(SDNode * N)1829 SDValue DAGCombiner::visitUDIV(SDNode *N) {
1830 SDValue N0 = N->getOperand(0);
1831 SDValue N1 = N->getOperand(1);
1832 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1833 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1834 EVT VT = N->getValueType(0);
1835
1836 // fold vector ops
1837 if (VT.isVector()) {
1838 SDValue FoldedVOp = SimplifyVBinOp(N);
1839 if (FoldedVOp.getNode()) return FoldedVOp;
1840 }
1841
1842 // fold (udiv c1, c2) -> c1/c2
1843 if (N0C && N1C && !N1C->isNullValue())
1844 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1845 // fold (udiv x, (1 << c)) -> x >>u c
1846 if (N1C && N1C->getAPIntValue().isPowerOf2())
1847 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1848 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1849 getShiftAmountTy(N0.getValueType())));
1850 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1851 if (N1.getOpcode() == ISD::SHL) {
1852 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1853 if (SHC->getAPIntValue().isPowerOf2()) {
1854 EVT ADDVT = N1.getOperand(1).getValueType();
1855 SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1856 N1.getOperand(1),
1857 DAG.getConstant(SHC->getAPIntValue()
1858 .logBase2(),
1859 ADDVT));
1860 AddToWorkList(Add.getNode());
1861 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1862 }
1863 }
1864 }
1865 // fold (udiv x, c) -> alternate
1866 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1867 SDValue Op = BuildUDIV(N);
1868 if (Op.getNode()) return Op;
1869 }
1870
1871 // undef / X -> 0
1872 if (N0.getOpcode() == ISD::UNDEF)
1873 return DAG.getConstant(0, VT);
1874 // X / undef -> undef
1875 if (N1.getOpcode() == ISD::UNDEF)
1876 return N1;
1877
1878 return SDValue();
1879 }
1880
visitSREM(SDNode * N)1881 SDValue DAGCombiner::visitSREM(SDNode *N) {
1882 SDValue N0 = N->getOperand(0);
1883 SDValue N1 = N->getOperand(1);
1884 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1885 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1886 EVT VT = N->getValueType(0);
1887
1888 // fold (srem c1, c2) -> c1%c2
1889 if (N0C && N1C && !N1C->isNullValue())
1890 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1891 // If we know the sign bits of both operands are zero, strength reduce to a
1892 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1893 if (!VT.isVector()) {
1894 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1895 return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1896 }
1897
1898 // If X/C can be simplified by the division-by-constant logic, lower
1899 // X%C to the equivalent of X-X/C*C.
1900 if (N1C && !N1C->isNullValue()) {
1901 SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1902 AddToWorkList(Div.getNode());
1903 SDValue OptimizedDiv = combine(Div.getNode());
1904 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1905 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1906 OptimizedDiv, N1);
1907 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1908 AddToWorkList(Mul.getNode());
1909 return Sub;
1910 }
1911 }
1912
1913 // undef % X -> 0
1914 if (N0.getOpcode() == ISD::UNDEF)
1915 return DAG.getConstant(0, VT);
1916 // X % undef -> undef
1917 if (N1.getOpcode() == ISD::UNDEF)
1918 return N1;
1919
1920 return SDValue();
1921 }
1922
visitUREM(SDNode * N)1923 SDValue DAGCombiner::visitUREM(SDNode *N) {
1924 SDValue N0 = N->getOperand(0);
1925 SDValue N1 = N->getOperand(1);
1926 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1927 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1928 EVT VT = N->getValueType(0);
1929
1930 // fold (urem c1, c2) -> c1%c2
1931 if (N0C && N1C && !N1C->isNullValue())
1932 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
1933 // fold (urem x, pow2) -> (and x, pow2-1)
1934 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1935 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
1936 DAG.getConstant(N1C->getAPIntValue()-1,VT));
1937 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1938 if (N1.getOpcode() == ISD::SHL) {
1939 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1940 if (SHC->getAPIntValue().isPowerOf2()) {
1941 SDValue Add =
1942 DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
1943 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
1944 VT));
1945 AddToWorkList(Add.getNode());
1946 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
1947 }
1948 }
1949 }
1950
1951 // If X/C can be simplified by the division-by-constant logic, lower
1952 // X%C to the equivalent of X-X/C*C.
1953 if (N1C && !N1C->isNullValue()) {
1954 SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
1955 AddToWorkList(Div.getNode());
1956 SDValue OptimizedDiv = combine(Div.getNode());
1957 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1958 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1959 OptimizedDiv, N1);
1960 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1961 AddToWorkList(Mul.getNode());
1962 return Sub;
1963 }
1964 }
1965
1966 // undef % X -> 0
1967 if (N0.getOpcode() == ISD::UNDEF)
1968 return DAG.getConstant(0, VT);
1969 // X % undef -> undef
1970 if (N1.getOpcode() == ISD::UNDEF)
1971 return N1;
1972
1973 return SDValue();
1974 }
1975
visitMULHS(SDNode * N)1976 SDValue DAGCombiner::visitMULHS(SDNode *N) {
1977 SDValue N0 = N->getOperand(0);
1978 SDValue N1 = N->getOperand(1);
1979 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1980 EVT VT = N->getValueType(0);
1981 DebugLoc DL = N->getDebugLoc();
1982
1983 // fold (mulhs x, 0) -> 0
1984 if (N1C && N1C->isNullValue())
1985 return N1;
1986 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1987 if (N1C && N1C->getAPIntValue() == 1)
1988 return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
1989 DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
1990 getShiftAmountTy(N0.getValueType())));
1991 // fold (mulhs x, undef) -> 0
1992 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1993 return DAG.getConstant(0, VT);
1994
1995 // If the type twice as wide is legal, transform the mulhs to a wider multiply
1996 // plus a shift.
1997 if (VT.isSimple() && !VT.isVector()) {
1998 MVT Simple = VT.getSimpleVT();
1999 unsigned SimpleSize = Simple.getSizeInBits();
2000 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2001 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2002 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2003 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2004 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2005 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2006 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2007 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2008 }
2009 }
2010
2011 return SDValue();
2012 }
2013
visitMULHU(SDNode * N)2014 SDValue DAGCombiner::visitMULHU(SDNode *N) {
2015 SDValue N0 = N->getOperand(0);
2016 SDValue N1 = N->getOperand(1);
2017 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2018 EVT VT = N->getValueType(0);
2019 DebugLoc DL = N->getDebugLoc();
2020
2021 // fold (mulhu x, 0) -> 0
2022 if (N1C && N1C->isNullValue())
2023 return N1;
2024 // fold (mulhu x, 1) -> 0
2025 if (N1C && N1C->getAPIntValue() == 1)
2026 return DAG.getConstant(0, N0.getValueType());
2027 // fold (mulhu x, undef) -> 0
2028 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2029 return DAG.getConstant(0, VT);
2030
2031 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2032 // plus a shift.
2033 if (VT.isSimple() && !VT.isVector()) {
2034 MVT Simple = VT.getSimpleVT();
2035 unsigned SimpleSize = Simple.getSizeInBits();
2036 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2037 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2038 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2039 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2040 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2041 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2042 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2043 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2044 }
2045 }
2046
2047 return SDValue();
2048 }
2049
2050 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2051 /// compute two values. LoOp and HiOp give the opcodes for the two computations
2052 /// that are being performed. Return true if a simplification was made.
2053 ///
SimplifyNodeWithTwoResults(SDNode * N,unsigned LoOp,unsigned HiOp)2054 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2055 unsigned HiOp) {
2056 // If the high half is not needed, just compute the low half.
2057 bool HiExists = N->hasAnyUseOfValue(1);
2058 if (!HiExists &&
2059 (!LegalOperations ||
2060 TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2061 SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2062 N->op_begin(), N->getNumOperands());
2063 return CombineTo(N, Res, Res);
2064 }
2065
2066 // If the low half is not needed, just compute the high half.
2067 bool LoExists = N->hasAnyUseOfValue(0);
2068 if (!LoExists &&
2069 (!LegalOperations ||
2070 TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2071 SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2072 N->op_begin(), N->getNumOperands());
2073 return CombineTo(N, Res, Res);
2074 }
2075
2076 // If both halves are used, return as it is.
2077 if (LoExists && HiExists)
2078 return SDValue();
2079
2080 // If the two computed results can be simplified separately, separate them.
2081 if (LoExists) {
2082 SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2083 N->op_begin(), N->getNumOperands());
2084 AddToWorkList(Lo.getNode());
2085 SDValue LoOpt = combine(Lo.getNode());
2086 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2087 (!LegalOperations ||
2088 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2089 return CombineTo(N, LoOpt, LoOpt);
2090 }
2091
2092 if (HiExists) {
2093 SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2094 N->op_begin(), N->getNumOperands());
2095 AddToWorkList(Hi.getNode());
2096 SDValue HiOpt = combine(Hi.getNode());
2097 if (HiOpt.getNode() && HiOpt != Hi &&
2098 (!LegalOperations ||
2099 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2100 return CombineTo(N, HiOpt, HiOpt);
2101 }
2102
2103 return SDValue();
2104 }
2105
visitSMUL_LOHI(SDNode * N)2106 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2107 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2108 if (Res.getNode()) return Res;
2109
2110 EVT VT = N->getValueType(0);
2111 DebugLoc DL = N->getDebugLoc();
2112
2113 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2114 // plus a shift.
2115 if (VT.isSimple() && !VT.isVector()) {
2116 MVT Simple = VT.getSimpleVT();
2117 unsigned SimpleSize = Simple.getSizeInBits();
2118 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2119 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2120 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2121 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2122 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2123 // Compute the high part as N1.
2124 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2125 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2126 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2127 // Compute the low part as N0.
2128 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2129 return CombineTo(N, Lo, Hi);
2130 }
2131 }
2132
2133 return SDValue();
2134 }
2135
visitUMUL_LOHI(SDNode * N)2136 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2137 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2138 if (Res.getNode()) return Res;
2139
2140 EVT VT = N->getValueType(0);
2141 DebugLoc DL = N->getDebugLoc();
2142
2143 // If the type twice as wide is legal, transform the mulhu to a wider multiply
2144 // plus a shift.
2145 if (VT.isSimple() && !VT.isVector()) {
2146 MVT Simple = VT.getSimpleVT();
2147 unsigned SimpleSize = Simple.getSizeInBits();
2148 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2149 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2150 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2151 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2152 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2153 // Compute the high part as N1.
2154 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2155 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2156 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2157 // Compute the low part as N0.
2158 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2159 return CombineTo(N, Lo, Hi);
2160 }
2161 }
2162
2163 return SDValue();
2164 }
2165
visitSMULO(SDNode * N)2166 SDValue DAGCombiner::visitSMULO(SDNode *N) {
2167 // (smulo x, 2) -> (saddo x, x)
2168 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2169 if (C2->getAPIntValue() == 2)
2170 return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2171 N->getOperand(0), N->getOperand(0));
2172
2173 return SDValue();
2174 }
2175
visitUMULO(SDNode * N)2176 SDValue DAGCombiner::visitUMULO(SDNode *N) {
2177 // (umulo x, 2) -> (uaddo x, x)
2178 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2179 if (C2->getAPIntValue() == 2)
2180 return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2181 N->getOperand(0), N->getOperand(0));
2182
2183 return SDValue();
2184 }
2185
visitSDIVREM(SDNode * N)2186 SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2187 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2188 if (Res.getNode()) return Res;
2189
2190 return SDValue();
2191 }
2192
visitUDIVREM(SDNode * N)2193 SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2194 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2195 if (Res.getNode()) return Res;
2196
2197 return SDValue();
2198 }
2199
2200 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2201 /// two operands of the same opcode, try to simplify it.
SimplifyBinOpWithSameOpcodeHands(SDNode * N)2202 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2203 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2204 EVT VT = N0.getValueType();
2205 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2206
2207 // Bail early if none of these transforms apply.
2208 if (N0.getNode()->getNumOperands() == 0) return SDValue();
2209
2210 // For each of OP in AND/OR/XOR:
2211 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2212 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2213 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2214 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2215 //
2216 // do not sink logical op inside of a vector extend, since it may combine
2217 // into a vsetcc.
2218 EVT Op0VT = N0.getOperand(0).getValueType();
2219 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2220 N0.getOpcode() == ISD::SIGN_EXTEND ||
2221 // Avoid infinite looping with PromoteIntBinOp.
2222 (N0.getOpcode() == ISD::ANY_EXTEND &&
2223 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2224 (N0.getOpcode() == ISD::TRUNCATE &&
2225 (!TLI.isZExtFree(VT, Op0VT) ||
2226 !TLI.isTruncateFree(Op0VT, VT)) &&
2227 TLI.isTypeLegal(Op0VT))) &&
2228 !VT.isVector() &&
2229 Op0VT == N1.getOperand(0).getValueType() &&
2230 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2231 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2232 N0.getOperand(0).getValueType(),
2233 N0.getOperand(0), N1.getOperand(0));
2234 AddToWorkList(ORNode.getNode());
2235 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2236 }
2237
2238 // For each of OP in SHL/SRL/SRA/AND...
2239 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2240 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
2241 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2242 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2243 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2244 N0.getOperand(1) == N1.getOperand(1)) {
2245 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2246 N0.getOperand(0).getValueType(),
2247 N0.getOperand(0), N1.getOperand(0));
2248 AddToWorkList(ORNode.getNode());
2249 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2250 ORNode, N0.getOperand(1));
2251 }
2252
2253 return SDValue();
2254 }
2255
visitAND(SDNode * N)2256 SDValue DAGCombiner::visitAND(SDNode *N) {
2257 SDValue N0 = N->getOperand(0);
2258 SDValue N1 = N->getOperand(1);
2259 SDValue LL, LR, RL, RR, CC0, CC1;
2260 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2261 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2262 EVT VT = N1.getValueType();
2263 unsigned BitWidth = VT.getScalarType().getSizeInBits();
2264
2265 // fold vector ops
2266 if (VT.isVector()) {
2267 SDValue FoldedVOp = SimplifyVBinOp(N);
2268 if (FoldedVOp.getNode()) return FoldedVOp;
2269 }
2270
2271 // fold (and x, undef) -> 0
2272 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2273 return DAG.getConstant(0, VT);
2274 // fold (and c1, c2) -> c1&c2
2275 if (N0C && N1C)
2276 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2277 // canonicalize constant to RHS
2278 if (N0C && !N1C)
2279 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2280 // fold (and x, -1) -> x
2281 if (N1C && N1C->isAllOnesValue())
2282 return N0;
2283 // if (and x, c) is known to be zero, return 0
2284 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2285 APInt::getAllOnesValue(BitWidth)))
2286 return DAG.getConstant(0, VT);
2287 // reassociate and
2288 SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2289 if (RAND.getNode() != 0)
2290 return RAND;
2291 // fold (and (or x, C), D) -> D if (C & D) == D
2292 if (N1C && N0.getOpcode() == ISD::OR)
2293 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2294 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2295 return N1;
2296 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2297 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2298 SDValue N0Op0 = N0.getOperand(0);
2299 APInt Mask = ~N1C->getAPIntValue();
2300 Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2301 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2302 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2303 N0.getValueType(), N0Op0);
2304
2305 // Replace uses of the AND with uses of the Zero extend node.
2306 CombineTo(N, Zext);
2307
2308 // We actually want to replace all uses of the any_extend with the
2309 // zero_extend, to avoid duplicating things. This will later cause this
2310 // AND to be folded.
2311 CombineTo(N0.getNode(), Zext);
2312 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2313 }
2314 }
2315 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2316 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2317 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2318 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2319
2320 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2321 LL.getValueType().isInteger()) {
2322 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2323 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2324 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2325 LR.getValueType(), LL, RL);
2326 AddToWorkList(ORNode.getNode());
2327 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2328 }
2329 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2330 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2331 SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2332 LR.getValueType(), LL, RL);
2333 AddToWorkList(ANDNode.getNode());
2334 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2335 }
2336 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2337 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2338 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2339 LR.getValueType(), LL, RL);
2340 AddToWorkList(ORNode.getNode());
2341 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2342 }
2343 }
2344 // canonicalize equivalent to ll == rl
2345 if (LL == RR && LR == RL) {
2346 Op1 = ISD::getSetCCSwappedOperands(Op1);
2347 std::swap(RL, RR);
2348 }
2349 if (LL == RL && LR == RR) {
2350 bool isInteger = LL.getValueType().isInteger();
2351 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2352 if (Result != ISD::SETCC_INVALID &&
2353 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2354 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2355 LL, LR, Result);
2356 }
2357 }
2358
2359 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
2360 if (N0.getOpcode() == N1.getOpcode()) {
2361 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2362 if (Tmp.getNode()) return Tmp;
2363 }
2364
2365 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2366 // fold (and (sra)) -> (and (srl)) when possible.
2367 if (!VT.isVector() &&
2368 SimplifyDemandedBits(SDValue(N, 0)))
2369 return SDValue(N, 0);
2370
2371 // fold (zext_inreg (extload x)) -> (zextload x)
2372 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2373 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2374 EVT MemVT = LN0->getMemoryVT();
2375 // If we zero all the possible extended bits, then we can turn this into
2376 // a zextload if we are running before legalize or the operation is legal.
2377 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2378 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2379 BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2380 ((!LegalOperations && !LN0->isVolatile()) ||
2381 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2382 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2383 LN0->getChain(), LN0->getBasePtr(),
2384 LN0->getPointerInfo(), MemVT,
2385 LN0->isVolatile(), LN0->isNonTemporal(),
2386 LN0->getAlignment());
2387 AddToWorkList(N);
2388 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2389 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2390 }
2391 }
2392 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2393 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2394 N0.hasOneUse()) {
2395 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2396 EVT MemVT = LN0->getMemoryVT();
2397 // If we zero all the possible extended bits, then we can turn this into
2398 // a zextload if we are running before legalize or the operation is legal.
2399 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2400 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2401 BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2402 ((!LegalOperations && !LN0->isVolatile()) ||
2403 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2404 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2405 LN0->getChain(),
2406 LN0->getBasePtr(), LN0->getPointerInfo(),
2407 MemVT,
2408 LN0->isVolatile(), LN0->isNonTemporal(),
2409 LN0->getAlignment());
2410 AddToWorkList(N);
2411 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2412 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2413 }
2414 }
2415
2416 // fold (and (load x), 255) -> (zextload x, i8)
2417 // fold (and (extload x, i16), 255) -> (zextload x, i8)
2418 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2419 if (N1C && (N0.getOpcode() == ISD::LOAD ||
2420 (N0.getOpcode() == ISD::ANY_EXTEND &&
2421 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2422 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2423 LoadSDNode *LN0 = HasAnyExt
2424 ? cast<LoadSDNode>(N0.getOperand(0))
2425 : cast<LoadSDNode>(N0);
2426 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2427 LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2428 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2429 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2430 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2431 EVT LoadedVT = LN0->getMemoryVT();
2432
2433 if (ExtVT == LoadedVT &&
2434 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2435 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2436
2437 SDValue NewLoad =
2438 DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2439 LN0->getChain(), LN0->getBasePtr(),
2440 LN0->getPointerInfo(),
2441 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2442 LN0->getAlignment());
2443 AddToWorkList(N);
2444 CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2445 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2446 }
2447
2448 // Do not change the width of a volatile load.
2449 // Do not generate loads of non-round integer types since these can
2450 // be expensive (and would be wrong if the type is not byte sized).
2451 if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2452 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2453 EVT PtrType = LN0->getOperand(1).getValueType();
2454
2455 unsigned Alignment = LN0->getAlignment();
2456 SDValue NewPtr = LN0->getBasePtr();
2457
2458 // For big endian targets, we need to add an offset to the pointer
2459 // to load the correct bytes. For little endian systems, we merely
2460 // need to read fewer bytes from the same pointer.
2461 if (TLI.isBigEndian()) {
2462 unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2463 unsigned EVTStoreBytes = ExtVT.getStoreSize();
2464 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2465 NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2466 NewPtr, DAG.getConstant(PtrOff, PtrType));
2467 Alignment = MinAlign(Alignment, PtrOff);
2468 }
2469
2470 AddToWorkList(NewPtr.getNode());
2471
2472 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2473 SDValue Load =
2474 DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2475 LN0->getChain(), NewPtr,
2476 LN0->getPointerInfo(),
2477 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2478 Alignment);
2479 AddToWorkList(N);
2480 CombineTo(LN0, Load, Load.getValue(1));
2481 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2482 }
2483 }
2484 }
2485 }
2486
2487 return SDValue();
2488 }
2489
2490 /// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2491 ///
MatchBSwapHWordLow(SDNode * N,SDValue N0,SDValue N1,bool DemandHighBits)2492 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2493 bool DemandHighBits) {
2494 if (!LegalOperations)
2495 return SDValue();
2496
2497 EVT VT = N->getValueType(0);
2498 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2499 return SDValue();
2500 if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2501 return SDValue();
2502
2503 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2504 bool LookPassAnd0 = false;
2505 bool LookPassAnd1 = false;
2506 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2507 std::swap(N0, N1);
2508 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2509 std::swap(N0, N1);
2510 if (N0.getOpcode() == ISD::AND) {
2511 if (!N0.getNode()->hasOneUse())
2512 return SDValue();
2513 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2514 if (!N01C || N01C->getZExtValue() != 0xFF00)
2515 return SDValue();
2516 N0 = N0.getOperand(0);
2517 LookPassAnd0 = true;
2518 }
2519
2520 if (N1.getOpcode() == ISD::AND) {
2521 if (!N1.getNode()->hasOneUse())
2522 return SDValue();
2523 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2524 if (!N11C || N11C->getZExtValue() != 0xFF)
2525 return SDValue();
2526 N1 = N1.getOperand(0);
2527 LookPassAnd1 = true;
2528 }
2529
2530 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2531 std::swap(N0, N1);
2532 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2533 return SDValue();
2534 if (!N0.getNode()->hasOneUse() ||
2535 !N1.getNode()->hasOneUse())
2536 return SDValue();
2537
2538 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2539 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2540 if (!N01C || !N11C)
2541 return SDValue();
2542 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2543 return SDValue();
2544
2545 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2546 SDValue N00 = N0->getOperand(0);
2547 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2548 if (!N00.getNode()->hasOneUse())
2549 return SDValue();
2550 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2551 if (!N001C || N001C->getZExtValue() != 0xFF)
2552 return SDValue();
2553 N00 = N00.getOperand(0);
2554 LookPassAnd0 = true;
2555 }
2556
2557 SDValue N10 = N1->getOperand(0);
2558 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2559 if (!N10.getNode()->hasOneUse())
2560 return SDValue();
2561 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2562 if (!N101C || N101C->getZExtValue() != 0xFF00)
2563 return SDValue();
2564 N10 = N10.getOperand(0);
2565 LookPassAnd1 = true;
2566 }
2567
2568 if (N00 != N10)
2569 return SDValue();
2570
2571 // Make sure everything beyond the low halfword is zero since the SRL 16
2572 // will clear the top bits.
2573 unsigned OpSizeInBits = VT.getSizeInBits();
2574 if (DemandHighBits && OpSizeInBits > 16 &&
2575 (!LookPassAnd0 || !LookPassAnd1) &&
2576 !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2577 return SDValue();
2578
2579 SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2580 if (OpSizeInBits > 16)
2581 Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2582 DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2583 return Res;
2584 }
2585
2586 /// isBSwapHWordElement - Return true if the specified node is an element
2587 /// that makes up a 32-bit packed halfword byteswap. i.e.
2588 /// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
isBSwapHWordElement(SDValue N,SmallVector<SDNode *,4> & Parts)2589 static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2590 if (!N.getNode()->hasOneUse())
2591 return false;
2592
2593 unsigned Opc = N.getOpcode();
2594 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2595 return false;
2596
2597 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2598 if (!N1C)
2599 return false;
2600
2601 unsigned Num;
2602 switch (N1C->getZExtValue()) {
2603 default:
2604 return false;
2605 case 0xFF: Num = 0; break;
2606 case 0xFF00: Num = 1; break;
2607 case 0xFF0000: Num = 2; break;
2608 case 0xFF000000: Num = 3; break;
2609 }
2610
2611 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2612 SDValue N0 = N.getOperand(0);
2613 if (Opc == ISD::AND) {
2614 if (Num == 0 || Num == 2) {
2615 // (x >> 8) & 0xff
2616 // (x >> 8) & 0xff0000
2617 if (N0.getOpcode() != ISD::SRL)
2618 return false;
2619 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2620 if (!C || C->getZExtValue() != 8)
2621 return false;
2622 } else {
2623 // (x << 8) & 0xff00
2624 // (x << 8) & 0xff000000
2625 if (N0.getOpcode() != ISD::SHL)
2626 return false;
2627 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2628 if (!C || C->getZExtValue() != 8)
2629 return false;
2630 }
2631 } else if (Opc == ISD::SHL) {
2632 // (x & 0xff) << 8
2633 // (x & 0xff0000) << 8
2634 if (Num != 0 && Num != 2)
2635 return false;
2636 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2637 if (!C || C->getZExtValue() != 8)
2638 return false;
2639 } else { // Opc == ISD::SRL
2640 // (x & 0xff00) >> 8
2641 // (x & 0xff000000) >> 8
2642 if (Num != 1 && Num != 3)
2643 return false;
2644 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2645 if (!C || C->getZExtValue() != 8)
2646 return false;
2647 }
2648
2649 if (Parts[Num])
2650 return false;
2651
2652 Parts[Num] = N0.getOperand(0).getNode();
2653 return true;
2654 }
2655
2656 /// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2657 /// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2658 /// => (rotl (bswap x), 16)
MatchBSwapHWord(SDNode * N,SDValue N0,SDValue N1)2659 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2660 if (!LegalOperations)
2661 return SDValue();
2662
2663 EVT VT = N->getValueType(0);
2664 if (VT != MVT::i32)
2665 return SDValue();
2666 if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2667 return SDValue();
2668
2669 SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2670 // Look for either
2671 // (or (or (and), (and)), (or (and), (and)))
2672 // (or (or (or (and), (and)), (and)), (and))
2673 if (N0.getOpcode() != ISD::OR)
2674 return SDValue();
2675 SDValue N00 = N0.getOperand(0);
2676 SDValue N01 = N0.getOperand(1);
2677
2678 if (N1.getOpcode() == ISD::OR) {
2679 // (or (or (and), (and)), (or (and), (and)))
2680 SDValue N000 = N00.getOperand(0);
2681 if (!isBSwapHWordElement(N000, Parts))
2682 return SDValue();
2683
2684 SDValue N001 = N00.getOperand(1);
2685 if (!isBSwapHWordElement(N001, Parts))
2686 return SDValue();
2687 SDValue N010 = N01.getOperand(0);
2688 if (!isBSwapHWordElement(N010, Parts))
2689 return SDValue();
2690 SDValue N011 = N01.getOperand(1);
2691 if (!isBSwapHWordElement(N011, Parts))
2692 return SDValue();
2693 } else {
2694 // (or (or (or (and), (and)), (and)), (and))
2695 if (!isBSwapHWordElement(N1, Parts))
2696 return SDValue();
2697 if (!isBSwapHWordElement(N01, Parts))
2698 return SDValue();
2699 if (N00.getOpcode() != ISD::OR)
2700 return SDValue();
2701 SDValue N000 = N00.getOperand(0);
2702 if (!isBSwapHWordElement(N000, Parts))
2703 return SDValue();
2704 SDValue N001 = N00.getOperand(1);
2705 if (!isBSwapHWordElement(N001, Parts))
2706 return SDValue();
2707 }
2708
2709 // Make sure the parts are all coming from the same node.
2710 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
2711 return SDValue();
2712
2713 SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
2714 SDValue(Parts[0],0));
2715
2716 // Result of the bswap should be rotated by 16. If it's not legal, than
2717 // do (x << 16) | (x >> 16).
2718 SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
2719 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
2720 return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
2721 else if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
2722 return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
2723 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
2724 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
2725 DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
2726 }
2727
visitOR(SDNode * N)2728 SDValue DAGCombiner::visitOR(SDNode *N) {
2729 SDValue N0 = N->getOperand(0);
2730 SDValue N1 = N->getOperand(1);
2731 SDValue LL, LR, RL, RR, CC0, CC1;
2732 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2733 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2734 EVT VT = N1.getValueType();
2735
2736 // fold vector ops
2737 if (VT.isVector()) {
2738 SDValue FoldedVOp = SimplifyVBinOp(N);
2739 if (FoldedVOp.getNode()) return FoldedVOp;
2740 }
2741
2742 // fold (or x, undef) -> -1
2743 if (!LegalOperations &&
2744 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
2745 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
2746 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
2747 }
2748 // fold (or c1, c2) -> c1|c2
2749 if (N0C && N1C)
2750 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
2751 // canonicalize constant to RHS
2752 if (N0C && !N1C)
2753 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
2754 // fold (or x, 0) -> x
2755 if (N1C && N1C->isNullValue())
2756 return N0;
2757 // fold (or x, -1) -> -1
2758 if (N1C && N1C->isAllOnesValue())
2759 return N1;
2760 // fold (or x, c) -> c iff (x & ~c) == 0
2761 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
2762 return N1;
2763
2764 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
2765 SDValue BSwap = MatchBSwapHWord(N, N0, N1);
2766 if (BSwap.getNode() != 0)
2767 return BSwap;
2768 BSwap = MatchBSwapHWordLow(N, N0, N1);
2769 if (BSwap.getNode() != 0)
2770 return BSwap;
2771
2772 // reassociate or
2773 SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
2774 if (ROR.getNode() != 0)
2775 return ROR;
2776 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
2777 // iff (c1 & c2) == 0.
2778 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2779 isa<ConstantSDNode>(N0.getOperand(1))) {
2780 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
2781 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
2782 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
2783 DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
2784 N0.getOperand(0), N1),
2785 DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
2786 }
2787 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
2788 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2789 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2790 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2791
2792 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2793 LL.getValueType().isInteger()) {
2794 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
2795 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
2796 if (cast<ConstantSDNode>(LR)->isNullValue() &&
2797 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
2798 SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
2799 LR.getValueType(), LL, RL);
2800 AddToWorkList(ORNode.getNode());
2801 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2802 }
2803 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
2804 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
2805 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2806 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
2807 SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
2808 LR.getValueType(), LL, RL);
2809 AddToWorkList(ANDNode.getNode());
2810 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2811 }
2812 }
2813 // canonicalize equivalent to ll == rl
2814 if (LL == RR && LR == RL) {
2815 Op1 = ISD::getSetCCSwappedOperands(Op1);
2816 std::swap(RL, RR);
2817 }
2818 if (LL == RL && LR == RR) {
2819 bool isInteger = LL.getValueType().isInteger();
2820 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
2821 if (Result != ISD::SETCC_INVALID &&
2822 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2823 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2824 LL, LR, Result);
2825 }
2826 }
2827
2828 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2829 if (N0.getOpcode() == N1.getOpcode()) {
2830 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2831 if (Tmp.getNode()) return Tmp;
2832 }
2833
2834 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2835 if (N0.getOpcode() == ISD::AND &&
2836 N1.getOpcode() == ISD::AND &&
2837 N0.getOperand(1).getOpcode() == ISD::Constant &&
2838 N1.getOperand(1).getOpcode() == ISD::Constant &&
2839 // Don't increase # computations.
2840 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
2841 // We can only do this xform if we know that bits from X that are set in C2
2842 // but not in C1 are already zero. Likewise for Y.
2843 const APInt &LHSMask =
2844 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2845 const APInt &RHSMask =
2846 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
2847
2848 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
2849 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
2850 SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
2851 N0.getOperand(0), N1.getOperand(0));
2852 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
2853 DAG.getConstant(LHSMask | RHSMask, VT));
2854 }
2855 }
2856
2857 // See if this is some rotate idiom.
2858 if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
2859 return SDValue(Rot, 0);
2860
2861 // Simplify the operands using demanded-bits information.
2862 if (!VT.isVector() &&
2863 SimplifyDemandedBits(SDValue(N, 0)))
2864 return SDValue(N, 0);
2865
2866 return SDValue();
2867 }
2868
2869 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
MatchRotateHalf(SDValue Op,SDValue & Shift,SDValue & Mask)2870 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
2871 if (Op.getOpcode() == ISD::AND) {
2872 if (isa<ConstantSDNode>(Op.getOperand(1))) {
2873 Mask = Op.getOperand(1);
2874 Op = Op.getOperand(0);
2875 } else {
2876 return false;
2877 }
2878 }
2879
2880 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
2881 Shift = Op;
2882 return true;
2883 }
2884
2885 return false;
2886 }
2887
2888 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2889 // idioms for rotate, and if the target supports rotation instructions, generate
2890 // a rot[lr].
MatchRotate(SDValue LHS,SDValue RHS,DebugLoc DL)2891 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
2892 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2893 EVT VT = LHS.getValueType();
2894 if (!TLI.isTypeLegal(VT)) return 0;
2895
2896 // The target must have at least one rotate flavor.
2897 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
2898 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
2899 if (!HasROTL && !HasROTR) return 0;
2900
2901 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2902 SDValue LHSShift; // The shift.
2903 SDValue LHSMask; // AND value if any.
2904 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
2905 return 0; // Not part of a rotate.
2906
2907 SDValue RHSShift; // The shift.
2908 SDValue RHSMask; // AND value if any.
2909 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
2910 return 0; // Not part of a rotate.
2911
2912 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
2913 return 0; // Not shifting the same value.
2914
2915 if (LHSShift.getOpcode() == RHSShift.getOpcode())
2916 return 0; // Shifts must disagree.
2917
2918 // Canonicalize shl to left side in a shl/srl pair.
2919 if (RHSShift.getOpcode() == ISD::SHL) {
2920 std::swap(LHS, RHS);
2921 std::swap(LHSShift, RHSShift);
2922 std::swap(LHSMask , RHSMask );
2923 }
2924
2925 unsigned OpSizeInBits = VT.getSizeInBits();
2926 SDValue LHSShiftArg = LHSShift.getOperand(0);
2927 SDValue LHSShiftAmt = LHSShift.getOperand(1);
2928 SDValue RHSShiftAmt = RHSShift.getOperand(1);
2929
2930 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2931 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2932 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
2933 RHSShiftAmt.getOpcode() == ISD::Constant) {
2934 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
2935 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
2936 if ((LShVal + RShVal) != OpSizeInBits)
2937 return 0;
2938
2939 SDValue Rot;
2940 if (HasROTL)
2941 Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
2942 else
2943 Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
2944
2945 // If there is an AND of either shifted operand, apply it to the result.
2946 if (LHSMask.getNode() || RHSMask.getNode()) {
2947 APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
2948
2949 if (LHSMask.getNode()) {
2950 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
2951 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2952 }
2953 if (RHSMask.getNode()) {
2954 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2955 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2956 }
2957
2958 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
2959 }
2960
2961 return Rot.getNode();
2962 }
2963
2964 // If there is a mask here, and we have a variable shift, we can't be sure
2965 // that we're masking out the right stuff.
2966 if (LHSMask.getNode() || RHSMask.getNode())
2967 return 0;
2968
2969 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2970 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2971 if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2972 LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2973 if (ConstantSDNode *SUBC =
2974 dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2975 if (SUBC->getAPIntValue() == OpSizeInBits) {
2976 if (HasROTL)
2977 return DAG.getNode(ISD::ROTL, DL, VT,
2978 LHSShiftArg, LHSShiftAmt).getNode();
2979 else
2980 return DAG.getNode(ISD::ROTR, DL, VT,
2981 LHSShiftArg, RHSShiftAmt).getNode();
2982 }
2983 }
2984 }
2985
2986 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2987 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2988 if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2989 RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2990 if (ConstantSDNode *SUBC =
2991 dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2992 if (SUBC->getAPIntValue() == OpSizeInBits) {
2993 if (HasROTR)
2994 return DAG.getNode(ISD::ROTR, DL, VT,
2995 LHSShiftArg, RHSShiftAmt).getNode();
2996 else
2997 return DAG.getNode(ISD::ROTL, DL, VT,
2998 LHSShiftArg, LHSShiftAmt).getNode();
2999 }
3000 }
3001 }
3002
3003 // Look for sign/zext/any-extended or truncate cases:
3004 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
3005 || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
3006 || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
3007 || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3008 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
3009 || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
3010 || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
3011 || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3012 SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3013 SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3014 if (RExtOp0.getOpcode() == ISD::SUB &&
3015 RExtOp0.getOperand(1) == LExtOp0) {
3016 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3017 // (rotl x, y)
3018 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3019 // (rotr x, (sub 32, y))
3020 if (ConstantSDNode *SUBC =
3021 dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3022 if (SUBC->getAPIntValue() == OpSizeInBits) {
3023 return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3024 LHSShiftArg,
3025 HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3026 }
3027 }
3028 } else if (LExtOp0.getOpcode() == ISD::SUB &&
3029 RExtOp0 == LExtOp0.getOperand(1)) {
3030 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3031 // (rotr x, y)
3032 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3033 // (rotl x, (sub 32, y))
3034 if (ConstantSDNode *SUBC =
3035 dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3036 if (SUBC->getAPIntValue() == OpSizeInBits) {
3037 return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3038 LHSShiftArg,
3039 HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3040 }
3041 }
3042 }
3043 }
3044
3045 return 0;
3046 }
3047
visitXOR(SDNode * N)3048 SDValue DAGCombiner::visitXOR(SDNode *N) {
3049 SDValue N0 = N->getOperand(0);
3050 SDValue N1 = N->getOperand(1);
3051 SDValue LHS, RHS, CC;
3052 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3053 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3054 EVT VT = N0.getValueType();
3055
3056 // fold vector ops
3057 if (VT.isVector()) {
3058 SDValue FoldedVOp = SimplifyVBinOp(N);
3059 if (FoldedVOp.getNode()) return FoldedVOp;
3060 }
3061
3062 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3063 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3064 return DAG.getConstant(0, VT);
3065 // fold (xor x, undef) -> undef
3066 if (N0.getOpcode() == ISD::UNDEF)
3067 return N0;
3068 if (N1.getOpcode() == ISD::UNDEF)
3069 return N1;
3070 // fold (xor c1, c2) -> c1^c2
3071 if (N0C && N1C)
3072 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3073 // canonicalize constant to RHS
3074 if (N0C && !N1C)
3075 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3076 // fold (xor x, 0) -> x
3077 if (N1C && N1C->isNullValue())
3078 return N0;
3079 // reassociate xor
3080 SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3081 if (RXOR.getNode() != 0)
3082 return RXOR;
3083
3084 // fold !(x cc y) -> (x !cc y)
3085 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3086 bool isInt = LHS.getValueType().isInteger();
3087 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3088 isInt);
3089
3090 if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
3091 switch (N0.getOpcode()) {
3092 default:
3093 llvm_unreachable("Unhandled SetCC Equivalent!");
3094 case ISD::SETCC:
3095 return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3096 case ISD::SELECT_CC:
3097 return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3098 N0.getOperand(3), NotCC);
3099 }
3100 }
3101 }
3102
3103 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3104 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3105 N0.getNode()->hasOneUse() &&
3106 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3107 SDValue V = N0.getOperand(0);
3108 V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3109 DAG.getConstant(1, V.getValueType()));
3110 AddToWorkList(V.getNode());
3111 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3112 }
3113
3114 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3115 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3116 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3117 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3118 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3119 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3120 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3121 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3122 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3123 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3124 }
3125 }
3126 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3127 if (N1C && N1C->isAllOnesValue() &&
3128 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3129 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3130 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3131 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3132 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3133 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3134 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3135 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3136 }
3137 }
3138 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3139 if (N1C && N0.getOpcode() == ISD::XOR) {
3140 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3141 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3142 if (N00C)
3143 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3144 DAG.getConstant(N1C->getAPIntValue() ^
3145 N00C->getAPIntValue(), VT));
3146 if (N01C)
3147 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3148 DAG.getConstant(N1C->getAPIntValue() ^
3149 N01C->getAPIntValue(), VT));
3150 }
3151 // fold (xor x, x) -> 0
3152 if (N0 == N1)
3153 return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3154
3155 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
3156 if (N0.getOpcode() == N1.getOpcode()) {
3157 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3158 if (Tmp.getNode()) return Tmp;
3159 }
3160
3161 // Simplify the expression using non-local knowledge.
3162 if (!VT.isVector() &&
3163 SimplifyDemandedBits(SDValue(N, 0)))
3164 return SDValue(N, 0);
3165
3166 return SDValue();
3167 }
3168
3169 /// visitShiftByConstant - Handle transforms common to the three shifts, when
3170 /// the shift amount is a constant.
visitShiftByConstant(SDNode * N,unsigned Amt)3171 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3172 SDNode *LHS = N->getOperand(0).getNode();
3173 if (!LHS->hasOneUse()) return SDValue();
3174
3175 // We want to pull some binops through shifts, so that we have (and (shift))
3176 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
3177 // thing happens with address calculations, so it's important to canonicalize
3178 // it.
3179 bool HighBitSet = false; // Can we transform this if the high bit is set?
3180
3181 switch (LHS->getOpcode()) {
3182 default: return SDValue();
3183 case ISD::OR:
3184 case ISD::XOR:
3185 HighBitSet = false; // We can only transform sra if the high bit is clear.
3186 break;
3187 case ISD::AND:
3188 HighBitSet = true; // We can only transform sra if the high bit is set.
3189 break;
3190 case ISD::ADD:
3191 if (N->getOpcode() != ISD::SHL)
3192 return SDValue(); // only shl(add) not sr[al](add).
3193 HighBitSet = false; // We can only transform sra if the high bit is clear.
3194 break;
3195 }
3196
3197 // We require the RHS of the binop to be a constant as well.
3198 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3199 if (!BinOpCst) return SDValue();
3200
3201 // FIXME: disable this unless the input to the binop is a shift by a constant.
3202 // If it is not a shift, it pessimizes some common cases like:
3203 //
3204 // void foo(int *X, int i) { X[i & 1235] = 1; }
3205 // int bar(int *X, int i) { return X[i & 255]; }
3206 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3207 if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3208 BinOpLHSVal->getOpcode() != ISD::SRA &&
3209 BinOpLHSVal->getOpcode() != ISD::SRL) ||
3210 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3211 return SDValue();
3212
3213 EVT VT = N->getValueType(0);
3214
3215 // If this is a signed shift right, and the high bit is modified by the
3216 // logical operation, do not perform the transformation. The highBitSet
3217 // boolean indicates the value of the high bit of the constant which would
3218 // cause it to be modified for this operation.
3219 if (N->getOpcode() == ISD::SRA) {
3220 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3221 if (BinOpRHSSignSet != HighBitSet)
3222 return SDValue();
3223 }
3224
3225 // Fold the constants, shifting the binop RHS by the shift amount.
3226 SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3227 N->getValueType(0),
3228 LHS->getOperand(1), N->getOperand(1));
3229
3230 // Create the new shift.
3231 SDValue NewShift = DAG.getNode(N->getOpcode(),
3232 LHS->getOperand(0).getDebugLoc(),
3233 VT, LHS->getOperand(0), N->getOperand(1));
3234
3235 // Create the new binop.
3236 return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3237 }
3238
visitSHL(SDNode * N)3239 SDValue DAGCombiner::visitSHL(SDNode *N) {
3240 SDValue N0 = N->getOperand(0);
3241 SDValue N1 = N->getOperand(1);
3242 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3243 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3244 EVT VT = N0.getValueType();
3245 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3246
3247 // fold (shl c1, c2) -> c1<<c2
3248 if (N0C && N1C)
3249 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3250 // fold (shl 0, x) -> 0
3251 if (N0C && N0C->isNullValue())
3252 return N0;
3253 // fold (shl x, c >= size(x)) -> undef
3254 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3255 return DAG.getUNDEF(VT);
3256 // fold (shl x, 0) -> x
3257 if (N1C && N1C->isNullValue())
3258 return N0;
3259 // fold (shl undef, x) -> 0
3260 if (N0.getOpcode() == ISD::UNDEF)
3261 return DAG.getConstant(0, VT);
3262 // if (shl x, c) is known to be zero, return 0
3263 if (DAG.MaskedValueIsZero(SDValue(N, 0),
3264 APInt::getAllOnesValue(OpSizeInBits)))
3265 return DAG.getConstant(0, VT);
3266 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3267 if (N1.getOpcode() == ISD::TRUNCATE &&
3268 N1.getOperand(0).getOpcode() == ISD::AND &&
3269 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3270 SDValue N101 = N1.getOperand(0).getOperand(1);
3271 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3272 EVT TruncVT = N1.getValueType();
3273 SDValue N100 = N1.getOperand(0).getOperand(0);
3274 APInt TruncC = N101C->getAPIntValue();
3275 TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3276 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3277 DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3278 DAG.getNode(ISD::TRUNCATE,
3279 N->getDebugLoc(),
3280 TruncVT, N100),
3281 DAG.getConstant(TruncC, TruncVT)));
3282 }
3283 }
3284
3285 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3286 return SDValue(N, 0);
3287
3288 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3289 if (N1C && N0.getOpcode() == ISD::SHL &&
3290 N0.getOperand(1).getOpcode() == ISD::Constant) {
3291 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3292 uint64_t c2 = N1C->getZExtValue();
3293 if (c1 + c2 >= OpSizeInBits)
3294 return DAG.getConstant(0, VT);
3295 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3296 DAG.getConstant(c1 + c2, N1.getValueType()));
3297 }
3298
3299 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3300 // For this to be valid, the second form must not preserve any of the bits
3301 // that are shifted out by the inner shift in the first form. This means
3302 // the outer shift size must be >= the number of bits added by the ext.
3303 // As a corollary, we don't care what kind of ext it is.
3304 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3305 N0.getOpcode() == ISD::ANY_EXTEND ||
3306 N0.getOpcode() == ISD::SIGN_EXTEND) &&
3307 N0.getOperand(0).getOpcode() == ISD::SHL &&
3308 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3309 uint64_t c1 =
3310 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3311 uint64_t c2 = N1C->getZExtValue();
3312 EVT InnerShiftVT = N0.getOperand(0).getValueType();
3313 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3314 if (c2 >= OpSizeInBits - InnerShiftSize) {
3315 if (c1 + c2 >= OpSizeInBits)
3316 return DAG.getConstant(0, VT);
3317 return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3318 DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3319 N0.getOperand(0)->getOperand(0)),
3320 DAG.getConstant(c1 + c2, N1.getValueType()));
3321 }
3322 }
3323
3324 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3325 // (and (srl x, (sub c1, c2), MASK)
3326 if (N1C && N0.getOpcode() == ISD::SRL &&
3327 N0.getOperand(1).getOpcode() == ISD::Constant) {
3328 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3329 if (c1 < VT.getSizeInBits()) {
3330 uint64_t c2 = N1C->getZExtValue();
3331 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3332 VT.getSizeInBits() - c1);
3333 SDValue Shift;
3334 if (c2 > c1) {
3335 Mask = Mask.shl(c2-c1);
3336 Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3337 DAG.getConstant(c2-c1, N1.getValueType()));
3338 } else {
3339 Mask = Mask.lshr(c1-c2);
3340 Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3341 DAG.getConstant(c1-c2, N1.getValueType()));
3342 }
3343 return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3344 DAG.getConstant(Mask, VT));
3345 }
3346 }
3347 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3348 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3349 SDValue HiBitsMask =
3350 DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3351 VT.getSizeInBits() -
3352 N1C->getZExtValue()),
3353 VT);
3354 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3355 HiBitsMask);
3356 }
3357
3358 if (N1C) {
3359 SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3360 if (NewSHL.getNode())
3361 return NewSHL;
3362 }
3363
3364 return SDValue();
3365 }
3366
visitSRA(SDNode * N)3367 SDValue DAGCombiner::visitSRA(SDNode *N) {
3368 SDValue N0 = N->getOperand(0);
3369 SDValue N1 = N->getOperand(1);
3370 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3371 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3372 EVT VT = N0.getValueType();
3373 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3374
3375 // fold (sra c1, c2) -> (sra c1, c2)
3376 if (N0C && N1C)
3377 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3378 // fold (sra 0, x) -> 0
3379 if (N0C && N0C->isNullValue())
3380 return N0;
3381 // fold (sra -1, x) -> -1
3382 if (N0C && N0C->isAllOnesValue())
3383 return N0;
3384 // fold (sra x, (setge c, size(x))) -> undef
3385 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3386 return DAG.getUNDEF(VT);
3387 // fold (sra x, 0) -> x
3388 if (N1C && N1C->isNullValue())
3389 return N0;
3390 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3391 // sext_inreg.
3392 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3393 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3394 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3395 if (VT.isVector())
3396 ExtVT = EVT::getVectorVT(*DAG.getContext(),
3397 ExtVT, VT.getVectorNumElements());
3398 if ((!LegalOperations ||
3399 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3400 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3401 N0.getOperand(0), DAG.getValueType(ExtVT));
3402 }
3403
3404 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3405 if (N1C && N0.getOpcode() == ISD::SRA) {
3406 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3407 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3408 if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3409 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3410 DAG.getConstant(Sum, N1C->getValueType(0)));
3411 }
3412 }
3413
3414 // fold (sra (shl X, m), (sub result_size, n))
3415 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3416 // result_size - n != m.
3417 // If truncate is free for the target sext(shl) is likely to result in better
3418 // code.
3419 if (N0.getOpcode() == ISD::SHL) {
3420 // Get the two constanst of the shifts, CN0 = m, CN = n.
3421 const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3422 if (N01C && N1C) {
3423 // Determine what the truncate's result bitsize and type would be.
3424 EVT TruncVT =
3425 EVT::getIntegerVT(*DAG.getContext(),
3426 OpSizeInBits - N1C->getZExtValue());
3427 // Determine the residual right-shift amount.
3428 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3429
3430 // If the shift is not a no-op (in which case this should be just a sign
3431 // extend already), the truncated to type is legal, sign_extend is legal
3432 // on that type, and the truncate to that type is both legal and free,
3433 // perform the transform.
3434 if ((ShiftAmt > 0) &&
3435 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3436 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3437 TLI.isTruncateFree(VT, TruncVT)) {
3438
3439 SDValue Amt = DAG.getConstant(ShiftAmt,
3440 getShiftAmountTy(N0.getOperand(0).getValueType()));
3441 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3442 N0.getOperand(0), Amt);
3443 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3444 Shift);
3445 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3446 N->getValueType(0), Trunc);
3447 }
3448 }
3449 }
3450
3451 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3452 if (N1.getOpcode() == ISD::TRUNCATE &&
3453 N1.getOperand(0).getOpcode() == ISD::AND &&
3454 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3455 SDValue N101 = N1.getOperand(0).getOperand(1);
3456 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3457 EVT TruncVT = N1.getValueType();
3458 SDValue N100 = N1.getOperand(0).getOperand(0);
3459 APInt TruncC = N101C->getAPIntValue();
3460 TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3461 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3462 DAG.getNode(ISD::AND, N->getDebugLoc(),
3463 TruncVT,
3464 DAG.getNode(ISD::TRUNCATE,
3465 N->getDebugLoc(),
3466 TruncVT, N100),
3467 DAG.getConstant(TruncC, TruncVT)));
3468 }
3469 }
3470
3471 // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3472 // if c1 is equal to the number of bits the trunc removes
3473 if (N0.getOpcode() == ISD::TRUNCATE &&
3474 (N0.getOperand(0).getOpcode() == ISD::SRL ||
3475 N0.getOperand(0).getOpcode() == ISD::SRA) &&
3476 N0.getOperand(0).hasOneUse() &&
3477 N0.getOperand(0).getOperand(1).hasOneUse() &&
3478 N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3479 EVT LargeVT = N0.getOperand(0).getValueType();
3480 ConstantSDNode *LargeShiftAmt =
3481 cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3482
3483 if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3484 LargeShiftAmt->getZExtValue()) {
3485 SDValue Amt =
3486 DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3487 getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3488 SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3489 N0.getOperand(0).getOperand(0), Amt);
3490 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3491 }
3492 }
3493
3494 // Simplify, based on bits shifted out of the LHS.
3495 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3496 return SDValue(N, 0);
3497
3498
3499 // If the sign bit is known to be zero, switch this to a SRL.
3500 if (DAG.SignBitIsZero(N0))
3501 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3502
3503 if (N1C) {
3504 SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3505 if (NewSRA.getNode())
3506 return NewSRA;
3507 }
3508
3509 return SDValue();
3510 }
3511
visitSRL(SDNode * N)3512 SDValue DAGCombiner::visitSRL(SDNode *N) {
3513 SDValue N0 = N->getOperand(0);
3514 SDValue N1 = N->getOperand(1);
3515 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3516 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3517 EVT VT = N0.getValueType();
3518 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3519
3520 // fold (srl c1, c2) -> c1 >>u c2
3521 if (N0C && N1C)
3522 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3523 // fold (srl 0, x) -> 0
3524 if (N0C && N0C->isNullValue())
3525 return N0;
3526 // fold (srl x, c >= size(x)) -> undef
3527 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3528 return DAG.getUNDEF(VT);
3529 // fold (srl x, 0) -> x
3530 if (N1C && N1C->isNullValue())
3531 return N0;
3532 // if (srl x, c) is known to be zero, return 0
3533 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3534 APInt::getAllOnesValue(OpSizeInBits)))
3535 return DAG.getConstant(0, VT);
3536
3537 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3538 if (N1C && N0.getOpcode() == ISD::SRL &&
3539 N0.getOperand(1).getOpcode() == ISD::Constant) {
3540 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3541 uint64_t c2 = N1C->getZExtValue();
3542 if (c1 + c2 >= OpSizeInBits)
3543 return DAG.getConstant(0, VT);
3544 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3545 DAG.getConstant(c1 + c2, N1.getValueType()));
3546 }
3547
3548 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3549 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3550 N0.getOperand(0).getOpcode() == ISD::SRL &&
3551 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3552 uint64_t c1 =
3553 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3554 uint64_t c2 = N1C->getZExtValue();
3555 EVT InnerShiftVT = N0.getOperand(0).getValueType();
3556 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3557 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3558 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3559 if (c1 + OpSizeInBits == InnerShiftSize) {
3560 if (c1 + c2 >= InnerShiftSize)
3561 return DAG.getConstant(0, VT);
3562 return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3563 DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3564 N0.getOperand(0)->getOperand(0),
3565 DAG.getConstant(c1 + c2, ShiftCountVT)));
3566 }
3567 }
3568
3569 // fold (srl (shl x, c), c) -> (and x, cst2)
3570 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3571 N0.getValueSizeInBits() <= 64) {
3572 uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3573 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3574 DAG.getConstant(~0ULL >> ShAmt, VT));
3575 }
3576
3577
3578 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3579 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3580 // Shifting in all undef bits?
3581 EVT SmallVT = N0.getOperand(0).getValueType();
3582 if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3583 return DAG.getUNDEF(VT);
3584
3585 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3586 uint64_t ShiftAmt = N1C->getZExtValue();
3587 SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3588 N0.getOperand(0),
3589 DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3590 AddToWorkList(SmallShift.getNode());
3591 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3592 }
3593 }
3594
3595 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
3596 // bit, which is unmodified by sra.
3597 if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3598 if (N0.getOpcode() == ISD::SRA)
3599 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3600 }
3601
3602 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
3603 if (N1C && N0.getOpcode() == ISD::CTLZ &&
3604 N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3605 APInt KnownZero, KnownOne;
3606 APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
3607 DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
3608
3609 // If any of the input bits are KnownOne, then the input couldn't be all
3610 // zeros, thus the result of the srl will always be zero.
3611 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3612
3613 // If all of the bits input the to ctlz node are known to be zero, then
3614 // the result of the ctlz is "32" and the result of the shift is one.
3615 APInt UnknownBits = ~KnownZero & Mask;
3616 if (UnknownBits == 0) return DAG.getConstant(1, VT);
3617
3618 // Otherwise, check to see if there is exactly one bit input to the ctlz.
3619 if ((UnknownBits & (UnknownBits - 1)) == 0) {
3620 // Okay, we know that only that the single bit specified by UnknownBits
3621 // could be set on input to the CTLZ node. If this bit is set, the SRL
3622 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3623 // to an SRL/XOR pair, which is likely to simplify more.
3624 unsigned ShAmt = UnknownBits.countTrailingZeros();
3625 SDValue Op = N0.getOperand(0);
3626
3627 if (ShAmt) {
3628 Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3629 DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3630 AddToWorkList(Op.getNode());
3631 }
3632
3633 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3634 Op, DAG.getConstant(1, VT));
3635 }
3636 }
3637
3638 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3639 if (N1.getOpcode() == ISD::TRUNCATE &&
3640 N1.getOperand(0).getOpcode() == ISD::AND &&
3641 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3642 SDValue N101 = N1.getOperand(0).getOperand(1);
3643 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3644 EVT TruncVT = N1.getValueType();
3645 SDValue N100 = N1.getOperand(0).getOperand(0);
3646 APInt TruncC = N101C->getAPIntValue();
3647 TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3648 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3649 DAG.getNode(ISD::AND, N->getDebugLoc(),
3650 TruncVT,
3651 DAG.getNode(ISD::TRUNCATE,
3652 N->getDebugLoc(),
3653 TruncVT, N100),
3654 DAG.getConstant(TruncC, TruncVT)));
3655 }
3656 }
3657
3658 // fold operands of srl based on knowledge that the low bits are not
3659 // demanded.
3660 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3661 return SDValue(N, 0);
3662
3663 if (N1C) {
3664 SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3665 if (NewSRL.getNode())
3666 return NewSRL;
3667 }
3668
3669 // Attempt to convert a srl of a load into a narrower zero-extending load.
3670 SDValue NarrowLoad = ReduceLoadWidth(N);
3671 if (NarrowLoad.getNode())
3672 return NarrowLoad;
3673
3674 // Here is a common situation. We want to optimize:
3675 //
3676 // %a = ...
3677 // %b = and i32 %a, 2
3678 // %c = srl i32 %b, 1
3679 // brcond i32 %c ...
3680 //
3681 // into
3682 //
3683 // %a = ...
3684 // %b = and %a, 2
3685 // %c = setcc eq %b, 0
3686 // brcond %c ...
3687 //
3688 // However when after the source operand of SRL is optimized into AND, the SRL
3689 // itself may not be optimized further. Look for it and add the BRCOND into
3690 // the worklist.
3691 if (N->hasOneUse()) {
3692 SDNode *Use = *N->use_begin();
3693 if (Use->getOpcode() == ISD::BRCOND)
3694 AddToWorkList(Use);
3695 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
3696 // Also look pass the truncate.
3697 Use = *Use->use_begin();
3698 if (Use->getOpcode() == ISD::BRCOND)
3699 AddToWorkList(Use);
3700 }
3701 }
3702
3703 return SDValue();
3704 }
3705
visitCTLZ(SDNode * N)3706 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
3707 SDValue N0 = N->getOperand(0);
3708 EVT VT = N->getValueType(0);
3709
3710 // fold (ctlz c1) -> c2
3711 if (isa<ConstantSDNode>(N0))
3712 return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
3713 return SDValue();
3714 }
3715
visitCTTZ(SDNode * N)3716 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
3717 SDValue N0 = N->getOperand(0);
3718 EVT VT = N->getValueType(0);
3719
3720 // fold (cttz c1) -> c2
3721 if (isa<ConstantSDNode>(N0))
3722 return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
3723 return SDValue();
3724 }
3725
visitCTPOP(SDNode * N)3726 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
3727 SDValue N0 = N->getOperand(0);
3728 EVT VT = N->getValueType(0);
3729
3730 // fold (ctpop c1) -> c2
3731 if (isa<ConstantSDNode>(N0))
3732 return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
3733 return SDValue();
3734 }
3735
visitSELECT(SDNode * N)3736 SDValue DAGCombiner::visitSELECT(SDNode *N) {
3737 SDValue N0 = N->getOperand(0);
3738 SDValue N1 = N->getOperand(1);
3739 SDValue N2 = N->getOperand(2);
3740 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3741 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3742 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3743 EVT VT = N->getValueType(0);
3744 EVT VT0 = N0.getValueType();
3745
3746 // fold (select C, X, X) -> X
3747 if (N1 == N2)
3748 return N1;
3749 // fold (select true, X, Y) -> X
3750 if (N0C && !N0C->isNullValue())
3751 return N1;
3752 // fold (select false, X, Y) -> Y
3753 if (N0C && N0C->isNullValue())
3754 return N2;
3755 // fold (select C, 1, X) -> (or C, X)
3756 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
3757 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
3758 // fold (select C, 0, 1) -> (xor C, 1)
3759 if (VT.isInteger() &&
3760 (VT0 == MVT::i1 ||
3761 (VT0.isInteger() &&
3762 TLI.getBooleanContents(false) == TargetLowering::ZeroOrOneBooleanContent)) &&
3763 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
3764 SDValue XORNode;
3765 if (VT == VT0)
3766 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
3767 N0, DAG.getConstant(1, VT0));
3768 XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
3769 N0, DAG.getConstant(1, VT0));
3770 AddToWorkList(XORNode.getNode());
3771 if (VT.bitsGT(VT0))
3772 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
3773 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
3774 }
3775 // fold (select C, 0, X) -> (and (not C), X)
3776 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
3777 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
3778 AddToWorkList(NOTNode.getNode());
3779 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
3780 }
3781 // fold (select C, X, 1) -> (or (not C), X)
3782 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
3783 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
3784 AddToWorkList(NOTNode.getNode());
3785 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
3786 }
3787 // fold (select C, X, 0) -> (and C, X)
3788 if (VT == MVT::i1 && N2C && N2C->isNullValue())
3789 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
3790 // fold (select X, X, Y) -> (or X, Y)
3791 // fold (select X, 1, Y) -> (or X, Y)
3792 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
3793 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
3794 // fold (select X, Y, X) -> (and X, Y)
3795 // fold (select X, Y, 0) -> (and X, Y)
3796 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
3797 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
3798
3799 // If we can fold this based on the true/false value, do so.
3800 if (SimplifySelectOps(N, N1, N2))
3801 return SDValue(N, 0); // Don't revisit N.
3802
3803 // fold selects based on a setcc into other things, such as min/max/abs
3804 if (N0.getOpcode() == ISD::SETCC) {
3805 // FIXME:
3806 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
3807 // having to say they don't support SELECT_CC on every type the DAG knows
3808 // about, since there is no way to mark an opcode illegal at all value types
3809 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
3810 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
3811 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
3812 N0.getOperand(0), N0.getOperand(1),
3813 N1, N2, N0.getOperand(2));
3814 return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
3815 }
3816
3817 return SDValue();
3818 }
3819
visitSELECT_CC(SDNode * N)3820 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
3821 SDValue N0 = N->getOperand(0);
3822 SDValue N1 = N->getOperand(1);
3823 SDValue N2 = N->getOperand(2);
3824 SDValue N3 = N->getOperand(3);
3825 SDValue N4 = N->getOperand(4);
3826 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
3827
3828 // fold select_cc lhs, rhs, x, x, cc -> x
3829 if (N2 == N3)
3830 return N2;
3831
3832 // Determine if the condition we're dealing with is constant
3833 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
3834 N0, N1, CC, N->getDebugLoc(), false);
3835 if (SCC.getNode()) AddToWorkList(SCC.getNode());
3836
3837 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
3838 if (!SCCC->isNullValue())
3839 return N2; // cond always true -> true val
3840 else
3841 return N3; // cond always false -> false val
3842 }
3843
3844 // Fold to a simpler select_cc
3845 if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
3846 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
3847 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
3848 SCC.getOperand(2));
3849
3850 // If we can fold this based on the true/false value, do so.
3851 if (SimplifySelectOps(N, N2, N3))
3852 return SDValue(N, 0); // Don't revisit N.
3853
3854 // fold select_cc into other things, such as min/max/abs
3855 return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
3856 }
3857
visitSETCC(SDNode * N)3858 SDValue DAGCombiner::visitSETCC(SDNode *N) {
3859 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
3860 cast<CondCodeSDNode>(N->getOperand(2))->get(),
3861 N->getDebugLoc());
3862 }
3863
3864 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
3865 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
3866 // transformation. Returns true if extension are possible and the above
3867 // mentioned transformation is profitable.
ExtendUsesToFormExtLoad(SDNode * N,SDValue N0,unsigned ExtOpc,SmallVector<SDNode *,4> & ExtendNodes,const TargetLowering & TLI)3868 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
3869 unsigned ExtOpc,
3870 SmallVector<SDNode*, 4> &ExtendNodes,
3871 const TargetLowering &TLI) {
3872 bool HasCopyToRegUses = false;
3873 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
3874 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
3875 UE = N0.getNode()->use_end();
3876 UI != UE; ++UI) {
3877 SDNode *User = *UI;
3878 if (User == N)
3879 continue;
3880 if (UI.getUse().getResNo() != N0.getResNo())
3881 continue;
3882 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
3883 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
3884 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
3885 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
3886 // Sign bits will be lost after a zext.
3887 return false;
3888 bool Add = false;
3889 for (unsigned i = 0; i != 2; ++i) {
3890 SDValue UseOp = User->getOperand(i);
3891 if (UseOp == N0)
3892 continue;
3893 if (!isa<ConstantSDNode>(UseOp))
3894 return false;
3895 Add = true;
3896 }
3897 if (Add)
3898 ExtendNodes.push_back(User);
3899 continue;
3900 }
3901 // If truncates aren't free and there are users we can't
3902 // extend, it isn't worthwhile.
3903 if (!isTruncFree)
3904 return false;
3905 // Remember if this value is live-out.
3906 if (User->getOpcode() == ISD::CopyToReg)
3907 HasCopyToRegUses = true;
3908 }
3909
3910 if (HasCopyToRegUses) {
3911 bool BothLiveOut = false;
3912 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3913 UI != UE; ++UI) {
3914 SDUse &Use = UI.getUse();
3915 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
3916 BothLiveOut = true;
3917 break;
3918 }
3919 }
3920 if (BothLiveOut)
3921 // Both unextended and extended values are live out. There had better be
3922 // a good reason for the transformation.
3923 return ExtendNodes.size();
3924 }
3925 return true;
3926 }
3927
ExtendSetCCUses(SmallVector<SDNode *,4> SetCCs,SDValue Trunc,SDValue ExtLoad,DebugLoc DL,ISD::NodeType ExtType)3928 void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
3929 SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
3930 ISD::NodeType ExtType) {
3931 // Extend SetCC uses if necessary.
3932 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3933 SDNode *SetCC = SetCCs[i];
3934 SmallVector<SDValue, 4> Ops;
3935
3936 for (unsigned j = 0; j != 2; ++j) {
3937 SDValue SOp = SetCC->getOperand(j);
3938 if (SOp == Trunc)
3939 Ops.push_back(ExtLoad);
3940 else
3941 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
3942 }
3943
3944 Ops.push_back(SetCC->getOperand(2));
3945 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
3946 &Ops[0], Ops.size()));
3947 }
3948 }
3949
visitSIGN_EXTEND(SDNode * N)3950 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
3951 SDValue N0 = N->getOperand(0);
3952 EVT VT = N->getValueType(0);
3953
3954 // fold (sext c1) -> c1
3955 if (isa<ConstantSDNode>(N0))
3956 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
3957
3958 // fold (sext (sext x)) -> (sext x)
3959 // fold (sext (aext x)) -> (sext x)
3960 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
3961 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
3962 N0.getOperand(0));
3963
3964 if (N0.getOpcode() == ISD::TRUNCATE) {
3965 // fold (sext (truncate (load x))) -> (sext (smaller load x))
3966 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
3967 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3968 if (NarrowLoad.getNode()) {
3969 SDNode* oye = N0.getNode()->getOperand(0).getNode();
3970 if (NarrowLoad.getNode() != N0.getNode()) {
3971 CombineTo(N0.getNode(), NarrowLoad);
3972 // CombineTo deleted the truncate, if needed, but not what's under it.
3973 AddToWorkList(oye);
3974 }
3975 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3976 }
3977
3978 // See if the value being truncated is already sign extended. If so, just
3979 // eliminate the trunc/sext pair.
3980 SDValue Op = N0.getOperand(0);
3981 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
3982 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
3983 unsigned DestBits = VT.getScalarType().getSizeInBits();
3984 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
3985
3986 if (OpBits == DestBits) {
3987 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
3988 // bits, it is already ready.
3989 if (NumSignBits > DestBits-MidBits)
3990 return Op;
3991 } else if (OpBits < DestBits) {
3992 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
3993 // bits, just sext from i32.
3994 if (NumSignBits > OpBits-MidBits)
3995 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
3996 } else {
3997 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
3998 // bits, just truncate to i32.
3999 if (NumSignBits > OpBits-MidBits)
4000 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4001 }
4002
4003 // fold (sext (truncate x)) -> (sextinreg x).
4004 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4005 N0.getValueType())) {
4006 if (OpBits < DestBits)
4007 Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4008 else if (OpBits > DestBits)
4009 Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4010 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4011 DAG.getValueType(N0.getValueType()));
4012 }
4013 }
4014
4015 // fold (sext (load x)) -> (sext (truncate (sextload x)))
4016 // None of the supported targets knows how to perform load and sign extend
4017 // on vectors in one instruction. We only perform this transformation on
4018 // scalars.
4019 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4020 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4021 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4022 bool DoXform = true;
4023 SmallVector<SDNode*, 4> SetCCs;
4024 if (!N0.hasOneUse())
4025 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4026 if (DoXform) {
4027 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4028 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4029 LN0->getChain(),
4030 LN0->getBasePtr(), LN0->getPointerInfo(),
4031 N0.getValueType(),
4032 LN0->isVolatile(), LN0->isNonTemporal(),
4033 LN0->getAlignment());
4034 CombineTo(N, ExtLoad);
4035 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4036 N0.getValueType(), ExtLoad);
4037 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4038 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4039 ISD::SIGN_EXTEND);
4040 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4041 }
4042 }
4043
4044 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4045 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4046 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4047 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4048 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4049 EVT MemVT = LN0->getMemoryVT();
4050 if ((!LegalOperations && !LN0->isVolatile()) ||
4051 TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4052 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4053 LN0->getChain(),
4054 LN0->getBasePtr(), LN0->getPointerInfo(),
4055 MemVT,
4056 LN0->isVolatile(), LN0->isNonTemporal(),
4057 LN0->getAlignment());
4058 CombineTo(N, ExtLoad);
4059 CombineTo(N0.getNode(),
4060 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4061 N0.getValueType(), ExtLoad),
4062 ExtLoad.getValue(1));
4063 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4064 }
4065 }
4066
4067 // fold (sext (and/or/xor (load x), cst)) ->
4068 // (and/or/xor (sextload x), (sext cst))
4069 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4070 N0.getOpcode() == ISD::XOR) &&
4071 isa<LoadSDNode>(N0.getOperand(0)) &&
4072 N0.getOperand(1).getOpcode() == ISD::Constant &&
4073 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4074 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4075 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4076 if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4077 bool DoXform = true;
4078 SmallVector<SDNode*, 4> SetCCs;
4079 if (!N0.hasOneUse())
4080 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4081 SetCCs, TLI);
4082 if (DoXform) {
4083 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4084 LN0->getChain(), LN0->getBasePtr(),
4085 LN0->getPointerInfo(),
4086 LN0->getMemoryVT(),
4087 LN0->isVolatile(),
4088 LN0->isNonTemporal(),
4089 LN0->getAlignment());
4090 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4091 Mask = Mask.sext(VT.getSizeInBits());
4092 SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4093 ExtLoad, DAG.getConstant(Mask, VT));
4094 SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4095 N0.getOperand(0).getDebugLoc(),
4096 N0.getOperand(0).getValueType(), ExtLoad);
4097 CombineTo(N, And);
4098 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4099 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4100 ISD::SIGN_EXTEND);
4101 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4102 }
4103 }
4104 }
4105
4106 if (N0.getOpcode() == ISD::SETCC) {
4107 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4108 // Only do this before legalize for now.
4109 if (VT.isVector() && !LegalOperations) {
4110 EVT N0VT = N0.getOperand(0).getValueType();
4111 // We know that the # elements of the results is the same as the
4112 // # elements of the compare (and the # elements of the compare result
4113 // for that matter). Check to see that they are the same size. If so,
4114 // we know that the element size of the sext'd result matches the
4115 // element size of the compare operands.
4116 if (VT.getSizeInBits() == N0VT.getSizeInBits())
4117 return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4118 N0.getOperand(1),
4119 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4120 // If the desired elements are smaller or larger than the source
4121 // elements we can use a matching integer vector type and then
4122 // truncate/sign extend
4123 else {
4124 EVT MatchingElementType =
4125 EVT::getIntegerVT(*DAG.getContext(),
4126 N0VT.getScalarType().getSizeInBits());
4127 EVT MatchingVectorType =
4128 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4129 N0VT.getVectorNumElements());
4130 SDValue VsetCC =
4131 DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4132 N0.getOperand(1),
4133 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4134 return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4135 }
4136 }
4137
4138 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4139 unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4140 SDValue NegOne =
4141 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4142 SDValue SCC =
4143 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4144 NegOne, DAG.getConstant(0, VT),
4145 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4146 if (SCC.getNode()) return SCC;
4147 if (!LegalOperations ||
4148 TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4149 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4150 DAG.getSetCC(N->getDebugLoc(),
4151 TLI.getSetCCResultType(VT),
4152 N0.getOperand(0), N0.getOperand(1),
4153 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4154 NegOne, DAG.getConstant(0, VT));
4155 }
4156
4157 // fold (sext x) -> (zext x) if the sign bit is known zero.
4158 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4159 DAG.SignBitIsZero(N0))
4160 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4161
4162 return SDValue();
4163 }
4164
visitZERO_EXTEND(SDNode * N)4165 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4166 SDValue N0 = N->getOperand(0);
4167 EVT VT = N->getValueType(0);
4168
4169 // fold (zext c1) -> c1
4170 if (isa<ConstantSDNode>(N0))
4171 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4172 // fold (zext (zext x)) -> (zext x)
4173 // fold (zext (aext x)) -> (zext x)
4174 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4175 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4176 N0.getOperand(0));
4177
4178 // fold (zext (truncate (load x))) -> (zext (smaller load x))
4179 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4180 if (N0.getOpcode() == ISD::TRUNCATE) {
4181 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4182 if (NarrowLoad.getNode()) {
4183 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4184 if (NarrowLoad.getNode() != N0.getNode()) {
4185 CombineTo(N0.getNode(), NarrowLoad);
4186 // CombineTo deleted the truncate, if needed, but not what's under it.
4187 AddToWorkList(oye);
4188 }
4189 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4190 }
4191 }
4192
4193 // fold (zext (truncate x)) -> (and x, mask)
4194 if (N0.getOpcode() == ISD::TRUNCATE &&
4195 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4196
4197 // fold (zext (truncate (load x))) -> (zext (smaller load x))
4198 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4199 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4200 if (NarrowLoad.getNode()) {
4201 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4202 if (NarrowLoad.getNode() != N0.getNode()) {
4203 CombineTo(N0.getNode(), NarrowLoad);
4204 // CombineTo deleted the truncate, if needed, but not what's under it.
4205 AddToWorkList(oye);
4206 }
4207 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4208 }
4209
4210 SDValue Op = N0.getOperand(0);
4211 if (Op.getValueType().bitsLT(VT)) {
4212 Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4213 } else if (Op.getValueType().bitsGT(VT)) {
4214 Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4215 }
4216 return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4217 N0.getValueType().getScalarType());
4218 }
4219
4220 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4221 // if either of the casts is not free.
4222 if (N0.getOpcode() == ISD::AND &&
4223 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4224 N0.getOperand(1).getOpcode() == ISD::Constant &&
4225 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4226 N0.getValueType()) ||
4227 !TLI.isZExtFree(N0.getValueType(), VT))) {
4228 SDValue X = N0.getOperand(0).getOperand(0);
4229 if (X.getValueType().bitsLT(VT)) {
4230 X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4231 } else if (X.getValueType().bitsGT(VT)) {
4232 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4233 }
4234 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4235 Mask = Mask.zext(VT.getSizeInBits());
4236 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4237 X, DAG.getConstant(Mask, VT));
4238 }
4239
4240 // fold (zext (load x)) -> (zext (truncate (zextload x)))
4241 // None of the supported targets knows how to perform load and vector_zext
4242 // on vectors in one instruction. We only perform this transformation on
4243 // scalars.
4244 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4245 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4246 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4247 bool DoXform = true;
4248 SmallVector<SDNode*, 4> SetCCs;
4249 if (!N0.hasOneUse())
4250 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4251 if (DoXform) {
4252 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4253 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4254 LN0->getChain(),
4255 LN0->getBasePtr(), LN0->getPointerInfo(),
4256 N0.getValueType(),
4257 LN0->isVolatile(), LN0->isNonTemporal(),
4258 LN0->getAlignment());
4259 CombineTo(N, ExtLoad);
4260 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4261 N0.getValueType(), ExtLoad);
4262 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4263
4264 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4265 ISD::ZERO_EXTEND);
4266 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4267 }
4268 }
4269
4270 // fold (zext (and/or/xor (load x), cst)) ->
4271 // (and/or/xor (zextload x), (zext cst))
4272 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4273 N0.getOpcode() == ISD::XOR) &&
4274 isa<LoadSDNode>(N0.getOperand(0)) &&
4275 N0.getOperand(1).getOpcode() == ISD::Constant &&
4276 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4277 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4278 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4279 if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4280 bool DoXform = true;
4281 SmallVector<SDNode*, 4> SetCCs;
4282 if (!N0.hasOneUse())
4283 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4284 SetCCs, TLI);
4285 if (DoXform) {
4286 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4287 LN0->getChain(), LN0->getBasePtr(),
4288 LN0->getPointerInfo(),
4289 LN0->getMemoryVT(),
4290 LN0->isVolatile(),
4291 LN0->isNonTemporal(),
4292 LN0->getAlignment());
4293 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4294 Mask = Mask.zext(VT.getSizeInBits());
4295 SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4296 ExtLoad, DAG.getConstant(Mask, VT));
4297 SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4298 N0.getOperand(0).getDebugLoc(),
4299 N0.getOperand(0).getValueType(), ExtLoad);
4300 CombineTo(N, And);
4301 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4302 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4303 ISD::ZERO_EXTEND);
4304 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4305 }
4306 }
4307 }
4308
4309 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4310 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4311 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4312 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4313 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4314 EVT MemVT = LN0->getMemoryVT();
4315 if ((!LegalOperations && !LN0->isVolatile()) ||
4316 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4317 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4318 LN0->getChain(),
4319 LN0->getBasePtr(), LN0->getPointerInfo(),
4320 MemVT,
4321 LN0->isVolatile(), LN0->isNonTemporal(),
4322 LN0->getAlignment());
4323 CombineTo(N, ExtLoad);
4324 CombineTo(N0.getNode(),
4325 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4326 ExtLoad),
4327 ExtLoad.getValue(1));
4328 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4329 }
4330 }
4331
4332 if (N0.getOpcode() == ISD::SETCC) {
4333 if (!LegalOperations && VT.isVector()) {
4334 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4335 // Only do this before legalize for now.
4336 EVT N0VT = N0.getOperand(0).getValueType();
4337 EVT EltVT = VT.getVectorElementType();
4338 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4339 DAG.getConstant(1, EltVT));
4340 if (VT.getSizeInBits() == N0VT.getSizeInBits())
4341 // We know that the # elements of the results is the same as the
4342 // # elements of the compare (and the # elements of the compare result
4343 // for that matter). Check to see that they are the same size. If so,
4344 // we know that the element size of the sext'd result matches the
4345 // element size of the compare operands.
4346 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4347 DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4348 N0.getOperand(1),
4349 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4350 DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4351 &OneOps[0], OneOps.size()));
4352
4353 // If the desired elements are smaller or larger than the source
4354 // elements we can use a matching integer vector type and then
4355 // truncate/sign extend
4356 EVT MatchingElementType =
4357 EVT::getIntegerVT(*DAG.getContext(),
4358 N0VT.getScalarType().getSizeInBits());
4359 EVT MatchingVectorType =
4360 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4361 N0VT.getVectorNumElements());
4362 SDValue VsetCC =
4363 DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4364 N0.getOperand(1),
4365 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4366 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4367 DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4368 DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4369 &OneOps[0], OneOps.size()));
4370 }
4371
4372 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4373 SDValue SCC =
4374 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4375 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4376 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4377 if (SCC.getNode()) return SCC;
4378 }
4379
4380 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4381 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4382 isa<ConstantSDNode>(N0.getOperand(1)) &&
4383 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4384 N0.hasOneUse()) {
4385 SDValue ShAmt = N0.getOperand(1);
4386 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4387 if (N0.getOpcode() == ISD::SHL) {
4388 SDValue InnerZExt = N0.getOperand(0);
4389 // If the original shl may be shifting out bits, do not perform this
4390 // transformation.
4391 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4392 InnerZExt.getOperand(0).getValueType().getSizeInBits();
4393 if (ShAmtVal > KnownZeroBits)
4394 return SDValue();
4395 }
4396
4397 DebugLoc DL = N->getDebugLoc();
4398
4399 // Ensure that the shift amount is wide enough for the shifted value.
4400 if (VT.getSizeInBits() >= 256)
4401 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4402
4403 return DAG.getNode(N0.getOpcode(), DL, VT,
4404 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4405 ShAmt);
4406 }
4407
4408 return SDValue();
4409 }
4410
visitANY_EXTEND(SDNode * N)4411 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4412 SDValue N0 = N->getOperand(0);
4413 EVT VT = N->getValueType(0);
4414
4415 // fold (aext c1) -> c1
4416 if (isa<ConstantSDNode>(N0))
4417 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4418 // fold (aext (aext x)) -> (aext x)
4419 // fold (aext (zext x)) -> (zext x)
4420 // fold (aext (sext x)) -> (sext x)
4421 if (N0.getOpcode() == ISD::ANY_EXTEND ||
4422 N0.getOpcode() == ISD::ZERO_EXTEND ||
4423 N0.getOpcode() == ISD::SIGN_EXTEND)
4424 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4425
4426 // fold (aext (truncate (load x))) -> (aext (smaller load x))
4427 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4428 if (N0.getOpcode() == ISD::TRUNCATE) {
4429 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4430 if (NarrowLoad.getNode()) {
4431 SDNode* oye = N0.getNode()->getOperand(0).getNode();
4432 if (NarrowLoad.getNode() != N0.getNode()) {
4433 CombineTo(N0.getNode(), NarrowLoad);
4434 // CombineTo deleted the truncate, if needed, but not what's under it.
4435 AddToWorkList(oye);
4436 }
4437 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4438 }
4439 }
4440
4441 // fold (aext (truncate x))
4442 if (N0.getOpcode() == ISD::TRUNCATE) {
4443 SDValue TruncOp = N0.getOperand(0);
4444 if (TruncOp.getValueType() == VT)
4445 return TruncOp; // x iff x size == zext size.
4446 if (TruncOp.getValueType().bitsGT(VT))
4447 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4448 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4449 }
4450
4451 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4452 // if the trunc is not free.
4453 if (N0.getOpcode() == ISD::AND &&
4454 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4455 N0.getOperand(1).getOpcode() == ISD::Constant &&
4456 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4457 N0.getValueType())) {
4458 SDValue X = N0.getOperand(0).getOperand(0);
4459 if (X.getValueType().bitsLT(VT)) {
4460 X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4461 } else if (X.getValueType().bitsGT(VT)) {
4462 X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4463 }
4464 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4465 Mask = Mask.zext(VT.getSizeInBits());
4466 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4467 X, DAG.getConstant(Mask, VT));
4468 }
4469
4470 // fold (aext (load x)) -> (aext (truncate (extload x)))
4471 // None of the supported targets knows how to perform load and any_ext
4472 // on vectors in one instruction. We only perform this transformation on
4473 // scalars.
4474 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4475 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4476 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4477 bool DoXform = true;
4478 SmallVector<SDNode*, 4> SetCCs;
4479 if (!N0.hasOneUse())
4480 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4481 if (DoXform) {
4482 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4483 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4484 LN0->getChain(),
4485 LN0->getBasePtr(), LN0->getPointerInfo(),
4486 N0.getValueType(),
4487 LN0->isVolatile(), LN0->isNonTemporal(),
4488 LN0->getAlignment());
4489 CombineTo(N, ExtLoad);
4490 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4491 N0.getValueType(), ExtLoad);
4492 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4493 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4494 ISD::ANY_EXTEND);
4495 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4496 }
4497 }
4498
4499 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4500 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4501 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
4502 if (N0.getOpcode() == ISD::LOAD &&
4503 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4504 N0.hasOneUse()) {
4505 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4506 EVT MemVT = LN0->getMemoryVT();
4507 SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4508 VT, LN0->getChain(), LN0->getBasePtr(),
4509 LN0->getPointerInfo(), MemVT,
4510 LN0->isVolatile(), LN0->isNonTemporal(),
4511 LN0->getAlignment());
4512 CombineTo(N, ExtLoad);
4513 CombineTo(N0.getNode(),
4514 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4515 N0.getValueType(), ExtLoad),
4516 ExtLoad.getValue(1));
4517 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4518 }
4519
4520 if (N0.getOpcode() == ISD::SETCC) {
4521 // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4522 // Only do this before legalize for now.
4523 if (VT.isVector() && !LegalOperations) {
4524 EVT N0VT = N0.getOperand(0).getValueType();
4525 // We know that the # elements of the results is the same as the
4526 // # elements of the compare (and the # elements of the compare result
4527 // for that matter). Check to see that they are the same size. If so,
4528 // we know that the element size of the sext'd result matches the
4529 // element size of the compare operands.
4530 if (VT.getSizeInBits() == N0VT.getSizeInBits())
4531 return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4532 N0.getOperand(1),
4533 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4534 // If the desired elements are smaller or larger than the source
4535 // elements we can use a matching integer vector type and then
4536 // truncate/sign extend
4537 else {
4538 EVT MatchingElementType =
4539 EVT::getIntegerVT(*DAG.getContext(),
4540 N0VT.getScalarType().getSizeInBits());
4541 EVT MatchingVectorType =
4542 EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4543 N0VT.getVectorNumElements());
4544 SDValue VsetCC =
4545 DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4546 N0.getOperand(1),
4547 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4548 return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4549 }
4550 }
4551
4552 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4553 SDValue SCC =
4554 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4555 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4556 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4557 if (SCC.getNode())
4558 return SCC;
4559 }
4560
4561 return SDValue();
4562 }
4563
4564 /// GetDemandedBits - See if the specified operand can be simplified with the
4565 /// knowledge that only the bits specified by Mask are used. If so, return the
4566 /// simpler operand, otherwise return a null SDValue.
GetDemandedBits(SDValue V,const APInt & Mask)4567 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4568 switch (V.getOpcode()) {
4569 default: break;
4570 case ISD::OR:
4571 case ISD::XOR:
4572 // If the LHS or RHS don't contribute bits to the or, drop them.
4573 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4574 return V.getOperand(1);
4575 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4576 return V.getOperand(0);
4577 break;
4578 case ISD::SRL:
4579 // Only look at single-use SRLs.
4580 if (!V.getNode()->hasOneUse())
4581 break;
4582 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
4583 // See if we can recursively simplify the LHS.
4584 unsigned Amt = RHSC->getZExtValue();
4585
4586 // Watch out for shift count overflow though.
4587 if (Amt >= Mask.getBitWidth()) break;
4588 APInt NewMask = Mask << Amt;
4589 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
4590 if (SimplifyLHS.getNode())
4591 return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
4592 SimplifyLHS, V.getOperand(1));
4593 }
4594 }
4595 return SDValue();
4596 }
4597
4598 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
4599 /// bits and then truncated to a narrower type and where N is a multiple
4600 /// of number of bits of the narrower type, transform it to a narrower load
4601 /// from address + N / num of bits of new type. If the result is to be
4602 /// extended, also fold the extension to form a extending load.
ReduceLoadWidth(SDNode * N)4603 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
4604 unsigned Opc = N->getOpcode();
4605
4606 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
4607 SDValue N0 = N->getOperand(0);
4608 EVT VT = N->getValueType(0);
4609 EVT ExtVT = VT;
4610
4611 // This transformation isn't valid for vector loads.
4612 if (VT.isVector())
4613 return SDValue();
4614
4615 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
4616 // extended to VT.
4617 if (Opc == ISD::SIGN_EXTEND_INREG) {
4618 ExtType = ISD::SEXTLOAD;
4619 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4620 } else if (Opc == ISD::SRL) {
4621 // Another special-case: SRL is basically zero-extending a narrower value.
4622 ExtType = ISD::ZEXTLOAD;
4623 N0 = SDValue(N, 0);
4624 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4625 if (!N01) return SDValue();
4626 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
4627 VT.getSizeInBits() - N01->getZExtValue());
4628 }
4629 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
4630 return SDValue();
4631
4632 unsigned EVTBits = ExtVT.getSizeInBits();
4633
4634 // Do not generate loads of non-round integer types since these can
4635 // be expensive (and would be wrong if the type is not byte sized).
4636 if (!ExtVT.isRound())
4637 return SDValue();
4638
4639 unsigned ShAmt = 0;
4640 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4641 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4642 ShAmt = N01->getZExtValue();
4643 // Is the shift amount a multiple of size of VT?
4644 if ((ShAmt & (EVTBits-1)) == 0) {
4645 N0 = N0.getOperand(0);
4646 // Is the load width a multiple of size of VT?
4647 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
4648 return SDValue();
4649 }
4650
4651 // At this point, we must have a load or else we can't do the transform.
4652 if (!isa<LoadSDNode>(N0)) return SDValue();
4653
4654 // If the shift amount is larger than the input type then we're not
4655 // accessing any of the loaded bytes. If the load was a zextload/extload
4656 // then the result of the shift+trunc is zero/undef (handled elsewhere).
4657 // If the load was a sextload then the result is a splat of the sign bit
4658 // of the extended byte. This is not worth optimizing for.
4659 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
4660 return SDValue();
4661 }
4662 }
4663
4664 // If the load is shifted left (and the result isn't shifted back right),
4665 // we can fold the truncate through the shift.
4666 unsigned ShLeftAmt = 0;
4667 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
4668 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
4669 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4670 ShLeftAmt = N01->getZExtValue();
4671 N0 = N0.getOperand(0);
4672 }
4673 }
4674
4675 // If we haven't found a load, we can't narrow it. Don't transform one with
4676 // multiple uses, this would require adding a new load.
4677 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
4678 // Don't change the width of a volatile load.
4679 cast<LoadSDNode>(N0)->isVolatile())
4680 return SDValue();
4681
4682 // Verify that we are actually reducing a load width here.
4683 if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
4684 return SDValue();
4685
4686 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4687 EVT PtrType = N0.getOperand(1).getValueType();
4688
4689 // For big endian targets, we need to adjust the offset to the pointer to
4690 // load the correct bytes.
4691 if (TLI.isBigEndian()) {
4692 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
4693 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
4694 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
4695 }
4696
4697 uint64_t PtrOff = ShAmt / 8;
4698 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
4699 SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
4700 PtrType, LN0->getBasePtr(),
4701 DAG.getConstant(PtrOff, PtrType));
4702 AddToWorkList(NewPtr.getNode());
4703
4704 SDValue Load;
4705 if (ExtType == ISD::NON_EXTLOAD)
4706 Load = DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
4707 LN0->getPointerInfo().getWithOffset(PtrOff),
4708 LN0->isVolatile(), LN0->isNonTemporal(), NewAlign);
4709 else
4710 Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
4711 LN0->getPointerInfo().getWithOffset(PtrOff),
4712 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
4713 NewAlign);
4714
4715 // Replace the old load's chain with the new load's chain.
4716 WorkListRemover DeadNodes(*this);
4717 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
4718 &DeadNodes);
4719
4720 // Shift the result left, if we've swallowed a left shift.
4721 SDValue Result = Load;
4722 if (ShLeftAmt != 0) {
4723 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
4724 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
4725 ShImmTy = VT;
4726 Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
4727 Result, DAG.getConstant(ShLeftAmt, ShImmTy));
4728 }
4729
4730 // Return the new loaded value.
4731 return Result;
4732 }
4733
visitSIGN_EXTEND_INREG(SDNode * N)4734 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
4735 SDValue N0 = N->getOperand(0);
4736 SDValue N1 = N->getOperand(1);
4737 EVT VT = N->getValueType(0);
4738 EVT EVT = cast<VTSDNode>(N1)->getVT();
4739 unsigned VTBits = VT.getScalarType().getSizeInBits();
4740 unsigned EVTBits = EVT.getScalarType().getSizeInBits();
4741
4742 // fold (sext_in_reg c1) -> c1
4743 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
4744 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
4745
4746 // If the input is already sign extended, just drop the extension.
4747 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
4748 return N0;
4749
4750 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
4751 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4752 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
4753 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
4754 N0.getOperand(0), N1);
4755 }
4756
4757 // fold (sext_in_reg (sext x)) -> (sext x)
4758 // fold (sext_in_reg (aext x)) -> (sext x)
4759 // if x is small enough.
4760 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
4761 SDValue N00 = N0.getOperand(0);
4762 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
4763 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
4764 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
4765 }
4766
4767 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
4768 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
4769 return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
4770
4771 // fold operands of sext_in_reg based on knowledge that the top bits are not
4772 // demanded.
4773 if (SimplifyDemandedBits(SDValue(N, 0)))
4774 return SDValue(N, 0);
4775
4776 // fold (sext_in_reg (load x)) -> (smaller sextload x)
4777 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
4778 SDValue NarrowLoad = ReduceLoadWidth(N);
4779 if (NarrowLoad.getNode())
4780 return NarrowLoad;
4781
4782 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
4783 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
4784 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
4785 if (N0.getOpcode() == ISD::SRL) {
4786 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
4787 if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
4788 // We can turn this into an SRA iff the input to the SRL is already sign
4789 // extended enough.
4790 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
4791 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
4792 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
4793 N0.getOperand(0), N0.getOperand(1));
4794 }
4795 }
4796
4797 // fold (sext_inreg (extload x)) -> (sextload x)
4798 if (ISD::isEXTLoad(N0.getNode()) &&
4799 ISD::isUNINDEXEDLoad(N0.getNode()) &&
4800 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
4801 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4802 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
4803 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4804 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4805 LN0->getChain(),
4806 LN0->getBasePtr(), LN0->getPointerInfo(),
4807 EVT,
4808 LN0->isVolatile(), LN0->isNonTemporal(),
4809 LN0->getAlignment());
4810 CombineTo(N, ExtLoad);
4811 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
4812 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4813 }
4814 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
4815 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4816 N0.hasOneUse() &&
4817 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
4818 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4819 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
4820 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4821 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4822 LN0->getChain(),
4823 LN0->getBasePtr(), LN0->getPointerInfo(),
4824 EVT,
4825 LN0->isVolatile(), LN0->isNonTemporal(),
4826 LN0->getAlignment());
4827 CombineTo(N, ExtLoad);
4828 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
4829 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4830 }
4831
4832 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
4833 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
4834 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
4835 N0.getOperand(1), false);
4836 if (BSwap.getNode() != 0)
4837 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
4838 BSwap, N1);
4839 }
4840
4841 return SDValue();
4842 }
4843
visitTRUNCATE(SDNode * N)4844 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
4845 SDValue N0 = N->getOperand(0);
4846 EVT VT = N->getValueType(0);
4847
4848 // noop truncate
4849 if (N0.getValueType() == N->getValueType(0))
4850 return N0;
4851 // fold (truncate c1) -> c1
4852 if (isa<ConstantSDNode>(N0))
4853 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
4854 // fold (truncate (truncate x)) -> (truncate x)
4855 if (N0.getOpcode() == ISD::TRUNCATE)
4856 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
4857 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
4858 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
4859 N0.getOpcode() == ISD::SIGN_EXTEND ||
4860 N0.getOpcode() == ISD::ANY_EXTEND) {
4861 if (N0.getOperand(0).getValueType().bitsLT(VT))
4862 // if the source is smaller than the dest, we still need an extend
4863 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4864 N0.getOperand(0));
4865 else if (N0.getOperand(0).getValueType().bitsGT(VT))
4866 // if the source is larger than the dest, than we just need the truncate
4867 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
4868 else
4869 // if the source and dest are the same type, we can drop both the extend
4870 // and the truncate.
4871 return N0.getOperand(0);
4872 }
4873
4874 // See if we can simplify the input to this truncate through knowledge that
4875 // only the low bits are being used.
4876 // For example "trunc (or (shl x, 8), y)" // -> trunc y
4877 // Currently we only perform this optimization on scalars because vectors
4878 // may have different active low bits.
4879 if (!VT.isVector()) {
4880 SDValue Shorter =
4881 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
4882 VT.getSizeInBits()));
4883 if (Shorter.getNode())
4884 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
4885 }
4886 // fold (truncate (load x)) -> (smaller load x)
4887 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
4888 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
4889 SDValue Reduced = ReduceLoadWidth(N);
4890 if (Reduced.getNode())
4891 return Reduced;
4892 }
4893
4894 // Simplify the operands using demanded-bits information.
4895 if (!VT.isVector() &&
4896 SimplifyDemandedBits(SDValue(N, 0)))
4897 return SDValue(N, 0);
4898
4899 return SDValue();
4900 }
4901
getBuildPairElt(SDNode * N,unsigned i)4902 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
4903 SDValue Elt = N->getOperand(i);
4904 if (Elt.getOpcode() != ISD::MERGE_VALUES)
4905 return Elt.getNode();
4906 return Elt.getOperand(Elt.getResNo()).getNode();
4907 }
4908
4909 /// CombineConsecutiveLoads - build_pair (load, load) -> load
4910 /// if load locations are consecutive.
CombineConsecutiveLoads(SDNode * N,EVT VT)4911 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
4912 assert(N->getOpcode() == ISD::BUILD_PAIR);
4913
4914 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
4915 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
4916 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
4917 LD1->getPointerInfo().getAddrSpace() !=
4918 LD2->getPointerInfo().getAddrSpace())
4919 return SDValue();
4920 EVT LD1VT = LD1->getValueType(0);
4921
4922 if (ISD::isNON_EXTLoad(LD2) &&
4923 LD2->hasOneUse() &&
4924 // If both are volatile this would reduce the number of volatile loads.
4925 // If one is volatile it might be ok, but play conservative and bail out.
4926 !LD1->isVolatile() &&
4927 !LD2->isVolatile() &&
4928 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
4929 unsigned Align = LD1->getAlignment();
4930 unsigned NewAlign = TLI.getTargetData()->
4931 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
4932
4933 if (NewAlign <= Align &&
4934 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
4935 return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
4936 LD1->getBasePtr(), LD1->getPointerInfo(),
4937 false, false, Align);
4938 }
4939
4940 return SDValue();
4941 }
4942
visitBITCAST(SDNode * N)4943 SDValue DAGCombiner::visitBITCAST(SDNode *N) {
4944 SDValue N0 = N->getOperand(0);
4945 EVT VT = N->getValueType(0);
4946
4947 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
4948 // Only do this before legalize, since afterward the target may be depending
4949 // on the bitconvert.
4950 // First check to see if this is all constant.
4951 if (!LegalTypes &&
4952 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
4953 VT.isVector()) {
4954 bool isSimple = true;
4955 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
4956 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
4957 N0.getOperand(i).getOpcode() != ISD::Constant &&
4958 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
4959 isSimple = false;
4960 break;
4961 }
4962
4963 EVT DestEltVT = N->getValueType(0).getVectorElementType();
4964 assert(!DestEltVT.isVector() &&
4965 "Element type of vector ValueType must not be vector!");
4966 if (isSimple)
4967 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
4968 }
4969
4970 // If the input is a constant, let getNode fold it.
4971 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
4972 SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
4973 if (Res.getNode() != N) {
4974 if (!LegalOperations ||
4975 TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
4976 return Res;
4977
4978 // Folding it resulted in an illegal node, and it's too late to
4979 // do that. Clean up the old node and forego the transformation.
4980 // Ideally this won't happen very often, because instcombine
4981 // and the earlier dagcombine runs (where illegal nodes are
4982 // permitted) should have folded most of them already.
4983 DAG.DeleteNode(Res.getNode());
4984 }
4985 }
4986
4987 // (conv (conv x, t1), t2) -> (conv x, t2)
4988 if (N0.getOpcode() == ISD::BITCAST)
4989 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
4990 N0.getOperand(0));
4991
4992 // fold (conv (load x)) -> (load (conv*)x)
4993 // If the resultant load doesn't need a higher alignment than the original!
4994 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
4995 // Do not change the width of a volatile load.
4996 !cast<LoadSDNode>(N0)->isVolatile() &&
4997 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
4998 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4999 unsigned Align = TLI.getTargetData()->
5000 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5001 unsigned OrigAlign = LN0->getAlignment();
5002
5003 if (Align <= OrigAlign) {
5004 SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5005 LN0->getBasePtr(), LN0->getPointerInfo(),
5006 LN0->isVolatile(), LN0->isNonTemporal(),
5007 OrigAlign);
5008 AddToWorkList(N);
5009 CombineTo(N0.getNode(),
5010 DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5011 N0.getValueType(), Load),
5012 Load.getValue(1));
5013 return Load;
5014 }
5015 }
5016
5017 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5018 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5019 // This often reduces constant pool loads.
5020 if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
5021 N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
5022 SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5023 N0.getOperand(0));
5024 AddToWorkList(NewConv.getNode());
5025
5026 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5027 if (N0.getOpcode() == ISD::FNEG)
5028 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5029 NewConv, DAG.getConstant(SignBit, VT));
5030 assert(N0.getOpcode() == ISD::FABS);
5031 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5032 NewConv, DAG.getConstant(~SignBit, VT));
5033 }
5034
5035 // fold (bitconvert (fcopysign cst, x)) ->
5036 // (or (and (bitconvert x), sign), (and cst, (not sign)))
5037 // Note that we don't handle (copysign x, cst) because this can always be
5038 // folded to an fneg or fabs.
5039 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5040 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5041 VT.isInteger() && !VT.isVector()) {
5042 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5043 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5044 if (isTypeLegal(IntXVT)) {
5045 SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5046 IntXVT, N0.getOperand(1));
5047 AddToWorkList(X.getNode());
5048
5049 // If X has a different width than the result/lhs, sext it or truncate it.
5050 unsigned VTWidth = VT.getSizeInBits();
5051 if (OrigXWidth < VTWidth) {
5052 X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5053 AddToWorkList(X.getNode());
5054 } else if (OrigXWidth > VTWidth) {
5055 // To get the sign bit in the right place, we have to shift it right
5056 // before truncating.
5057 X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5058 X.getValueType(), X,
5059 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5060 AddToWorkList(X.getNode());
5061 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5062 AddToWorkList(X.getNode());
5063 }
5064
5065 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5066 X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5067 X, DAG.getConstant(SignBit, VT));
5068 AddToWorkList(X.getNode());
5069
5070 SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5071 VT, N0.getOperand(0));
5072 Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5073 Cst, DAG.getConstant(~SignBit, VT));
5074 AddToWorkList(Cst.getNode());
5075
5076 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5077 }
5078 }
5079
5080 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5081 if (N0.getOpcode() == ISD::BUILD_PAIR) {
5082 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5083 if (CombineLD.getNode())
5084 return CombineLD;
5085 }
5086
5087 return SDValue();
5088 }
5089
visitBUILD_PAIR(SDNode * N)5090 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5091 EVT VT = N->getValueType(0);
5092 return CombineConsecutiveLoads(N, VT);
5093 }
5094
5095 /// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5096 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
5097 /// destination element value type.
5098 SDValue DAGCombiner::
ConstantFoldBITCASTofBUILD_VECTOR(SDNode * BV,EVT DstEltVT)5099 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5100 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5101
5102 // If this is already the right type, we're done.
5103 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5104
5105 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5106 unsigned DstBitSize = DstEltVT.getSizeInBits();
5107
5108 // If this is a conversion of N elements of one type to N elements of another
5109 // type, convert each element. This handles FP<->INT cases.
5110 if (SrcBitSize == DstBitSize) {
5111 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5112 BV->getValueType(0).getVectorNumElements());
5113
5114 // Due to the FP element handling below calling this routine recursively,
5115 // we can end up with a scalar-to-vector node here.
5116 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5117 return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5118 DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5119 DstEltVT, BV->getOperand(0)));
5120
5121 SmallVector<SDValue, 8> Ops;
5122 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5123 SDValue Op = BV->getOperand(i);
5124 // If the vector element type is not legal, the BUILD_VECTOR operands
5125 // are promoted and implicitly truncated. Make that explicit here.
5126 if (Op.getValueType() != SrcEltVT)
5127 Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5128 Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5129 DstEltVT, Op));
5130 AddToWorkList(Ops.back().getNode());
5131 }
5132 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5133 &Ops[0], Ops.size());
5134 }
5135
5136 // Otherwise, we're growing or shrinking the elements. To avoid having to
5137 // handle annoying details of growing/shrinking FP values, we convert them to
5138 // int first.
5139 if (SrcEltVT.isFloatingPoint()) {
5140 // Convert the input float vector to a int vector where the elements are the
5141 // same sizes.
5142 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5143 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5144 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5145 SrcEltVT = IntVT;
5146 }
5147
5148 // Now we know the input is an integer vector. If the output is a FP type,
5149 // convert to integer first, then to FP of the right size.
5150 if (DstEltVT.isFloatingPoint()) {
5151 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5152 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5153 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5154
5155 // Next, convert to FP elements of the same size.
5156 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5157 }
5158
5159 // Okay, we know the src/dst types are both integers of differing types.
5160 // Handling growing first.
5161 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5162 if (SrcBitSize < DstBitSize) {
5163 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5164
5165 SmallVector<SDValue, 8> Ops;
5166 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5167 i += NumInputsPerOutput) {
5168 bool isLE = TLI.isLittleEndian();
5169 APInt NewBits = APInt(DstBitSize, 0);
5170 bool EltIsUndef = true;
5171 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5172 // Shift the previously computed bits over.
5173 NewBits <<= SrcBitSize;
5174 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5175 if (Op.getOpcode() == ISD::UNDEF) continue;
5176 EltIsUndef = false;
5177
5178 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5179 zextOrTrunc(SrcBitSize).zext(DstBitSize);
5180 }
5181
5182 if (EltIsUndef)
5183 Ops.push_back(DAG.getUNDEF(DstEltVT));
5184 else
5185 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5186 }
5187
5188 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5189 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5190 &Ops[0], Ops.size());
5191 }
5192
5193 // Finally, this must be the case where we are shrinking elements: each input
5194 // turns into multiple outputs.
5195 bool isS2V = ISD::isScalarToVector(BV);
5196 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5197 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5198 NumOutputsPerInput*BV->getNumOperands());
5199 SmallVector<SDValue, 8> Ops;
5200
5201 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5202 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5203 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5204 Ops.push_back(DAG.getUNDEF(DstEltVT));
5205 continue;
5206 }
5207
5208 APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5209 getAPIntValue().zextOrTrunc(SrcBitSize);
5210
5211 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5212 APInt ThisVal = OpVal.trunc(DstBitSize);
5213 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5214 if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5215 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5216 return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5217 Ops[0]);
5218 OpVal = OpVal.lshr(DstBitSize);
5219 }
5220
5221 // For big endian targets, swap the order of the pieces of each element.
5222 if (TLI.isBigEndian())
5223 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5224 }
5225
5226 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5227 &Ops[0], Ops.size());
5228 }
5229
visitFADD(SDNode * N)5230 SDValue DAGCombiner::visitFADD(SDNode *N) {
5231 SDValue N0 = N->getOperand(0);
5232 SDValue N1 = N->getOperand(1);
5233 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5234 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5235 EVT VT = N->getValueType(0);
5236
5237 // fold vector ops
5238 if (VT.isVector()) {
5239 SDValue FoldedVOp = SimplifyVBinOp(N);
5240 if (FoldedVOp.getNode()) return FoldedVOp;
5241 }
5242
5243 // fold (fadd c1, c2) -> (fadd c1, c2)
5244 if (N0CFP && N1CFP && VT != MVT::ppcf128)
5245 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5246 // canonicalize constant to RHS
5247 if (N0CFP && !N1CFP)
5248 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5249 // fold (fadd A, 0) -> A
5250 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
5251 return N0;
5252 // fold (fadd A, (fneg B)) -> (fsub A, B)
5253 if (isNegatibleForFree(N1, LegalOperations) == 2)
5254 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5255 GetNegatedExpression(N1, DAG, LegalOperations));
5256 // fold (fadd (fneg A), B) -> (fsub B, A)
5257 if (isNegatibleForFree(N0, LegalOperations) == 2)
5258 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5259 GetNegatedExpression(N0, DAG, LegalOperations));
5260
5261 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5262 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
5263 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
5264 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5265 DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5266 N0.getOperand(1), N1));
5267
5268 return SDValue();
5269 }
5270
visitFSUB(SDNode * N)5271 SDValue DAGCombiner::visitFSUB(SDNode *N) {
5272 SDValue N0 = N->getOperand(0);
5273 SDValue N1 = N->getOperand(1);
5274 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5275 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5276 EVT VT = N->getValueType(0);
5277
5278 // fold vector ops
5279 if (VT.isVector()) {
5280 SDValue FoldedVOp = SimplifyVBinOp(N);
5281 if (FoldedVOp.getNode()) return FoldedVOp;
5282 }
5283
5284 // fold (fsub c1, c2) -> c1-c2
5285 if (N0CFP && N1CFP && VT != MVT::ppcf128)
5286 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5287 // fold (fsub A, 0) -> A
5288 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
5289 return N0;
5290 // fold (fsub 0, B) -> -B
5291 if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
5292 if (isNegatibleForFree(N1, LegalOperations))
5293 return GetNegatedExpression(N1, DAG, LegalOperations);
5294 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5295 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
5296 }
5297 // fold (fsub A, (fneg B)) -> (fadd A, B)
5298 if (isNegatibleForFree(N1, LegalOperations))
5299 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
5300 GetNegatedExpression(N1, DAG, LegalOperations));
5301
5302 return SDValue();
5303 }
5304
visitFMUL(SDNode * N)5305 SDValue DAGCombiner::visitFMUL(SDNode *N) {
5306 SDValue N0 = N->getOperand(0);
5307 SDValue N1 = N->getOperand(1);
5308 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5309 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5310 EVT VT = N->getValueType(0);
5311
5312 // fold vector ops
5313 if (VT.isVector()) {
5314 SDValue FoldedVOp = SimplifyVBinOp(N);
5315 if (FoldedVOp.getNode()) return FoldedVOp;
5316 }
5317
5318 // fold (fmul c1, c2) -> c1*c2
5319 if (N0CFP && N1CFP && VT != MVT::ppcf128)
5320 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
5321 // canonicalize constant to RHS
5322 if (N0CFP && !N1CFP)
5323 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
5324 // fold (fmul A, 0) -> 0
5325 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
5326 return N1;
5327 // fold (fmul A, 0) -> 0, vector edition.
5328 if (UnsafeFPMath && ISD::isBuildVectorAllZeros(N1.getNode()))
5329 return N1;
5330 // fold (fmul X, 2.0) -> (fadd X, X)
5331 if (N1CFP && N1CFP->isExactlyValue(+2.0))
5332 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
5333 // fold (fmul X, -1.0) -> (fneg X)
5334 if (N1CFP && N1CFP->isExactlyValue(-1.0))
5335 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5336 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
5337
5338 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
5339 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
5340 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
5341 // Both can be negated for free, check to see if at least one is cheaper
5342 // negated.
5343 if (LHSNeg == 2 || RHSNeg == 2)
5344 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5345 GetNegatedExpression(N0, DAG, LegalOperations),
5346 GetNegatedExpression(N1, DAG, LegalOperations));
5347 }
5348 }
5349
5350 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
5351 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
5352 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
5353 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
5354 DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5355 N0.getOperand(1), N1));
5356
5357 return SDValue();
5358 }
5359
visitFDIV(SDNode * N)5360 SDValue DAGCombiner::visitFDIV(SDNode *N) {
5361 SDValue N0 = N->getOperand(0);
5362 SDValue N1 = N->getOperand(1);
5363 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5364 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5365 EVT VT = N->getValueType(0);
5366
5367 // fold vector ops
5368 if (VT.isVector()) {
5369 SDValue FoldedVOp = SimplifyVBinOp(N);
5370 if (FoldedVOp.getNode()) return FoldedVOp;
5371 }
5372
5373 // fold (fdiv c1, c2) -> c1/c2
5374 if (N0CFP && N1CFP && VT != MVT::ppcf128)
5375 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
5376
5377
5378 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
5379 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
5380 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
5381 // Both can be negated for free, check to see if at least one is cheaper
5382 // negated.
5383 if (LHSNeg == 2 || RHSNeg == 2)
5384 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
5385 GetNegatedExpression(N0, DAG, LegalOperations),
5386 GetNegatedExpression(N1, DAG, LegalOperations));
5387 }
5388 }
5389
5390 return SDValue();
5391 }
5392
visitFREM(SDNode * N)5393 SDValue DAGCombiner::visitFREM(SDNode *N) {
5394 SDValue N0 = N->getOperand(0);
5395 SDValue N1 = N->getOperand(1);
5396 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5397 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5398 EVT VT = N->getValueType(0);
5399
5400 // fold (frem c1, c2) -> fmod(c1,c2)
5401 if (N0CFP && N1CFP && VT != MVT::ppcf128)
5402 return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
5403
5404 return SDValue();
5405 }
5406
visitFCOPYSIGN(SDNode * N)5407 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
5408 SDValue N0 = N->getOperand(0);
5409 SDValue N1 = N->getOperand(1);
5410 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5411 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5412 EVT VT = N->getValueType(0);
5413
5414 if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
5415 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
5416
5417 if (N1CFP) {
5418 const APFloat& V = N1CFP->getValueAPF();
5419 // copysign(x, c1) -> fabs(x) iff ispos(c1)
5420 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
5421 if (!V.isNegative()) {
5422 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
5423 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
5424 } else {
5425 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5426 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
5427 DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
5428 }
5429 }
5430
5431 // copysign(fabs(x), y) -> copysign(x, y)
5432 // copysign(fneg(x), y) -> copysign(x, y)
5433 // copysign(copysign(x,z), y) -> copysign(x, y)
5434 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
5435 N0.getOpcode() == ISD::FCOPYSIGN)
5436 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
5437 N0.getOperand(0), N1);
5438
5439 // copysign(x, abs(y)) -> abs(x)
5440 if (N1.getOpcode() == ISD::FABS)
5441 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
5442
5443 // copysign(x, copysign(y,z)) -> copysign(x, z)
5444 if (N1.getOpcode() == ISD::FCOPYSIGN)
5445 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
5446 N0, N1.getOperand(1));
5447
5448 // copysign(x, fp_extend(y)) -> copysign(x, y)
5449 // copysign(x, fp_round(y)) -> copysign(x, y)
5450 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
5451 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
5452 N0, N1.getOperand(0));
5453
5454 return SDValue();
5455 }
5456
visitSINT_TO_FP(SDNode * N)5457 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
5458 SDValue N0 = N->getOperand(0);
5459 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
5460 EVT VT = N->getValueType(0);
5461 EVT OpVT = N0.getValueType();
5462
5463 // fold (sint_to_fp c1) -> c1fp
5464 if (N0C && OpVT != MVT::ppcf128 &&
5465 // ...but only if the target supports immediate floating-point values
5466 (Level == llvm::Unrestricted ||
5467 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
5468 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
5469
5470 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
5471 // but UINT_TO_FP is legal on this target, try to convert.
5472 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
5473 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
5474 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
5475 if (DAG.SignBitIsZero(N0))
5476 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
5477 }
5478
5479 return SDValue();
5480 }
5481
visitUINT_TO_FP(SDNode * N)5482 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
5483 SDValue N0 = N->getOperand(0);
5484 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
5485 EVT VT = N->getValueType(0);
5486 EVT OpVT = N0.getValueType();
5487
5488 // fold (uint_to_fp c1) -> c1fp
5489 if (N0C && OpVT != MVT::ppcf128 &&
5490 // ...but only if the target supports immediate floating-point values
5491 (Level == llvm::Unrestricted ||
5492 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
5493 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
5494
5495 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
5496 // but SINT_TO_FP is legal on this target, try to convert.
5497 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
5498 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
5499 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
5500 if (DAG.SignBitIsZero(N0))
5501 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
5502 }
5503
5504 return SDValue();
5505 }
5506
visitFP_TO_SINT(SDNode * N)5507 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
5508 SDValue N0 = N->getOperand(0);
5509 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5510 EVT VT = N->getValueType(0);
5511
5512 // fold (fp_to_sint c1fp) -> c1
5513 if (N0CFP)
5514 return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
5515
5516 return SDValue();
5517 }
5518
visitFP_TO_UINT(SDNode * N)5519 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
5520 SDValue N0 = N->getOperand(0);
5521 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5522 EVT VT = N->getValueType(0);
5523
5524 // fold (fp_to_uint c1fp) -> c1
5525 if (N0CFP && VT != MVT::ppcf128)
5526 return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
5527
5528 return SDValue();
5529 }
5530
visitFP_ROUND(SDNode * N)5531 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
5532 SDValue N0 = N->getOperand(0);
5533 SDValue N1 = N->getOperand(1);
5534 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5535 EVT VT = N->getValueType(0);
5536
5537 // fold (fp_round c1fp) -> c1fp
5538 if (N0CFP && N0.getValueType() != MVT::ppcf128)
5539 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
5540
5541 // fold (fp_round (fp_extend x)) -> x
5542 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
5543 return N0.getOperand(0);
5544
5545 // fold (fp_round (fp_round x)) -> (fp_round x)
5546 if (N0.getOpcode() == ISD::FP_ROUND) {
5547 // This is a value preserving truncation if both round's are.
5548 bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
5549 N0.getNode()->getConstantOperandVal(1) == 1;
5550 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
5551 DAG.getIntPtrConstant(IsTrunc));
5552 }
5553
5554 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
5555 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
5556 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
5557 N0.getOperand(0), N1);
5558 AddToWorkList(Tmp.getNode());
5559 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
5560 Tmp, N0.getOperand(1));
5561 }
5562
5563 return SDValue();
5564 }
5565
visitFP_ROUND_INREG(SDNode * N)5566 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
5567 SDValue N0 = N->getOperand(0);
5568 EVT VT = N->getValueType(0);
5569 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5570 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5571
5572 // fold (fp_round_inreg c1fp) -> c1fp
5573 if (N0CFP && isTypeLegal(EVT)) {
5574 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
5575 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
5576 }
5577
5578 return SDValue();
5579 }
5580
visitFP_EXTEND(SDNode * N)5581 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
5582 SDValue N0 = N->getOperand(0);
5583 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5584 EVT VT = N->getValueType(0);
5585
5586 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
5587 if (N->hasOneUse() &&
5588 N->use_begin()->getOpcode() == ISD::FP_ROUND)
5589 return SDValue();
5590
5591 // fold (fp_extend c1fp) -> c1fp
5592 if (N0CFP && VT != MVT::ppcf128)
5593 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
5594
5595 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
5596 // value of X.
5597 if (N0.getOpcode() == ISD::FP_ROUND
5598 && N0.getNode()->getConstantOperandVal(1) == 1) {
5599 SDValue In = N0.getOperand(0);
5600 if (In.getValueType() == VT) return In;
5601 if (VT.bitsLT(In.getValueType()))
5602 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
5603 In, N0.getOperand(1));
5604 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
5605 }
5606
5607 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
5608 if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
5609 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5610 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5611 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5612 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
5613 LN0->getChain(),
5614 LN0->getBasePtr(), LN0->getPointerInfo(),
5615 N0.getValueType(),
5616 LN0->isVolatile(), LN0->isNonTemporal(),
5617 LN0->getAlignment());
5618 CombineTo(N, ExtLoad);
5619 CombineTo(N0.getNode(),
5620 DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
5621 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
5622 ExtLoad.getValue(1));
5623 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5624 }
5625
5626 return SDValue();
5627 }
5628
visitFNEG(SDNode * N)5629 SDValue DAGCombiner::visitFNEG(SDNode *N) {
5630 SDValue N0 = N->getOperand(0);
5631 EVT VT = N->getValueType(0);
5632
5633 if (isNegatibleForFree(N0, LegalOperations))
5634 return GetNegatedExpression(N0, DAG, LegalOperations);
5635
5636 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
5637 // constant pool values.
5638 if (N0.getOpcode() == ISD::BITCAST &&
5639 !VT.isVector() &&
5640 N0.getNode()->hasOneUse() &&
5641 N0.getOperand(0).getValueType().isInteger()) {
5642 SDValue Int = N0.getOperand(0);
5643 EVT IntVT = Int.getValueType();
5644 if (IntVT.isInteger() && !IntVT.isVector()) {
5645 Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
5646 DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
5647 AddToWorkList(Int.getNode());
5648 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5649 VT, Int);
5650 }
5651 }
5652
5653 return SDValue();
5654 }
5655
visitFABS(SDNode * N)5656 SDValue DAGCombiner::visitFABS(SDNode *N) {
5657 SDValue N0 = N->getOperand(0);
5658 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5659 EVT VT = N->getValueType(0);
5660
5661 // fold (fabs c1) -> fabs(c1)
5662 if (N0CFP && VT != MVT::ppcf128)
5663 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
5664 // fold (fabs (fabs x)) -> (fabs x)
5665 if (N0.getOpcode() == ISD::FABS)
5666 return N->getOperand(0);
5667 // fold (fabs (fneg x)) -> (fabs x)
5668 // fold (fabs (fcopysign x, y)) -> (fabs x)
5669 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
5670 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
5671
5672 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
5673 // constant pool values.
5674 if (N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
5675 N0.getOperand(0).getValueType().isInteger() &&
5676 !N0.getOperand(0).getValueType().isVector()) {
5677 SDValue Int = N0.getOperand(0);
5678 EVT IntVT = Int.getValueType();
5679 if (IntVT.isInteger() && !IntVT.isVector()) {
5680 Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
5681 DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
5682 AddToWorkList(Int.getNode());
5683 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5684 N->getValueType(0), Int);
5685 }
5686 }
5687
5688 return SDValue();
5689 }
5690
visitBRCOND(SDNode * N)5691 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
5692 SDValue Chain = N->getOperand(0);
5693 SDValue N1 = N->getOperand(1);
5694 SDValue N2 = N->getOperand(2);
5695
5696 // If N is a constant we could fold this into a fallthrough or unconditional
5697 // branch. However that doesn't happen very often in normal code, because
5698 // Instcombine/SimplifyCFG should have handled the available opportunities.
5699 // If we did this folding here, it would be necessary to update the
5700 // MachineBasicBlock CFG, which is awkward.
5701
5702 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
5703 // on the target.
5704 if (N1.getOpcode() == ISD::SETCC &&
5705 TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
5706 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
5707 Chain, N1.getOperand(2),
5708 N1.getOperand(0), N1.getOperand(1), N2);
5709 }
5710
5711 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
5712 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
5713 (N1.getOperand(0).hasOneUse() &&
5714 N1.getOperand(0).getOpcode() == ISD::SRL))) {
5715 SDNode *Trunc = 0;
5716 if (N1.getOpcode() == ISD::TRUNCATE) {
5717 // Look pass the truncate.
5718 Trunc = N1.getNode();
5719 N1 = N1.getOperand(0);
5720 }
5721
5722 // Match this pattern so that we can generate simpler code:
5723 //
5724 // %a = ...
5725 // %b = and i32 %a, 2
5726 // %c = srl i32 %b, 1
5727 // brcond i32 %c ...
5728 //
5729 // into
5730 //
5731 // %a = ...
5732 // %b = and i32 %a, 2
5733 // %c = setcc eq %b, 0
5734 // brcond %c ...
5735 //
5736 // This applies only when the AND constant value has one bit set and the
5737 // SRL constant is equal to the log2 of the AND constant. The back-end is
5738 // smart enough to convert the result into a TEST/JMP sequence.
5739 SDValue Op0 = N1.getOperand(0);
5740 SDValue Op1 = N1.getOperand(1);
5741
5742 if (Op0.getOpcode() == ISD::AND &&
5743 Op1.getOpcode() == ISD::Constant) {
5744 SDValue AndOp1 = Op0.getOperand(1);
5745
5746 if (AndOp1.getOpcode() == ISD::Constant) {
5747 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
5748
5749 if (AndConst.isPowerOf2() &&
5750 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
5751 SDValue SetCC =
5752 DAG.getSetCC(N->getDebugLoc(),
5753 TLI.getSetCCResultType(Op0.getValueType()),
5754 Op0, DAG.getConstant(0, Op0.getValueType()),
5755 ISD::SETNE);
5756
5757 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
5758 MVT::Other, Chain, SetCC, N2);
5759 // Don't add the new BRCond into the worklist or else SimplifySelectCC
5760 // will convert it back to (X & C1) >> C2.
5761 CombineTo(N, NewBRCond, false);
5762 // Truncate is dead.
5763 if (Trunc) {
5764 removeFromWorkList(Trunc);
5765 DAG.DeleteNode(Trunc);
5766 }
5767 // Replace the uses of SRL with SETCC
5768 WorkListRemover DeadNodes(*this);
5769 DAG.ReplaceAllUsesOfValueWith(N1, SetCC, &DeadNodes);
5770 removeFromWorkList(N1.getNode());
5771 DAG.DeleteNode(N1.getNode());
5772 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5773 }
5774 }
5775 }
5776
5777 if (Trunc)
5778 // Restore N1 if the above transformation doesn't match.
5779 N1 = N->getOperand(1);
5780 }
5781
5782 // Transform br(xor(x, y)) -> br(x != y)
5783 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
5784 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
5785 SDNode *TheXor = N1.getNode();
5786 SDValue Op0 = TheXor->getOperand(0);
5787 SDValue Op1 = TheXor->getOperand(1);
5788 if (Op0.getOpcode() == Op1.getOpcode()) {
5789 // Avoid missing important xor optimizations.
5790 SDValue Tmp = visitXOR(TheXor);
5791 if (Tmp.getNode() && Tmp.getNode() != TheXor) {
5792 DEBUG(dbgs() << "\nReplacing.8 ";
5793 TheXor->dump(&DAG);
5794 dbgs() << "\nWith: ";
5795 Tmp.getNode()->dump(&DAG);
5796 dbgs() << '\n');
5797 WorkListRemover DeadNodes(*this);
5798 DAG.ReplaceAllUsesOfValueWith(N1, Tmp, &DeadNodes);
5799 removeFromWorkList(TheXor);
5800 DAG.DeleteNode(TheXor);
5801 return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
5802 MVT::Other, Chain, Tmp, N2);
5803 }
5804 }
5805
5806 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
5807 bool Equal = false;
5808 if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
5809 if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
5810 Op0.getOpcode() == ISD::XOR) {
5811 TheXor = Op0.getNode();
5812 Equal = true;
5813 }
5814
5815 EVT SetCCVT = N1.getValueType();
5816 if (LegalTypes)
5817 SetCCVT = TLI.getSetCCResultType(SetCCVT);
5818 SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
5819 SetCCVT,
5820 Op0, Op1,
5821 Equal ? ISD::SETEQ : ISD::SETNE);
5822 // Replace the uses of XOR with SETCC
5823 WorkListRemover DeadNodes(*this);
5824 DAG.ReplaceAllUsesOfValueWith(N1, SetCC, &DeadNodes);
5825 removeFromWorkList(N1.getNode());
5826 DAG.DeleteNode(N1.getNode());
5827 return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
5828 MVT::Other, Chain, SetCC, N2);
5829 }
5830 }
5831
5832 return SDValue();
5833 }
5834
5835 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
5836 //
visitBR_CC(SDNode * N)5837 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
5838 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
5839 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
5840
5841 // If N is a constant we could fold this into a fallthrough or unconditional
5842 // branch. However that doesn't happen very often in normal code, because
5843 // Instcombine/SimplifyCFG should have handled the available opportunities.
5844 // If we did this folding here, it would be necessary to update the
5845 // MachineBasicBlock CFG, which is awkward.
5846
5847 // Use SimplifySetCC to simplify SETCC's.
5848 SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
5849 CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
5850 false);
5851 if (Simp.getNode()) AddToWorkList(Simp.getNode());
5852
5853 // fold to a simpler setcc
5854 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
5855 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
5856 N->getOperand(0), Simp.getOperand(2),
5857 Simp.getOperand(0), Simp.getOperand(1),
5858 N->getOperand(4));
5859
5860 return SDValue();
5861 }
5862
5863 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
5864 /// pre-indexed load / store when the base pointer is an add or subtract
5865 /// and it has other uses besides the load / store. After the
5866 /// transformation, the new indexed load / store has effectively folded
5867 /// the add / subtract in and all of its other uses are redirected to the
5868 /// new load / store.
CombineToPreIndexedLoadStore(SDNode * N)5869 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
5870 if (!LegalOperations)
5871 return false;
5872
5873 bool isLoad = true;
5874 SDValue Ptr;
5875 EVT VT;
5876 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5877 if (LD->isIndexed())
5878 return false;
5879 VT = LD->getMemoryVT();
5880 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
5881 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
5882 return false;
5883 Ptr = LD->getBasePtr();
5884 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5885 if (ST->isIndexed())
5886 return false;
5887 VT = ST->getMemoryVT();
5888 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
5889 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
5890 return false;
5891 Ptr = ST->getBasePtr();
5892 isLoad = false;
5893 } else {
5894 return false;
5895 }
5896
5897 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
5898 // out. There is no reason to make this a preinc/predec.
5899 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
5900 Ptr.getNode()->hasOneUse())
5901 return false;
5902
5903 // Ask the target to do addressing mode selection.
5904 SDValue BasePtr;
5905 SDValue Offset;
5906 ISD::MemIndexedMode AM = ISD::UNINDEXED;
5907 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
5908 return false;
5909 // Don't create a indexed load / store with zero offset.
5910 if (isa<ConstantSDNode>(Offset) &&
5911 cast<ConstantSDNode>(Offset)->isNullValue())
5912 return false;
5913
5914 // Try turning it into a pre-indexed load / store except when:
5915 // 1) The new base ptr is a frame index.
5916 // 2) If N is a store and the new base ptr is either the same as or is a
5917 // predecessor of the value being stored.
5918 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
5919 // that would create a cycle.
5920 // 4) All uses are load / store ops that use it as old base ptr.
5921
5922 // Check #1. Preinc'ing a frame index would require copying the stack pointer
5923 // (plus the implicit offset) to a register to preinc anyway.
5924 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
5925 return false;
5926
5927 // Check #2.
5928 if (!isLoad) {
5929 SDValue Val = cast<StoreSDNode>(N)->getValue();
5930 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
5931 return false;
5932 }
5933
5934 // Now check for #3 and #4.
5935 bool RealUse = false;
5936
5937 // Caches for hasPredecessorHelper
5938 SmallPtrSet<const SDNode *, 32> Visited;
5939 SmallVector<const SDNode *, 16> Worklist;
5940
5941 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
5942 E = Ptr.getNode()->use_end(); I != E; ++I) {
5943 SDNode *Use = *I;
5944 if (Use == N)
5945 continue;
5946 if (N->hasPredecessorHelper(Use, Visited, Worklist))
5947 return false;
5948
5949 if (!((Use->getOpcode() == ISD::LOAD &&
5950 cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
5951 (Use->getOpcode() == ISD::STORE &&
5952 cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
5953 RealUse = true;
5954 }
5955
5956 if (!RealUse)
5957 return false;
5958
5959 SDValue Result;
5960 if (isLoad)
5961 Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
5962 BasePtr, Offset, AM);
5963 else
5964 Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
5965 BasePtr, Offset, AM);
5966 ++PreIndexedNodes;
5967 ++NodesCombined;
5968 DEBUG(dbgs() << "\nReplacing.4 ";
5969 N->dump(&DAG);
5970 dbgs() << "\nWith: ";
5971 Result.getNode()->dump(&DAG);
5972 dbgs() << '\n');
5973 WorkListRemover DeadNodes(*this);
5974 if (isLoad) {
5975 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
5976 &DeadNodes);
5977 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
5978 &DeadNodes);
5979 } else {
5980 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
5981 &DeadNodes);
5982 }
5983
5984 // Finally, since the node is now dead, remove it from the graph.
5985 DAG.DeleteNode(N);
5986
5987 // Replace the uses of Ptr with uses of the updated base value.
5988 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
5989 &DeadNodes);
5990 removeFromWorkList(Ptr.getNode());
5991 DAG.DeleteNode(Ptr.getNode());
5992
5993 return true;
5994 }
5995
5996 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
5997 /// add / sub of the base pointer node into a post-indexed load / store.
5998 /// The transformation folded the add / subtract into the new indexed
5999 /// load / store effectively and all of its uses are redirected to the
6000 /// new load / store.
CombineToPostIndexedLoadStore(SDNode * N)6001 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6002 if (!LegalOperations)
6003 return false;
6004
6005 bool isLoad = true;
6006 SDValue Ptr;
6007 EVT VT;
6008 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
6009 if (LD->isIndexed())
6010 return false;
6011 VT = LD->getMemoryVT();
6012 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6013 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6014 return false;
6015 Ptr = LD->getBasePtr();
6016 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
6017 if (ST->isIndexed())
6018 return false;
6019 VT = ST->getMemoryVT();
6020 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
6021 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
6022 return false;
6023 Ptr = ST->getBasePtr();
6024 isLoad = false;
6025 } else {
6026 return false;
6027 }
6028
6029 if (Ptr.getNode()->hasOneUse())
6030 return false;
6031
6032 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6033 E = Ptr.getNode()->use_end(); I != E; ++I) {
6034 SDNode *Op = *I;
6035 if (Op == N ||
6036 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
6037 continue;
6038
6039 SDValue BasePtr;
6040 SDValue Offset;
6041 ISD::MemIndexedMode AM = ISD::UNINDEXED;
6042 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
6043 // Don't create a indexed load / store with zero offset.
6044 if (isa<ConstantSDNode>(Offset) &&
6045 cast<ConstantSDNode>(Offset)->isNullValue())
6046 continue;
6047
6048 // Try turning it into a post-indexed load / store except when
6049 // 1) All uses are load / store ops that use it as base ptr.
6050 // 2) Op must be independent of N, i.e. Op is neither a predecessor
6051 // nor a successor of N. Otherwise, if Op is folded that would
6052 // create a cycle.
6053
6054 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6055 continue;
6056
6057 // Check for #1.
6058 bool TryNext = false;
6059 for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
6060 EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
6061 SDNode *Use = *II;
6062 if (Use == Ptr.getNode())
6063 continue;
6064
6065 // If all the uses are load / store addresses, then don't do the
6066 // transformation.
6067 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
6068 bool RealUse = false;
6069 for (SDNode::use_iterator III = Use->use_begin(),
6070 EEE = Use->use_end(); III != EEE; ++III) {
6071 SDNode *UseUse = *III;
6072 if (!((UseUse->getOpcode() == ISD::LOAD &&
6073 cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) ||
6074 (UseUse->getOpcode() == ISD::STORE &&
6075 cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use)))
6076 RealUse = true;
6077 }
6078
6079 if (!RealUse) {
6080 TryNext = true;
6081 break;
6082 }
6083 }
6084 }
6085
6086 if (TryNext)
6087 continue;
6088
6089 // Check for #2
6090 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
6091 SDValue Result = isLoad
6092 ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6093 BasePtr, Offset, AM)
6094 : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6095 BasePtr, Offset, AM);
6096 ++PostIndexedNodes;
6097 ++NodesCombined;
6098 DEBUG(dbgs() << "\nReplacing.5 ";
6099 N->dump(&DAG);
6100 dbgs() << "\nWith: ";
6101 Result.getNode()->dump(&DAG);
6102 dbgs() << '\n');
6103 WorkListRemover DeadNodes(*this);
6104 if (isLoad) {
6105 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
6106 &DeadNodes);
6107 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
6108 &DeadNodes);
6109 } else {
6110 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
6111 &DeadNodes);
6112 }
6113
6114 // Finally, since the node is now dead, remove it from the graph.
6115 DAG.DeleteNode(N);
6116
6117 // Replace the uses of Use with uses of the updated base value.
6118 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
6119 Result.getValue(isLoad ? 1 : 0),
6120 &DeadNodes);
6121 removeFromWorkList(Op);
6122 DAG.DeleteNode(Op);
6123 return true;
6124 }
6125 }
6126 }
6127
6128 return false;
6129 }
6130
visitLOAD(SDNode * N)6131 SDValue DAGCombiner::visitLOAD(SDNode *N) {
6132 LoadSDNode *LD = cast<LoadSDNode>(N);
6133 SDValue Chain = LD->getChain();
6134 SDValue Ptr = LD->getBasePtr();
6135
6136 // If load is not volatile and there are no uses of the loaded value (and
6137 // the updated indexed value in case of indexed loads), change uses of the
6138 // chain value into uses of the chain input (i.e. delete the dead load).
6139 if (!LD->isVolatile()) {
6140 if (N->getValueType(1) == MVT::Other) {
6141 // Unindexed loads.
6142 if (N->hasNUsesOfValue(0, 0)) {
6143 // It's not safe to use the two value CombineTo variant here. e.g.
6144 // v1, chain2 = load chain1, loc
6145 // v2, chain3 = load chain2, loc
6146 // v3 = add v2, c
6147 // Now we replace use of chain2 with chain1. This makes the second load
6148 // isomorphic to the one we are deleting, and thus makes this load live.
6149 DEBUG(dbgs() << "\nReplacing.6 ";
6150 N->dump(&DAG);
6151 dbgs() << "\nWith chain: ";
6152 Chain.getNode()->dump(&DAG);
6153 dbgs() << "\n");
6154 WorkListRemover DeadNodes(*this);
6155 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
6156
6157 if (N->use_empty()) {
6158 removeFromWorkList(N);
6159 DAG.DeleteNode(N);
6160 }
6161
6162 return SDValue(N, 0); // Return N so it doesn't get rechecked!
6163 }
6164 } else {
6165 // Indexed loads.
6166 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
6167 if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
6168 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
6169 DEBUG(dbgs() << "\nReplacing.7 ";
6170 N->dump(&DAG);
6171 dbgs() << "\nWith: ";
6172 Undef.getNode()->dump(&DAG);
6173 dbgs() << " and 2 other values\n");
6174 WorkListRemover DeadNodes(*this);
6175 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
6176 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
6177 DAG.getUNDEF(N->getValueType(1)),
6178 &DeadNodes);
6179 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes);
6180 removeFromWorkList(N);
6181 DAG.DeleteNode(N);
6182 return SDValue(N, 0); // Return N so it doesn't get rechecked!
6183 }
6184 }
6185 }
6186
6187 // If this load is directly stored, replace the load value with the stored
6188 // value.
6189 // TODO: Handle store large -> read small portion.
6190 // TODO: Handle TRUNCSTORE/LOADEXT
6191 if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
6192 if (ISD::isNON_TRUNCStore(Chain.getNode())) {
6193 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
6194 if (PrevST->getBasePtr() == Ptr &&
6195 PrevST->getValue().getValueType() == N->getValueType(0))
6196 return CombineTo(N, Chain.getOperand(1), Chain);
6197 }
6198 }
6199
6200 // Try to infer better alignment information than the load already has.
6201 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
6202 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
6203 if (Align > LD->getAlignment())
6204 return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
6205 LD->getValueType(0),
6206 Chain, Ptr, LD->getPointerInfo(),
6207 LD->getMemoryVT(),
6208 LD->isVolatile(), LD->isNonTemporal(), Align);
6209 }
6210 }
6211
6212 if (CombinerAA) {
6213 // Walk up chain skipping non-aliasing memory nodes.
6214 SDValue BetterChain = FindBetterChain(N, Chain);
6215
6216 // If there is a better chain.
6217 if (Chain != BetterChain) {
6218 SDValue ReplLoad;
6219
6220 // Replace the chain to void dependency.
6221 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
6222 ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
6223 BetterChain, Ptr, LD->getPointerInfo(),
6224 LD->isVolatile(), LD->isNonTemporal(),
6225 LD->getAlignment());
6226 } else {
6227 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
6228 LD->getValueType(0),
6229 BetterChain, Ptr, LD->getPointerInfo(),
6230 LD->getMemoryVT(),
6231 LD->isVolatile(),
6232 LD->isNonTemporal(),
6233 LD->getAlignment());
6234 }
6235
6236 // Create token factor to keep old chain connected.
6237 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
6238 MVT::Other, Chain, ReplLoad.getValue(1));
6239
6240 // Make sure the new and old chains are cleaned up.
6241 AddToWorkList(Token.getNode());
6242
6243 // Replace uses with load result and token factor. Don't add users
6244 // to work list.
6245 return CombineTo(N, ReplLoad.getValue(0), Token, false);
6246 }
6247 }
6248
6249 // Try transforming N to an indexed load.
6250 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
6251 return SDValue(N, 0);
6252
6253 return SDValue();
6254 }
6255
6256 /// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
6257 /// load is having specific bytes cleared out. If so, return the byte size
6258 /// being masked out and the shift amount.
6259 static std::pair<unsigned, unsigned>
CheckForMaskedLoad(SDValue V,SDValue Ptr,SDValue Chain)6260 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
6261 std::pair<unsigned, unsigned> Result(0, 0);
6262
6263 // Check for the structure we're looking for.
6264 if (V->getOpcode() != ISD::AND ||
6265 !isa<ConstantSDNode>(V->getOperand(1)) ||
6266 !ISD::isNormalLoad(V->getOperand(0).getNode()))
6267 return Result;
6268
6269 // Check the chain and pointer.
6270 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
6271 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
6272
6273 // The store should be chained directly to the load or be an operand of a
6274 // tokenfactor.
6275 if (LD == Chain.getNode())
6276 ; // ok.
6277 else if (Chain->getOpcode() != ISD::TokenFactor)
6278 return Result; // Fail.
6279 else {
6280 bool isOk = false;
6281 for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
6282 if (Chain->getOperand(i).getNode() == LD) {
6283 isOk = true;
6284 break;
6285 }
6286 if (!isOk) return Result;
6287 }
6288
6289 // This only handles simple types.
6290 if (V.getValueType() != MVT::i16 &&
6291 V.getValueType() != MVT::i32 &&
6292 V.getValueType() != MVT::i64)
6293 return Result;
6294
6295 // Check the constant mask. Invert it so that the bits being masked out are
6296 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
6297 // follow the sign bit for uniformity.
6298 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
6299 unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
6300 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
6301 unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
6302 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
6303 if (NotMaskLZ == 64) return Result; // All zero mask.
6304
6305 // See if we have a continuous run of bits. If so, we have 0*1+0*
6306 if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
6307 return Result;
6308
6309 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
6310 if (V.getValueType() != MVT::i64 && NotMaskLZ)
6311 NotMaskLZ -= 64-V.getValueSizeInBits();
6312
6313 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
6314 switch (MaskedBytes) {
6315 case 1:
6316 case 2:
6317 case 4: break;
6318 default: return Result; // All one mask, or 5-byte mask.
6319 }
6320
6321 // Verify that the first bit starts at a multiple of mask so that the access
6322 // is aligned the same as the access width.
6323 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
6324
6325 Result.first = MaskedBytes;
6326 Result.second = NotMaskTZ/8;
6327 return Result;
6328 }
6329
6330
6331 /// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
6332 /// provides a value as specified by MaskInfo. If so, replace the specified
6333 /// store with a narrower store of truncated IVal.
6334 static SDNode *
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned,unsigned> & MaskInfo,SDValue IVal,StoreSDNode * St,DAGCombiner * DC)6335 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
6336 SDValue IVal, StoreSDNode *St,
6337 DAGCombiner *DC) {
6338 unsigned NumBytes = MaskInfo.first;
6339 unsigned ByteShift = MaskInfo.second;
6340 SelectionDAG &DAG = DC->getDAG();
6341
6342 // Check to see if IVal is all zeros in the part being masked in by the 'or'
6343 // that uses this. If not, this is not a replacement.
6344 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
6345 ByteShift*8, (ByteShift+NumBytes)*8);
6346 if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
6347
6348 // Check that it is legal on the target to do this. It is legal if the new
6349 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
6350 // legalization.
6351 MVT VT = MVT::getIntegerVT(NumBytes*8);
6352 if (!DC->isTypeLegal(VT))
6353 return 0;
6354
6355 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
6356 // shifted by ByteShift and truncated down to NumBytes.
6357 if (ByteShift)
6358 IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
6359 DAG.getConstant(ByteShift*8,
6360 DC->getShiftAmountTy(IVal.getValueType())));
6361
6362 // Figure out the offset for the store and the alignment of the access.
6363 unsigned StOffset;
6364 unsigned NewAlign = St->getAlignment();
6365
6366 if (DAG.getTargetLoweringInfo().isLittleEndian())
6367 StOffset = ByteShift;
6368 else
6369 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
6370
6371 SDValue Ptr = St->getBasePtr();
6372 if (StOffset) {
6373 Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
6374 Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
6375 NewAlign = MinAlign(NewAlign, StOffset);
6376 }
6377
6378 // Truncate down to the new size.
6379 IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
6380
6381 ++OpsNarrowed;
6382 return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
6383 St->getPointerInfo().getWithOffset(StOffset),
6384 false, false, NewAlign).getNode();
6385 }
6386
6387
6388 /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
6389 /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
6390 /// of the loaded bits, try narrowing the load and store if it would end up
6391 /// being a win for performance or code size.
ReduceLoadOpStoreWidth(SDNode * N)6392 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
6393 StoreSDNode *ST = cast<StoreSDNode>(N);
6394 if (ST->isVolatile())
6395 return SDValue();
6396
6397 SDValue Chain = ST->getChain();
6398 SDValue Value = ST->getValue();
6399 SDValue Ptr = ST->getBasePtr();
6400 EVT VT = Value.getValueType();
6401
6402 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
6403 return SDValue();
6404
6405 unsigned Opc = Value.getOpcode();
6406
6407 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
6408 // is a byte mask indicating a consecutive number of bytes, check to see if
6409 // Y is known to provide just those bytes. If so, we try to replace the
6410 // load + replace + store sequence with a single (narrower) store, which makes
6411 // the load dead.
6412 if (Opc == ISD::OR) {
6413 std::pair<unsigned, unsigned> MaskedLoad;
6414 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
6415 if (MaskedLoad.first)
6416 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
6417 Value.getOperand(1), ST,this))
6418 return SDValue(NewST, 0);
6419
6420 // Or is commutative, so try swapping X and Y.
6421 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
6422 if (MaskedLoad.first)
6423 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
6424 Value.getOperand(0), ST,this))
6425 return SDValue(NewST, 0);
6426 }
6427
6428 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
6429 Value.getOperand(1).getOpcode() != ISD::Constant)
6430 return SDValue();
6431
6432 SDValue N0 = Value.getOperand(0);
6433 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6434 Chain == SDValue(N0.getNode(), 1)) {
6435 LoadSDNode *LD = cast<LoadSDNode>(N0);
6436 if (LD->getBasePtr() != Ptr ||
6437 LD->getPointerInfo().getAddrSpace() !=
6438 ST->getPointerInfo().getAddrSpace())
6439 return SDValue();
6440
6441 // Find the type to narrow it the load / op / store to.
6442 SDValue N1 = Value.getOperand(1);
6443 unsigned BitWidth = N1.getValueSizeInBits();
6444 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
6445 if (Opc == ISD::AND)
6446 Imm ^= APInt::getAllOnesValue(BitWidth);
6447 if (Imm == 0 || Imm.isAllOnesValue())
6448 return SDValue();
6449 unsigned ShAmt = Imm.countTrailingZeros();
6450 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
6451 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
6452 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
6453 while (NewBW < BitWidth &&
6454 !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
6455 TLI.isNarrowingProfitable(VT, NewVT))) {
6456 NewBW = NextPowerOf2(NewBW);
6457 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
6458 }
6459 if (NewBW >= BitWidth)
6460 return SDValue();
6461
6462 // If the lsb changed does not start at the type bitwidth boundary,
6463 // start at the previous one.
6464 if (ShAmt % NewBW)
6465 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
6466 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
6467 if ((Imm & Mask) == Imm) {
6468 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
6469 if (Opc == ISD::AND)
6470 NewImm ^= APInt::getAllOnesValue(NewBW);
6471 uint64_t PtrOff = ShAmt / 8;
6472 // For big endian targets, we need to adjust the offset to the pointer to
6473 // load the correct bytes.
6474 if (TLI.isBigEndian())
6475 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
6476
6477 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
6478 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
6479 if (NewAlign < TLI.getTargetData()->getABITypeAlignment(NewVTTy))
6480 return SDValue();
6481
6482 SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
6483 Ptr.getValueType(), Ptr,
6484 DAG.getConstant(PtrOff, Ptr.getValueType()));
6485 SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
6486 LD->getChain(), NewPtr,
6487 LD->getPointerInfo().getWithOffset(PtrOff),
6488 LD->isVolatile(), LD->isNonTemporal(),
6489 NewAlign);
6490 SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
6491 DAG.getConstant(NewImm, NewVT));
6492 SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
6493 NewVal, NewPtr,
6494 ST->getPointerInfo().getWithOffset(PtrOff),
6495 false, false, NewAlign);
6496
6497 AddToWorkList(NewPtr.getNode());
6498 AddToWorkList(NewLD.getNode());
6499 AddToWorkList(NewVal.getNode());
6500 WorkListRemover DeadNodes(*this);
6501 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1),
6502 &DeadNodes);
6503 ++OpsNarrowed;
6504 return NewST;
6505 }
6506 }
6507
6508 return SDValue();
6509 }
6510
6511 /// TransformFPLoadStorePair - For a given floating point load / store pair,
6512 /// if the load value isn't used by any other operations, then consider
6513 /// transforming the pair to integer load / store operations if the target
6514 /// deems the transformation profitable.
TransformFPLoadStorePair(SDNode * N)6515 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
6516 StoreSDNode *ST = cast<StoreSDNode>(N);
6517 SDValue Chain = ST->getChain();
6518 SDValue Value = ST->getValue();
6519 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
6520 Value.hasOneUse() &&
6521 Chain == SDValue(Value.getNode(), 1)) {
6522 LoadSDNode *LD = cast<LoadSDNode>(Value);
6523 EVT VT = LD->getMemoryVT();
6524 if (!VT.isFloatingPoint() ||
6525 VT != ST->getMemoryVT() ||
6526 LD->isNonTemporal() ||
6527 ST->isNonTemporal() ||
6528 LD->getPointerInfo().getAddrSpace() != 0 ||
6529 ST->getPointerInfo().getAddrSpace() != 0)
6530 return SDValue();
6531
6532 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6533 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
6534 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
6535 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
6536 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
6537 return SDValue();
6538
6539 unsigned LDAlign = LD->getAlignment();
6540 unsigned STAlign = ST->getAlignment();
6541 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
6542 unsigned ABIAlign = TLI.getTargetData()->getABITypeAlignment(IntVTTy);
6543 if (LDAlign < ABIAlign || STAlign < ABIAlign)
6544 return SDValue();
6545
6546 SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
6547 LD->getChain(), LD->getBasePtr(),
6548 LD->getPointerInfo(),
6549 false, false, LDAlign);
6550
6551 SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
6552 NewLD, ST->getBasePtr(),
6553 ST->getPointerInfo(),
6554 false, false, STAlign);
6555
6556 AddToWorkList(NewLD.getNode());
6557 AddToWorkList(NewST.getNode());
6558 WorkListRemover DeadNodes(*this);
6559 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1),
6560 &DeadNodes);
6561 ++LdStFP2Int;
6562 return NewST;
6563 }
6564
6565 return SDValue();
6566 }
6567
visitSTORE(SDNode * N)6568 SDValue DAGCombiner::visitSTORE(SDNode *N) {
6569 StoreSDNode *ST = cast<StoreSDNode>(N);
6570 SDValue Chain = ST->getChain();
6571 SDValue Value = ST->getValue();
6572 SDValue Ptr = ST->getBasePtr();
6573
6574 // If this is a store of a bit convert, store the input value if the
6575 // resultant store does not need a higher alignment than the original.
6576 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
6577 ST->isUnindexed()) {
6578 unsigned OrigAlign = ST->getAlignment();
6579 EVT SVT = Value.getOperand(0).getValueType();
6580 unsigned Align = TLI.getTargetData()->
6581 getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
6582 if (Align <= OrigAlign &&
6583 ((!LegalOperations && !ST->isVolatile()) ||
6584 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
6585 return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
6586 Ptr, ST->getPointerInfo(), ST->isVolatile(),
6587 ST->isNonTemporal(), OrigAlign);
6588 }
6589
6590 // Turn 'store undef, Ptr' -> nothing.
6591 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
6592 return Chain;
6593
6594 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
6595 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
6596 // NOTE: If the original store is volatile, this transform must not increase
6597 // the number of stores. For example, on x86-32 an f64 can be stored in one
6598 // processor operation but an i64 (which is not legal) requires two. So the
6599 // transform should not be done in this case.
6600 if (Value.getOpcode() != ISD::TargetConstantFP) {
6601 SDValue Tmp;
6602 switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
6603 default: llvm_unreachable("Unknown FP type");
6604 case MVT::f80: // We don't do this for these yet.
6605 case MVT::f128:
6606 case MVT::ppcf128:
6607 break;
6608 case MVT::f32:
6609 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
6610 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
6611 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
6612 bitcastToAPInt().getZExtValue(), MVT::i32);
6613 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
6614 Ptr, ST->getPointerInfo(), ST->isVolatile(),
6615 ST->isNonTemporal(), ST->getAlignment());
6616 }
6617 break;
6618 case MVT::f64:
6619 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
6620 !ST->isVolatile()) ||
6621 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
6622 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
6623 getZExtValue(), MVT::i64);
6624 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
6625 Ptr, ST->getPointerInfo(), ST->isVolatile(),
6626 ST->isNonTemporal(), ST->getAlignment());
6627 }
6628
6629 if (!ST->isVolatile() &&
6630 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
6631 // Many FP stores are not made apparent until after legalize, e.g. for
6632 // argument passing. Since this is so common, custom legalize the
6633 // 64-bit integer store into two 32-bit stores.
6634 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
6635 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
6636 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
6637 if (TLI.isBigEndian()) std::swap(Lo, Hi);
6638
6639 unsigned Alignment = ST->getAlignment();
6640 bool isVolatile = ST->isVolatile();
6641 bool isNonTemporal = ST->isNonTemporal();
6642
6643 SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
6644 Ptr, ST->getPointerInfo(),
6645 isVolatile, isNonTemporal,
6646 ST->getAlignment());
6647 Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
6648 DAG.getConstant(4, Ptr.getValueType()));
6649 Alignment = MinAlign(Alignment, 4U);
6650 SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
6651 Ptr, ST->getPointerInfo().getWithOffset(4),
6652 isVolatile, isNonTemporal,
6653 Alignment);
6654 return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
6655 St0, St1);
6656 }
6657
6658 break;
6659 }
6660 }
6661 }
6662
6663 // Try to infer better alignment information than the store already has.
6664 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
6665 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
6666 if (Align > ST->getAlignment())
6667 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
6668 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
6669 ST->isVolatile(), ST->isNonTemporal(), Align);
6670 }
6671 }
6672
6673 // Try transforming a pair floating point load / store ops to integer
6674 // load / store ops.
6675 SDValue NewST = TransformFPLoadStorePair(N);
6676 if (NewST.getNode())
6677 return NewST;
6678
6679 if (CombinerAA) {
6680 // Walk up chain skipping non-aliasing memory nodes.
6681 SDValue BetterChain = FindBetterChain(N, Chain);
6682
6683 // If there is a better chain.
6684 if (Chain != BetterChain) {
6685 SDValue ReplStore;
6686
6687 // Replace the chain to avoid dependency.
6688 if (ST->isTruncatingStore()) {
6689 ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
6690 ST->getPointerInfo(),
6691 ST->getMemoryVT(), ST->isVolatile(),
6692 ST->isNonTemporal(), ST->getAlignment());
6693 } else {
6694 ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
6695 ST->getPointerInfo(),
6696 ST->isVolatile(), ST->isNonTemporal(),
6697 ST->getAlignment());
6698 }
6699
6700 // Create token to keep both nodes around.
6701 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
6702 MVT::Other, Chain, ReplStore);
6703
6704 // Make sure the new and old chains are cleaned up.
6705 AddToWorkList(Token.getNode());
6706
6707 // Don't add users to work list.
6708 return CombineTo(N, Token, false);
6709 }
6710 }
6711
6712 // Try transforming N to an indexed store.
6713 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
6714 return SDValue(N, 0);
6715
6716 // FIXME: is there such a thing as a truncating indexed store?
6717 if (ST->isTruncatingStore() && ST->isUnindexed() &&
6718 Value.getValueType().isInteger()) {
6719 // See if we can simplify the input to this truncstore with knowledge that
6720 // only the low bits are being used. For example:
6721 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
6722 SDValue Shorter =
6723 GetDemandedBits(Value,
6724 APInt::getLowBitsSet(
6725 Value.getValueType().getScalarType().getSizeInBits(),
6726 ST->getMemoryVT().getScalarType().getSizeInBits()));
6727 AddToWorkList(Value.getNode());
6728 if (Shorter.getNode())
6729 return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
6730 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
6731 ST->isVolatile(), ST->isNonTemporal(),
6732 ST->getAlignment());
6733
6734 // Otherwise, see if we can simplify the operation with
6735 // SimplifyDemandedBits, which only works if the value has a single use.
6736 if (SimplifyDemandedBits(Value,
6737 APInt::getLowBitsSet(
6738 Value.getValueType().getScalarType().getSizeInBits(),
6739 ST->getMemoryVT().getScalarType().getSizeInBits())))
6740 return SDValue(N, 0);
6741 }
6742
6743 // If this is a load followed by a store to the same location, then the store
6744 // is dead/noop.
6745 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
6746 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
6747 ST->isUnindexed() && !ST->isVolatile() &&
6748 // There can't be any side effects between the load and store, such as
6749 // a call or store.
6750 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
6751 // The store is dead, remove it.
6752 return Chain;
6753 }
6754 }
6755
6756 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
6757 // truncating store. We can do this even if this is already a truncstore.
6758 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
6759 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
6760 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
6761 ST->getMemoryVT())) {
6762 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
6763 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
6764 ST->isVolatile(), ST->isNonTemporal(),
6765 ST->getAlignment());
6766 }
6767
6768 return ReduceLoadOpStoreWidth(N);
6769 }
6770
visitINSERT_VECTOR_ELT(SDNode * N)6771 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
6772 SDValue InVec = N->getOperand(0);
6773 SDValue InVal = N->getOperand(1);
6774 SDValue EltNo = N->getOperand(2);
6775 DebugLoc dl = N->getDebugLoc();
6776
6777 // If the inserted element is an UNDEF, just use the input vector.
6778 if (InVal.getOpcode() == ISD::UNDEF)
6779 return InVec;
6780
6781 EVT VT = InVec.getValueType();
6782
6783 // If we can't generate a legal BUILD_VECTOR, exit
6784 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
6785 return SDValue();
6786
6787 // Check that we know which element is being inserted
6788 if (!isa<ConstantSDNode>(EltNo))
6789 return SDValue();
6790 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6791
6792 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
6793 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
6794 // vector elements.
6795 SmallVector<SDValue, 8> Ops;
6796 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
6797 Ops.append(InVec.getNode()->op_begin(),
6798 InVec.getNode()->op_end());
6799 } else if (InVec.getOpcode() == ISD::UNDEF) {
6800 unsigned NElts = VT.getVectorNumElements();
6801 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
6802 } else {
6803 return SDValue();
6804 }
6805
6806 // Insert the element
6807 if (Elt < Ops.size()) {
6808 // All the operands of BUILD_VECTOR must have the same type;
6809 // we enforce that here.
6810 EVT OpVT = Ops[0].getValueType();
6811 if (InVal.getValueType() != OpVT)
6812 InVal = OpVT.bitsGT(InVal.getValueType()) ?
6813 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
6814 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
6815 Ops[Elt] = InVal;
6816 }
6817
6818 // Return the new vector
6819 return DAG.getNode(ISD::BUILD_VECTOR, dl,
6820 VT, &Ops[0], Ops.size());
6821 }
6822
visitEXTRACT_VECTOR_ELT(SDNode * N)6823 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
6824 // (vextract (scalar_to_vector val, 0) -> val
6825 SDValue InVec = N->getOperand(0);
6826
6827 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6828 // Check if the result type doesn't match the inserted element type. A
6829 // SCALAR_TO_VECTOR may truncate the inserted element and the
6830 // EXTRACT_VECTOR_ELT may widen the extracted vector.
6831 SDValue InOp = InVec.getOperand(0);
6832 EVT NVT = N->getValueType(0);
6833 if (InOp.getValueType() != NVT) {
6834 assert(InOp.getValueType().isInteger() && NVT.isInteger());
6835 return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
6836 }
6837 return InOp;
6838 }
6839
6840 // Perform only after legalization to ensure build_vector / vector_shuffle
6841 // optimizations have already been done.
6842 if (!LegalOperations) return SDValue();
6843
6844 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
6845 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
6846 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
6847 SDValue EltNo = N->getOperand(1);
6848
6849 if (isa<ConstantSDNode>(EltNo)) {
6850 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6851 bool NewLoad = false;
6852 bool BCNumEltsChanged = false;
6853 EVT VT = InVec.getValueType();
6854 EVT ExtVT = VT.getVectorElementType();
6855 EVT LVT = ExtVT;
6856
6857 if (InVec.getOpcode() == ISD::BITCAST) {
6858 EVT BCVT = InVec.getOperand(0).getValueType();
6859 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
6860 return SDValue();
6861 if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
6862 BCNumEltsChanged = true;
6863 InVec = InVec.getOperand(0);
6864 ExtVT = BCVT.getVectorElementType();
6865 NewLoad = true;
6866 }
6867
6868 LoadSDNode *LN0 = NULL;
6869 const ShuffleVectorSDNode *SVN = NULL;
6870 if (ISD::isNormalLoad(InVec.getNode())) {
6871 LN0 = cast<LoadSDNode>(InVec);
6872 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6873 InVec.getOperand(0).getValueType() == ExtVT &&
6874 ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
6875 LN0 = cast<LoadSDNode>(InVec.getOperand(0));
6876 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
6877 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
6878 // =>
6879 // (load $addr+1*size)
6880
6881 // If the bit convert changed the number of elements, it is unsafe
6882 // to examine the mask.
6883 if (BCNumEltsChanged)
6884 return SDValue();
6885
6886 // Select the input vector, guarding against out of range extract vector.
6887 unsigned NumElems = VT.getVectorNumElements();
6888 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
6889 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
6890
6891 if (InVec.getOpcode() == ISD::BITCAST)
6892 InVec = InVec.getOperand(0);
6893 if (ISD::isNormalLoad(InVec.getNode())) {
6894 LN0 = cast<LoadSDNode>(InVec);
6895 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
6896 }
6897 }
6898
6899 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6900 return SDValue();
6901
6902 // If Idx was -1 above, Elt is going to be -1, so just return undef.
6903 if (Elt == -1)
6904 return DAG.getUNDEF(LVT);
6905
6906 unsigned Align = LN0->getAlignment();
6907 if (NewLoad) {
6908 // Check the resultant load doesn't need a higher alignment than the
6909 // original load.
6910 unsigned NewAlign =
6911 TLI.getTargetData()
6912 ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
6913
6914 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
6915 return SDValue();
6916
6917 Align = NewAlign;
6918 }
6919
6920 SDValue NewPtr = LN0->getBasePtr();
6921 unsigned PtrOff = 0;
6922
6923 if (Elt) {
6924 PtrOff = LVT.getSizeInBits() * Elt / 8;
6925 EVT PtrType = NewPtr.getValueType();
6926 if (TLI.isBigEndian())
6927 PtrOff = VT.getSizeInBits() / 8 - PtrOff;
6928 NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
6929 DAG.getConstant(PtrOff, PtrType));
6930 }
6931
6932 return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
6933 LN0->getPointerInfo().getWithOffset(PtrOff),
6934 LN0->isVolatile(), LN0->isNonTemporal(), Align);
6935 }
6936
6937 return SDValue();
6938 }
6939
visitBUILD_VECTOR(SDNode * N)6940 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
6941 unsigned NumInScalars = N->getNumOperands();
6942 EVT VT = N->getValueType(0);
6943
6944 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
6945 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
6946 // at most two distinct vectors, turn this into a shuffle node.
6947 SDValue VecIn1, VecIn2;
6948 for (unsigned i = 0; i != NumInScalars; ++i) {
6949 // Ignore undef inputs.
6950 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6951
6952 // If this input is something other than a EXTRACT_VECTOR_ELT with a
6953 // constant index, bail out.
6954 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6955 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
6956 VecIn1 = VecIn2 = SDValue(0, 0);
6957 break;
6958 }
6959
6960 // If the input vector type disagrees with the result of the build_vector,
6961 // we can't make a shuffle.
6962 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
6963 if (ExtractedFromVec.getValueType() != VT) {
6964 VecIn1 = VecIn2 = SDValue(0, 0);
6965 break;
6966 }
6967
6968 // Otherwise, remember this. We allow up to two distinct input vectors.
6969 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
6970 continue;
6971
6972 if (VecIn1.getNode() == 0) {
6973 VecIn1 = ExtractedFromVec;
6974 } else if (VecIn2.getNode() == 0) {
6975 VecIn2 = ExtractedFromVec;
6976 } else {
6977 // Too many inputs.
6978 VecIn1 = VecIn2 = SDValue(0, 0);
6979 break;
6980 }
6981 }
6982
6983 // If everything is good, we can make a shuffle operation.
6984 if (VecIn1.getNode()) {
6985 SmallVector<int, 8> Mask;
6986 for (unsigned i = 0; i != NumInScalars; ++i) {
6987 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
6988 Mask.push_back(-1);
6989 continue;
6990 }
6991
6992 // If extracting from the first vector, just use the index directly.
6993 SDValue Extract = N->getOperand(i);
6994 SDValue ExtVal = Extract.getOperand(1);
6995 if (Extract.getOperand(0) == VecIn1) {
6996 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
6997 if (ExtIndex > VT.getVectorNumElements())
6998 return SDValue();
6999
7000 Mask.push_back(ExtIndex);
7001 continue;
7002 }
7003
7004 // Otherwise, use InIdx + VecSize
7005 unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
7006 Mask.push_back(Idx+NumInScalars);
7007 }
7008
7009 // Add count and size info.
7010 if (!isTypeLegal(VT))
7011 return SDValue();
7012
7013 // Return the new VECTOR_SHUFFLE node.
7014 SDValue Ops[2];
7015 Ops[0] = VecIn1;
7016 Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
7017 return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
7018 }
7019
7020 return SDValue();
7021 }
7022
visitCONCAT_VECTORS(SDNode * N)7023 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
7024 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
7025 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
7026 // inputs come from at most two distinct vectors, turn this into a shuffle
7027 // node.
7028
7029 // If we only have one input vector, we don't need to do any concatenation.
7030 if (N->getNumOperands() == 1)
7031 return N->getOperand(0);
7032
7033 return SDValue();
7034 }
7035
visitEXTRACT_SUBVECTOR(SDNode * N)7036 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
7037 EVT NVT = N->getValueType(0);
7038 SDValue V = N->getOperand(0);
7039
7040 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
7041 // Handle only simple case where vector being inserted and vector
7042 // being extracted are of same type, and are half size of larger vectors.
7043 EVT BigVT = V->getOperand(0).getValueType();
7044 EVT SmallVT = V->getOperand(1).getValueType();
7045 if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
7046 return SDValue();
7047
7048 // Combine:
7049 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
7050 // Into:
7051 // indicies are equal => V1
7052 // otherwise => (extract_subvec V1, ExtIdx)
7053 //
7054 SDValue InsIdx = N->getOperand(1);
7055 SDValue ExtIdx = V->getOperand(2);
7056
7057 if (InsIdx == ExtIdx)
7058 return V->getOperand(1);
7059 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
7060 V->getOperand(0), N->getOperand(1));
7061 }
7062
7063 return SDValue();
7064 }
7065
visitVECTOR_SHUFFLE(SDNode * N)7066 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
7067 EVT VT = N->getValueType(0);
7068 unsigned NumElts = VT.getVectorNumElements();
7069
7070 SDValue N0 = N->getOperand(0);
7071
7072 assert(N0.getValueType().getVectorNumElements() == NumElts &&
7073 "Vector shuffle must be normalized in DAG");
7074
7075 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
7076
7077 // If it is a splat, check if the argument vector is another splat or a
7078 // build_vector with all scalar elements the same.
7079 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7080 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
7081 SDNode *V = N0.getNode();
7082
7083 // If this is a bit convert that changes the element type of the vector but
7084 // not the number of vector elements, look through it. Be careful not to
7085 // look though conversions that change things like v4f32 to v2f64.
7086 if (V->getOpcode() == ISD::BITCAST) {
7087 SDValue ConvInput = V->getOperand(0);
7088 if (ConvInput.getValueType().isVector() &&
7089 ConvInput.getValueType().getVectorNumElements() == NumElts)
7090 V = ConvInput.getNode();
7091 }
7092
7093 if (V->getOpcode() == ISD::BUILD_VECTOR) {
7094 assert(V->getNumOperands() == NumElts &&
7095 "BUILD_VECTOR has wrong number of operands");
7096 SDValue Base;
7097 bool AllSame = true;
7098 for (unsigned i = 0; i != NumElts; ++i) {
7099 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
7100 Base = V->getOperand(i);
7101 break;
7102 }
7103 }
7104 // Splat of <u, u, u, u>, return <u, u, u, u>
7105 if (!Base.getNode())
7106 return N0;
7107 for (unsigned i = 0; i != NumElts; ++i) {
7108 if (V->getOperand(i) != Base) {
7109 AllSame = false;
7110 break;
7111 }
7112 }
7113 // Splat of <x, x, x, x>, return <x, x, x, x>
7114 if (AllSame)
7115 return N0;
7116 }
7117 }
7118 return SDValue();
7119 }
7120
visitMEMBARRIER(SDNode * N)7121 SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
7122 if (!TLI.getShouldFoldAtomicFences())
7123 return SDValue();
7124
7125 SDValue atomic = N->getOperand(0);
7126 switch (atomic.getOpcode()) {
7127 case ISD::ATOMIC_CMP_SWAP:
7128 case ISD::ATOMIC_SWAP:
7129 case ISD::ATOMIC_LOAD_ADD:
7130 case ISD::ATOMIC_LOAD_SUB:
7131 case ISD::ATOMIC_LOAD_AND:
7132 case ISD::ATOMIC_LOAD_OR:
7133 case ISD::ATOMIC_LOAD_XOR:
7134 case ISD::ATOMIC_LOAD_NAND:
7135 case ISD::ATOMIC_LOAD_MIN:
7136 case ISD::ATOMIC_LOAD_MAX:
7137 case ISD::ATOMIC_LOAD_UMIN:
7138 case ISD::ATOMIC_LOAD_UMAX:
7139 break;
7140 default:
7141 return SDValue();
7142 }
7143
7144 SDValue fence = atomic.getOperand(0);
7145 if (fence.getOpcode() != ISD::MEMBARRIER)
7146 return SDValue();
7147
7148 switch (atomic.getOpcode()) {
7149 case ISD::ATOMIC_CMP_SWAP:
7150 return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
7151 fence.getOperand(0),
7152 atomic.getOperand(1), atomic.getOperand(2),
7153 atomic.getOperand(3)), atomic.getResNo());
7154 case ISD::ATOMIC_SWAP:
7155 case ISD::ATOMIC_LOAD_ADD:
7156 case ISD::ATOMIC_LOAD_SUB:
7157 case ISD::ATOMIC_LOAD_AND:
7158 case ISD::ATOMIC_LOAD_OR:
7159 case ISD::ATOMIC_LOAD_XOR:
7160 case ISD::ATOMIC_LOAD_NAND:
7161 case ISD::ATOMIC_LOAD_MIN:
7162 case ISD::ATOMIC_LOAD_MAX:
7163 case ISD::ATOMIC_LOAD_UMIN:
7164 case ISD::ATOMIC_LOAD_UMAX:
7165 return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
7166 fence.getOperand(0),
7167 atomic.getOperand(1), atomic.getOperand(2)),
7168 atomic.getResNo());
7169 default:
7170 return SDValue();
7171 }
7172 }
7173
7174 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
7175 /// an AND to a vector_shuffle with the destination vector and a zero vector.
7176 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
7177 /// vector_shuffle V, Zero, <0, 4, 2, 4>
XformToShuffleWithZero(SDNode * N)7178 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
7179 EVT VT = N->getValueType(0);
7180 DebugLoc dl = N->getDebugLoc();
7181 SDValue LHS = N->getOperand(0);
7182 SDValue RHS = N->getOperand(1);
7183 if (N->getOpcode() == ISD::AND) {
7184 if (RHS.getOpcode() == ISD::BITCAST)
7185 RHS = RHS.getOperand(0);
7186 if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
7187 SmallVector<int, 8> Indices;
7188 unsigned NumElts = RHS.getNumOperands();
7189 for (unsigned i = 0; i != NumElts; ++i) {
7190 SDValue Elt = RHS.getOperand(i);
7191 if (!isa<ConstantSDNode>(Elt))
7192 return SDValue();
7193 else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
7194 Indices.push_back(i);
7195 else if (cast<ConstantSDNode>(Elt)->isNullValue())
7196 Indices.push_back(NumElts);
7197 else
7198 return SDValue();
7199 }
7200
7201 // Let's see if the target supports this vector_shuffle.
7202 EVT RVT = RHS.getValueType();
7203 if (!TLI.isVectorClearMaskLegal(Indices, RVT))
7204 return SDValue();
7205
7206 // Return the new VECTOR_SHUFFLE node.
7207 EVT EltVT = RVT.getVectorElementType();
7208 SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
7209 DAG.getConstant(0, EltVT));
7210 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
7211 RVT, &ZeroOps[0], ZeroOps.size());
7212 LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
7213 SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
7214 return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
7215 }
7216 }
7217
7218 return SDValue();
7219 }
7220
7221 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
SimplifyVBinOp(SDNode * N)7222 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
7223 // After legalize, the target may be depending on adds and other
7224 // binary ops to provide legal ways to construct constants or other
7225 // things. Simplifying them may result in a loss of legality.
7226 if (LegalOperations) return SDValue();
7227
7228 assert(N->getValueType(0).isVector() &&
7229 "SimplifyVBinOp only works on vectors!");
7230
7231 SDValue LHS = N->getOperand(0);
7232 SDValue RHS = N->getOperand(1);
7233 SDValue Shuffle = XformToShuffleWithZero(N);
7234 if (Shuffle.getNode()) return Shuffle;
7235
7236 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
7237 // this operation.
7238 if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
7239 RHS.getOpcode() == ISD::BUILD_VECTOR) {
7240 SmallVector<SDValue, 8> Ops;
7241 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
7242 SDValue LHSOp = LHS.getOperand(i);
7243 SDValue RHSOp = RHS.getOperand(i);
7244 // If these two elements can't be folded, bail out.
7245 if ((LHSOp.getOpcode() != ISD::UNDEF &&
7246 LHSOp.getOpcode() != ISD::Constant &&
7247 LHSOp.getOpcode() != ISD::ConstantFP) ||
7248 (RHSOp.getOpcode() != ISD::UNDEF &&
7249 RHSOp.getOpcode() != ISD::Constant &&
7250 RHSOp.getOpcode() != ISD::ConstantFP))
7251 break;
7252
7253 // Can't fold divide by zero.
7254 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
7255 N->getOpcode() == ISD::FDIV) {
7256 if ((RHSOp.getOpcode() == ISD::Constant &&
7257 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
7258 (RHSOp.getOpcode() == ISD::ConstantFP &&
7259 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
7260 break;
7261 }
7262
7263 EVT VT = LHSOp.getValueType();
7264 assert(RHSOp.getValueType() == VT &&
7265 "SimplifyVBinOp with different BUILD_VECTOR element types");
7266 SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
7267 LHSOp, RHSOp);
7268 if (FoldOp.getOpcode() != ISD::UNDEF &&
7269 FoldOp.getOpcode() != ISD::Constant &&
7270 FoldOp.getOpcode() != ISD::ConstantFP)
7271 break;
7272 Ops.push_back(FoldOp);
7273 AddToWorkList(FoldOp.getNode());
7274 }
7275
7276 if (Ops.size() == LHS.getNumOperands())
7277 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
7278 LHS.getValueType(), &Ops[0], Ops.size());
7279 }
7280
7281 return SDValue();
7282 }
7283
SimplifySelect(DebugLoc DL,SDValue N0,SDValue N1,SDValue N2)7284 SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
7285 SDValue N1, SDValue N2){
7286 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
7287
7288 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
7289 cast<CondCodeSDNode>(N0.getOperand(2))->get());
7290
7291 // If we got a simplified select_cc node back from SimplifySelectCC, then
7292 // break it down into a new SETCC node, and a new SELECT node, and then return
7293 // the SELECT node, since we were called with a SELECT node.
7294 if (SCC.getNode()) {
7295 // Check to see if we got a select_cc back (to turn into setcc/select).
7296 // Otherwise, just return whatever node we got back, like fabs.
7297 if (SCC.getOpcode() == ISD::SELECT_CC) {
7298 SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
7299 N0.getValueType(),
7300 SCC.getOperand(0), SCC.getOperand(1),
7301 SCC.getOperand(4));
7302 AddToWorkList(SETCC.getNode());
7303 return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
7304 SCC.getOperand(2), SCC.getOperand(3), SETCC);
7305 }
7306
7307 return SCC;
7308 }
7309 return SDValue();
7310 }
7311
7312 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
7313 /// are the two values being selected between, see if we can simplify the
7314 /// select. Callers of this should assume that TheSelect is deleted if this
7315 /// returns true. As such, they should return the appropriate thing (e.g. the
7316 /// node) back to the top-level of the DAG combiner loop to avoid it being
7317 /// looked at.
SimplifySelectOps(SDNode * TheSelect,SDValue LHS,SDValue RHS)7318 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
7319 SDValue RHS) {
7320
7321 // Cannot simplify select with vector condition
7322 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
7323
7324 // If this is a select from two identical things, try to pull the operation
7325 // through the select.
7326 if (LHS.getOpcode() != RHS.getOpcode() ||
7327 !LHS.hasOneUse() || !RHS.hasOneUse())
7328 return false;
7329
7330 // If this is a load and the token chain is identical, replace the select
7331 // of two loads with a load through a select of the address to load from.
7332 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
7333 // constants have been dropped into the constant pool.
7334 if (LHS.getOpcode() == ISD::LOAD) {
7335 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
7336 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
7337
7338 // Token chains must be identical.
7339 if (LHS.getOperand(0) != RHS.getOperand(0) ||
7340 // Do not let this transformation reduce the number of volatile loads.
7341 LLD->isVolatile() || RLD->isVolatile() ||
7342 // If this is an EXTLOAD, the VT's must match.
7343 LLD->getMemoryVT() != RLD->getMemoryVT() ||
7344 // If this is an EXTLOAD, the kind of extension must match.
7345 (LLD->getExtensionType() != RLD->getExtensionType() &&
7346 // The only exception is if one of the extensions is anyext.
7347 LLD->getExtensionType() != ISD::EXTLOAD &&
7348 RLD->getExtensionType() != ISD::EXTLOAD) ||
7349 // FIXME: this discards src value information. This is
7350 // over-conservative. It would be beneficial to be able to remember
7351 // both potential memory locations. Since we are discarding
7352 // src value info, don't do the transformation if the memory
7353 // locations are not in the default address space.
7354 LLD->getPointerInfo().getAddrSpace() != 0 ||
7355 RLD->getPointerInfo().getAddrSpace() != 0)
7356 return false;
7357
7358 // Check that the select condition doesn't reach either load. If so,
7359 // folding this will induce a cycle into the DAG. If not, this is safe to
7360 // xform, so create a select of the addresses.
7361 SDValue Addr;
7362 if (TheSelect->getOpcode() == ISD::SELECT) {
7363 SDNode *CondNode = TheSelect->getOperand(0).getNode();
7364 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
7365 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
7366 return false;
7367 Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
7368 LLD->getBasePtr().getValueType(),
7369 TheSelect->getOperand(0), LLD->getBasePtr(),
7370 RLD->getBasePtr());
7371 } else { // Otherwise SELECT_CC
7372 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
7373 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
7374
7375 if ((LLD->hasAnyUseOfValue(1) &&
7376 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
7377 (LLD->hasAnyUseOfValue(1) &&
7378 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))))
7379 return false;
7380
7381 Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
7382 LLD->getBasePtr().getValueType(),
7383 TheSelect->getOperand(0),
7384 TheSelect->getOperand(1),
7385 LLD->getBasePtr(), RLD->getBasePtr(),
7386 TheSelect->getOperand(4));
7387 }
7388
7389 SDValue Load;
7390 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
7391 Load = DAG.getLoad(TheSelect->getValueType(0),
7392 TheSelect->getDebugLoc(),
7393 // FIXME: Discards pointer info.
7394 LLD->getChain(), Addr, MachinePointerInfo(),
7395 LLD->isVolatile(), LLD->isNonTemporal(),
7396 LLD->getAlignment());
7397 } else {
7398 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
7399 RLD->getExtensionType() : LLD->getExtensionType(),
7400 TheSelect->getDebugLoc(),
7401 TheSelect->getValueType(0),
7402 // FIXME: Discards pointer info.
7403 LLD->getChain(), Addr, MachinePointerInfo(),
7404 LLD->getMemoryVT(), LLD->isVolatile(),
7405 LLD->isNonTemporal(), LLD->getAlignment());
7406 }
7407
7408 // Users of the select now use the result of the load.
7409 CombineTo(TheSelect, Load);
7410
7411 // Users of the old loads now use the new load's chain. We know the
7412 // old-load value is dead now.
7413 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
7414 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
7415 return true;
7416 }
7417
7418 return false;
7419 }
7420
7421 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
7422 /// where 'cond' is the comparison specified by CC.
SimplifySelectCC(DebugLoc DL,SDValue N0,SDValue N1,SDValue N2,SDValue N3,ISD::CondCode CC,bool NotExtCompare)7423 SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
7424 SDValue N2, SDValue N3,
7425 ISD::CondCode CC, bool NotExtCompare) {
7426 // (x ? y : y) -> y.
7427 if (N2 == N3) return N2;
7428
7429 EVT VT = N2.getValueType();
7430 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
7431 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
7432 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
7433
7434 // Determine if the condition we're dealing with is constant
7435 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
7436 N0, N1, CC, DL, false);
7437 if (SCC.getNode()) AddToWorkList(SCC.getNode());
7438 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
7439
7440 // fold select_cc true, x, y -> x
7441 if (SCCC && !SCCC->isNullValue())
7442 return N2;
7443 // fold select_cc false, x, y -> y
7444 if (SCCC && SCCC->isNullValue())
7445 return N3;
7446
7447 // Check to see if we can simplify the select into an fabs node
7448 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
7449 // Allow either -0.0 or 0.0
7450 if (CFP->getValueAPF().isZero()) {
7451 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
7452 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
7453 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
7454 N2 == N3.getOperand(0))
7455 return DAG.getNode(ISD::FABS, DL, VT, N0);
7456
7457 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
7458 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
7459 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
7460 N2.getOperand(0) == N3)
7461 return DAG.getNode(ISD::FABS, DL, VT, N3);
7462 }
7463 }
7464
7465 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
7466 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
7467 // in it. This is a win when the constant is not otherwise available because
7468 // it replaces two constant pool loads with one. We only do this if the FP
7469 // type is known to be legal, because if it isn't, then we are before legalize
7470 // types an we want the other legalization to happen first (e.g. to avoid
7471 // messing with soft float) and if the ConstantFP is not legal, because if
7472 // it is legal, we may not need to store the FP constant in a constant pool.
7473 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
7474 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
7475 if (TLI.isTypeLegal(N2.getValueType()) &&
7476 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
7477 TargetLowering::Legal) &&
7478 // If both constants have multiple uses, then we won't need to do an
7479 // extra load, they are likely around in registers for other users.
7480 (TV->hasOneUse() || FV->hasOneUse())) {
7481 Constant *Elts[] = {
7482 const_cast<ConstantFP*>(FV->getConstantFPValue()),
7483 const_cast<ConstantFP*>(TV->getConstantFPValue())
7484 };
7485 Type *FPTy = Elts[0]->getType();
7486 const TargetData &TD = *TLI.getTargetData();
7487
7488 // Create a ConstantArray of the two constants.
7489 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
7490 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
7491 TD.getPrefTypeAlignment(FPTy));
7492 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
7493
7494 // Get the offsets to the 0 and 1 element of the array so that we can
7495 // select between them.
7496 SDValue Zero = DAG.getIntPtrConstant(0);
7497 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
7498 SDValue One = DAG.getIntPtrConstant(EltSize);
7499
7500 SDValue Cond = DAG.getSetCC(DL,
7501 TLI.getSetCCResultType(N0.getValueType()),
7502 N0, N1, CC);
7503 AddToWorkList(Cond.getNode());
7504 SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
7505 Cond, One, Zero);
7506 AddToWorkList(CstOffset.getNode());
7507 CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
7508 CstOffset);
7509 AddToWorkList(CPIdx.getNode());
7510 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
7511 MachinePointerInfo::getConstantPool(), false,
7512 false, Alignment);
7513
7514 }
7515 }
7516
7517 // Check to see if we can perform the "gzip trick", transforming
7518 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
7519 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
7520 N0.getValueType().isInteger() &&
7521 N2.getValueType().isInteger() &&
7522 (N1C->isNullValue() || // (a < 0) ? b : 0
7523 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
7524 EVT XType = N0.getValueType();
7525 EVT AType = N2.getValueType();
7526 if (XType.bitsGE(AType)) {
7527 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
7528 // single-bit constant.
7529 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
7530 unsigned ShCtV = N2C->getAPIntValue().logBase2();
7531 ShCtV = XType.getSizeInBits()-ShCtV-1;
7532 SDValue ShCt = DAG.getConstant(ShCtV,
7533 getShiftAmountTy(N0.getValueType()));
7534 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
7535 XType, N0, ShCt);
7536 AddToWorkList(Shift.getNode());
7537
7538 if (XType.bitsGT(AType)) {
7539 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
7540 AddToWorkList(Shift.getNode());
7541 }
7542
7543 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
7544 }
7545
7546 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
7547 XType, N0,
7548 DAG.getConstant(XType.getSizeInBits()-1,
7549 getShiftAmountTy(N0.getValueType())));
7550 AddToWorkList(Shift.getNode());
7551
7552 if (XType.bitsGT(AType)) {
7553 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
7554 AddToWorkList(Shift.getNode());
7555 }
7556
7557 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
7558 }
7559 }
7560
7561 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
7562 // where y is has a single bit set.
7563 // A plaintext description would be, we can turn the SELECT_CC into an AND
7564 // when the condition can be materialized as an all-ones register. Any
7565 // single bit-test can be materialized as an all-ones register with
7566 // shift-left and shift-right-arith.
7567 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
7568 N0->getValueType(0) == VT &&
7569 N1C && N1C->isNullValue() &&
7570 N2C && N2C->isNullValue()) {
7571 SDValue AndLHS = N0->getOperand(0);
7572 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7573 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
7574 // Shift the tested bit over the sign bit.
7575 APInt AndMask = ConstAndRHS->getAPIntValue();
7576 SDValue ShlAmt =
7577 DAG.getConstant(AndMask.countLeadingZeros(),
7578 getShiftAmountTy(AndLHS.getValueType()));
7579 SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
7580
7581 // Now arithmetic right shift it all the way over, so the result is either
7582 // all-ones, or zero.
7583 SDValue ShrAmt =
7584 DAG.getConstant(AndMask.getBitWidth()-1,
7585 getShiftAmountTy(Shl.getValueType()));
7586 SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
7587
7588 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
7589 }
7590 }
7591
7592 // fold select C, 16, 0 -> shl C, 4
7593 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
7594 TLI.getBooleanContents(N0.getValueType().isVector()) ==
7595 TargetLowering::ZeroOrOneBooleanContent) {
7596
7597 // If the caller doesn't want us to simplify this into a zext of a compare,
7598 // don't do it.
7599 if (NotExtCompare && N2C->getAPIntValue() == 1)
7600 return SDValue();
7601
7602 // Get a SetCC of the condition
7603 // FIXME: Should probably make sure that setcc is legal if we ever have a
7604 // target where it isn't.
7605 SDValue Temp, SCC;
7606 // cast from setcc result type to select result type
7607 if (LegalTypes) {
7608 SCC = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
7609 N0, N1, CC);
7610 if (N2.getValueType().bitsLT(SCC.getValueType()))
7611 Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
7612 else
7613 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
7614 N2.getValueType(), SCC);
7615 } else {
7616 SCC = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
7617 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
7618 N2.getValueType(), SCC);
7619 }
7620
7621 AddToWorkList(SCC.getNode());
7622 AddToWorkList(Temp.getNode());
7623
7624 if (N2C->getAPIntValue() == 1)
7625 return Temp;
7626
7627 // shl setcc result by log2 n2c
7628 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
7629 DAG.getConstant(N2C->getAPIntValue().logBase2(),
7630 getShiftAmountTy(Temp.getValueType())));
7631 }
7632
7633 // Check to see if this is the equivalent of setcc
7634 // FIXME: Turn all of these into setcc if setcc if setcc is legal
7635 // otherwise, go ahead with the folds.
7636 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
7637 EVT XType = N0.getValueType();
7638 if (!LegalOperations ||
7639 TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
7640 SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
7641 if (Res.getValueType() != VT)
7642 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
7643 return Res;
7644 }
7645
7646 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
7647 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
7648 (!LegalOperations ||
7649 TLI.isOperationLegal(ISD::CTLZ, XType))) {
7650 SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
7651 return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
7652 DAG.getConstant(Log2_32(XType.getSizeInBits()),
7653 getShiftAmountTy(Ctlz.getValueType())));
7654 }
7655 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
7656 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
7657 SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
7658 XType, DAG.getConstant(0, XType), N0);
7659 SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
7660 return DAG.getNode(ISD::SRL, DL, XType,
7661 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
7662 DAG.getConstant(XType.getSizeInBits()-1,
7663 getShiftAmountTy(XType)));
7664 }
7665 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
7666 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
7667 SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
7668 DAG.getConstant(XType.getSizeInBits()-1,
7669 getShiftAmountTy(N0.getValueType())));
7670 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
7671 }
7672 }
7673
7674 // Check to see if this is an integer abs.
7675 // select_cc setg[te] X, 0, X, -X ->
7676 // select_cc setgt X, -1, X, -X ->
7677 // select_cc setl[te] X, 0, -X, X ->
7678 // select_cc setlt X, 1, -X, X ->
7679 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
7680 if (N1C) {
7681 ConstantSDNode *SubC = NULL;
7682 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
7683 (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
7684 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
7685 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
7686 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
7687 (N1C->isOne() && CC == ISD::SETLT)) &&
7688 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
7689 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
7690
7691 EVT XType = N0.getValueType();
7692 if (SubC && SubC->isNullValue() && XType.isInteger()) {
7693 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
7694 N0,
7695 DAG.getConstant(XType.getSizeInBits()-1,
7696 getShiftAmountTy(N0.getValueType())));
7697 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
7698 XType, N0, Shift);
7699 AddToWorkList(Shift.getNode());
7700 AddToWorkList(Add.getNode());
7701 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
7702 }
7703 }
7704
7705 return SDValue();
7706 }
7707
7708 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,DebugLoc DL,bool foldBooleans)7709 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
7710 SDValue N1, ISD::CondCode Cond,
7711 DebugLoc DL, bool foldBooleans) {
7712 TargetLowering::DAGCombinerInfo
7713 DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
7714 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
7715 }
7716
7717 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
7718 /// return a DAG expression to select that will generate the same value by
7719 /// multiplying by a magic number. See:
7720 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
BuildSDIV(SDNode * N)7721 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
7722 std::vector<SDNode*> Built;
7723 SDValue S = TLI.BuildSDIV(N, DAG, &Built);
7724
7725 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
7726 ii != ee; ++ii)
7727 AddToWorkList(*ii);
7728 return S;
7729 }
7730
7731 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
7732 /// return a DAG expression to select that will generate the same value by
7733 /// multiplying by a magic number. See:
7734 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
BuildUDIV(SDNode * N)7735 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
7736 std::vector<SDNode*> Built;
7737 SDValue S = TLI.BuildUDIV(N, DAG, &Built);
7738
7739 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
7740 ii != ee; ++ii)
7741 AddToWorkList(*ii);
7742 return S;
7743 }
7744
7745 /// FindBaseOffset - Return true if base is a frame index, which is known not
7746 // to alias with anything but itself. Provides base object and offset as
7747 // results.
FindBaseOffset(SDValue Ptr,SDValue & Base,int64_t & Offset,const GlobalValue * & GV,void * & CV)7748 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
7749 const GlobalValue *&GV, void *&CV) {
7750 // Assume it is a primitive operation.
7751 Base = Ptr; Offset = 0; GV = 0; CV = 0;
7752
7753 // If it's an adding a simple constant then integrate the offset.
7754 if (Base.getOpcode() == ISD::ADD) {
7755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
7756 Base = Base.getOperand(0);
7757 Offset += C->getZExtValue();
7758 }
7759 }
7760
7761 // Return the underlying GlobalValue, and update the Offset. Return false
7762 // for GlobalAddressSDNode since the same GlobalAddress may be represented
7763 // by multiple nodes with different offsets.
7764 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
7765 GV = G->getGlobal();
7766 Offset += G->getOffset();
7767 return false;
7768 }
7769
7770 // Return the underlying Constant value, and update the Offset. Return false
7771 // for ConstantSDNodes since the same constant pool entry may be represented
7772 // by multiple nodes with different offsets.
7773 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
7774 CV = C->isMachineConstantPoolEntry() ? (void *)C->getMachineCPVal()
7775 : (void *)C->getConstVal();
7776 Offset += C->getOffset();
7777 return false;
7778 }
7779 // If it's any of the following then it can't alias with anything but itself.
7780 return isa<FrameIndexSDNode>(Base);
7781 }
7782
7783 /// isAlias - Return true if there is any possibility that the two addresses
7784 /// overlap.
isAlias(SDValue Ptr1,int64_t Size1,const Value * SrcValue1,int SrcValueOffset1,unsigned SrcValueAlign1,const MDNode * TBAAInfo1,SDValue Ptr2,int64_t Size2,const Value * SrcValue2,int SrcValueOffset2,unsigned SrcValueAlign2,const MDNode * TBAAInfo2) const7785 bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
7786 const Value *SrcValue1, int SrcValueOffset1,
7787 unsigned SrcValueAlign1,
7788 const MDNode *TBAAInfo1,
7789 SDValue Ptr2, int64_t Size2,
7790 const Value *SrcValue2, int SrcValueOffset2,
7791 unsigned SrcValueAlign2,
7792 const MDNode *TBAAInfo2) const {
7793 // If they are the same then they must be aliases.
7794 if (Ptr1 == Ptr2) return true;
7795
7796 // Gather base node and offset information.
7797 SDValue Base1, Base2;
7798 int64_t Offset1, Offset2;
7799 const GlobalValue *GV1, *GV2;
7800 void *CV1, *CV2;
7801 bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
7802 bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
7803
7804 // If they have a same base address then check to see if they overlap.
7805 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
7806 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
7807
7808 // It is possible for different frame indices to alias each other, mostly
7809 // when tail call optimization reuses return address slots for arguments.
7810 // To catch this case, look up the actual index of frame indices to compute
7811 // the real alias relationship.
7812 if (isFrameIndex1 && isFrameIndex2) {
7813 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7814 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
7815 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
7816 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
7817 }
7818
7819 // Otherwise, if we know what the bases are, and they aren't identical, then
7820 // we know they cannot alias.
7821 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
7822 return false;
7823
7824 // If we know required SrcValue1 and SrcValue2 have relatively large alignment
7825 // compared to the size and offset of the access, we may be able to prove they
7826 // do not alias. This check is conservative for now to catch cases created by
7827 // splitting vector types.
7828 if ((SrcValueAlign1 == SrcValueAlign2) &&
7829 (SrcValueOffset1 != SrcValueOffset2) &&
7830 (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
7831 int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
7832 int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
7833
7834 // There is no overlap between these relatively aligned accesses of similar
7835 // size, return no alias.
7836 if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
7837 return false;
7838 }
7839
7840 if (CombinerGlobalAA) {
7841 // Use alias analysis information.
7842 int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
7843 int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
7844 int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
7845 AliasAnalysis::AliasResult AAResult =
7846 AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
7847 AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
7848 if (AAResult == AliasAnalysis::NoAlias)
7849 return false;
7850 }
7851
7852 // Otherwise we have to assume they alias.
7853 return true;
7854 }
7855
7856 /// FindAliasInfo - Extracts the relevant alias information from the memory
7857 /// node. Returns true if the operand was a load.
FindAliasInfo(SDNode * N,SDValue & Ptr,int64_t & Size,const Value * & SrcValue,int & SrcValueOffset,unsigned & SrcValueAlign,const MDNode * & TBAAInfo) const7858 bool DAGCombiner::FindAliasInfo(SDNode *N,
7859 SDValue &Ptr, int64_t &Size,
7860 const Value *&SrcValue,
7861 int &SrcValueOffset,
7862 unsigned &SrcValueAlign,
7863 const MDNode *&TBAAInfo) const {
7864 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7865 Ptr = LD->getBasePtr();
7866 Size = LD->getMemoryVT().getSizeInBits() >> 3;
7867 SrcValue = LD->getSrcValue();
7868 SrcValueOffset = LD->getSrcValueOffset();
7869 SrcValueAlign = LD->getOriginalAlignment();
7870 TBAAInfo = LD->getTBAAInfo();
7871 return true;
7872 }
7873 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7874 Ptr = ST->getBasePtr();
7875 Size = ST->getMemoryVT().getSizeInBits() >> 3;
7876 SrcValue = ST->getSrcValue();
7877 SrcValueOffset = ST->getSrcValueOffset();
7878 SrcValueAlign = ST->getOriginalAlignment();
7879 TBAAInfo = ST->getTBAAInfo();
7880 return false;
7881 }
7882 llvm_unreachable("FindAliasInfo expected a memory operand");
7883 }
7884
7885 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
7886 /// looking for aliasing nodes and adding them to the Aliases vector.
GatherAllAliases(SDNode * N,SDValue OriginalChain,SmallVector<SDValue,8> & Aliases)7887 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
7888 SmallVector<SDValue, 8> &Aliases) {
7889 SmallVector<SDValue, 8> Chains; // List of chains to visit.
7890 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
7891
7892 // Get alias information for node.
7893 SDValue Ptr;
7894 int64_t Size;
7895 const Value *SrcValue;
7896 int SrcValueOffset;
7897 unsigned SrcValueAlign;
7898 const MDNode *SrcTBAAInfo;
7899 bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
7900 SrcValueAlign, SrcTBAAInfo);
7901
7902 // Starting off.
7903 Chains.push_back(OriginalChain);
7904 unsigned Depth = 0;
7905
7906 // Look at each chain and determine if it is an alias. If so, add it to the
7907 // aliases list. If not, then continue up the chain looking for the next
7908 // candidate.
7909 while (!Chains.empty()) {
7910 SDValue Chain = Chains.back();
7911 Chains.pop_back();
7912
7913 // For TokenFactor nodes, look at each operand and only continue up the
7914 // chain until we find two aliases. If we've seen two aliases, assume we'll
7915 // find more and revert to original chain since the xform is unlikely to be
7916 // profitable.
7917 //
7918 // FIXME: The depth check could be made to return the last non-aliasing
7919 // chain we found before we hit a tokenfactor rather than the original
7920 // chain.
7921 if (Depth > 6 || Aliases.size() == 2) {
7922 Aliases.clear();
7923 Aliases.push_back(OriginalChain);
7924 break;
7925 }
7926
7927 // Don't bother if we've been before.
7928 if (!Visited.insert(Chain.getNode()))
7929 continue;
7930
7931 switch (Chain.getOpcode()) {
7932 case ISD::EntryToken:
7933 // Entry token is ideal chain operand, but handled in FindBetterChain.
7934 break;
7935
7936 case ISD::LOAD:
7937 case ISD::STORE: {
7938 // Get alias information for Chain.
7939 SDValue OpPtr;
7940 int64_t OpSize;
7941 const Value *OpSrcValue;
7942 int OpSrcValueOffset;
7943 unsigned OpSrcValueAlign;
7944 const MDNode *OpSrcTBAAInfo;
7945 bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
7946 OpSrcValue, OpSrcValueOffset,
7947 OpSrcValueAlign,
7948 OpSrcTBAAInfo);
7949
7950 // If chain is alias then stop here.
7951 if (!(IsLoad && IsOpLoad) &&
7952 isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
7953 SrcTBAAInfo,
7954 OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
7955 OpSrcValueAlign, OpSrcTBAAInfo)) {
7956 Aliases.push_back(Chain);
7957 } else {
7958 // Look further up the chain.
7959 Chains.push_back(Chain.getOperand(0));
7960 ++Depth;
7961 }
7962 break;
7963 }
7964
7965 case ISD::TokenFactor:
7966 // We have to check each of the operands of the token factor for "small"
7967 // token factors, so we queue them up. Adding the operands to the queue
7968 // (stack) in reverse order maintains the original order and increases the
7969 // likelihood that getNode will find a matching token factor (CSE.)
7970 if (Chain.getNumOperands() > 16) {
7971 Aliases.push_back(Chain);
7972 break;
7973 }
7974 for (unsigned n = Chain.getNumOperands(); n;)
7975 Chains.push_back(Chain.getOperand(--n));
7976 ++Depth;
7977 break;
7978
7979 default:
7980 // For all other instructions we will just have to take what we can get.
7981 Aliases.push_back(Chain);
7982 break;
7983 }
7984 }
7985 }
7986
7987 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
7988 /// for a better chain (aliasing node.)
FindBetterChain(SDNode * N,SDValue OldChain)7989 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
7990 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
7991
7992 // Accumulate all the aliases to this node.
7993 GatherAllAliases(N, OldChain, Aliases);
7994
7995 // If no operands then chain to entry token.
7996 if (Aliases.size() == 0)
7997 return DAG.getEntryNode();
7998
7999 // If a single operand then chain to it. We don't need to revisit it.
8000 if (Aliases.size() == 1)
8001 return Aliases[0];
8002
8003 // Construct a custom tailored token factor.
8004 return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8005 &Aliases[0], Aliases.size());
8006 }
8007
8008 // SelectionDAG::Combine - This is the entry point for the file.
8009 //
Combine(CombineLevel Level,AliasAnalysis & AA,CodeGenOpt::Level OptLevel)8010 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
8011 CodeGenOpt::Level OptLevel) {
8012 /// run - This is the main entry point to this class.
8013 ///
8014 DAGCombiner(*this, AA, OptLevel).Run(Level);
8015 }
8016