1 //===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AVRMCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AVRMCCodeEmitter.h"
15
16 #include "MCTargetDesc/AVRMCExpr.h"
17 #include "MCTargetDesc/AVRMCTargetDesc.h"
18
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 #define DEBUG_TYPE "mccodeemitter"
32
33 #define GET_INSTRMAP_INFO
34 #include "AVRGenInstrInfo.inc"
35 #undef GET_INSTRMAP_INFO
36
37 namespace llvm {
38
39 /// Performs a post-encoding step on a `LD` or `ST` instruction.
40 ///
41 /// The encoding of the LD/ST family of instructions is inconsistent w.r.t
42 /// the pointer register and the addressing mode.
43 ///
44 /// The permutations of the format are as followed:
45 /// ld Rd, X `1001 000d dddd 1100`
46 /// ld Rd, X+ `1001 000d dddd 1101`
47 /// ld Rd, -X `1001 000d dddd 1110`
48 ///
49 /// ld Rd, Y `1000 000d dddd 1000`
50 /// ld Rd, Y+ `1001 000d dddd 1001`
51 /// ld Rd, -Y `1001 000d dddd 1010`
52 ///
53 /// ld Rd, Z `1000 000d dddd 0000`
54 /// ld Rd, Z+ `1001 000d dddd 0001`
55 /// ld Rd, -Z `1001 000d dddd 0010`
56 /// ^
57 /// |
58 /// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
59 /// There is no logical pattern. Looking at a truth table, the following
60 /// formula can be derived to fit the pattern:
61 //
62 /// ```
63 /// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
64 /// ```
65 //
66 /// We manually set this bit in this post encoder method.
67 unsigned
loadStorePostEncoder(const MCInst & MI,unsigned EncodedValue,const MCSubtargetInfo & STI) const68 AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
69 const MCSubtargetInfo &STI) const {
70
71 assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
72 "the load/store operands must be registers");
73
74 unsigned Opcode = MI.getOpcode();
75
76 // check whether either of the registers are the X pointer register.
77 bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
78 MI.getOperand(1).getReg() == AVR::R27R26;
79
80 bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
81 bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
82
83 // Check if we need to set the inconsistent bit
84 if (IsRegX || IsPredec || IsPostinc) {
85 EncodedValue |= (1 << 12);
86 }
87
88 return EncodedValue;
89 }
90
91 template <AVR::Fixups Fixup>
92 unsigned
encodeRelCondBrTarget(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const93 AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
94 SmallVectorImpl<MCFixup> &Fixups,
95 const MCSubtargetInfo &STI) const {
96 const MCOperand &MO = MI.getOperand(OpNo);
97
98 if (MO.isExpr()) {
99 Fixups.push_back(MCFixup::create(0, MO.getExpr(),
100 MCFixupKind(Fixup), MI.getLoc()));
101 return 0;
102 }
103
104 assert(MO.isImm());
105
106 // Take the size of the current instruction away.
107 // With labels, this is implicitly done.
108 auto target = MO.getImm();
109 AVR::fixups::adjustBranchTarget(target);
110 return target;
111 }
112
encodeLDSTPtrReg(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const113 unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
114 SmallVectorImpl<MCFixup> &Fixups,
115 const MCSubtargetInfo &STI) const {
116 auto MO = MI.getOperand(OpNo);
117
118 // The operand should be a pointer register.
119 assert(MO.isReg());
120
121 switch (MO.getReg()) {
122 case AVR::R27R26: return 0x03; // X: 0b11
123 case AVR::R29R28: return 0x02; // Y: 0b10
124 case AVR::R31R30: return 0x00; // Z: 0b00
125 default:
126 llvm_unreachable("invalid pointer register");
127 }
128 }
129
130 /// Encodes a `memri` operand.
131 /// The operand is 7-bits.
132 /// * The lower 6 bits is the immediate
133 /// * The upper bit is the pointer register bit (Z=0,Y=1)
encodeMemri(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const134 unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
135 SmallVectorImpl<MCFixup> &Fixups,
136 const MCSubtargetInfo &STI) const {
137 auto RegOp = MI.getOperand(OpNo);
138 auto OffsetOp = MI.getOperand(OpNo + 1);
139
140 assert(RegOp.isReg() && "Expected register operand");
141
142 uint8_t RegBit = 0;
143
144 switch (RegOp.getReg()) {
145 default:
146 llvm_unreachable("Expected either Y or Z register");
147 case AVR::R31R30:
148 RegBit = 0;
149 break; // Z register
150 case AVR::R29R28:
151 RegBit = 1;
152 break; // Y register
153 }
154
155 int8_t OffsetBits;
156
157 if (OffsetOp.isImm()) {
158 OffsetBits = OffsetOp.getImm();
159 } else if (OffsetOp.isExpr()) {
160 OffsetBits = 0;
161 Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
162 MCFixupKind(AVR::fixup_6), MI.getLoc()));
163 } else {
164 llvm_unreachable("invalid value for offset");
165 }
166
167 return (RegBit << 6) | OffsetBits;
168 }
169
encodeComplement(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const170 unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
171 SmallVectorImpl<MCFixup> &Fixups,
172 const MCSubtargetInfo &STI) const {
173 // The operand should be an immediate.
174 assert(MI.getOperand(OpNo).isImm());
175
176 auto Imm = MI.getOperand(OpNo).getImm();
177 return (~0) - Imm;
178 }
179
180 template <AVR::Fixups Fixup, unsigned Offset>
encodeImm(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const181 unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
182 SmallVectorImpl<MCFixup> &Fixups,
183 const MCSubtargetInfo &STI) const {
184 auto MO = MI.getOperand(OpNo);
185
186 if (MO.isExpr()) {
187 if (isa<AVRMCExpr>(MO.getExpr())) {
188 // If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
189 // we shouldn't perform any more fixups. Without this check, we would
190 // instead create a fixup to the symbol named 'lo8(symbol)' which
191 // is not correct.
192 return getExprOpValue(MO.getExpr(), Fixups, STI);
193 }
194
195 MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
196 Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));
197
198 return 0;
199 }
200
201 assert(MO.isImm());
202 return MO.getImm();
203 }
204
encodeCallTarget(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const205 unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
206 SmallVectorImpl<MCFixup> &Fixups,
207 const MCSubtargetInfo &STI) const {
208 auto MO = MI.getOperand(OpNo);
209
210 if (MO.isExpr()) {
211 MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
212 Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
213 return 0;
214 }
215
216 assert(MO.isImm());
217
218 auto Target = MO.getImm();
219 AVR::fixups::adjustBranchTarget(Target);
220 return Target;
221 }
222
getExprOpValue(const MCExpr * Expr,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const223 unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
224 SmallVectorImpl<MCFixup> &Fixups,
225 const MCSubtargetInfo &STI) const {
226
227 MCExpr::ExprKind Kind = Expr->getKind();
228
229 if (Kind == MCExpr::Binary) {
230 Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
231 Kind = Expr->getKind();
232 }
233
234 if (Kind == MCExpr::Target) {
235 AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
236 int64_t Result;
237 if (AVRExpr->evaluateAsConstant(Result)) {
238 return Result;
239 }
240
241 MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
242 Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
243 return 0;
244 }
245
246 assert(Kind == MCExpr::SymbolRef);
247 return 0;
248 }
249
getMachineOpValue(const MCInst & MI,const MCOperand & MO,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const250 unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
251 const MCOperand &MO,
252 SmallVectorImpl<MCFixup> &Fixups,
253 const MCSubtargetInfo &STI) const {
254 if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
255 if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
256
257 if (MO.isFPImm())
258 return static_cast<unsigned>(APFloat(MO.getFPImm())
259 .bitcastToAPInt()
260 .getHiBits(32)
261 .getLimitedValue());
262
263 // MO must be an Expr.
264 assert(MO.isExpr());
265
266 return getExprOpValue(MO.getExpr(), Fixups, STI);
267 }
268
emitInstruction(uint64_t Val,unsigned Size,const MCSubtargetInfo & STI,raw_ostream & OS) const269 void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
270 const MCSubtargetInfo &STI,
271 raw_ostream &OS) const {
272 const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
273 size_t WordCount = Size / 2;
274
275 for (int64_t i = WordCount - 1; i >= 0; --i) {
276 uint16_t Word = Words[i];
277
278 OS << (uint8_t) ((Word & 0x00ff) >> 0);
279 OS << (uint8_t) ((Word & 0xff00) >> 8);
280 }
281 }
282
encodeInstruction(const MCInst & MI,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const283 void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
284 SmallVectorImpl<MCFixup> &Fixups,
285 const MCSubtargetInfo &STI) const {
286 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
287
288 // Get byte count of instruction
289 unsigned Size = Desc.getSize();
290
291 assert(Size > 0 && "Instruction size cannot be zero");
292
293 uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
294 emitInstruction(BinaryOpCode, Size, STI, OS);
295 }
296
createAVRMCCodeEmitter(const MCInstrInfo & MCII,const MCRegisterInfo & MRI,MCContext & Ctx)297 MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
298 const MCRegisterInfo &MRI,
299 MCContext &Ctx) {
300 return new AVRMCCodeEmitter(MCII, Ctx);
301 }
302
303 #include "AVRGenMCCodeEmitter.inc"
304
305 } // end of namespace llvm
306