1 /******************************************************************************
2 
3  @File         PVRTQuaternionX.cpp
4 
5  @Title        PVRTQuaternionX
6 
7  @Version
8 
9  @Copyright    Copyright (c) Imagination Technologies Limited.
10 
11  @Platform     ANSI compatible
12 
13  @Description  Set of mathematical functions for quaternions.
14 
15 ******************************************************************************/
16 #include "PVRTContext.h"
17 #include <math.h>
18 #include <string.h>
19 
20 #include "PVRTFixedPoint.h"
21 #include "PVRTQuaternion.h"
22 
23 
24 /****************************************************************************
25 ** Functions
26 ****************************************************************************/
27 
28 /*!***************************************************************************
29  @Function			PVRTMatrixQuaternionIdentityX
30  @Output			qOut	Identity quaternion
31  @Description		Sets the quaternion to (0, 0, 0, 1), the identity quaternion.
32 *****************************************************************************/
PVRTMatrixQuaternionIdentityX(PVRTQUATERNIONx & qOut)33 void PVRTMatrixQuaternionIdentityX(PVRTQUATERNIONx		&qOut)
34 {
35 	qOut.x = PVRTF2X(0.0f);
36 	qOut.y = PVRTF2X(0.0f);
37 	qOut.z = PVRTF2X(0.0f);
38 	qOut.w = PVRTF2X(1.0f);
39 }
40 
41 /*!***************************************************************************
42  @Function			PVRTMatrixQuaternionRotationAxisX
43  @Output			qOut	Rotation quaternion
44  @Input				vAxis	Axis to rotate around
45  @Input				fAngle	Angle to rotate
46  @Description		Create quaternion corresponding to a rotation of fAngle
47 					radians around submitted vector.
48 *****************************************************************************/
PVRTMatrixQuaternionRotationAxisX(PVRTQUATERNIONx & qOut,const PVRTVECTOR3x & vAxis,const int fAngle)49 void PVRTMatrixQuaternionRotationAxisX(
50 	PVRTQUATERNIONx		&qOut,
51 	const PVRTVECTOR3x	&vAxis,
52 	const int			fAngle)
53 {
54 	int	fSin, fCos;
55 
56 	fSin = PVRTXSIN(fAngle>>1);
57 	fCos = PVRTXCOS(fAngle>>1);
58 
59 	/* Create quaternion */
60 	qOut.x = PVRTXMUL(vAxis.x, fSin);
61 	qOut.y = PVRTXMUL(vAxis.y, fSin);
62 	qOut.z = PVRTXMUL(vAxis.z, fSin);
63 	qOut.w = fCos;
64 
65 	/* Normalise it */
66 	PVRTMatrixQuaternionNormalizeX(qOut);
67 }
68 
69 /*!***************************************************************************
70  @Function			PVRTMatrixQuaternionToAxisAngleX
71  @Input				qIn		Quaternion to transform
72  @Output			vAxis	Axis of rotation
73  @Output			fAngle	Angle of rotation
74  @Description		Convert a quaternion to an axis and angle. Expects a unit
75 					quaternion.
76 *****************************************************************************/
PVRTMatrixQuaternionToAxisAngleX(const PVRTQUATERNIONx & qIn,PVRTVECTOR3x & vAxis,int & fAngle)77 void PVRTMatrixQuaternionToAxisAngleX(
78 	const PVRTQUATERNIONx	&qIn,
79 	PVRTVECTOR3x			&vAxis,
80 	int						&fAngle)
81 {
82 	int		fCosAngle, fSinAngle;
83 	int		temp;
84 
85 	/* Compute some values */
86 	fCosAngle	= qIn.w;
87 	temp		= PVRTF2X(1.0f) - PVRTXMUL(fCosAngle, fCosAngle);
88 	fAngle		= PVRTXMUL(PVRTXACOS(fCosAngle), PVRTF2X(2.0f));
89 	fSinAngle	= PVRTF2X(((float)sqrt(PVRTX2F(temp))));
90 
91 	/* This is to avoid a division by zero */
92 	if (PVRTABS(fSinAngle)<PVRTF2X(0.0005f))
93 	{
94 		fSinAngle = PVRTF2X(1.0f);
95 	}
96 
97 	/* Get axis vector */
98 	vAxis.x = PVRTXDIV(qIn.x, fSinAngle);
99 	vAxis.y = PVRTXDIV(qIn.y, fSinAngle);
100 	vAxis.z = PVRTXDIV(qIn.z, fSinAngle);
101 }
102 
103 /*!***************************************************************************
104  @Function			PVRTMatrixQuaternionSlerpX
105  @Output			qOut	Result of the interpolation
106  @Input				qA		First quaternion to interpolate from
107  @Input				qB		Second quaternion to interpolate from
108  @Input				t		Coefficient of interpolation
109  @Description		Perform a Spherical Linear intERPolation between quaternion A
110 					and quaternion B at time t. t must be between 0.0f and 1.0f
111 					Requires input quaternions to be normalized
112 *****************************************************************************/
PVRTMatrixQuaternionSlerpX(PVRTQUATERNIONx & qOut,const PVRTQUATERNIONx & qA,const PVRTQUATERNIONx & qB,const int t)113 void PVRTMatrixQuaternionSlerpX(
114 	PVRTQUATERNIONx			&qOut,
115 	const PVRTQUATERNIONx	&qA,
116 	const PVRTQUATERNIONx	&qB,
117 	const int				t)
118 {
119 	int		fCosine, fAngle, A, B;
120 
121 	/* Parameter checking */
122 	if (t<PVRTF2X(0.0f) || t>PVRTF2X(1.0f))
123 	{
124 		_RPT0(_CRT_WARN, "PVRTMatrixQuaternionSlerp : Bad parameters\n");
125 		qOut.x = PVRTF2X(0.0f);
126 		qOut.y = PVRTF2X(0.0f);
127 		qOut.z = PVRTF2X(0.0f);
128 		qOut.w = PVRTF2X(1.0f);
129 		return;
130 	}
131 
132 	/* Find sine of Angle between Quaternion A and B (dot product between quaternion A and B) */
133 	fCosine = PVRTXMUL(qA.w, qB.w) +
134 		PVRTXMUL(qA.x, qB.x) + PVRTXMUL(qA.y, qB.y) + PVRTXMUL(qA.z, qB.z);
135 
136 	if(fCosine < PVRTF2X(0.0f))
137 	{
138 		PVRTQUATERNIONx qi;
139 
140 		/*
141 			<http://www.magic-software.com/Documentation/Quaternions.pdf>
142 
143 			"It is important to note that the quaternions q and -q represent
144 			the same rotation... while either quaternion will do, the
145 			interpolation methods require choosing one over the other.
146 
147 			"Although q1 and -q1 represent the same rotation, the values of
148 			Slerp(t; q0, q1) and Slerp(t; q0,-q1) are not the same. It is
149 			customary to choose the sign... on q1 so that... the angle
150 			between q0 and q1 is acute. This choice avoids extra
151 			spinning caused by the interpolated rotations."
152 		*/
153 		qi.x = -qB.x;
154 		qi.y = -qB.y;
155 		qi.z = -qB.z;
156 		qi.w = -qB.w;
157 
158 		PVRTMatrixQuaternionSlerpX(qOut, qA, qi, t);
159 		return;
160 	}
161 
162 	fCosine = PVRT_MIN(fCosine, PVRTF2X(1.0f));
163 	fAngle = PVRTXACOS(fCosine);
164 
165 	/* Avoid a division by zero */
166 	if (fAngle==PVRTF2X(0.0f))
167 	{
168 		qOut = qA;
169 		return;
170 	}
171 
172 	/* Precompute some values */
173 	A = PVRTXDIV(PVRTXSIN(PVRTXMUL((PVRTF2X(1.0f)-t), fAngle)), PVRTXSIN(fAngle));
174 	B = PVRTXDIV(PVRTXSIN(PVRTXMUL(t, fAngle)), PVRTXSIN(fAngle));
175 
176 	/* Compute resulting quaternion */
177 	qOut.x = PVRTXMUL(A, qA.x) + PVRTXMUL(B, qB.x);
178 	qOut.y = PVRTXMUL(A, qA.y) + PVRTXMUL(B, qB.y);
179 	qOut.z = PVRTXMUL(A, qA.z) + PVRTXMUL(B, qB.z);
180 	qOut.w = PVRTXMUL(A, qA.w) + PVRTXMUL(B, qB.w);
181 
182 	/* Normalise result */
183 	PVRTMatrixQuaternionNormalizeX(qOut);
184 }
185 
186 /*!***************************************************************************
187  @Function			PVRTMatrixQuaternionNormalizeX
188  @Modified			quat	Vector to normalize
189  @Description		Normalize quaternion.
190 					Original quaternion is scaled down prior to be normalized in
191 					order to avoid overflow issues.
192 *****************************************************************************/
PVRTMatrixQuaternionNormalizeX(PVRTQUATERNIONx & quat)193 void PVRTMatrixQuaternionNormalizeX(PVRTQUATERNIONx &quat)
194 {
195 	PVRTQUATERNIONx	qTemp;
196 	int				f, n;
197 
198 	/* Scale vector by uniform value */
199 	n = PVRTABS(quat.w) + PVRTABS(quat.x) + PVRTABS(quat.y) + PVRTABS(quat.z);
200 	qTemp.w = PVRTXDIV(quat.w, n);
201 	qTemp.x = PVRTXDIV(quat.x, n);
202 	qTemp.y = PVRTXDIV(quat.y, n);
203 	qTemp.z = PVRTXDIV(quat.z, n);
204 
205 	/* Compute quaternion magnitude */
206 	f = PVRTXMUL(qTemp.w, qTemp.w) + PVRTXMUL(qTemp.x, qTemp.x) + PVRTXMUL(qTemp.y, qTemp.y) + PVRTXMUL(qTemp.z, qTemp.z);
207 	f = PVRTXDIV(PVRTF2X(1.0f), PVRTF2X(sqrt(PVRTX2F(f))));
208 
209 	/* Multiply vector components by f */
210 	quat.x = PVRTXMUL(qTemp.x, f);
211 	quat.y = PVRTXMUL(qTemp.y, f);
212 	quat.z = PVRTXMUL(qTemp.z, f);
213 	quat.w = PVRTXMUL(qTemp.w, f);
214 }
215 
216 /*!***************************************************************************
217  @Function			PVRTMatrixRotationQuaternionX
218  @Output			mOut	Resulting rotation matrix
219  @Input				quat	Quaternion to transform
220  @Description		Create rotation matrix from submitted quaternion.
221 					Assuming the quaternion is of the form [X Y Z W]:
222 
223 						|       2     2									|
224 						| 1 - 2Y  - 2Z    2XY - 2ZW      2XZ + 2YW		 0	|
225 						|													|
226 						|                       2     2					|
227 					M = | 2XY + 2ZW       1 - 2X  - 2Z   2YZ - 2XW		 0	|
228 						|													|
229 						|                                      2     2		|
230 						| 2XZ - 2YW       2YZ + 2XW      1 - 2X  - 2Y	 0	|
231 						|													|
232 						|     0			   0			  0          1  |
233 *****************************************************************************/
PVRTMatrixRotationQuaternionX(PVRTMATRIXx & mOut,const PVRTQUATERNIONx & quat)234 void PVRTMatrixRotationQuaternionX(
235 	PVRTMATRIXx				&mOut,
236 	const PVRTQUATERNIONx	&quat)
237 {
238 	const PVRTQUATERNIONx *pQ;
239 
240 #if defined(BUILD_DX11)
241 	PVRTQUATERNIONx qInv;
242 
243 	qInv.x = -quat.x;
244 	qInv.y = -quat.y;
245 	qInv.z = -quat.z;
246 	qInv.w =  quat.w;
247 
248 	pQ = &qInv;
249 #else
250 	pQ = &quat;
251 #endif
252 
253     /* Fill matrix members */
254 	mOut.f[0] = PVRTF2X(1.0f) - (PVRTXMUL(pQ->y, pQ->y)<<1) - (PVRTXMUL(pQ->z, pQ->z)<<1);
255 	mOut.f[1] = (PVRTXMUL(pQ->x, pQ->y)<<1) - (PVRTXMUL(pQ->z, pQ->w)<<1);
256 	mOut.f[2] = (PVRTXMUL(pQ->x, pQ->z)<<1) + (PVRTXMUL(pQ->y, pQ->w)<<1);
257 	mOut.f[3] = PVRTF2X(0.0f);
258 
259 	mOut.f[4] = (PVRTXMUL(pQ->x, pQ->y)<<1) + (PVRTXMUL(pQ->z, pQ->w)<<1);
260 	mOut.f[5] = PVRTF2X(1.0f) - (PVRTXMUL(pQ->x, pQ->x)<<1) - (PVRTXMUL(pQ->z, pQ->z)<<1);
261 	mOut.f[6] = (PVRTXMUL(pQ->y, pQ->z)<<1) - (PVRTXMUL(pQ->x, pQ->w)<<1);
262 	mOut.f[7] = PVRTF2X(0.0f);
263 
264 	mOut.f[8] = (PVRTXMUL(pQ->x, pQ->z)<<1) - (PVRTXMUL(pQ->y, pQ->w)<<1);
265 	mOut.f[9] = (PVRTXMUL(pQ->y, pQ->z)<<1) + (PVRTXMUL(pQ->x, pQ->w)<<1);
266 	mOut.f[10] = PVRTF2X(1.0f) - (PVRTXMUL(pQ->x, pQ->x)<<1) - (PVRTXMUL(pQ->y, pQ->y)<<1);
267 	mOut.f[11] = PVRTF2X(0.0f);
268 
269 	mOut.f[12] = PVRTF2X(0.0f);
270 	mOut.f[13] = PVRTF2X(0.0f);
271 	mOut.f[14] = PVRTF2X(0.0f);
272 	mOut.f[15] = PVRTF2X(1.0f);
273 }
274 
275 /*!***************************************************************************
276  @Function			PVRTMatrixQuaternionMultiplyX
277  @Output			qOut	Resulting quaternion
278  @Input				qA		First quaternion to multiply
279  @Input				qB		Second quaternion to multiply
280  @Description		Multiply quaternion A with quaternion B and return the
281 					result in qOut.
282 					Input quaternions must be normalized.
283 *****************************************************************************/
PVRTMatrixQuaternionMultiplyX(PVRTQUATERNIONx & qOut,const PVRTQUATERNIONx & qA,const PVRTQUATERNIONx & qB)284 void PVRTMatrixQuaternionMultiplyX(
285 	PVRTQUATERNIONx			&qOut,
286 	const PVRTQUATERNIONx	&qA,
287 	const PVRTQUATERNIONx	&qB)
288 {
289 	PVRTVECTOR3x	CrossProduct;
290 
291 	/* Compute scalar component */
292 	qOut.w = PVRTXMUL(qA.w, qB.w) -
293 				   (PVRTXMUL(qA.x, qB.x) + PVRTXMUL(qA.y, qB.y) + PVRTXMUL(qA.z, qB.z));
294 
295 	/* Compute cross product */
296 	CrossProduct.x = PVRTXMUL(qA.y, qB.z) - PVRTXMUL(qA.z, qB.y);
297 	CrossProduct.y = PVRTXMUL(qA.z, qB.x) - PVRTXMUL(qA.x, qB.z);
298 	CrossProduct.z = PVRTXMUL(qA.x, qB.y) - PVRTXMUL(qA.y, qB.x);
299 
300 	/* Compute result vector */
301 	qOut.x = PVRTXMUL(qA.w, qB.x) + PVRTXMUL(qB.w, qA.x) + CrossProduct.x;
302 	qOut.y = PVRTXMUL(qA.w, qB.y) + PVRTXMUL(qB.w, qA.y) + CrossProduct.y;
303 	qOut.z = PVRTXMUL(qA.w, qB.z) + PVRTXMUL(qB.w, qA.z) + CrossProduct.z;
304 
305 	/* Normalize resulting quaternion */
306 	PVRTMatrixQuaternionNormalizeX(qOut);
307 }
308 
309 /*****************************************************************************
310  End of file (PVRTQuaternionX.cpp)
311 *****************************************************************************/
312 
313