1 //===- HexagonGenInsert.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "BitTracker.h"
11 #include "HexagonBitTracker.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonRegisterInfo.h"
14 #include "HexagonSubtarget.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Timer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 #include <vector>
45
46 #define DEBUG_TYPE "hexinsert"
47
48 using namespace llvm;
49
50 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
51 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
52 // The distance cutoff is selected based on the precheckin-perf results:
53 // cutoffs 20, 25, 35, and 40 are worse than 30.
54 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
55 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
56 "generation."));
57
58 // Limit the container sizes for extreme cases where we run out of memory.
59 static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
60 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
61 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
62 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
63
64 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
65 cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
66 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
67 cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
68 "generation"));
69
70 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
71 cl::ZeroOrMore);
72 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
73 cl::ZeroOrMore);
74 // Whether to construct constant values via "insert". Could eliminate constant
75 // extenders, but often not practical.
76 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
77 cl::ZeroOrMore);
78
79 // The preprocessor gets confused when the DEBUG macro is passed larger
80 // chunks of code. Use this function to detect debugging.
isDebug()81 inline static bool isDebug() {
82 #ifndef NDEBUG
83 return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
84 #else
85 return false;
86 #endif
87 }
88
89 namespace {
90
91 // Set of virtual registers, based on BitVector.
92 struct RegisterSet : private BitVector {
93 RegisterSet() = default;
RegisterSet__anon4ed23cb20111::RegisterSet94 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet__anon4ed23cb20111::RegisterSet95 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
96
97 using BitVector::clear;
98
find_first__anon4ed23cb20111::RegisterSet99 unsigned find_first() const {
100 int First = BitVector::find_first();
101 if (First < 0)
102 return 0;
103 return x2v(First);
104 }
105
find_next__anon4ed23cb20111::RegisterSet106 unsigned find_next(unsigned Prev) const {
107 int Next = BitVector::find_next(v2x(Prev));
108 if (Next < 0)
109 return 0;
110 return x2v(Next);
111 }
112
insert__anon4ed23cb20111::RegisterSet113 RegisterSet &insert(unsigned R) {
114 unsigned Idx = v2x(R);
115 ensure(Idx);
116 return static_cast<RegisterSet&>(BitVector::set(Idx));
117 }
remove__anon4ed23cb20111::RegisterSet118 RegisterSet &remove(unsigned R) {
119 unsigned Idx = v2x(R);
120 if (Idx >= size())
121 return *this;
122 return static_cast<RegisterSet&>(BitVector::reset(Idx));
123 }
124
insert__anon4ed23cb20111::RegisterSet125 RegisterSet &insert(const RegisterSet &Rs) {
126 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
127 }
remove__anon4ed23cb20111::RegisterSet128 RegisterSet &remove(const RegisterSet &Rs) {
129 return static_cast<RegisterSet&>(BitVector::reset(Rs));
130 }
131
operator []__anon4ed23cb20111::RegisterSet132 reference operator[](unsigned R) {
133 unsigned Idx = v2x(R);
134 ensure(Idx);
135 return BitVector::operator[](Idx);
136 }
operator []__anon4ed23cb20111::RegisterSet137 bool operator[](unsigned R) const {
138 unsigned Idx = v2x(R);
139 assert(Idx < size());
140 return BitVector::operator[](Idx);
141 }
has__anon4ed23cb20111::RegisterSet142 bool has(unsigned R) const {
143 unsigned Idx = v2x(R);
144 if (Idx >= size())
145 return false;
146 return BitVector::test(Idx);
147 }
148
empty__anon4ed23cb20111::RegisterSet149 bool empty() const {
150 return !BitVector::any();
151 }
includes__anon4ed23cb20111::RegisterSet152 bool includes(const RegisterSet &Rs) const {
153 // A.BitVector::test(B) <=> A-B != {}
154 return !Rs.BitVector::test(*this);
155 }
intersects__anon4ed23cb20111::RegisterSet156 bool intersects(const RegisterSet &Rs) const {
157 return BitVector::anyCommon(Rs);
158 }
159
160 private:
ensure__anon4ed23cb20111::RegisterSet161 void ensure(unsigned Idx) {
162 if (size() <= Idx)
163 resize(std::max(Idx+1, 32U));
164 }
165
v2x__anon4ed23cb20111::RegisterSet166 static inline unsigned v2x(unsigned v) {
167 return TargetRegisterInfo::virtReg2Index(v);
168 }
169
x2v__anon4ed23cb20111::RegisterSet170 static inline unsigned x2v(unsigned x) {
171 return TargetRegisterInfo::index2VirtReg(x);
172 }
173 };
174
175 struct PrintRegSet {
PrintRegSet__anon4ed23cb20111::PrintRegSet176 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
177 : RS(S), TRI(RI) {}
178
179 friend raw_ostream &operator<< (raw_ostream &OS,
180 const PrintRegSet &P);
181
182 private:
183 const RegisterSet &RS;
184 const TargetRegisterInfo *TRI;
185 };
186
operator <<(raw_ostream & OS,const PrintRegSet & P)187 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
188 OS << '{';
189 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
190 OS << ' ' << printReg(R, P.TRI);
191 OS << " }";
192 return OS;
193 }
194
195 // A convenience class to associate unsigned numbers (such as virtual
196 // registers) with unsigned numbers.
197 struct UnsignedMap : public DenseMap<unsigned,unsigned> {
198 UnsignedMap() = default;
199
200 private:
201 using BaseType = DenseMap<unsigned, unsigned>;
202 };
203
204 // A utility to establish an ordering between virtual registers:
205 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
206 // This is meant as a cache for the ordering of virtual registers defined
207 // by a potentially expensive comparison function, or obtained by a proce-
208 // dure that should not be repeated each time two registers are compared.
209 struct RegisterOrdering : public UnsignedMap {
210 RegisterOrdering() = default;
211
operator []__anon4ed23cb20111::RegisterOrdering212 unsigned operator[](unsigned VR) const {
213 const_iterator F = find(VR);
214 assert(F != end());
215 return F->second;
216 }
217
218 // Add operator(), so that objects of this class can be used as
219 // comparators in std::sort et al.
operator ()__anon4ed23cb20111::RegisterOrdering220 bool operator() (unsigned VR1, unsigned VR2) const {
221 return operator[](VR1) < operator[](VR2);
222 }
223 };
224
225 // Ordering of bit values. This class does not have operator[], but
226 // is supplies a comparison operator() for use in std:: algorithms.
227 // The order is as follows:
228 // - 0 < 1 < ref
229 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
230 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
231 struct BitValueOrdering {
BitValueOrdering__anon4ed23cb20111::BitValueOrdering232 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
233
234 bool operator() (const BitTracker::BitValue &V1,
235 const BitTracker::BitValue &V2) const;
236
237 const RegisterOrdering &BaseOrd;
238 };
239
240 } // end anonymous namespace
241
operator ()(const BitTracker::BitValue & V1,const BitTracker::BitValue & V2) const242 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
243 const BitTracker::BitValue &V2) const {
244 if (V1 == V2)
245 return false;
246 // V1==0 => true, V2==0 => false
247 if (V1.is(0) || V2.is(0))
248 return V1.is(0);
249 // Neither of V1,V2 is 0, and V1!=V2.
250 // V2==1 => false, V1==1 => true
251 if (V2.is(1) || V1.is(1))
252 return !V2.is(1);
253 // Both V1,V2 are refs.
254 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
255 if (Ind1 != Ind2)
256 return Ind1 < Ind2;
257 // If V1.Pos==V2.Pos
258 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
259 return V1.RefI.Pos < V2.RefI.Pos;
260 }
261
262 namespace {
263
264 // Cache for the BitTracker's cell map. Map lookup has a logarithmic
265 // complexity, this class will memoize the lookup results to reduce
266 // the access time for repeated lookups of the same cell.
267 struct CellMapShadow {
CellMapShadow__anon4ed23cb20211::CellMapShadow268 CellMapShadow(const BitTracker &T) : BT(T) {}
269
lookup__anon4ed23cb20211::CellMapShadow270 const BitTracker::RegisterCell &lookup(unsigned VR) {
271 unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
272 // Grow the vector to at least 32 elements.
273 if (RInd >= CVect.size())
274 CVect.resize(std::max(RInd+16, 32U), nullptr);
275 const BitTracker::RegisterCell *CP = CVect[RInd];
276 if (CP == nullptr)
277 CP = CVect[RInd] = &BT.lookup(VR);
278 return *CP;
279 }
280
281 const BitTracker &BT;
282
283 private:
284 using CellVectType = std::vector<const BitTracker::RegisterCell *>;
285
286 CellVectType CVect;
287 };
288
289 // Comparator class for lexicographic ordering of virtual registers
290 // according to the corresponding BitTracker::RegisterCell objects.
291 struct RegisterCellLexCompare {
RegisterCellLexCompare__anon4ed23cb20211::RegisterCellLexCompare292 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
293 : BitOrd(BO), CM(M) {}
294
295 bool operator() (unsigned VR1, unsigned VR2) const;
296
297 private:
298 const BitValueOrdering &BitOrd;
299 CellMapShadow &CM;
300 };
301
302 // Comparator class for lexicographic ordering of virtual registers
303 // according to the specified bits of the corresponding BitTracker::
304 // RegisterCell objects.
305 // Specifically, this class will be used to compare bit B of a register
306 // cell for a selected virtual register R with bit N of any register
307 // other than R.
308 struct RegisterCellBitCompareSel {
RegisterCellBitCompareSel__anon4ed23cb20211::RegisterCellBitCompareSel309 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
310 const BitValueOrdering &BO, CellMapShadow &M)
311 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
312
313 bool operator() (unsigned VR1, unsigned VR2) const;
314
315 private:
316 const unsigned SelR, SelB;
317 const unsigned BitN;
318 const BitValueOrdering &BitOrd;
319 CellMapShadow &CM;
320 };
321
322 } // end anonymous namespace
323
operator ()(unsigned VR1,unsigned VR2) const324 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
325 // Ordering of registers, made up from two given orderings:
326 // - the ordering of the register numbers, and
327 // - the ordering of register cells.
328 // Def. R1 < R2 if:
329 // - cell(R1) < cell(R2), or
330 // - cell(R1) == cell(R2), and index(R1) < index(R2).
331 //
332 // For register cells, the ordering is lexicographic, with index 0 being
333 // the most significant.
334 if (VR1 == VR2)
335 return false;
336
337 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
338 uint16_t W1 = RC1.width(), W2 = RC2.width();
339 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
340 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
341 if (V1 != V2)
342 return BitOrd(V1, V2);
343 }
344 // Cells are equal up until the common length.
345 if (W1 != W2)
346 return W1 < W2;
347
348 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
349 }
350
operator ()(unsigned VR1,unsigned VR2) const351 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
352 if (VR1 == VR2)
353 return false;
354 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
355 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
356 uint16_t W1 = RC1.width(), W2 = RC2.width();
357 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
358 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
359 // If Bit1 exceeds the width of VR1, then:
360 // - return false, if at the same time Bit2 exceeds VR2, or
361 // - return true, otherwise.
362 // (I.e. "a bit value that does not exist is less than any bit value
363 // that does exist".)
364 if (W1 <= Bit1)
365 return Bit2 < W2;
366 // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
367 if (W2 <= Bit2)
368 return false;
369
370 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
371 if (V1 != V2)
372 return BitOrd(V1, V2);
373 return false;
374 }
375
376 namespace {
377
378 class OrderedRegisterList {
379 using ListType = std::vector<unsigned>;
380 const unsigned MaxSize;
381
382 public:
OrderedRegisterList(const RegisterOrdering & RO)383 OrderedRegisterList(const RegisterOrdering &RO)
384 : MaxSize(MaxORLSize), Ord(RO) {}
385
386 void insert(unsigned VR);
387 void remove(unsigned VR);
388
operator [](unsigned Idx) const389 unsigned operator[](unsigned Idx) const {
390 assert(Idx < Seq.size());
391 return Seq[Idx];
392 }
393
size() const394 unsigned size() const {
395 return Seq.size();
396 }
397
398 using iterator = ListType::iterator;
399 using const_iterator = ListType::const_iterator;
400
begin()401 iterator begin() { return Seq.begin(); }
end()402 iterator end() { return Seq.end(); }
begin() const403 const_iterator begin() const { return Seq.begin(); }
end() const404 const_iterator end() const { return Seq.end(); }
405
406 // Convenience function to convert an iterator to the corresponding index.
idx(iterator It) const407 unsigned idx(iterator It) const { return It-begin(); }
408
409 private:
410 ListType Seq;
411 const RegisterOrdering &Ord;
412 };
413
414 struct PrintORL {
PrintORL__anon4ed23cb20311::PrintORL415 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
416 : RL(L), TRI(RI) {}
417
418 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
419
420 private:
421 const OrderedRegisterList &RL;
422 const TargetRegisterInfo *TRI;
423 };
424
operator <<(raw_ostream & OS,const PrintORL & P)425 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
426 OS << '(';
427 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
428 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
429 if (I != B)
430 OS << ", ";
431 OS << printReg(*I, P.TRI);
432 }
433 OS << ')';
434 return OS;
435 }
436
437 } // end anonymous namespace
438
insert(unsigned VR)439 void OrderedRegisterList::insert(unsigned VR) {
440 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
441 if (L == Seq.end())
442 Seq.push_back(VR);
443 else
444 Seq.insert(L, VR);
445
446 unsigned S = Seq.size();
447 if (S > MaxSize)
448 Seq.resize(MaxSize);
449 assert(Seq.size() <= MaxSize);
450 }
451
remove(unsigned VR)452 void OrderedRegisterList::remove(unsigned VR) {
453 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
454 if (L != Seq.end())
455 Seq.erase(L);
456 }
457
458 namespace {
459
460 // A record of the insert form. The fields correspond to the operands
461 // of the "insert" instruction:
462 // ... = insert(SrcR, InsR, #Wdh, #Off)
463 struct IFRecord {
IFRecord__anon4ed23cb20411::IFRecord464 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
465 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
466
467 unsigned SrcR, InsR;
468 uint16_t Wdh, Off;
469 };
470
471 struct PrintIFR {
PrintIFR__anon4ed23cb20411::PrintIFR472 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
473 : IFR(R), TRI(RI) {}
474
475 private:
476 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
477
478 const IFRecord &IFR;
479 const TargetRegisterInfo *TRI;
480 };
481
operator <<(raw_ostream & OS,const PrintIFR & P)482 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
483 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
484 OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
485 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
486 return OS;
487 }
488
489 using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
490
491 } // end anonymous namespace
492
493 namespace llvm {
494
495 void initializeHexagonGenInsertPass(PassRegistry&);
496 FunctionPass *createHexagonGenInsert();
497
498 } // end namespace llvm
499
500 namespace {
501
502 class HexagonGenInsert : public MachineFunctionPass {
503 public:
504 static char ID;
505
HexagonGenInsert()506 HexagonGenInsert() : MachineFunctionPass(ID) {
507 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
508 }
509
getPassName() const510 StringRef getPassName() const override {
511 return "Hexagon generate \"insert\" instructions";
512 }
513
getAnalysisUsage(AnalysisUsage & AU) const514 void getAnalysisUsage(AnalysisUsage &AU) const override {
515 AU.addRequired<MachineDominatorTree>();
516 AU.addPreserved<MachineDominatorTree>();
517 MachineFunctionPass::getAnalysisUsage(AU);
518 }
519
520 bool runOnMachineFunction(MachineFunction &MF) override;
521
522 private:
523 using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
524
525 void buildOrderingMF(RegisterOrdering &RO) const;
526 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
527 bool isIntClass(const TargetRegisterClass *RC) const;
528 bool isConstant(unsigned VR) const;
529 bool isSmallConstant(unsigned VR) const;
530 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
531 uint16_t L, uint16_t S) const;
532 bool findSelfReference(unsigned VR) const;
533 bool findNonSelfReference(unsigned VR) const;
534 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
535 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
536 unsigned distance(const MachineBasicBlock *FromB,
537 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
538 PairMapType &M) const;
539 unsigned distance(MachineBasicBlock::const_iterator FromI,
540 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
541 PairMapType &M) const;
542 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
543 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
544 void findRemovableRegisters(unsigned VR, IFRecord IF,
545 RegisterSet &RMs) const;
546 void computeRemovableRegisters();
547
548 void pruneEmptyLists();
549 void pruneCoveredSets(unsigned VR);
550 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
551 void pruneRegCopies(unsigned VR);
552 void pruneCandidates();
553 void selectCandidates();
554 bool generateInserts();
555
556 bool removeDeadCode(MachineDomTreeNode *N);
557
558 // IFRecord coupled with a set of potentially removable registers:
559 using IFListType = std::vector<IFRecordWithRegSet>;
560 using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
561
562 void dump_map() const;
563
564 const HexagonInstrInfo *HII = nullptr;
565 const HexagonRegisterInfo *HRI = nullptr;
566
567 MachineFunction *MFN;
568 MachineRegisterInfo *MRI;
569 MachineDominatorTree *MDT;
570 CellMapShadow *CMS;
571
572 RegisterOrdering BaseOrd;
573 RegisterOrdering CellOrd;
574 IFMapType IFMap;
575 };
576
577 } // end anonymous namespace
578
579 char HexagonGenInsert::ID = 0;
580
dump_map() const581 void HexagonGenInsert::dump_map() const {
582 using iterator = IFMapType::const_iterator;
583
584 for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
585 dbgs() << " " << printReg(I->first, HRI) << ":\n";
586 const IFListType &LL = I->second;
587 for (unsigned i = 0, n = LL.size(); i < n; ++i)
588 dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", "
589 << PrintRegSet(LL[i].second, HRI) << '\n';
590 }
591 }
592
buildOrderingMF(RegisterOrdering & RO) const593 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
594 unsigned Index = 0;
595
596 using mf_iterator = MachineFunction::const_iterator;
597
598 for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
599 const MachineBasicBlock &B = *A;
600 if (!CMS->BT.reached(&B))
601 continue;
602
603 using mb_iterator = MachineBasicBlock::const_iterator;
604
605 for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
606 const MachineInstr *MI = &*I;
607 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
608 const MachineOperand &MO = MI->getOperand(i);
609 if (MO.isReg() && MO.isDef()) {
610 unsigned R = MO.getReg();
611 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
612 if (TargetRegisterInfo::isVirtualRegister(R))
613 RO.insert(std::make_pair(R, Index++));
614 }
615 }
616 }
617 }
618 // Since some virtual registers may have had their def and uses eliminated,
619 // they are no longer referenced in the code, and so they will not appear
620 // in the map.
621 }
622
buildOrderingBT(RegisterOrdering & RB,RegisterOrdering & RO) const623 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
624 RegisterOrdering &RO) const {
625 // Create a vector of all virtual registers (collect them from the base
626 // ordering RB), and then sort it using the RegisterCell comparator.
627 BitValueOrdering BVO(RB);
628 RegisterCellLexCompare LexCmp(BVO, *CMS);
629
630 using SortableVectorType = std::vector<unsigned>;
631
632 SortableVectorType VRs;
633 for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
634 VRs.push_back(I->first);
635 llvm::sort(VRs.begin(), VRs.end(), LexCmp);
636 // Transfer the results to the outgoing register ordering.
637 for (unsigned i = 0, n = VRs.size(); i < n; ++i)
638 RO.insert(std::make_pair(VRs[i], i));
639 }
640
isIntClass(const TargetRegisterClass * RC) const641 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
642 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
643 }
644
isConstant(unsigned VR) const645 bool HexagonGenInsert::isConstant(unsigned VR) const {
646 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
647 uint16_t W = RC.width();
648 for (uint16_t i = 0; i < W; ++i) {
649 const BitTracker::BitValue &BV = RC[i];
650 if (BV.is(0) || BV.is(1))
651 continue;
652 return false;
653 }
654 return true;
655 }
656
isSmallConstant(unsigned VR) const657 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
658 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
659 uint16_t W = RC.width();
660 if (W > 64)
661 return false;
662 uint64_t V = 0, B = 1;
663 for (uint16_t i = 0; i < W; ++i) {
664 const BitTracker::BitValue &BV = RC[i];
665 if (BV.is(1))
666 V |= B;
667 else if (!BV.is(0))
668 return false;
669 B <<= 1;
670 }
671
672 // For 32-bit registers, consider: Rd = #s16.
673 if (W == 32)
674 return isInt<16>(V);
675
676 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
677 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
678 }
679
isValidInsertForm(unsigned DstR,unsigned SrcR,unsigned InsR,uint16_t L,uint16_t S) const680 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
681 unsigned InsR, uint16_t L, uint16_t S) const {
682 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
683 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
684 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
685 // Only integet (32-/64-bit) register classes.
686 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
687 return false;
688 // The "source" register must be of the same class as DstR.
689 if (DstRC != SrcRC)
690 return false;
691 if (DstRC == InsRC)
692 return true;
693 // A 64-bit register can only be generated from other 64-bit registers.
694 if (DstRC == &Hexagon::DoubleRegsRegClass)
695 return false;
696 // Otherwise, the L and S cannot span 32-bit word boundary.
697 if (S < 32 && S+L > 32)
698 return false;
699 return true;
700 }
701
findSelfReference(unsigned VR) const702 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
703 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
704 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
705 const BitTracker::BitValue &V = RC[i];
706 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
707 return true;
708 }
709 return false;
710 }
711
findNonSelfReference(unsigned VR) const712 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
713 BitTracker::RegisterCell RC = CMS->lookup(VR);
714 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
715 const BitTracker::BitValue &V = RC[i];
716 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
717 return true;
718 }
719 return false;
720 }
721
getInstrDefs(const MachineInstr * MI,RegisterSet & Defs) const722 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
723 RegisterSet &Defs) const {
724 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
725 const MachineOperand &MO = MI->getOperand(i);
726 if (!MO.isReg() || !MO.isDef())
727 continue;
728 unsigned R = MO.getReg();
729 if (!TargetRegisterInfo::isVirtualRegister(R))
730 continue;
731 Defs.insert(R);
732 }
733 }
734
getInstrUses(const MachineInstr * MI,RegisterSet & Uses) const735 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
736 RegisterSet &Uses) const {
737 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
738 const MachineOperand &MO = MI->getOperand(i);
739 if (!MO.isReg() || !MO.isUse())
740 continue;
741 unsigned R = MO.getReg();
742 if (!TargetRegisterInfo::isVirtualRegister(R))
743 continue;
744 Uses.insert(R);
745 }
746 }
747
distance(const MachineBasicBlock * FromB,const MachineBasicBlock * ToB,const UnsignedMap & RPO,PairMapType & M) const748 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
749 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
750 PairMapType &M) const {
751 // Forward distance from the end of a block to the beginning of it does
752 // not make sense. This function should not be called with FromB == ToB.
753 assert(FromB != ToB);
754
755 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
756 // If we have already computed it, return the cached result.
757 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
758 if (F != M.end())
759 return F->second;
760 unsigned ToRPO = RPO.lookup(ToN);
761
762 unsigned MaxD = 0;
763
764 using pred_iterator = MachineBasicBlock::const_pred_iterator;
765
766 for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
767 const MachineBasicBlock *PB = *I;
768 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
769 // along that path will be 0, and we don't need to do any calculations
770 // on it.
771 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
772 continue;
773 unsigned D = PB->size() + distance(FromB, PB, RPO, M);
774 if (D > MaxD)
775 MaxD = D;
776 }
777
778 // Memoize the result for later lookup.
779 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
780 return MaxD;
781 }
782
distance(MachineBasicBlock::const_iterator FromI,MachineBasicBlock::const_iterator ToI,const UnsignedMap & RPO,PairMapType & M) const783 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
784 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
785 PairMapType &M) const {
786 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
787 if (FB == TB)
788 return std::distance(FromI, ToI);
789 unsigned D1 = std::distance(TB->begin(), ToI);
790 unsigned D2 = distance(FB, TB, RPO, M);
791 unsigned D3 = std::distance(FromI, FB->end());
792 return D1+D2+D3;
793 }
794
findRecordInsertForms(unsigned VR,OrderedRegisterList & AVs)795 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
796 OrderedRegisterList &AVs) {
797 if (isDebug()) {
798 dbgs() << __func__ << ": " << printReg(VR, HRI)
799 << " AVs: " << PrintORL(AVs, HRI) << "\n";
800 }
801 if (AVs.size() == 0)
802 return false;
803
804 using iterator = OrderedRegisterList::iterator;
805
806 BitValueOrdering BVO(BaseOrd);
807 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
808 uint16_t W = RC.width();
809
810 using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
811 using RSListType = std::vector<RSRecord>;
812 // Have a map, with key being the matching prefix length, and the value
813 // being the list of pairs (R,S), where R's prefix matches VR at S.
814 // (DenseMap<uint16_t,RSListType> fails to instantiate.)
815 using LRSMapType = DenseMap<unsigned, RSListType>;
816 LRSMapType LM;
817
818 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
819 // and find matching prefixes from AVs with the rotated RC. Such a prefix
820 // would match a string of bits (of length L) in RC starting at S.
821 for (uint16_t S = 0; S < W; ++S) {
822 iterator B = AVs.begin(), E = AVs.end();
823 // The registers in AVs are ordered according to the lexical order of
824 // the corresponding register cells. This means that the range of regis-
825 // ters in AVs that match a prefix of length L+1 will be contained in
826 // the range that matches a prefix of length L. This means that we can
827 // keep narrowing the search space as the prefix length goes up. This
828 // helps reduce the overall complexity of the search.
829 uint16_t L;
830 for (L = 0; L < W-S; ++L) {
831 // Compare against VR's bits starting at S, which emulates rotation
832 // of VR by S.
833 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
834 iterator NewB = std::lower_bound(B, E, VR, RCB);
835 iterator NewE = std::upper_bound(NewB, E, VR, RCB);
836 // For the registers that are eliminated from the next range, L is
837 // the longest prefix matching VR at position S (their prefixes
838 // differ from VR at S+L). If L>0, record this information for later
839 // use.
840 if (L > 0) {
841 for (iterator I = B; I != NewB; ++I)
842 LM[L].push_back(std::make_pair(*I, S));
843 for (iterator I = NewE; I != E; ++I)
844 LM[L].push_back(std::make_pair(*I, S));
845 }
846 B = NewB, E = NewE;
847 if (B == E)
848 break;
849 }
850 // Record the final register range. If this range is non-empty, then
851 // L=W-S.
852 assert(B == E || L == W-S);
853 if (B != E) {
854 for (iterator I = B; I != E; ++I)
855 LM[L].push_back(std::make_pair(*I, S));
856 // If B!=E, then we found a range of registers whose prefixes cover the
857 // rest of VR from position S. There is no need to further advance S.
858 break;
859 }
860 }
861
862 if (isDebug()) {
863 dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
864 for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
865 dbgs() << " L=" << I->first << ':';
866 const RSListType &LL = I->second;
867 for (unsigned i = 0, n = LL.size(); i < n; ++i)
868 dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
869 << LL[i].second << ')';
870 dbgs() << '\n';
871 }
872 }
873
874 bool Recorded = false;
875
876 for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
877 unsigned SrcR = *I;
878 int FDi = -1, LDi = -1; // First/last different bit.
879 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
880 uint16_t AW = AC.width();
881 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
882 if (RC[i] == AC[i])
883 continue;
884 if (FDi == -1)
885 FDi = i;
886 LDi = i;
887 }
888 if (FDi == -1)
889 continue; // TODO (future): Record identical registers.
890 // Look for a register whose prefix could patch the range [FD..LD]
891 // where VR and SrcR differ.
892 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
893 uint16_t MinL = LD-FD+1;
894 for (uint16_t L = MinL; L < W; ++L) {
895 LRSMapType::iterator F = LM.find(L);
896 if (F == LM.end())
897 continue;
898 RSListType &LL = F->second;
899 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
900 uint16_t S = LL[i].second;
901 // MinL is the minimum length of the prefix. Any length above MinL
902 // allows some flexibility as to where the prefix can start:
903 // given the extra length EL=L-MinL, the prefix must start between
904 // max(0,FD-EL) and FD.
905 if (S > FD) // Starts too late.
906 continue;
907 uint16_t EL = L-MinL;
908 uint16_t LowS = (EL < FD) ? FD-EL : 0;
909 if (S < LowS) // Starts too early.
910 continue;
911 unsigned InsR = LL[i].first;
912 if (!isValidInsertForm(VR, SrcR, InsR, L, S))
913 continue;
914 if (isDebug()) {
915 dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
916 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
917 << S << ")\n";
918 }
919 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
920 IFMap[VR].push_back(RR);
921 Recorded = true;
922 }
923 }
924 }
925
926 return Recorded;
927 }
928
collectInBlock(MachineBasicBlock * B,OrderedRegisterList & AVs)929 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
930 OrderedRegisterList &AVs) {
931 if (isDebug())
932 dbgs() << "visiting block " << printMBBReference(*B) << "\n";
933
934 // First, check if this block is reachable at all. If not, the bit tracker
935 // will not have any information about registers in it.
936 if (!CMS->BT.reached(B))
937 return;
938
939 bool DoConst = OptConst;
940 // Keep a separate set of registers defined in this block, so that we
941 // can remove them from the list of available registers once all DT
942 // successors have been processed.
943 RegisterSet BlockDefs, InsDefs;
944 for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
945 MachineInstr *MI = &*I;
946 InsDefs.clear();
947 getInstrDefs(MI, InsDefs);
948 // Leave those alone. They are more transparent than "insert".
949 bool Skip = MI->isCopy() || MI->isRegSequence();
950
951 if (!Skip) {
952 // Visit all defined registers, and attempt to find the corresponding
953 // "insert" representations.
954 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
955 // Do not collect registers that are known to be compile-time cons-
956 // tants, unless requested.
957 if (!DoConst && isConstant(VR))
958 continue;
959 // If VR's cell contains a reference to VR, then VR cannot be defined
960 // via "insert". If VR is a constant that can be generated in a single
961 // instruction (without constant extenders), generating it via insert
962 // makes no sense.
963 if (findSelfReference(VR) || isSmallConstant(VR))
964 continue;
965
966 findRecordInsertForms(VR, AVs);
967 // Stop if the map size is too large.
968 if (IFMap.size() > MaxIFMSize)
969 return;
970 }
971 }
972
973 // Insert the defined registers into the list of available registers
974 // after they have been processed.
975 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
976 AVs.insert(VR);
977 BlockDefs.insert(InsDefs);
978 }
979
980 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
981 MachineBasicBlock *SB = DTN->getBlock();
982 collectInBlock(SB, AVs);
983 }
984
985 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
986 AVs.remove(VR);
987 }
988
findRemovableRegisters(unsigned VR,IFRecord IF,RegisterSet & RMs) const989 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
990 RegisterSet &RMs) const {
991 // For a given register VR and a insert form, find the registers that are
992 // used by the current definition of VR, and which would no longer be
993 // needed for it after the definition of VR is replaced with the insert
994 // form. These are the registers that could potentially become dead.
995 RegisterSet Regs[2];
996
997 unsigned S = 0; // Register set selector.
998 Regs[S].insert(VR);
999
1000 while (!Regs[S].empty()) {
1001 // Breadth-first search.
1002 unsigned OtherS = 1-S;
1003 Regs[OtherS].clear();
1004 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
1005 Regs[S].remove(R);
1006 if (R == IF.SrcR || R == IF.InsR)
1007 continue;
1008 // Check if a given register has bits that are references to any other
1009 // registers. This is to detect situations where the instruction that
1010 // defines register R takes register Q as an operand, but R itself does
1011 // not contain any bits from Q. Loads are examples of how this could
1012 // happen:
1013 // R = load Q
1014 // In this case (assuming we do not have any knowledge about the loaded
1015 // value), we must not treat R as a "conveyance" of the bits from Q.
1016 // (The information in BT about R's bits would have them as constants,
1017 // in case of zero-extending loads, or refs to R.)
1018 if (!findNonSelfReference(R))
1019 continue;
1020 RMs.insert(R);
1021 const MachineInstr *DefI = MRI->getVRegDef(R);
1022 assert(DefI);
1023 // Do not iterate past PHI nodes to avoid infinite loops. This can
1024 // make the final set a bit less accurate, but the removable register
1025 // sets are an approximation anyway.
1026 if (DefI->isPHI())
1027 continue;
1028 getInstrUses(DefI, Regs[OtherS]);
1029 }
1030 S = OtherS;
1031 }
1032 // The register VR is added to the list as a side-effect of the algorithm,
1033 // but it is not "potentially removable". A potentially removable register
1034 // is one that may become unused (dead) after conversion to the insert form
1035 // IF, and obviously VR (or its replacement) will not become dead by apply-
1036 // ing IF.
1037 RMs.remove(VR);
1038 }
1039
computeRemovableRegisters()1040 void HexagonGenInsert::computeRemovableRegisters() {
1041 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1042 IFListType &LL = I->second;
1043 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1044 findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1045 }
1046 }
1047
pruneEmptyLists()1048 void HexagonGenInsert::pruneEmptyLists() {
1049 // Remove all entries from the map, where the register has no insert forms
1050 // associated with it.
1051 using IterListType = SmallVector<IFMapType::iterator, 16>;
1052 IterListType Prune;
1053 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1054 if (I->second.empty())
1055 Prune.push_back(I);
1056 }
1057 for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1058 IFMap.erase(Prune[i]);
1059 }
1060
pruneCoveredSets(unsigned VR)1061 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1062 IFMapType::iterator F = IFMap.find(VR);
1063 assert(F != IFMap.end());
1064 IFListType &LL = F->second;
1065
1066 // First, examine the IF candidates for register VR whose removable-regis-
1067 // ter sets are empty. This means that a given candidate will not help eli-
1068 // minate any registers, but since "insert" is not a constant-extendable
1069 // instruction, using such a candidate may reduce code size if the defini-
1070 // tion of VR is constant-extended.
1071 // If there exists a candidate with a non-empty set, the ones with empty
1072 // sets will not be used and can be removed.
1073 MachineInstr *DefVR = MRI->getVRegDef(VR);
1074 bool DefEx = HII->isConstExtended(*DefVR);
1075 bool HasNE = false;
1076 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1077 if (LL[i].second.empty())
1078 continue;
1079 HasNE = true;
1080 break;
1081 }
1082 if (!DefEx || HasNE) {
1083 // The definition of VR is not constant-extended, or there is a candidate
1084 // with a non-empty set. Remove all candidates with empty sets.
1085 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1086 return IR.second.empty();
1087 };
1088 auto End = llvm::remove_if(LL, IsEmpty);
1089 if (End != LL.end())
1090 LL.erase(End, LL.end());
1091 } else {
1092 // The definition of VR is constant-extended, and all candidates have
1093 // empty removable-register sets. Pick the maximum candidate, and remove
1094 // all others. The "maximum" does not have any special meaning here, it
1095 // is only so that the candidate that will remain on the list is selec-
1096 // ted deterministically.
1097 IFRecord MaxIF = LL[0].first;
1098 for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1099 // If LL[MaxI] < LL[i], then MaxI = i.
1100 const IFRecord &IF = LL[i].first;
1101 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1102 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1103 if (M0 > R0)
1104 continue;
1105 if (M0 == R0) {
1106 if (M1 > R1)
1107 continue;
1108 if (M1 == R1) {
1109 if (MaxIF.Wdh > IF.Wdh)
1110 continue;
1111 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1112 continue;
1113 }
1114 }
1115 // MaxIF < IF.
1116 MaxIF = IF;
1117 }
1118 // Remove everything except the maximum candidate. All register sets
1119 // are empty, so no need to preserve anything.
1120 LL.clear();
1121 LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1122 }
1123
1124 // Now, remove those whose sets of potentially removable registers are
1125 // contained in another IF candidate for VR. For example, given these
1126 // candidates for %45,
1127 // %45:
1128 // (%44,%41,#9,#8), { %42 }
1129 // (%43,%41,#9,#8), { %42 %44 }
1130 // remove the first one, since it is contained in the second one.
1131 for (unsigned i = 0, n = LL.size(); i < n; ) {
1132 const RegisterSet &RMi = LL[i].second;
1133 unsigned j = 0;
1134 while (j < n) {
1135 if (j != i && LL[j].second.includes(RMi))
1136 break;
1137 j++;
1138 }
1139 if (j == n) { // RMi not contained in anything else.
1140 i++;
1141 continue;
1142 }
1143 LL.erase(LL.begin()+i);
1144 n = LL.size();
1145 }
1146 }
1147
pruneUsesTooFar(unsigned VR,const UnsignedMap & RPO,PairMapType & M)1148 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1149 PairMapType &M) {
1150 IFMapType::iterator F = IFMap.find(VR);
1151 assert(F != IFMap.end());
1152 IFListType &LL = F->second;
1153 unsigned Cutoff = VRegDistCutoff;
1154 const MachineInstr *DefV = MRI->getVRegDef(VR);
1155
1156 for (unsigned i = LL.size(); i > 0; --i) {
1157 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1158 const MachineInstr *DefS = MRI->getVRegDef(SR);
1159 const MachineInstr *DefI = MRI->getVRegDef(IR);
1160 unsigned DSV = distance(DefS, DefV, RPO, M);
1161 if (DSV < Cutoff) {
1162 unsigned DIV = distance(DefI, DefV, RPO, M);
1163 if (DIV < Cutoff)
1164 continue;
1165 }
1166 LL.erase(LL.begin()+(i-1));
1167 }
1168 }
1169
pruneRegCopies(unsigned VR)1170 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1171 IFMapType::iterator F = IFMap.find(VR);
1172 assert(F != IFMap.end());
1173 IFListType &LL = F->second;
1174
1175 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1176 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1177 };
1178 auto End = llvm::remove_if(LL, IsCopy);
1179 if (End != LL.end())
1180 LL.erase(End, LL.end());
1181 }
1182
pruneCandidates()1183 void HexagonGenInsert::pruneCandidates() {
1184 // Remove candidates that are not beneficial, regardless of the final
1185 // selection method.
1186 // First, remove candidates whose potentially removable set is a subset
1187 // of another candidate's set.
1188 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1189 pruneCoveredSets(I->first);
1190
1191 UnsignedMap RPO;
1192
1193 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1194
1195 RPOTType RPOT(MFN);
1196 unsigned RPON = 0;
1197 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1198 RPO[(*I)->getNumber()] = RPON++;
1199
1200 PairMapType Memo; // Memoization map for distance calculation.
1201 // Remove candidates that would use registers defined too far away.
1202 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1203 pruneUsesTooFar(I->first, RPO, Memo);
1204
1205 pruneEmptyLists();
1206
1207 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1208 pruneRegCopies(I->first);
1209 }
1210
1211 namespace {
1212
1213 // Class for comparing IF candidates for registers that have multiple of
1214 // them. The smaller the candidate, according to this ordering, the better.
1215 // First, compare the number of zeros in the associated potentially remova-
1216 // ble register sets. "Zero" indicates that the register is very likely to
1217 // become dead after this transformation.
1218 // Second, compare "averages", i.e. use-count per size. The lower wins.
1219 // After that, it does not really matter which one is smaller. Resolve
1220 // the tie in some deterministic way.
1221 struct IFOrdering {
IFOrdering__anon4ed23cb20811::IFOrdering1222 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1223 : UseC(UC), BaseOrd(BO) {}
1224
1225 bool operator() (const IFRecordWithRegSet &A,
1226 const IFRecordWithRegSet &B) const;
1227
1228 private:
1229 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1230 unsigned &Sum) const;
1231
1232 const UnsignedMap &UseC;
1233 const RegisterOrdering &BaseOrd;
1234 };
1235
1236 } // end anonymous namespace
1237
operator ()(const IFRecordWithRegSet & A,const IFRecordWithRegSet & B) const1238 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1239 const IFRecordWithRegSet &B) const {
1240 unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1241 unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1242 stats(A.second, SizeA, ZeroA, SumA);
1243 stats(B.second, SizeB, ZeroB, SumB);
1244
1245 // We will pick the minimum element. The more zeros, the better.
1246 if (ZeroA != ZeroB)
1247 return ZeroA > ZeroB;
1248 // Compare SumA/SizeA with SumB/SizeB, lower is better.
1249 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1250 if (AvgA != AvgB)
1251 return AvgA < AvgB;
1252
1253 // The sets compare identical so far. Resort to comparing the IF records.
1254 // The actual values don't matter, this is only for determinism.
1255 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1256 if (OSA != OSB)
1257 return OSA < OSB;
1258 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1259 if (OIA != OIB)
1260 return OIA < OIB;
1261 if (A.first.Wdh != B.first.Wdh)
1262 return A.first.Wdh < B.first.Wdh;
1263 return A.first.Off < B.first.Off;
1264 }
1265
stats(const RegisterSet & Rs,unsigned & Size,unsigned & Zero,unsigned & Sum) const1266 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1267 unsigned &Sum) const {
1268 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1269 UnsignedMap::const_iterator F = UseC.find(R);
1270 assert(F != UseC.end());
1271 unsigned UC = F->second;
1272 if (UC == 0)
1273 Zero++;
1274 Sum += UC;
1275 Size++;
1276 }
1277 }
1278
selectCandidates()1279 void HexagonGenInsert::selectCandidates() {
1280 // Some registers may have multiple valid candidates. Pick the best one
1281 // (or decide not to use any).
1282
1283 // Compute the "removability" measure of R:
1284 // For each potentially removable register R, record the number of regis-
1285 // ters with IF candidates, where R appears in at least one set.
1286 RegisterSet AllRMs;
1287 UnsignedMap UseC, RemC;
1288 IFMapType::iterator End = IFMap.end();
1289
1290 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1291 const IFListType &LL = I->second;
1292 RegisterSet TT;
1293 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1294 TT.insert(LL[i].second);
1295 for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1296 RemC[R]++;
1297 AllRMs.insert(TT);
1298 }
1299
1300 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1301 using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1302 using InstrSet = SmallSet<const MachineInstr *, 16>;
1303
1304 InstrSet UIs;
1305 // Count as the number of instructions in which R is used, not the
1306 // number of operands.
1307 use_iterator E = MRI->use_nodbg_end();
1308 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1309 UIs.insert(I->getParent());
1310 unsigned C = UIs.size();
1311 // Calculate a measure, which is the number of instructions using R,
1312 // minus the "removability" count computed earlier.
1313 unsigned D = RemC[R];
1314 UseC[R] = (C > D) ? C-D : 0; // doz
1315 }
1316
1317 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1318 if (!SelectAll0 && !SelectHas0)
1319 SelectAll0 = true;
1320
1321 // The smaller the number UseC for a given register R, the "less used"
1322 // R is aside from the opportunities for removal offered by generating
1323 // "insert" instructions.
1324 // Iterate over the IF map, and for those registers that have multiple
1325 // candidates, pick the minimum one according to IFOrdering.
1326 IFOrdering IFO(UseC, BaseOrd);
1327 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1328 IFListType &LL = I->second;
1329 if (LL.empty())
1330 continue;
1331 // Get the minimum element, remember it and clear the list. If the
1332 // element found is adequate, we will put it back on the list, other-
1333 // wise the list will remain empty, and the entry for this register
1334 // will be removed (i.e. this register will not be replaced by insert).
1335 IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1336 assert(MinI != LL.end());
1337 IFRecordWithRegSet M = *MinI;
1338 LL.clear();
1339
1340 // We want to make sure that this replacement will have a chance to be
1341 // beneficial, and that means that we want to have indication that some
1342 // register will be removed. The most likely registers to be eliminated
1343 // are the use operands in the definition of I->first. Accept/reject a
1344 // candidate based on how many of its uses it can potentially eliminate.
1345
1346 RegisterSet Us;
1347 const MachineInstr *DefI = MRI->getVRegDef(I->first);
1348 getInstrUses(DefI, Us);
1349 bool Accept = false;
1350
1351 if (SelectAll0) {
1352 bool All0 = true;
1353 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1354 if (UseC[R] == 0)
1355 continue;
1356 All0 = false;
1357 break;
1358 }
1359 Accept = All0;
1360 } else if (SelectHas0) {
1361 bool Has0 = false;
1362 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1363 if (UseC[R] != 0)
1364 continue;
1365 Has0 = true;
1366 break;
1367 }
1368 Accept = Has0;
1369 }
1370 if (Accept)
1371 LL.push_back(M);
1372 }
1373
1374 // Remove candidates that add uses of removable registers, unless the
1375 // removable registers are among replacement candidates.
1376 // Recompute the removable registers, since some candidates may have
1377 // been eliminated.
1378 AllRMs.clear();
1379 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1380 const IFListType &LL = I->second;
1381 if (!LL.empty())
1382 AllRMs.insert(LL[0].second);
1383 }
1384 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1385 IFListType &LL = I->second;
1386 if (LL.empty())
1387 continue;
1388 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1389 if (AllRMs[SR] || AllRMs[IR])
1390 LL.clear();
1391 }
1392
1393 pruneEmptyLists();
1394 }
1395
generateInserts()1396 bool HexagonGenInsert::generateInserts() {
1397 // Create a new register for each one from IFMap, and store them in the
1398 // map.
1399 UnsignedMap RegMap;
1400 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1401 unsigned VR = I->first;
1402 const TargetRegisterClass *RC = MRI->getRegClass(VR);
1403 unsigned NewVR = MRI->createVirtualRegister(RC);
1404 RegMap[VR] = NewVR;
1405 }
1406
1407 // We can generate the "insert" instructions using potentially stale re-
1408 // gisters: SrcR and InsR for a given VR may be among other registers that
1409 // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1410 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1411 MachineInstr *MI = MRI->getVRegDef(I->first);
1412 MachineBasicBlock &B = *MI->getParent();
1413 DebugLoc DL = MI->getDebugLoc();
1414 unsigned NewR = RegMap[I->first];
1415 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1416 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1417 : HII->get(Hexagon::S2_insertp);
1418 IFRecord IF = I->second[0].first;
1419 unsigned Wdh = IF.Wdh, Off = IF.Off;
1420 unsigned InsS = 0;
1421 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1422 InsS = Hexagon::isub_lo;
1423 if (Off >= 32) {
1424 InsS = Hexagon::isub_hi;
1425 Off -= 32;
1426 }
1427 }
1428 // Advance to the proper location for inserting instructions. This could
1429 // be B.end().
1430 MachineBasicBlock::iterator At = MI;
1431 if (MI->isPHI())
1432 At = B.getFirstNonPHI();
1433
1434 BuildMI(B, At, DL, D, NewR)
1435 .addReg(IF.SrcR)
1436 .addReg(IF.InsR, 0, InsS)
1437 .addImm(Wdh)
1438 .addImm(Off);
1439
1440 MRI->clearKillFlags(IF.SrcR);
1441 MRI->clearKillFlags(IF.InsR);
1442 }
1443
1444 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1445 MachineInstr *DefI = MRI->getVRegDef(I->first);
1446 MRI->replaceRegWith(I->first, RegMap[I->first]);
1447 DefI->eraseFromParent();
1448 }
1449
1450 return true;
1451 }
1452
removeDeadCode(MachineDomTreeNode * N)1453 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1454 bool Changed = false;
1455
1456 for (auto *DTN : children<MachineDomTreeNode*>(N))
1457 Changed |= removeDeadCode(DTN);
1458
1459 MachineBasicBlock *B = N->getBlock();
1460 std::vector<MachineInstr*> Instrs;
1461 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1462 Instrs.push_back(&*I);
1463
1464 for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1465 MachineInstr *MI = *I;
1466 unsigned Opc = MI->getOpcode();
1467 // Do not touch lifetime markers. This is why the target-independent DCE
1468 // cannot be used.
1469 if (Opc == TargetOpcode::LIFETIME_START ||
1470 Opc == TargetOpcode::LIFETIME_END)
1471 continue;
1472 bool Store = false;
1473 if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1474 continue;
1475
1476 bool AllDead = true;
1477 SmallVector<unsigned,2> Regs;
1478 for (const MachineOperand &MO : MI->operands()) {
1479 if (!MO.isReg() || !MO.isDef())
1480 continue;
1481 unsigned R = MO.getReg();
1482 if (!TargetRegisterInfo::isVirtualRegister(R) ||
1483 !MRI->use_nodbg_empty(R)) {
1484 AllDead = false;
1485 break;
1486 }
1487 Regs.push_back(R);
1488 }
1489 if (!AllDead)
1490 continue;
1491
1492 B->erase(MI);
1493 for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1494 MRI->markUsesInDebugValueAsUndef(Regs[I]);
1495 Changed = true;
1496 }
1497
1498 return Changed;
1499 }
1500
runOnMachineFunction(MachineFunction & MF)1501 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1502 if (skipFunction(MF.getFunction()))
1503 return false;
1504
1505 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1506 bool Changed = false;
1507
1508 // Sanity check: one, but not both.
1509 assert(!OptSelectAll0 || !OptSelectHas0);
1510
1511 IFMap.clear();
1512 BaseOrd.clear();
1513 CellOrd.clear();
1514
1515 const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1516 HII = ST.getInstrInfo();
1517 HRI = ST.getRegisterInfo();
1518 MFN = &MF;
1519 MRI = &MF.getRegInfo();
1520 MDT = &getAnalysis<MachineDominatorTree>();
1521
1522 // Clean up before any further processing, so that dead code does not
1523 // get used in a newly generated "insert" instruction. Have a custom
1524 // version of DCE that preserves lifetime markers. Without it, merging
1525 // of stack objects can fail to recognize and merge disjoint objects
1526 // leading to unnecessary stack growth.
1527 Changed = removeDeadCode(MDT->getRootNode());
1528
1529 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1530 BitTracker BTLoc(HE, MF);
1531 BTLoc.trace(isDebug());
1532 BTLoc.run();
1533 CellMapShadow MS(BTLoc);
1534 CMS = &MS;
1535
1536 buildOrderingMF(BaseOrd);
1537 buildOrderingBT(BaseOrd, CellOrd);
1538
1539 if (isDebug()) {
1540 dbgs() << "Cell ordering:\n";
1541 for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1542 I != E; ++I) {
1543 unsigned VR = I->first, Pos = I->second;
1544 dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1545 }
1546 }
1547
1548 // Collect candidates for conversion into the insert forms.
1549 MachineBasicBlock *RootB = MDT->getRoot();
1550 OrderedRegisterList AvailR(CellOrd);
1551
1552 const char *const TGName = "hexinsert";
1553 const char *const TGDesc = "Generate Insert Instructions";
1554
1555 {
1556 NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1557 TimingDetail);
1558 collectInBlock(RootB, AvailR);
1559 // Complete the information gathered in IFMap.
1560 computeRemovableRegisters();
1561 }
1562
1563 if (isDebug()) {
1564 dbgs() << "Candidates after collection:\n";
1565 dump_map();
1566 }
1567
1568 if (IFMap.empty())
1569 return Changed;
1570
1571 {
1572 NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1573 pruneCandidates();
1574 }
1575
1576 if (isDebug()) {
1577 dbgs() << "Candidates after pruning:\n";
1578 dump_map();
1579 }
1580
1581 if (IFMap.empty())
1582 return Changed;
1583
1584 {
1585 NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1586 selectCandidates();
1587 }
1588
1589 if (isDebug()) {
1590 dbgs() << "Candidates after selection:\n";
1591 dump_map();
1592 }
1593
1594 // Filter out vregs beyond the cutoff.
1595 if (VRegIndexCutoff.getPosition()) {
1596 unsigned Cutoff = VRegIndexCutoff;
1597
1598 using IterListType = SmallVector<IFMapType::iterator, 16>;
1599
1600 IterListType Out;
1601 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1602 unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1603 if (Idx >= Cutoff)
1604 Out.push_back(I);
1605 }
1606 for (unsigned i = 0, n = Out.size(); i < n; ++i)
1607 IFMap.erase(Out[i]);
1608 }
1609 if (IFMap.empty())
1610 return Changed;
1611
1612 {
1613 NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1614 TimingDetail);
1615 generateInserts();
1616 }
1617
1618 return true;
1619 }
1620
createHexagonGenInsert()1621 FunctionPass *llvm::createHexagonGenInsert() {
1622 return new HexagonGenInsert();
1623 }
1624
1625 //===----------------------------------------------------------------------===//
1626 // Public Constructor Functions
1627 //===----------------------------------------------------------------------===//
1628
1629 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1630 "Hexagon generate \"insert\" instructions", false, false)
1631 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1632 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1633 "Hexagon generate \"insert\" instructions", false, false)
1634