1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/ErrorHandling.h"
16 #include "llvm/Support/raw_ostream.h"
17 #include "llvm/Support/TargetSelect.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "KaleidoscopeJIT.h"
20 #include "RemoteJITUtils.h"
21 #include <algorithm>
22 #include <cassert>
23 #include <cctype>
24 #include <cstdint>
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <map>
29 #include <memory>
30 #include <string>
31 #include <utility>
32 #include <vector>
33 #include <netdb.h>
34 #include <netinet/in.h>
35 #include <sys/socket.h>
36 
37 using namespace llvm;
38 using namespace llvm::orc;
39 
40 // Command line argument for TCP hostname.
41 cl::opt<std::string> HostName("hostname",
42                               cl::desc("TCP hostname to connect to"),
43                               cl::init("localhost"));
44 
45 // Command line argument for TCP port.
46 cl::opt<uint32_t> Port("port",
47                        cl::desc("TCP port to connect to"),
48                        cl::init(20000));
49 
50 //===----------------------------------------------------------------------===//
51 // Lexer
52 //===----------------------------------------------------------------------===//
53 
54 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
55 // of these for known things.
56 enum Token {
57   tok_eof = -1,
58 
59   // commands
60   tok_def = -2,
61   tok_extern = -3,
62 
63   // primary
64   tok_identifier = -4,
65   tok_number = -5,
66 
67   // control
68   tok_if = -6,
69   tok_then = -7,
70   tok_else = -8,
71   tok_for = -9,
72   tok_in = -10,
73 
74   // operators
75   tok_binary = -11,
76   tok_unary = -12,
77 
78   // var definition
79   tok_var = -13
80 };
81 
82 static std::string IdentifierStr; // Filled in if tok_identifier
83 static double NumVal;             // Filled in if tok_number
84 
85 /// gettok - Return the next token from standard input.
gettok()86 static int gettok() {
87   static int LastChar = ' ';
88 
89   // Skip any whitespace.
90   while (isspace(LastChar))
91     LastChar = getchar();
92 
93   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
94     IdentifierStr = LastChar;
95     while (isalnum((LastChar = getchar())))
96       IdentifierStr += LastChar;
97 
98     if (IdentifierStr == "def")
99       return tok_def;
100     if (IdentifierStr == "extern")
101       return tok_extern;
102     if (IdentifierStr == "if")
103       return tok_if;
104     if (IdentifierStr == "then")
105       return tok_then;
106     if (IdentifierStr == "else")
107       return tok_else;
108     if (IdentifierStr == "for")
109       return tok_for;
110     if (IdentifierStr == "in")
111       return tok_in;
112     if (IdentifierStr == "binary")
113       return tok_binary;
114     if (IdentifierStr == "unary")
115       return tok_unary;
116     if (IdentifierStr == "var")
117       return tok_var;
118     return tok_identifier;
119   }
120 
121   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
122     std::string NumStr;
123     do {
124       NumStr += LastChar;
125       LastChar = getchar();
126     } while (isdigit(LastChar) || LastChar == '.');
127 
128     NumVal = strtod(NumStr.c_str(), nullptr);
129     return tok_number;
130   }
131 
132   if (LastChar == '#') {
133     // Comment until end of line.
134     do
135       LastChar = getchar();
136     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
137 
138     if (LastChar != EOF)
139       return gettok();
140   }
141 
142   // Check for end of file.  Don't eat the EOF.
143   if (LastChar == EOF)
144     return tok_eof;
145 
146   // Otherwise, just return the character as its ascii value.
147   int ThisChar = LastChar;
148   LastChar = getchar();
149   return ThisChar;
150 }
151 
152 //===----------------------------------------------------------------------===//
153 // Abstract Syntax Tree (aka Parse Tree)
154 //===----------------------------------------------------------------------===//
155 
156 /// ExprAST - Base class for all expression nodes.
157 class ExprAST {
158 public:
159   virtual ~ExprAST() = default;
160 
161   virtual Value *codegen() = 0;
162 };
163 
164 /// NumberExprAST - Expression class for numeric literals like "1.0".
165 class NumberExprAST : public ExprAST {
166   double Val;
167 
168 public:
NumberExprAST(double Val)169   NumberExprAST(double Val) : Val(Val) {}
170 
171   Value *codegen() override;
172 };
173 
174 /// VariableExprAST - Expression class for referencing a variable, like "a".
175 class VariableExprAST : public ExprAST {
176   std::string Name;
177 
178 public:
VariableExprAST(const std::string & Name)179   VariableExprAST(const std::string &Name) : Name(Name) {}
180 
181   Value *codegen() override;
getName() const182   const std::string &getName() const { return Name; }
183 };
184 
185 /// UnaryExprAST - Expression class for a unary operator.
186 class UnaryExprAST : public ExprAST {
187   char Opcode;
188   std::unique_ptr<ExprAST> Operand;
189 
190 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)191   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
192       : Opcode(Opcode), Operand(std::move(Operand)) {}
193 
194   Value *codegen() override;
195 };
196 
197 /// BinaryExprAST - Expression class for a binary operator.
198 class BinaryExprAST : public ExprAST {
199   char Op;
200   std::unique_ptr<ExprAST> LHS, RHS;
201 
202 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)203   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
204                 std::unique_ptr<ExprAST> RHS)
205       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
206 
207   Value *codegen() override;
208 };
209 
210 /// CallExprAST - Expression class for function calls.
211 class CallExprAST : public ExprAST {
212   std::string Callee;
213   std::vector<std::unique_ptr<ExprAST>> Args;
214 
215 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)216   CallExprAST(const std::string &Callee,
217               std::vector<std::unique_ptr<ExprAST>> Args)
218       : Callee(Callee), Args(std::move(Args)) {}
219 
220   Value *codegen() override;
221 };
222 
223 /// IfExprAST - Expression class for if/then/else.
224 class IfExprAST : public ExprAST {
225   std::unique_ptr<ExprAST> Cond, Then, Else;
226 
227 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)228   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
229             std::unique_ptr<ExprAST> Else)
230       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
231 
232   Value *codegen() override;
233 };
234 
235 /// ForExprAST - Expression class for for/in.
236 class ForExprAST : public ExprAST {
237   std::string VarName;
238   std::unique_ptr<ExprAST> Start, End, Step, Body;
239 
240 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)241   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
242              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
243              std::unique_ptr<ExprAST> Body)
244       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
245         Step(std::move(Step)), Body(std::move(Body)) {}
246 
247   Value *codegen() override;
248 };
249 
250 /// VarExprAST - Expression class for var/in
251 class VarExprAST : public ExprAST {
252   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
253   std::unique_ptr<ExprAST> Body;
254 
255 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)256   VarExprAST(
257       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
258       std::unique_ptr<ExprAST> Body)
259       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
260 
261   Value *codegen() override;
262 };
263 
264 /// PrototypeAST - This class represents the "prototype" for a function,
265 /// which captures its name, and its argument names (thus implicitly the number
266 /// of arguments the function takes), as well as if it is an operator.
267 class PrototypeAST {
268   std::string Name;
269   std::vector<std::string> Args;
270   bool IsOperator;
271   unsigned Precedence; // Precedence if a binary op.
272 
273 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)274   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
275                bool IsOperator = false, unsigned Prec = 0)
276       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
277         Precedence(Prec) {}
278 
279   Function *codegen();
getName() const280   const std::string &getName() const { return Name; }
281 
isUnaryOp() const282   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const283   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
284 
getOperatorName() const285   char getOperatorName() const {
286     assert(isUnaryOp() || isBinaryOp());
287     return Name[Name.size() - 1];
288   }
289 
getBinaryPrecedence() const290   unsigned getBinaryPrecedence() const { return Precedence; }
291 };
292 
293 //===----------------------------------------------------------------------===//
294 // Parser
295 //===----------------------------------------------------------------------===//
296 
297 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
298 /// token the parser is looking at.  getNextToken reads another token from the
299 /// lexer and updates CurTok with its results.
300 static int CurTok;
getNextToken()301 static int getNextToken() { return CurTok = gettok(); }
302 
303 /// BinopPrecedence - This holds the precedence for each binary operator that is
304 /// defined.
305 static std::map<char, int> BinopPrecedence;
306 
307 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()308 static int GetTokPrecedence() {
309   if (!isascii(CurTok))
310     return -1;
311 
312   // Make sure it's a declared binop.
313   int TokPrec = BinopPrecedence[CurTok];
314   if (TokPrec <= 0)
315     return -1;
316   return TokPrec;
317 }
318 
319 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)320 std::unique_ptr<ExprAST> LogError(const char *Str) {
321   fprintf(stderr, "Error: %s\n", Str);
322   return nullptr;
323 }
324 
LogErrorP(const char * Str)325 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
326   LogError(Str);
327   return nullptr;
328 }
329 
330 static std::unique_ptr<ExprAST> ParseExpression();
331 
332 /// numberexpr ::= number
ParseNumberExpr()333 static std::unique_ptr<ExprAST> ParseNumberExpr() {
334   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
335   getNextToken(); // consume the number
336   return std::move(Result);
337 }
338 
339 /// parenexpr ::= '(' expression ')'
ParseParenExpr()340 static std::unique_ptr<ExprAST> ParseParenExpr() {
341   getNextToken(); // eat (.
342   auto V = ParseExpression();
343   if (!V)
344     return nullptr;
345 
346   if (CurTok != ')')
347     return LogError("expected ')'");
348   getNextToken(); // eat ).
349   return V;
350 }
351 
352 /// identifierexpr
353 ///   ::= identifier
354 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()355 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
356   std::string IdName = IdentifierStr;
357 
358   getNextToken(); // eat identifier.
359 
360   if (CurTok != '(') // Simple variable ref.
361     return llvm::make_unique<VariableExprAST>(IdName);
362 
363   // Call.
364   getNextToken(); // eat (
365   std::vector<std::unique_ptr<ExprAST>> Args;
366   if (CurTok != ')') {
367     while (true) {
368       if (auto Arg = ParseExpression())
369         Args.push_back(std::move(Arg));
370       else
371         return nullptr;
372 
373       if (CurTok == ')')
374         break;
375 
376       if (CurTok != ',')
377         return LogError("Expected ')' or ',' in argument list");
378       getNextToken();
379     }
380   }
381 
382   // Eat the ')'.
383   getNextToken();
384 
385   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
386 }
387 
388 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()389 static std::unique_ptr<ExprAST> ParseIfExpr() {
390   getNextToken(); // eat the if.
391 
392   // condition.
393   auto Cond = ParseExpression();
394   if (!Cond)
395     return nullptr;
396 
397   if (CurTok != tok_then)
398     return LogError("expected then");
399   getNextToken(); // eat the then
400 
401   auto Then = ParseExpression();
402   if (!Then)
403     return nullptr;
404 
405   if (CurTok != tok_else)
406     return LogError("expected else");
407 
408   getNextToken();
409 
410   auto Else = ParseExpression();
411   if (!Else)
412     return nullptr;
413 
414   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
415                                       std::move(Else));
416 }
417 
418 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()419 static std::unique_ptr<ExprAST> ParseForExpr() {
420   getNextToken(); // eat the for.
421 
422   if (CurTok != tok_identifier)
423     return LogError("expected identifier after for");
424 
425   std::string IdName = IdentifierStr;
426   getNextToken(); // eat identifier.
427 
428   if (CurTok != '=')
429     return LogError("expected '=' after for");
430   getNextToken(); // eat '='.
431 
432   auto Start = ParseExpression();
433   if (!Start)
434     return nullptr;
435   if (CurTok != ',')
436     return LogError("expected ',' after for start value");
437   getNextToken();
438 
439   auto End = ParseExpression();
440   if (!End)
441     return nullptr;
442 
443   // The step value is optional.
444   std::unique_ptr<ExprAST> Step;
445   if (CurTok == ',') {
446     getNextToken();
447     Step = ParseExpression();
448     if (!Step)
449       return nullptr;
450   }
451 
452   if (CurTok != tok_in)
453     return LogError("expected 'in' after for");
454   getNextToken(); // eat 'in'.
455 
456   auto Body = ParseExpression();
457   if (!Body)
458     return nullptr;
459 
460   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
461                                        std::move(Step), std::move(Body));
462 }
463 
464 /// varexpr ::= 'var' identifier ('=' expression)?
465 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()466 static std::unique_ptr<ExprAST> ParseVarExpr() {
467   getNextToken(); // eat the var.
468 
469   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
470 
471   // At least one variable name is required.
472   if (CurTok != tok_identifier)
473     return LogError("expected identifier after var");
474 
475   while (true) {
476     std::string Name = IdentifierStr;
477     getNextToken(); // eat identifier.
478 
479     // Read the optional initializer.
480     std::unique_ptr<ExprAST> Init = nullptr;
481     if (CurTok == '=') {
482       getNextToken(); // eat the '='.
483 
484       Init = ParseExpression();
485       if (!Init)
486         return nullptr;
487     }
488 
489     VarNames.push_back(std::make_pair(Name, std::move(Init)));
490 
491     // End of var list, exit loop.
492     if (CurTok != ',')
493       break;
494     getNextToken(); // eat the ','.
495 
496     if (CurTok != tok_identifier)
497       return LogError("expected identifier list after var");
498   }
499 
500   // At this point, we have to have 'in'.
501   if (CurTok != tok_in)
502     return LogError("expected 'in' keyword after 'var'");
503   getNextToken(); // eat 'in'.
504 
505   auto Body = ParseExpression();
506   if (!Body)
507     return nullptr;
508 
509   return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
510 }
511 
512 /// primary
513 ///   ::= identifierexpr
514 ///   ::= numberexpr
515 ///   ::= parenexpr
516 ///   ::= ifexpr
517 ///   ::= forexpr
518 ///   ::= varexpr
ParsePrimary()519 static std::unique_ptr<ExprAST> ParsePrimary() {
520   switch (CurTok) {
521   default:
522     return LogError("unknown token when expecting an expression");
523   case tok_identifier:
524     return ParseIdentifierExpr();
525   case tok_number:
526     return ParseNumberExpr();
527   case '(':
528     return ParseParenExpr();
529   case tok_if:
530     return ParseIfExpr();
531   case tok_for:
532     return ParseForExpr();
533   case tok_var:
534     return ParseVarExpr();
535   }
536 }
537 
538 /// unary
539 ///   ::= primary
540 ///   ::= '!' unary
ParseUnary()541 static std::unique_ptr<ExprAST> ParseUnary() {
542   // If the current token is not an operator, it must be a primary expr.
543   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
544     return ParsePrimary();
545 
546   // If this is a unary operator, read it.
547   int Opc = CurTok;
548   getNextToken();
549   if (auto Operand = ParseUnary())
550     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
551   return nullptr;
552 }
553 
554 /// binoprhs
555 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)556 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
557                                               std::unique_ptr<ExprAST> LHS) {
558   // If this is a binop, find its precedence.
559   while (true) {
560     int TokPrec = GetTokPrecedence();
561 
562     // If this is a binop that binds at least as tightly as the current binop,
563     // consume it, otherwise we are done.
564     if (TokPrec < ExprPrec)
565       return LHS;
566 
567     // Okay, we know this is a binop.
568     int BinOp = CurTok;
569     getNextToken(); // eat binop
570 
571     // Parse the unary expression after the binary operator.
572     auto RHS = ParseUnary();
573     if (!RHS)
574       return nullptr;
575 
576     // If BinOp binds less tightly with RHS than the operator after RHS, let
577     // the pending operator take RHS as its LHS.
578     int NextPrec = GetTokPrecedence();
579     if (TokPrec < NextPrec) {
580       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
581       if (!RHS)
582         return nullptr;
583     }
584 
585     // Merge LHS/RHS.
586     LHS =
587         llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
588   }
589 }
590 
591 /// expression
592 ///   ::= unary binoprhs
593 ///
ParseExpression()594 static std::unique_ptr<ExprAST> ParseExpression() {
595   auto LHS = ParseUnary();
596   if (!LHS)
597     return nullptr;
598 
599   return ParseBinOpRHS(0, std::move(LHS));
600 }
601 
602 /// prototype
603 ///   ::= id '(' id* ')'
604 ///   ::= binary LETTER number? (id, id)
605 ///   ::= unary LETTER (id)
ParsePrototype()606 static std::unique_ptr<PrototypeAST> ParsePrototype() {
607   std::string FnName;
608 
609   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
610   unsigned BinaryPrecedence = 30;
611 
612   switch (CurTok) {
613   default:
614     return LogErrorP("Expected function name in prototype");
615   case tok_identifier:
616     FnName = IdentifierStr;
617     Kind = 0;
618     getNextToken();
619     break;
620   case tok_unary:
621     getNextToken();
622     if (!isascii(CurTok))
623       return LogErrorP("Expected unary operator");
624     FnName = "unary";
625     FnName += (char)CurTok;
626     Kind = 1;
627     getNextToken();
628     break;
629   case tok_binary:
630     getNextToken();
631     if (!isascii(CurTok))
632       return LogErrorP("Expected binary operator");
633     FnName = "binary";
634     FnName += (char)CurTok;
635     Kind = 2;
636     getNextToken();
637 
638     // Read the precedence if present.
639     if (CurTok == tok_number) {
640       if (NumVal < 1 || NumVal > 100)
641         return LogErrorP("Invalid precedecnce: must be 1..100");
642       BinaryPrecedence = (unsigned)NumVal;
643       getNextToken();
644     }
645     break;
646   }
647 
648   if (CurTok != '(')
649     return LogErrorP("Expected '(' in prototype");
650 
651   std::vector<std::string> ArgNames;
652   while (getNextToken() == tok_identifier)
653     ArgNames.push_back(IdentifierStr);
654   if (CurTok != ')')
655     return LogErrorP("Expected ')' in prototype");
656 
657   // success.
658   getNextToken(); // eat ')'.
659 
660   // Verify right number of names for operator.
661   if (Kind && ArgNames.size() != Kind)
662     return LogErrorP("Invalid number of operands for operator");
663 
664   return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
665                                          BinaryPrecedence);
666 }
667 
668 /// definition ::= 'def' prototype expression
ParseDefinition()669 static std::unique_ptr<FunctionAST> ParseDefinition() {
670   getNextToken(); // eat def.
671   auto Proto = ParsePrototype();
672   if (!Proto)
673     return nullptr;
674 
675   if (auto E = ParseExpression())
676     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
677   return nullptr;
678 }
679 
680 /// toplevelexpr ::= expression
ParseTopLevelExpr()681 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
682   if (auto E = ParseExpression()) {
683 
684     auto PEArgs = std::vector<std::unique_ptr<ExprAST>>();
685     PEArgs.push_back(std::move(E));
686     auto PrintExpr =
687       llvm::make_unique<CallExprAST>("printExprResult", std::move(PEArgs));
688 
689     // Make an anonymous proto.
690     auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
691                                                  std::vector<std::string>());
692     return llvm::make_unique<FunctionAST>(std::move(Proto),
693                                           std::move(PrintExpr));
694   }
695   return nullptr;
696 }
697 
698 /// external ::= 'extern' prototype
ParseExtern()699 static std::unique_ptr<PrototypeAST> ParseExtern() {
700   getNextToken(); // eat extern.
701   return ParsePrototype();
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // Code Generation
706 //===----------------------------------------------------------------------===//
707 
708 static LLVMContext TheContext;
709 static IRBuilder<> Builder(TheContext);
710 static std::unique_ptr<Module> TheModule;
711 static std::map<std::string, AllocaInst *> NamedValues;
712 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
713 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
714 static ExitOnError ExitOnErr;
715 
LogErrorV(const char * Str)716 Value *LogErrorV(const char *Str) {
717   LogError(Str);
718   return nullptr;
719 }
720 
getFunction(std::string Name)721 Function *getFunction(std::string Name) {
722   // First, see if the function has already been added to the current module.
723   if (auto *F = TheModule->getFunction(Name))
724     return F;
725 
726   // If not, check whether we can codegen the declaration from some existing
727   // prototype.
728   auto FI = FunctionProtos.find(Name);
729   if (FI != FunctionProtos.end())
730     return FI->second->codegen();
731 
732   // If no existing prototype exists, return null.
733   return nullptr;
734 }
735 
736 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
737 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)738 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
739                                           const std::string &VarName) {
740   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
741                    TheFunction->getEntryBlock().begin());
742   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
743 }
744 
codegen()745 Value *NumberExprAST::codegen() {
746   return ConstantFP::get(TheContext, APFloat(Val));
747 }
748 
codegen()749 Value *VariableExprAST::codegen() {
750   // Look this variable up in the function.
751   Value *V = NamedValues[Name];
752   if (!V)
753     return LogErrorV("Unknown variable name");
754 
755   // Load the value.
756   return Builder.CreateLoad(V, Name.c_str());
757 }
758 
codegen()759 Value *UnaryExprAST::codegen() {
760   Value *OperandV = Operand->codegen();
761   if (!OperandV)
762     return nullptr;
763 
764   Function *F = getFunction(std::string("unary") + Opcode);
765   if (!F)
766     return LogErrorV("Unknown unary operator");
767 
768   return Builder.CreateCall(F, OperandV, "unop");
769 }
770 
codegen()771 Value *BinaryExprAST::codegen() {
772   // Special case '=' because we don't want to emit the LHS as an expression.
773   if (Op == '=') {
774     // Assignment requires the LHS to be an identifier.
775     // This assume we're building without RTTI because LLVM builds that way by
776     // default.  If you build LLVM with RTTI this can be changed to a
777     // dynamic_cast for automatic error checking.
778     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
779     if (!LHSE)
780       return LogErrorV("destination of '=' must be a variable");
781     // Codegen the RHS.
782     Value *Val = RHS->codegen();
783     if (!Val)
784       return nullptr;
785 
786     // Look up the name.
787     Value *Variable = NamedValues[LHSE->getName()];
788     if (!Variable)
789       return LogErrorV("Unknown variable name");
790 
791     Builder.CreateStore(Val, Variable);
792     return Val;
793   }
794 
795   Value *L = LHS->codegen();
796   Value *R = RHS->codegen();
797   if (!L || !R)
798     return nullptr;
799 
800   switch (Op) {
801   case '+':
802     return Builder.CreateFAdd(L, R, "addtmp");
803   case '-':
804     return Builder.CreateFSub(L, R, "subtmp");
805   case '*':
806     return Builder.CreateFMul(L, R, "multmp");
807   case '<':
808     L = Builder.CreateFCmpULT(L, R, "cmptmp");
809     // Convert bool 0/1 to double 0.0 or 1.0
810     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
811   default:
812     break;
813   }
814 
815   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
816   // a call to it.
817   Function *F = getFunction(std::string("binary") + Op);
818   assert(F && "binary operator not found!");
819 
820   Value *Ops[] = {L, R};
821   return Builder.CreateCall(F, Ops, "binop");
822 }
823 
codegen()824 Value *CallExprAST::codegen() {
825   // Look up the name in the global module table.
826   Function *CalleeF = getFunction(Callee);
827   if (!CalleeF)
828     return LogErrorV("Unknown function referenced");
829 
830   // If argument mismatch error.
831   if (CalleeF->arg_size() != Args.size())
832     return LogErrorV("Incorrect # arguments passed");
833 
834   std::vector<Value *> ArgsV;
835   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
836     ArgsV.push_back(Args[i]->codegen());
837     if (!ArgsV.back())
838       return nullptr;
839   }
840 
841   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
842 }
843 
codegen()844 Value *IfExprAST::codegen() {
845   Value *CondV = Cond->codegen();
846   if (!CondV)
847     return nullptr;
848 
849   // Convert condition to a bool by comparing equal to 0.0.
850   CondV = Builder.CreateFCmpONE(
851       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
852 
853   Function *TheFunction = Builder.GetInsertBlock()->getParent();
854 
855   // Create blocks for the then and else cases.  Insert the 'then' block at the
856   // end of the function.
857   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
858   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
859   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
860 
861   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
862 
863   // Emit then value.
864   Builder.SetInsertPoint(ThenBB);
865 
866   Value *ThenV = Then->codegen();
867   if (!ThenV)
868     return nullptr;
869 
870   Builder.CreateBr(MergeBB);
871   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
872   ThenBB = Builder.GetInsertBlock();
873 
874   // Emit else block.
875   TheFunction->getBasicBlockList().push_back(ElseBB);
876   Builder.SetInsertPoint(ElseBB);
877 
878   Value *ElseV = Else->codegen();
879   if (!ElseV)
880     return nullptr;
881 
882   Builder.CreateBr(MergeBB);
883   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
884   ElseBB = Builder.GetInsertBlock();
885 
886   // Emit merge block.
887   TheFunction->getBasicBlockList().push_back(MergeBB);
888   Builder.SetInsertPoint(MergeBB);
889   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
890 
891   PN->addIncoming(ThenV, ThenBB);
892   PN->addIncoming(ElseV, ElseBB);
893   return PN;
894 }
895 
896 // Output for-loop as:
897 //   var = alloca double
898 //   ...
899 //   start = startexpr
900 //   store start -> var
901 //   goto loop
902 // loop:
903 //   ...
904 //   bodyexpr
905 //   ...
906 // loopend:
907 //   step = stepexpr
908 //   endcond = endexpr
909 //
910 //   curvar = load var
911 //   nextvar = curvar + step
912 //   store nextvar -> var
913 //   br endcond, loop, endloop
914 // outloop:
codegen()915 Value *ForExprAST::codegen() {
916   Function *TheFunction = Builder.GetInsertBlock()->getParent();
917 
918   // Create an alloca for the variable in the entry block.
919   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
920 
921   // Emit the start code first, without 'variable' in scope.
922   Value *StartVal = Start->codegen();
923   if (!StartVal)
924     return nullptr;
925 
926   // Store the value into the alloca.
927   Builder.CreateStore(StartVal, Alloca);
928 
929   // Make the new basic block for the loop header, inserting after current
930   // block.
931   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
932 
933   // Insert an explicit fall through from the current block to the LoopBB.
934   Builder.CreateBr(LoopBB);
935 
936   // Start insertion in LoopBB.
937   Builder.SetInsertPoint(LoopBB);
938 
939   // Within the loop, the variable is defined equal to the PHI node.  If it
940   // shadows an existing variable, we have to restore it, so save it now.
941   AllocaInst *OldVal = NamedValues[VarName];
942   NamedValues[VarName] = Alloca;
943 
944   // Emit the body of the loop.  This, like any other expr, can change the
945   // current BB.  Note that we ignore the value computed by the body, but don't
946   // allow an error.
947   if (!Body->codegen())
948     return nullptr;
949 
950   // Emit the step value.
951   Value *StepVal = nullptr;
952   if (Step) {
953     StepVal = Step->codegen();
954     if (!StepVal)
955       return nullptr;
956   } else {
957     // If not specified, use 1.0.
958     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
959   }
960 
961   // Compute the end condition.
962   Value *EndCond = End->codegen();
963   if (!EndCond)
964     return nullptr;
965 
966   // Reload, increment, and restore the alloca.  This handles the case where
967   // the body of the loop mutates the variable.
968   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
969   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
970   Builder.CreateStore(NextVar, Alloca);
971 
972   // Convert condition to a bool by comparing equal to 0.0.
973   EndCond = Builder.CreateFCmpONE(
974       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
975 
976   // Create the "after loop" block and insert it.
977   BasicBlock *AfterBB =
978       BasicBlock::Create(TheContext, "afterloop", TheFunction);
979 
980   // Insert the conditional branch into the end of LoopEndBB.
981   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
982 
983   // Any new code will be inserted in AfterBB.
984   Builder.SetInsertPoint(AfterBB);
985 
986   // Restore the unshadowed variable.
987   if (OldVal)
988     NamedValues[VarName] = OldVal;
989   else
990     NamedValues.erase(VarName);
991 
992   // for expr always returns 0.0.
993   return Constant::getNullValue(Type::getDoubleTy(TheContext));
994 }
995 
codegen()996 Value *VarExprAST::codegen() {
997   std::vector<AllocaInst *> OldBindings;
998 
999   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1000 
1001   // Register all variables and emit their initializer.
1002   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1003     const std::string &VarName = VarNames[i].first;
1004     ExprAST *Init = VarNames[i].second.get();
1005 
1006     // Emit the initializer before adding the variable to scope, this prevents
1007     // the initializer from referencing the variable itself, and permits stuff
1008     // like this:
1009     //  var a = 1 in
1010     //    var a = a in ...   # refers to outer 'a'.
1011     Value *InitVal;
1012     if (Init) {
1013       InitVal = Init->codegen();
1014       if (!InitVal)
1015         return nullptr;
1016     } else { // If not specified, use 0.0.
1017       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
1018     }
1019 
1020     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1021     Builder.CreateStore(InitVal, Alloca);
1022 
1023     // Remember the old variable binding so that we can restore the binding when
1024     // we unrecurse.
1025     OldBindings.push_back(NamedValues[VarName]);
1026 
1027     // Remember this binding.
1028     NamedValues[VarName] = Alloca;
1029   }
1030 
1031   // Codegen the body, now that all vars are in scope.
1032   Value *BodyVal = Body->codegen();
1033   if (!BodyVal)
1034     return nullptr;
1035 
1036   // Pop all our variables from scope.
1037   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1038     NamedValues[VarNames[i].first] = OldBindings[i];
1039 
1040   // Return the body computation.
1041   return BodyVal;
1042 }
1043 
codegen()1044 Function *PrototypeAST::codegen() {
1045   // Make the function type:  double(double,double) etc.
1046   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1047   FunctionType *FT =
1048       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1049 
1050   Function *F =
1051       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1052 
1053   // Set names for all arguments.
1054   unsigned Idx = 0;
1055   for (auto &Arg : F->args())
1056     Arg.setName(Args[Idx++]);
1057 
1058   return F;
1059 }
1060 
getProto() const1061 const PrototypeAST& FunctionAST::getProto() const {
1062   return *Proto;
1063 }
1064 
getName() const1065 const std::string& FunctionAST::getName() const {
1066   return Proto->getName();
1067 }
1068 
codegen()1069 Function *FunctionAST::codegen() {
1070   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1071   // reference to it for use below.
1072   auto &P = *Proto;
1073   Function *TheFunction = getFunction(P.getName());
1074   if (!TheFunction)
1075     return nullptr;
1076 
1077   // If this is an operator, install it.
1078   if (P.isBinaryOp())
1079     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1080 
1081   // Create a new basic block to start insertion into.
1082   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1083   Builder.SetInsertPoint(BB);
1084 
1085   // Record the function arguments in the NamedValues map.
1086   NamedValues.clear();
1087   for (auto &Arg : TheFunction->args()) {
1088     // Create an alloca for this variable.
1089     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1090 
1091     // Store the initial value into the alloca.
1092     Builder.CreateStore(&Arg, Alloca);
1093 
1094     // Add arguments to variable symbol table.
1095     NamedValues[Arg.getName()] = Alloca;
1096   }
1097 
1098   if (Value *RetVal = Body->codegen()) {
1099     // Finish off the function.
1100     Builder.CreateRet(RetVal);
1101 
1102     // Validate the generated code, checking for consistency.
1103     verifyFunction(*TheFunction);
1104 
1105     return TheFunction;
1106   }
1107 
1108   // Error reading body, remove function.
1109   TheFunction->eraseFromParent();
1110 
1111   if (P.isBinaryOp())
1112     BinopPrecedence.erase(Proto->getOperatorName());
1113   return nullptr;
1114 }
1115 
1116 //===----------------------------------------------------------------------===//
1117 // Top-Level parsing and JIT Driver
1118 //===----------------------------------------------------------------------===//
1119 
InitializeModule()1120 static void InitializeModule() {
1121   // Open a new module.
1122   TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1123   TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1124 }
1125 
1126 std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST & FnAST,const std::string & Suffix)1127 irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix) {
1128   if (auto *F = FnAST.codegen()) {
1129     F->setName(F->getName() + Suffix);
1130     auto M = std::move(TheModule);
1131     // Start a new module.
1132     InitializeModule();
1133     return M;
1134   } else
1135     report_fatal_error("Couldn't compile lazily JIT'd function");
1136 }
1137 
HandleDefinition()1138 static void HandleDefinition() {
1139   if (auto FnAST = ParseDefinition()) {
1140     FunctionProtos[FnAST->getProto().getName()] =
1141       llvm::make_unique<PrototypeAST>(FnAST->getProto());
1142     ExitOnErr(TheJIT->addFunctionAST(std::move(FnAST)));
1143   } else {
1144     // Skip token for error recovery.
1145     getNextToken();
1146   }
1147 }
1148 
HandleExtern()1149 static void HandleExtern() {
1150   if (auto ProtoAST = ParseExtern()) {
1151     if (auto *FnIR = ProtoAST->codegen()) {
1152       fprintf(stderr, "Read extern: ");
1153       FnIR->print(errs());
1154       fprintf(stderr, "\n");
1155       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1156     }
1157   } else {
1158     // Skip token for error recovery.
1159     getNextToken();
1160   }
1161 }
1162 
HandleTopLevelExpression()1163 static void HandleTopLevelExpression() {
1164   // Evaluate a top-level expression into an anonymous function.
1165   if (auto FnAST = ParseTopLevelExpr()) {
1166     FunctionProtos[FnAST->getName()] =
1167       llvm::make_unique<PrototypeAST>(FnAST->getProto());
1168     if (FnAST->codegen()) {
1169       // JIT the module containing the anonymous expression, keeping a handle so
1170       // we can free it later.
1171       auto H = TheJIT->addModule(std::move(TheModule));
1172       InitializeModule();
1173 
1174       // Search the JIT for the __anon_expr symbol.
1175       auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1176       assert(ExprSymbol && "Function not found");
1177 
1178       // Get the symbol's address and cast it to the right type (takes no
1179       // arguments, returns a double) so we can call it as a native function.
1180       ExitOnErr(TheJIT->executeRemoteExpr(cantFail(ExprSymbol.getAddress())));
1181 
1182       // Delete the anonymous expression module from the JIT.
1183       TheJIT->removeModule(H);
1184     }
1185   } else {
1186     // Skip token for error recovery.
1187     getNextToken();
1188   }
1189 }
1190 
1191 /// top ::= definition | external | expression | ';'
MainLoop()1192 static void MainLoop() {
1193   while (true) {
1194     fprintf(stderr, "ready> ");
1195     switch (CurTok) {
1196     case tok_eof:
1197       return;
1198     case ';': // ignore top-level semicolons.
1199       getNextToken();
1200       break;
1201     case tok_def:
1202       HandleDefinition();
1203       break;
1204     case tok_extern:
1205       HandleExtern();
1206       break;
1207     default:
1208       HandleTopLevelExpression();
1209       break;
1210     }
1211   }
1212 }
1213 
1214 //===----------------------------------------------------------------------===//
1215 // "Library" functions that can be "extern'd" from user code.
1216 //===----------------------------------------------------------------------===//
1217 
1218 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1219 extern "C" double putchard(double X) {
1220   fputc((char)X, stderr);
1221   return 0;
1222 }
1223 
1224 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1225 extern "C" double printd(double X) {
1226   fprintf(stderr, "%f\n", X);
1227   return 0;
1228 }
1229 
1230 //===----------------------------------------------------------------------===//
1231 // TCP / Connection setup code.
1232 //===----------------------------------------------------------------------===//
1233 
connect()1234 std::unique_ptr<FDRPCChannel> connect() {
1235   int sockfd = socket(PF_INET, SOCK_STREAM, 0);
1236   hostent *server = gethostbyname(HostName.c_str());
1237 
1238   if (!server) {
1239     errs() << "Could not find host " << HostName << "\n";
1240     exit(1);
1241   }
1242 
1243   sockaddr_in servAddr;
1244   memset(&servAddr, 0, sizeof(servAddr));
1245   servAddr.sin_family = PF_INET;
1246   char *src;
1247   memcpy(&src, &server->h_addr, sizeof(char *));
1248   memcpy(&servAddr.sin_addr.s_addr, src, server->h_length);
1249   servAddr.sin_port = htons(Port);
1250   if (connect(sockfd, reinterpret_cast<sockaddr*>(&servAddr),
1251               sizeof(servAddr)) < 0) {
1252     errs() << "Failure to connect.\n";
1253     exit(1);
1254   }
1255 
1256   return llvm::make_unique<FDRPCChannel>(sockfd, sockfd);
1257 }
1258 
1259 //===----------------------------------------------------------------------===//
1260 // Main driver code.
1261 //===----------------------------------------------------------------------===//
1262 
main(int argc,char * argv[])1263 int main(int argc, char *argv[]) {
1264   // Parse the command line options.
1265   cl::ParseCommandLineOptions(argc, argv, "Building A JIT - Client.\n");
1266 
1267   InitializeNativeTarget();
1268   InitializeNativeTargetAsmPrinter();
1269   InitializeNativeTargetAsmParser();
1270 
1271   ExitOnErr.setBanner("Kaleidoscope: ");
1272 
1273   // Install standard binary operators.
1274   // 1 is lowest precedence.
1275   BinopPrecedence['='] = 2;
1276   BinopPrecedence['<'] = 10;
1277   BinopPrecedence['+'] = 20;
1278   BinopPrecedence['-'] = 20;
1279   BinopPrecedence['*'] = 40; // highest.
1280 
1281   ExecutionSession ES;
1282   auto TCPChannel = connect();
1283   auto Remote = ExitOnErr(MyRemote::Create(*TCPChannel, ES));
1284   TheJIT = llvm::make_unique<KaleidoscopeJIT>(ES, *Remote);
1285 
1286   // Automatically inject a definition for 'printExprResult'.
1287   FunctionProtos["printExprResult"] =
1288     llvm::make_unique<PrototypeAST>("printExprResult",
1289                                     std::vector<std::string>({"Val"}));
1290 
1291   // Prime the first token.
1292   fprintf(stderr, "ready> ");
1293   getNextToken();
1294 
1295   InitializeModule();
1296 
1297   // Run the main "interpreter loop" now.
1298   MainLoop();
1299 
1300   // Delete the JIT before the Remote and Channel go out of scope, otherwise
1301   // we'll crash in the JIT destructor when it tries to release remote
1302   // resources over a channel that no longer exists.
1303   TheJIT = nullptr;
1304 
1305   // Send a terminate message to the remote to tell it to exit cleanly.
1306   ExitOnErr(Remote->terminateSession());
1307 
1308   return 0;
1309 }
1310