1 //===- HexagonGenInsert.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "BitTracker.h"
11 #include "HexagonBitTracker.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonRegisterInfo.h"
14 #include "HexagonSubtarget.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Timer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 #include <vector>
45 
46 #define DEBUG_TYPE "hexinsert"
47 
48 using namespace llvm;
49 
50 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
51   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
52 // The distance cutoff is selected based on the precheckin-perf results:
53 // cutoffs 20, 25, 35, and 40 are worse than 30.
54 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
55   cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
56   "generation."));
57 
58 // Limit the container sizes for extreme cases where we run out of memory.
59 static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
60   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
61 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
62   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));
63 
64 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
65   cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
66 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
67   cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
68   "generation"));
69 
70 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
71   cl::ZeroOrMore);
72 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
73   cl::ZeroOrMore);
74 // Whether to construct constant values via "insert". Could eliminate constant
75 // extenders, but often not practical.
76 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
77   cl::ZeroOrMore);
78 
79 // The preprocessor gets confused when the DEBUG macro is passed larger
80 // chunks of code. Use this function to detect debugging.
isDebug()81 inline static bool isDebug() {
82 #ifndef NDEBUG
83   return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
84 #else
85   return false;
86 #endif
87 }
88 
89 namespace {
90 
91   // Set of virtual registers, based on BitVector.
92   struct RegisterSet : private BitVector {
93     RegisterSet() = default;
RegisterSet__anon4ed23cb20111::RegisterSet94     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet__anon4ed23cb20111::RegisterSet95     RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
96 
97     using BitVector::clear;
98 
find_first__anon4ed23cb20111::RegisterSet99     unsigned find_first() const {
100       int First = BitVector::find_first();
101       if (First < 0)
102         return 0;
103       return x2v(First);
104     }
105 
find_next__anon4ed23cb20111::RegisterSet106     unsigned find_next(unsigned Prev) const {
107       int Next = BitVector::find_next(v2x(Prev));
108       if (Next < 0)
109         return 0;
110       return x2v(Next);
111     }
112 
insert__anon4ed23cb20111::RegisterSet113     RegisterSet &insert(unsigned R) {
114       unsigned Idx = v2x(R);
115       ensure(Idx);
116       return static_cast<RegisterSet&>(BitVector::set(Idx));
117     }
remove__anon4ed23cb20111::RegisterSet118     RegisterSet &remove(unsigned R) {
119       unsigned Idx = v2x(R);
120       if (Idx >= size())
121         return *this;
122       return static_cast<RegisterSet&>(BitVector::reset(Idx));
123     }
124 
insert__anon4ed23cb20111::RegisterSet125     RegisterSet &insert(const RegisterSet &Rs) {
126       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
127     }
remove__anon4ed23cb20111::RegisterSet128     RegisterSet &remove(const RegisterSet &Rs) {
129       return static_cast<RegisterSet&>(BitVector::reset(Rs));
130     }
131 
operator []__anon4ed23cb20111::RegisterSet132     reference operator[](unsigned R) {
133       unsigned Idx = v2x(R);
134       ensure(Idx);
135       return BitVector::operator[](Idx);
136     }
operator []__anon4ed23cb20111::RegisterSet137     bool operator[](unsigned R) const {
138       unsigned Idx = v2x(R);
139       assert(Idx < size());
140       return BitVector::operator[](Idx);
141     }
has__anon4ed23cb20111::RegisterSet142     bool has(unsigned R) const {
143       unsigned Idx = v2x(R);
144       if (Idx >= size())
145         return false;
146       return BitVector::test(Idx);
147     }
148 
empty__anon4ed23cb20111::RegisterSet149     bool empty() const {
150       return !BitVector::any();
151     }
includes__anon4ed23cb20111::RegisterSet152     bool includes(const RegisterSet &Rs) const {
153       // A.BitVector::test(B)  <=>  A-B != {}
154       return !Rs.BitVector::test(*this);
155     }
intersects__anon4ed23cb20111::RegisterSet156     bool intersects(const RegisterSet &Rs) const {
157       return BitVector::anyCommon(Rs);
158     }
159 
160   private:
ensure__anon4ed23cb20111::RegisterSet161     void ensure(unsigned Idx) {
162       if (size() <= Idx)
163         resize(std::max(Idx+1, 32U));
164     }
165 
v2x__anon4ed23cb20111::RegisterSet166     static inline unsigned v2x(unsigned v) {
167       return TargetRegisterInfo::virtReg2Index(v);
168     }
169 
x2v__anon4ed23cb20111::RegisterSet170     static inline unsigned x2v(unsigned x) {
171       return TargetRegisterInfo::index2VirtReg(x);
172     }
173   };
174 
175   struct PrintRegSet {
PrintRegSet__anon4ed23cb20111::PrintRegSet176     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
177       : RS(S), TRI(RI) {}
178 
179     friend raw_ostream &operator<< (raw_ostream &OS,
180           const PrintRegSet &P);
181 
182   private:
183     const RegisterSet &RS;
184     const TargetRegisterInfo *TRI;
185   };
186 
operator <<(raw_ostream & OS,const PrintRegSet & P)187   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
188     OS << '{';
189     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
190       OS << ' ' << printReg(R, P.TRI);
191     OS << " }";
192     return OS;
193   }
194 
195   // A convenience class to associate unsigned numbers (such as virtual
196   // registers) with unsigned numbers.
197   struct UnsignedMap : public DenseMap<unsigned,unsigned> {
198     UnsignedMap() = default;
199 
200   private:
201     using BaseType = DenseMap<unsigned, unsigned>;
202   };
203 
204   // A utility to establish an ordering between virtual registers:
205   // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
206   // This is meant as a cache for the ordering of virtual registers defined
207   // by a potentially expensive comparison function, or obtained by a proce-
208   // dure that should not be repeated each time two registers are compared.
209   struct RegisterOrdering : public UnsignedMap {
210     RegisterOrdering() = default;
211 
operator []__anon4ed23cb20111::RegisterOrdering212     unsigned operator[](unsigned VR) const {
213       const_iterator F = find(VR);
214       assert(F != end());
215       return F->second;
216     }
217 
218     // Add operator(), so that objects of this class can be used as
219     // comparators in std::sort et al.
operator ()__anon4ed23cb20111::RegisterOrdering220     bool operator() (unsigned VR1, unsigned VR2) const {
221       return operator[](VR1) < operator[](VR2);
222     }
223   };
224 
225   // Ordering of bit values. This class does not have operator[], but
226   // is supplies a comparison operator() for use in std:: algorithms.
227   // The order is as follows:
228   // - 0 < 1 < ref
229   // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
230   //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
231   struct BitValueOrdering {
BitValueOrdering__anon4ed23cb20111::BitValueOrdering232     BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
233 
234     bool operator() (const BitTracker::BitValue &V1,
235           const BitTracker::BitValue &V2) const;
236 
237     const RegisterOrdering &BaseOrd;
238   };
239 
240 } // end anonymous namespace
241 
operator ()(const BitTracker::BitValue & V1,const BitTracker::BitValue & V2) const242 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
243       const BitTracker::BitValue &V2) const {
244   if (V1 == V2)
245     return false;
246   // V1==0 => true, V2==0 => false
247   if (V1.is(0) || V2.is(0))
248     return V1.is(0);
249   // Neither of V1,V2 is 0, and V1!=V2.
250   // V2==1 => false, V1==1 => true
251   if (V2.is(1) || V1.is(1))
252     return !V2.is(1);
253   // Both V1,V2 are refs.
254   unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
255   if (Ind1 != Ind2)
256     return Ind1 < Ind2;
257   // If V1.Pos==V2.Pos
258   assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
259   return V1.RefI.Pos < V2.RefI.Pos;
260 }
261 
262 namespace {
263 
264   // Cache for the BitTracker's cell map. Map lookup has a logarithmic
265   // complexity, this class will memoize the lookup results to reduce
266   // the access time for repeated lookups of the same cell.
267   struct CellMapShadow {
CellMapShadow__anon4ed23cb20211::CellMapShadow268     CellMapShadow(const BitTracker &T) : BT(T) {}
269 
lookup__anon4ed23cb20211::CellMapShadow270     const BitTracker::RegisterCell &lookup(unsigned VR) {
271       unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
272       // Grow the vector to at least 32 elements.
273       if (RInd >= CVect.size())
274         CVect.resize(std::max(RInd+16, 32U), nullptr);
275       const BitTracker::RegisterCell *CP = CVect[RInd];
276       if (CP == nullptr)
277         CP = CVect[RInd] = &BT.lookup(VR);
278       return *CP;
279     }
280 
281     const BitTracker &BT;
282 
283   private:
284     using CellVectType = std::vector<const BitTracker::RegisterCell *>;
285 
286     CellVectType CVect;
287   };
288 
289   // Comparator class for lexicographic ordering of virtual registers
290   // according to the corresponding BitTracker::RegisterCell objects.
291   struct RegisterCellLexCompare {
RegisterCellLexCompare__anon4ed23cb20211::RegisterCellLexCompare292     RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
293       : BitOrd(BO), CM(M) {}
294 
295     bool operator() (unsigned VR1, unsigned VR2) const;
296 
297   private:
298     const BitValueOrdering &BitOrd;
299     CellMapShadow &CM;
300   };
301 
302   // Comparator class for lexicographic ordering of virtual registers
303   // according to the specified bits of the corresponding BitTracker::
304   // RegisterCell objects.
305   // Specifically, this class will be used to compare bit B of a register
306   // cell for a selected virtual register R with bit N of any register
307   // other than R.
308   struct RegisterCellBitCompareSel {
RegisterCellBitCompareSel__anon4ed23cb20211::RegisterCellBitCompareSel309     RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
310           const BitValueOrdering &BO, CellMapShadow &M)
311       : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
312 
313     bool operator() (unsigned VR1, unsigned VR2) const;
314 
315   private:
316     const unsigned SelR, SelB;
317     const unsigned BitN;
318     const BitValueOrdering &BitOrd;
319     CellMapShadow &CM;
320   };
321 
322 } // end anonymous namespace
323 
operator ()(unsigned VR1,unsigned VR2) const324 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
325   // Ordering of registers, made up from two given orderings:
326   // - the ordering of the register numbers, and
327   // - the ordering of register cells.
328   // Def. R1 < R2 if:
329   // - cell(R1) < cell(R2), or
330   // - cell(R1) == cell(R2), and index(R1) < index(R2).
331   //
332   // For register cells, the ordering is lexicographic, with index 0 being
333   // the most significant.
334   if (VR1 == VR2)
335     return false;
336 
337   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
338   uint16_t W1 = RC1.width(), W2 = RC2.width();
339   for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
340     const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
341     if (V1 != V2)
342       return BitOrd(V1, V2);
343   }
344   // Cells are equal up until the common length.
345   if (W1 != W2)
346     return W1 < W2;
347 
348   return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
349 }
350 
operator ()(unsigned VR1,unsigned VR2) const351 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
352   if (VR1 == VR2)
353     return false;
354   const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
355   const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
356   uint16_t W1 = RC1.width(), W2 = RC2.width();
357   uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
358   uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
359   // If Bit1 exceeds the width of VR1, then:
360   // - return false, if at the same time Bit2 exceeds VR2, or
361   // - return true, otherwise.
362   // (I.e. "a bit value that does not exist is less than any bit value
363   // that does exist".)
364   if (W1 <= Bit1)
365     return Bit2 < W2;
366   // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
367   if (W2 <= Bit2)
368     return false;
369 
370   const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
371   if (V1 != V2)
372     return BitOrd(V1, V2);
373   return false;
374 }
375 
376 namespace {
377 
378   class OrderedRegisterList {
379     using ListType = std::vector<unsigned>;
380     const unsigned MaxSize;
381 
382   public:
OrderedRegisterList(const RegisterOrdering & RO)383     OrderedRegisterList(const RegisterOrdering &RO)
384       : MaxSize(MaxORLSize), Ord(RO) {}
385 
386     void insert(unsigned VR);
387     void remove(unsigned VR);
388 
operator [](unsigned Idx) const389     unsigned operator[](unsigned Idx) const {
390       assert(Idx < Seq.size());
391       return Seq[Idx];
392     }
393 
size() const394     unsigned size() const {
395       return Seq.size();
396     }
397 
398     using iterator = ListType::iterator;
399     using const_iterator = ListType::const_iterator;
400 
begin()401     iterator begin() { return Seq.begin(); }
end()402     iterator end() { return Seq.end(); }
begin() const403     const_iterator begin() const { return Seq.begin(); }
end() const404     const_iterator end() const { return Seq.end(); }
405 
406     // Convenience function to convert an iterator to the corresponding index.
idx(iterator It) const407     unsigned idx(iterator It) const { return It-begin(); }
408 
409   private:
410     ListType Seq;
411     const RegisterOrdering &Ord;
412   };
413 
414   struct PrintORL {
PrintORL__anon4ed23cb20311::PrintORL415     PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
416       : RL(L), TRI(RI) {}
417 
418     friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
419 
420   private:
421     const OrderedRegisterList &RL;
422     const TargetRegisterInfo *TRI;
423   };
424 
operator <<(raw_ostream & OS,const PrintORL & P)425   raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
426     OS << '(';
427     OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
428     for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
429       if (I != B)
430         OS << ", ";
431       OS << printReg(*I, P.TRI);
432     }
433     OS << ')';
434     return OS;
435   }
436 
437 } // end anonymous namespace
438 
insert(unsigned VR)439 void OrderedRegisterList::insert(unsigned VR) {
440   iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
441   if (L == Seq.end())
442     Seq.push_back(VR);
443   else
444     Seq.insert(L, VR);
445 
446   unsigned S = Seq.size();
447   if (S > MaxSize)
448     Seq.resize(MaxSize);
449   assert(Seq.size() <= MaxSize);
450 }
451 
remove(unsigned VR)452 void OrderedRegisterList::remove(unsigned VR) {
453   iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
454   if (L != Seq.end())
455     Seq.erase(L);
456 }
457 
458 namespace {
459 
460   // A record of the insert form. The fields correspond to the operands
461   // of the "insert" instruction:
462   // ... = insert(SrcR, InsR, #Wdh, #Off)
463   struct IFRecord {
IFRecord__anon4ed23cb20411::IFRecord464     IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
465       : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
466 
467     unsigned SrcR, InsR;
468     uint16_t Wdh, Off;
469   };
470 
471   struct PrintIFR {
PrintIFR__anon4ed23cb20411::PrintIFR472     PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
473       : IFR(R), TRI(RI) {}
474 
475   private:
476     friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
477 
478     const IFRecord &IFR;
479     const TargetRegisterInfo *TRI;
480   };
481 
operator <<(raw_ostream & OS,const PrintIFR & P)482   raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
483     unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
484     OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
485        << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
486     return OS;
487   }
488 
489   using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
490 
491 } // end anonymous namespace
492 
493 namespace llvm {
494 
495   void initializeHexagonGenInsertPass(PassRegistry&);
496   FunctionPass *createHexagonGenInsert();
497 
498 } // end namespace llvm
499 
500 namespace {
501 
502   class HexagonGenInsert : public MachineFunctionPass {
503   public:
504     static char ID;
505 
HexagonGenInsert()506     HexagonGenInsert() : MachineFunctionPass(ID) {
507       initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
508     }
509 
getPassName() const510     StringRef getPassName() const override {
511       return "Hexagon generate \"insert\" instructions";
512     }
513 
getAnalysisUsage(AnalysisUsage & AU) const514     void getAnalysisUsage(AnalysisUsage &AU) const override {
515       AU.addRequired<MachineDominatorTree>();
516       AU.addPreserved<MachineDominatorTree>();
517       MachineFunctionPass::getAnalysisUsage(AU);
518     }
519 
520     bool runOnMachineFunction(MachineFunction &MF) override;
521 
522   private:
523     using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
524 
525     void buildOrderingMF(RegisterOrdering &RO) const;
526     void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
527     bool isIntClass(const TargetRegisterClass *RC) const;
528     bool isConstant(unsigned VR) const;
529     bool isSmallConstant(unsigned VR) const;
530     bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
531           uint16_t L, uint16_t S) const;
532     bool findSelfReference(unsigned VR) const;
533     bool findNonSelfReference(unsigned VR) const;
534     void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
535     void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
536     unsigned distance(const MachineBasicBlock *FromB,
537           const MachineBasicBlock *ToB, const UnsignedMap &RPO,
538           PairMapType &M) const;
539     unsigned distance(MachineBasicBlock::const_iterator FromI,
540           MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
541           PairMapType &M) const;
542     bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
543     void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
544     void findRemovableRegisters(unsigned VR, IFRecord IF,
545           RegisterSet &RMs) const;
546     void computeRemovableRegisters();
547 
548     void pruneEmptyLists();
549     void pruneCoveredSets(unsigned VR);
550     void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
551     void pruneRegCopies(unsigned VR);
552     void pruneCandidates();
553     void selectCandidates();
554     bool generateInserts();
555 
556     bool removeDeadCode(MachineDomTreeNode *N);
557 
558     // IFRecord coupled with a set of potentially removable registers:
559     using IFListType = std::vector<IFRecordWithRegSet>;
560     using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
561 
562     void dump_map() const;
563 
564     const HexagonInstrInfo *HII = nullptr;
565     const HexagonRegisterInfo *HRI = nullptr;
566 
567     MachineFunction *MFN;
568     MachineRegisterInfo *MRI;
569     MachineDominatorTree *MDT;
570     CellMapShadow *CMS;
571 
572     RegisterOrdering BaseOrd;
573     RegisterOrdering CellOrd;
574     IFMapType IFMap;
575   };
576 
577 } // end anonymous namespace
578 
579 char HexagonGenInsert::ID = 0;
580 
dump_map() const581 void HexagonGenInsert::dump_map() const {
582   using iterator = IFMapType::const_iterator;
583 
584   for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
585     dbgs() << "  " << printReg(I->first, HRI) << ":\n";
586     const IFListType &LL = I->second;
587     for (unsigned i = 0, n = LL.size(); i < n; ++i)
588       dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
589              << PrintRegSet(LL[i].second, HRI) << '\n';
590   }
591 }
592 
buildOrderingMF(RegisterOrdering & RO) const593 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
594   unsigned Index = 0;
595 
596   using mf_iterator = MachineFunction::const_iterator;
597 
598   for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
599     const MachineBasicBlock &B = *A;
600     if (!CMS->BT.reached(&B))
601       continue;
602 
603     using mb_iterator = MachineBasicBlock::const_iterator;
604 
605     for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
606       const MachineInstr *MI = &*I;
607       for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
608         const MachineOperand &MO = MI->getOperand(i);
609         if (MO.isReg() && MO.isDef()) {
610           unsigned R = MO.getReg();
611           assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
612           if (TargetRegisterInfo::isVirtualRegister(R))
613             RO.insert(std::make_pair(R, Index++));
614         }
615       }
616     }
617   }
618   // Since some virtual registers may have had their def and uses eliminated,
619   // they are no longer referenced in the code, and so they will not appear
620   // in the map.
621 }
622 
buildOrderingBT(RegisterOrdering & RB,RegisterOrdering & RO) const623 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
624       RegisterOrdering &RO) const {
625   // Create a vector of all virtual registers (collect them from the base
626   // ordering RB), and then sort it using the RegisterCell comparator.
627   BitValueOrdering BVO(RB);
628   RegisterCellLexCompare LexCmp(BVO, *CMS);
629 
630   using SortableVectorType = std::vector<unsigned>;
631 
632   SortableVectorType VRs;
633   for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
634     VRs.push_back(I->first);
635   llvm::sort(VRs.begin(), VRs.end(), LexCmp);
636   // Transfer the results to the outgoing register ordering.
637   for (unsigned i = 0, n = VRs.size(); i < n; ++i)
638     RO.insert(std::make_pair(VRs[i], i));
639 }
640 
isIntClass(const TargetRegisterClass * RC) const641 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
642   return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
643 }
644 
isConstant(unsigned VR) const645 bool HexagonGenInsert::isConstant(unsigned VR) const {
646   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
647   uint16_t W = RC.width();
648   for (uint16_t i = 0; i < W; ++i) {
649     const BitTracker::BitValue &BV = RC[i];
650     if (BV.is(0) || BV.is(1))
651       continue;
652     return false;
653   }
654   return true;
655 }
656 
isSmallConstant(unsigned VR) const657 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
658   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
659   uint16_t W = RC.width();
660   if (W > 64)
661     return false;
662   uint64_t V = 0, B = 1;
663   for (uint16_t i = 0; i < W; ++i) {
664     const BitTracker::BitValue &BV = RC[i];
665     if (BV.is(1))
666       V |= B;
667     else if (!BV.is(0))
668       return false;
669     B <<= 1;
670   }
671 
672   // For 32-bit registers, consider: Rd = #s16.
673   if (W == 32)
674     return isInt<16>(V);
675 
676   // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
677   return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
678 }
679 
isValidInsertForm(unsigned DstR,unsigned SrcR,unsigned InsR,uint16_t L,uint16_t S) const680 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
681       unsigned InsR, uint16_t L, uint16_t S) const {
682   const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
683   const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
684   const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
685   // Only integet (32-/64-bit) register classes.
686   if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
687     return false;
688   // The "source" register must be of the same class as DstR.
689   if (DstRC != SrcRC)
690     return false;
691   if (DstRC == InsRC)
692     return true;
693   // A 64-bit register can only be generated from other 64-bit registers.
694   if (DstRC == &Hexagon::DoubleRegsRegClass)
695     return false;
696   // Otherwise, the L and S cannot span 32-bit word boundary.
697   if (S < 32 && S+L > 32)
698     return false;
699   return true;
700 }
701 
findSelfReference(unsigned VR) const702 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
703   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
704   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
705     const BitTracker::BitValue &V = RC[i];
706     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
707       return true;
708   }
709   return false;
710 }
711 
findNonSelfReference(unsigned VR) const712 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
713   BitTracker::RegisterCell RC = CMS->lookup(VR);
714   for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
715     const BitTracker::BitValue &V = RC[i];
716     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
717       return true;
718   }
719   return false;
720 }
721 
getInstrDefs(const MachineInstr * MI,RegisterSet & Defs) const722 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
723       RegisterSet &Defs) const {
724   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
725     const MachineOperand &MO = MI->getOperand(i);
726     if (!MO.isReg() || !MO.isDef())
727       continue;
728     unsigned R = MO.getReg();
729     if (!TargetRegisterInfo::isVirtualRegister(R))
730       continue;
731     Defs.insert(R);
732   }
733 }
734 
getInstrUses(const MachineInstr * MI,RegisterSet & Uses) const735 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
736       RegisterSet &Uses) const {
737   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
738     const MachineOperand &MO = MI->getOperand(i);
739     if (!MO.isReg() || !MO.isUse())
740       continue;
741     unsigned R = MO.getReg();
742     if (!TargetRegisterInfo::isVirtualRegister(R))
743       continue;
744     Uses.insert(R);
745   }
746 }
747 
distance(const MachineBasicBlock * FromB,const MachineBasicBlock * ToB,const UnsignedMap & RPO,PairMapType & M) const748 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
749       const MachineBasicBlock *ToB, const UnsignedMap &RPO,
750       PairMapType &M) const {
751   // Forward distance from the end of a block to the beginning of it does
752   // not make sense. This function should not be called with FromB == ToB.
753   assert(FromB != ToB);
754 
755   unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
756   // If we have already computed it, return the cached result.
757   PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
758   if (F != M.end())
759     return F->second;
760   unsigned ToRPO = RPO.lookup(ToN);
761 
762   unsigned MaxD = 0;
763 
764   using pred_iterator = MachineBasicBlock::const_pred_iterator;
765 
766   for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
767     const MachineBasicBlock *PB = *I;
768     // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
769     // along that path will be 0, and we don't need to do any calculations
770     // on it.
771     if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
772       continue;
773     unsigned D = PB->size() + distance(FromB, PB, RPO, M);
774     if (D > MaxD)
775       MaxD = D;
776   }
777 
778   // Memoize the result for later lookup.
779   M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
780   return MaxD;
781 }
782 
distance(MachineBasicBlock::const_iterator FromI,MachineBasicBlock::const_iterator ToI,const UnsignedMap & RPO,PairMapType & M) const783 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
784       MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
785       PairMapType &M) const {
786   const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
787   if (FB == TB)
788     return std::distance(FromI, ToI);
789   unsigned D1 = std::distance(TB->begin(), ToI);
790   unsigned D2 = distance(FB, TB, RPO, M);
791   unsigned D3 = std::distance(FromI, FB->end());
792   return D1+D2+D3;
793 }
794 
findRecordInsertForms(unsigned VR,OrderedRegisterList & AVs)795 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
796       OrderedRegisterList &AVs) {
797   if (isDebug()) {
798     dbgs() << __func__ << ": " << printReg(VR, HRI)
799            << "  AVs: " << PrintORL(AVs, HRI) << "\n";
800   }
801   if (AVs.size() == 0)
802     return false;
803 
804   using iterator = OrderedRegisterList::iterator;
805 
806   BitValueOrdering BVO(BaseOrd);
807   const BitTracker::RegisterCell &RC = CMS->lookup(VR);
808   uint16_t W = RC.width();
809 
810   using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
811   using RSListType = std::vector<RSRecord>;
812   // Have a map, with key being the matching prefix length, and the value
813   // being the list of pairs (R,S), where R's prefix matches VR at S.
814   // (DenseMap<uint16_t,RSListType> fails to instantiate.)
815   using LRSMapType = DenseMap<unsigned, RSListType>;
816   LRSMapType LM;
817 
818   // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
819   // and find matching prefixes from AVs with the rotated RC. Such a prefix
820   // would match a string of bits (of length L) in RC starting at S.
821   for (uint16_t S = 0; S < W; ++S) {
822     iterator B = AVs.begin(), E = AVs.end();
823     // The registers in AVs are ordered according to the lexical order of
824     // the corresponding register cells. This means that the range of regis-
825     // ters in AVs that match a prefix of length L+1 will be contained in
826     // the range that matches a prefix of length L. This means that we can
827     // keep narrowing the search space as the prefix length goes up. This
828     // helps reduce the overall complexity of the search.
829     uint16_t L;
830     for (L = 0; L < W-S; ++L) {
831       // Compare against VR's bits starting at S, which emulates rotation
832       // of VR by S.
833       RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
834       iterator NewB = std::lower_bound(B, E, VR, RCB);
835       iterator NewE = std::upper_bound(NewB, E, VR, RCB);
836       // For the registers that are eliminated from the next range, L is
837       // the longest prefix matching VR at position S (their prefixes
838       // differ from VR at S+L). If L>0, record this information for later
839       // use.
840       if (L > 0) {
841         for (iterator I = B; I != NewB; ++I)
842           LM[L].push_back(std::make_pair(*I, S));
843         for (iterator I = NewE; I != E; ++I)
844           LM[L].push_back(std::make_pair(*I, S));
845       }
846       B = NewB, E = NewE;
847       if (B == E)
848         break;
849     }
850     // Record the final register range. If this range is non-empty, then
851     // L=W-S.
852     assert(B == E || L == W-S);
853     if (B != E) {
854       for (iterator I = B; I != E; ++I)
855         LM[L].push_back(std::make_pair(*I, S));
856       // If B!=E, then we found a range of registers whose prefixes cover the
857       // rest of VR from position S. There is no need to further advance S.
858       break;
859     }
860   }
861 
862   if (isDebug()) {
863     dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
864     for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
865       dbgs() << "  L=" << I->first << ':';
866       const RSListType &LL = I->second;
867       for (unsigned i = 0, n = LL.size(); i < n; ++i)
868         dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
869                << LL[i].second << ')';
870       dbgs() << '\n';
871     }
872   }
873 
874   bool Recorded = false;
875 
876   for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
877     unsigned SrcR = *I;
878     int FDi = -1, LDi = -1;   // First/last different bit.
879     const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
880     uint16_t AW = AC.width();
881     for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
882       if (RC[i] == AC[i])
883         continue;
884       if (FDi == -1)
885         FDi = i;
886       LDi = i;
887     }
888     if (FDi == -1)
889       continue;  // TODO (future): Record identical registers.
890     // Look for a register whose prefix could patch the range [FD..LD]
891     // where VR and SrcR differ.
892     uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
893     uint16_t MinL = LD-FD+1;
894     for (uint16_t L = MinL; L < W; ++L) {
895       LRSMapType::iterator F = LM.find(L);
896       if (F == LM.end())
897         continue;
898       RSListType &LL = F->second;
899       for (unsigned i = 0, n = LL.size(); i < n; ++i) {
900         uint16_t S = LL[i].second;
901         // MinL is the minimum length of the prefix. Any length above MinL
902         // allows some flexibility as to where the prefix can start:
903         // given the extra length EL=L-MinL, the prefix must start between
904         // max(0,FD-EL) and FD.
905         if (S > FD)   // Starts too late.
906           continue;
907         uint16_t EL = L-MinL;
908         uint16_t LowS = (EL < FD) ? FD-EL : 0;
909         if (S < LowS) // Starts too early.
910           continue;
911         unsigned InsR = LL[i].first;
912         if (!isValidInsertForm(VR, SrcR, InsR, L, S))
913           continue;
914         if (isDebug()) {
915           dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
916                  << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
917                  << S << ")\n";
918         }
919         IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
920         IFMap[VR].push_back(RR);
921         Recorded = true;
922       }
923     }
924   }
925 
926   return Recorded;
927 }
928 
collectInBlock(MachineBasicBlock * B,OrderedRegisterList & AVs)929 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
930       OrderedRegisterList &AVs) {
931   if (isDebug())
932     dbgs() << "visiting block " << printMBBReference(*B) << "\n";
933 
934   // First, check if this block is reachable at all. If not, the bit tracker
935   // will not have any information about registers in it.
936   if (!CMS->BT.reached(B))
937     return;
938 
939   bool DoConst = OptConst;
940   // Keep a separate set of registers defined in this block, so that we
941   // can remove them from the list of available registers once all DT
942   // successors have been processed.
943   RegisterSet BlockDefs, InsDefs;
944   for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
945     MachineInstr *MI = &*I;
946     InsDefs.clear();
947     getInstrDefs(MI, InsDefs);
948     // Leave those alone. They are more transparent than "insert".
949     bool Skip = MI->isCopy() || MI->isRegSequence();
950 
951     if (!Skip) {
952       // Visit all defined registers, and attempt to find the corresponding
953       // "insert" representations.
954       for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
955         // Do not collect registers that are known to be compile-time cons-
956         // tants, unless requested.
957         if (!DoConst && isConstant(VR))
958           continue;
959         // If VR's cell contains a reference to VR, then VR cannot be defined
960         // via "insert". If VR is a constant that can be generated in a single
961         // instruction (without constant extenders), generating it via insert
962         // makes no sense.
963         if (findSelfReference(VR) || isSmallConstant(VR))
964           continue;
965 
966         findRecordInsertForms(VR, AVs);
967         // Stop if the map size is too large.
968         if (IFMap.size() > MaxIFMSize)
969           return;
970       }
971     }
972 
973     // Insert the defined registers into the list of available registers
974     // after they have been processed.
975     for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
976       AVs.insert(VR);
977     BlockDefs.insert(InsDefs);
978   }
979 
980   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
981     MachineBasicBlock *SB = DTN->getBlock();
982     collectInBlock(SB, AVs);
983   }
984 
985   for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
986     AVs.remove(VR);
987 }
988 
findRemovableRegisters(unsigned VR,IFRecord IF,RegisterSet & RMs) const989 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
990       RegisterSet &RMs) const {
991   // For a given register VR and a insert form, find the registers that are
992   // used by the current definition of VR, and which would no longer be
993   // needed for it after the definition of VR is replaced with the insert
994   // form. These are the registers that could potentially become dead.
995   RegisterSet Regs[2];
996 
997   unsigned S = 0;  // Register set selector.
998   Regs[S].insert(VR);
999 
1000   while (!Regs[S].empty()) {
1001     // Breadth-first search.
1002     unsigned OtherS = 1-S;
1003     Regs[OtherS].clear();
1004     for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
1005       Regs[S].remove(R);
1006       if (R == IF.SrcR || R == IF.InsR)
1007         continue;
1008       // Check if a given register has bits that are references to any other
1009       // registers. This is to detect situations where the instruction that
1010       // defines register R takes register Q as an operand, but R itself does
1011       // not contain any bits from Q. Loads are examples of how this could
1012       // happen:
1013       //   R = load Q
1014       // In this case (assuming we do not have any knowledge about the loaded
1015       // value), we must not treat R as a "conveyance" of the bits from Q.
1016       // (The information in BT about R's bits would have them as constants,
1017       // in case of zero-extending loads, or refs to R.)
1018       if (!findNonSelfReference(R))
1019         continue;
1020       RMs.insert(R);
1021       const MachineInstr *DefI = MRI->getVRegDef(R);
1022       assert(DefI);
1023       // Do not iterate past PHI nodes to avoid infinite loops. This can
1024       // make the final set a bit less accurate, but the removable register
1025       // sets are an approximation anyway.
1026       if (DefI->isPHI())
1027         continue;
1028       getInstrUses(DefI, Regs[OtherS]);
1029     }
1030     S = OtherS;
1031   }
1032   // The register VR is added to the list as a side-effect of the algorithm,
1033   // but it is not "potentially removable". A potentially removable register
1034   // is one that may become unused (dead) after conversion to the insert form
1035   // IF, and obviously VR (or its replacement) will not become dead by apply-
1036   // ing IF.
1037   RMs.remove(VR);
1038 }
1039 
computeRemovableRegisters()1040 void HexagonGenInsert::computeRemovableRegisters() {
1041   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1042     IFListType &LL = I->second;
1043     for (unsigned i = 0, n = LL.size(); i < n; ++i)
1044       findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1045   }
1046 }
1047 
pruneEmptyLists()1048 void HexagonGenInsert::pruneEmptyLists() {
1049   // Remove all entries from the map, where the register has no insert forms
1050   // associated with it.
1051   using IterListType = SmallVector<IFMapType::iterator, 16>;
1052   IterListType Prune;
1053   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1054     if (I->second.empty())
1055       Prune.push_back(I);
1056   }
1057   for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1058     IFMap.erase(Prune[i]);
1059 }
1060 
pruneCoveredSets(unsigned VR)1061 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1062   IFMapType::iterator F = IFMap.find(VR);
1063   assert(F != IFMap.end());
1064   IFListType &LL = F->second;
1065 
1066   // First, examine the IF candidates for register VR whose removable-regis-
1067   // ter sets are empty. This means that a given candidate will not help eli-
1068   // minate any registers, but since "insert" is not a constant-extendable
1069   // instruction, using such a candidate may reduce code size if the defini-
1070   // tion of VR is constant-extended.
1071   // If there exists a candidate with a non-empty set, the ones with empty
1072   // sets will not be used and can be removed.
1073   MachineInstr *DefVR = MRI->getVRegDef(VR);
1074   bool DefEx = HII->isConstExtended(*DefVR);
1075   bool HasNE = false;
1076   for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1077     if (LL[i].second.empty())
1078       continue;
1079     HasNE = true;
1080     break;
1081   }
1082   if (!DefEx || HasNE) {
1083     // The definition of VR is not constant-extended, or there is a candidate
1084     // with a non-empty set. Remove all candidates with empty sets.
1085     auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1086       return IR.second.empty();
1087     };
1088     auto End = llvm::remove_if(LL, IsEmpty);
1089     if (End != LL.end())
1090       LL.erase(End, LL.end());
1091   } else {
1092     // The definition of VR is constant-extended, and all candidates have
1093     // empty removable-register sets. Pick the maximum candidate, and remove
1094     // all others. The "maximum" does not have any special meaning here, it
1095     // is only so that the candidate that will remain on the list is selec-
1096     // ted deterministically.
1097     IFRecord MaxIF = LL[0].first;
1098     for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1099       // If LL[MaxI] < LL[i], then MaxI = i.
1100       const IFRecord &IF = LL[i].first;
1101       unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1102       unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1103       if (M0 > R0)
1104         continue;
1105       if (M0 == R0) {
1106         if (M1 > R1)
1107           continue;
1108         if (M1 == R1) {
1109           if (MaxIF.Wdh > IF.Wdh)
1110             continue;
1111           if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1112             continue;
1113         }
1114       }
1115       // MaxIF < IF.
1116       MaxIF = IF;
1117     }
1118     // Remove everything except the maximum candidate. All register sets
1119     // are empty, so no need to preserve anything.
1120     LL.clear();
1121     LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1122   }
1123 
1124   // Now, remove those whose sets of potentially removable registers are
1125   // contained in another IF candidate for VR. For example, given these
1126   // candidates for %45,
1127   //   %45:
1128   //     (%44,%41,#9,#8), { %42 }
1129   //     (%43,%41,#9,#8), { %42 %44 }
1130   // remove the first one, since it is contained in the second one.
1131   for (unsigned i = 0, n = LL.size(); i < n; ) {
1132     const RegisterSet &RMi = LL[i].second;
1133     unsigned j = 0;
1134     while (j < n) {
1135       if (j != i && LL[j].second.includes(RMi))
1136         break;
1137       j++;
1138     }
1139     if (j == n) {   // RMi not contained in anything else.
1140       i++;
1141       continue;
1142     }
1143     LL.erase(LL.begin()+i);
1144     n = LL.size();
1145   }
1146 }
1147 
pruneUsesTooFar(unsigned VR,const UnsignedMap & RPO,PairMapType & M)1148 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1149       PairMapType &M) {
1150   IFMapType::iterator F = IFMap.find(VR);
1151   assert(F != IFMap.end());
1152   IFListType &LL = F->second;
1153   unsigned Cutoff = VRegDistCutoff;
1154   const MachineInstr *DefV = MRI->getVRegDef(VR);
1155 
1156   for (unsigned i = LL.size(); i > 0; --i) {
1157     unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1158     const MachineInstr *DefS = MRI->getVRegDef(SR);
1159     const MachineInstr *DefI = MRI->getVRegDef(IR);
1160     unsigned DSV = distance(DefS, DefV, RPO, M);
1161     if (DSV < Cutoff) {
1162       unsigned DIV = distance(DefI, DefV, RPO, M);
1163       if (DIV < Cutoff)
1164         continue;
1165     }
1166     LL.erase(LL.begin()+(i-1));
1167   }
1168 }
1169 
pruneRegCopies(unsigned VR)1170 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1171   IFMapType::iterator F = IFMap.find(VR);
1172   assert(F != IFMap.end());
1173   IFListType &LL = F->second;
1174 
1175   auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1176     return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1177   };
1178   auto End = llvm::remove_if(LL, IsCopy);
1179   if (End != LL.end())
1180     LL.erase(End, LL.end());
1181 }
1182 
pruneCandidates()1183 void HexagonGenInsert::pruneCandidates() {
1184   // Remove candidates that are not beneficial, regardless of the final
1185   // selection method.
1186   // First, remove candidates whose potentially removable set is a subset
1187   // of another candidate's set.
1188   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1189     pruneCoveredSets(I->first);
1190 
1191   UnsignedMap RPO;
1192 
1193   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1194 
1195   RPOTType RPOT(MFN);
1196   unsigned RPON = 0;
1197   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1198     RPO[(*I)->getNumber()] = RPON++;
1199 
1200   PairMapType Memo; // Memoization map for distance calculation.
1201   // Remove candidates that would use registers defined too far away.
1202   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1203     pruneUsesTooFar(I->first, RPO, Memo);
1204 
1205   pruneEmptyLists();
1206 
1207   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1208     pruneRegCopies(I->first);
1209 }
1210 
1211 namespace {
1212 
1213   // Class for comparing IF candidates for registers that have multiple of
1214   // them. The smaller the candidate, according to this ordering, the better.
1215   // First, compare the number of zeros in the associated potentially remova-
1216   // ble register sets. "Zero" indicates that the register is very likely to
1217   // become dead after this transformation.
1218   // Second, compare "averages", i.e. use-count per size. The lower wins.
1219   // After that, it does not really matter which one is smaller. Resolve
1220   // the tie in some deterministic way.
1221   struct IFOrdering {
IFOrdering__anon4ed23cb20811::IFOrdering1222     IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1223       : UseC(UC), BaseOrd(BO) {}
1224 
1225     bool operator() (const IFRecordWithRegSet &A,
1226                      const IFRecordWithRegSet &B) const;
1227 
1228   private:
1229     void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1230           unsigned &Sum) const;
1231 
1232     const UnsignedMap &UseC;
1233     const RegisterOrdering &BaseOrd;
1234   };
1235 
1236 } // end anonymous namespace
1237 
operator ()(const IFRecordWithRegSet & A,const IFRecordWithRegSet & B) const1238 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1239       const IFRecordWithRegSet &B) const {
1240   unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1241   unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1242   stats(A.second, SizeA, ZeroA, SumA);
1243   stats(B.second, SizeB, ZeroB, SumB);
1244 
1245   // We will pick the minimum element. The more zeros, the better.
1246   if (ZeroA != ZeroB)
1247     return ZeroA > ZeroB;
1248   // Compare SumA/SizeA with SumB/SizeB, lower is better.
1249   uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1250   if (AvgA != AvgB)
1251     return AvgA < AvgB;
1252 
1253   // The sets compare identical so far. Resort to comparing the IF records.
1254   // The actual values don't matter, this is only for determinism.
1255   unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1256   if (OSA != OSB)
1257     return OSA < OSB;
1258   unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1259   if (OIA != OIB)
1260     return OIA < OIB;
1261   if (A.first.Wdh != B.first.Wdh)
1262     return A.first.Wdh < B.first.Wdh;
1263   return A.first.Off < B.first.Off;
1264 }
1265 
stats(const RegisterSet & Rs,unsigned & Size,unsigned & Zero,unsigned & Sum) const1266 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1267       unsigned &Sum) const {
1268   for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1269     UnsignedMap::const_iterator F = UseC.find(R);
1270     assert(F != UseC.end());
1271     unsigned UC = F->second;
1272     if (UC == 0)
1273       Zero++;
1274     Sum += UC;
1275     Size++;
1276   }
1277 }
1278 
selectCandidates()1279 void HexagonGenInsert::selectCandidates() {
1280   // Some registers may have multiple valid candidates. Pick the best one
1281   // (or decide not to use any).
1282 
1283   // Compute the "removability" measure of R:
1284   // For each potentially removable register R, record the number of regis-
1285   // ters with IF candidates, where R appears in at least one set.
1286   RegisterSet AllRMs;
1287   UnsignedMap UseC, RemC;
1288   IFMapType::iterator End = IFMap.end();
1289 
1290   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1291     const IFListType &LL = I->second;
1292     RegisterSet TT;
1293     for (unsigned i = 0, n = LL.size(); i < n; ++i)
1294       TT.insert(LL[i].second);
1295     for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1296       RemC[R]++;
1297     AllRMs.insert(TT);
1298   }
1299 
1300   for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1301     using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1302     using InstrSet = SmallSet<const MachineInstr *, 16>;
1303 
1304     InstrSet UIs;
1305     // Count as the number of instructions in which R is used, not the
1306     // number of operands.
1307     use_iterator E = MRI->use_nodbg_end();
1308     for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1309       UIs.insert(I->getParent());
1310     unsigned C = UIs.size();
1311     // Calculate a measure, which is the number of instructions using R,
1312     // minus the "removability" count computed earlier.
1313     unsigned D = RemC[R];
1314     UseC[R] = (C > D) ? C-D : 0;  // doz
1315   }
1316 
1317   bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1318   if (!SelectAll0 && !SelectHas0)
1319     SelectAll0 = true;
1320 
1321   // The smaller the number UseC for a given register R, the "less used"
1322   // R is aside from the opportunities for removal offered by generating
1323   // "insert" instructions.
1324   // Iterate over the IF map, and for those registers that have multiple
1325   // candidates, pick the minimum one according to IFOrdering.
1326   IFOrdering IFO(UseC, BaseOrd);
1327   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1328     IFListType &LL = I->second;
1329     if (LL.empty())
1330       continue;
1331     // Get the minimum element, remember it and clear the list. If the
1332     // element found is adequate, we will put it back on the list, other-
1333     // wise the list will remain empty, and the entry for this register
1334     // will be removed (i.e. this register will not be replaced by insert).
1335     IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1336     assert(MinI != LL.end());
1337     IFRecordWithRegSet M = *MinI;
1338     LL.clear();
1339 
1340     // We want to make sure that this replacement will have a chance to be
1341     // beneficial, and that means that we want to have indication that some
1342     // register will be removed. The most likely registers to be eliminated
1343     // are the use operands in the definition of I->first. Accept/reject a
1344     // candidate based on how many of its uses it can potentially eliminate.
1345 
1346     RegisterSet Us;
1347     const MachineInstr *DefI = MRI->getVRegDef(I->first);
1348     getInstrUses(DefI, Us);
1349     bool Accept = false;
1350 
1351     if (SelectAll0) {
1352       bool All0 = true;
1353       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1354         if (UseC[R] == 0)
1355           continue;
1356         All0 = false;
1357         break;
1358       }
1359       Accept = All0;
1360     } else if (SelectHas0) {
1361       bool Has0 = false;
1362       for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1363         if (UseC[R] != 0)
1364           continue;
1365         Has0 = true;
1366         break;
1367       }
1368       Accept = Has0;
1369     }
1370     if (Accept)
1371       LL.push_back(M);
1372   }
1373 
1374   // Remove candidates that add uses of removable registers, unless the
1375   // removable registers are among replacement candidates.
1376   // Recompute the removable registers, since some candidates may have
1377   // been eliminated.
1378   AllRMs.clear();
1379   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1380     const IFListType &LL = I->second;
1381     if (!LL.empty())
1382       AllRMs.insert(LL[0].second);
1383   }
1384   for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1385     IFListType &LL = I->second;
1386     if (LL.empty())
1387       continue;
1388     unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1389     if (AllRMs[SR] || AllRMs[IR])
1390       LL.clear();
1391   }
1392 
1393   pruneEmptyLists();
1394 }
1395 
generateInserts()1396 bool HexagonGenInsert::generateInserts() {
1397   // Create a new register for each one from IFMap, and store them in the
1398   // map.
1399   UnsignedMap RegMap;
1400   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1401     unsigned VR = I->first;
1402     const TargetRegisterClass *RC = MRI->getRegClass(VR);
1403     unsigned NewVR = MRI->createVirtualRegister(RC);
1404     RegMap[VR] = NewVR;
1405   }
1406 
1407   // We can generate the "insert" instructions using potentially stale re-
1408   // gisters: SrcR and InsR for a given VR may be among other registers that
1409   // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1410   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1411     MachineInstr *MI = MRI->getVRegDef(I->first);
1412     MachineBasicBlock &B = *MI->getParent();
1413     DebugLoc DL = MI->getDebugLoc();
1414     unsigned NewR = RegMap[I->first];
1415     bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1416     const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1417                                : HII->get(Hexagon::S2_insertp);
1418     IFRecord IF = I->second[0].first;
1419     unsigned Wdh = IF.Wdh, Off = IF.Off;
1420     unsigned InsS = 0;
1421     if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1422       InsS = Hexagon::isub_lo;
1423       if (Off >= 32) {
1424         InsS = Hexagon::isub_hi;
1425         Off -= 32;
1426       }
1427     }
1428     // Advance to the proper location for inserting instructions. This could
1429     // be B.end().
1430     MachineBasicBlock::iterator At = MI;
1431     if (MI->isPHI())
1432       At = B.getFirstNonPHI();
1433 
1434     BuildMI(B, At, DL, D, NewR)
1435       .addReg(IF.SrcR)
1436       .addReg(IF.InsR, 0, InsS)
1437       .addImm(Wdh)
1438       .addImm(Off);
1439 
1440     MRI->clearKillFlags(IF.SrcR);
1441     MRI->clearKillFlags(IF.InsR);
1442   }
1443 
1444   for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1445     MachineInstr *DefI = MRI->getVRegDef(I->first);
1446     MRI->replaceRegWith(I->first, RegMap[I->first]);
1447     DefI->eraseFromParent();
1448   }
1449 
1450   return true;
1451 }
1452 
removeDeadCode(MachineDomTreeNode * N)1453 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1454   bool Changed = false;
1455 
1456   for (auto *DTN : children<MachineDomTreeNode*>(N))
1457     Changed |= removeDeadCode(DTN);
1458 
1459   MachineBasicBlock *B = N->getBlock();
1460   std::vector<MachineInstr*> Instrs;
1461   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1462     Instrs.push_back(&*I);
1463 
1464   for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1465     MachineInstr *MI = *I;
1466     unsigned Opc = MI->getOpcode();
1467     // Do not touch lifetime markers. This is why the target-independent DCE
1468     // cannot be used.
1469     if (Opc == TargetOpcode::LIFETIME_START ||
1470         Opc == TargetOpcode::LIFETIME_END)
1471       continue;
1472     bool Store = false;
1473     if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1474       continue;
1475 
1476     bool AllDead = true;
1477     SmallVector<unsigned,2> Regs;
1478     for (const MachineOperand &MO : MI->operands()) {
1479       if (!MO.isReg() || !MO.isDef())
1480         continue;
1481       unsigned R = MO.getReg();
1482       if (!TargetRegisterInfo::isVirtualRegister(R) ||
1483           !MRI->use_nodbg_empty(R)) {
1484         AllDead = false;
1485         break;
1486       }
1487       Regs.push_back(R);
1488     }
1489     if (!AllDead)
1490       continue;
1491 
1492     B->erase(MI);
1493     for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1494       MRI->markUsesInDebugValueAsUndef(Regs[I]);
1495     Changed = true;
1496   }
1497 
1498   return Changed;
1499 }
1500 
runOnMachineFunction(MachineFunction & MF)1501 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1502   if (skipFunction(MF.getFunction()))
1503     return false;
1504 
1505   bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1506   bool Changed = false;
1507 
1508   // Sanity check: one, but not both.
1509   assert(!OptSelectAll0 || !OptSelectHas0);
1510 
1511   IFMap.clear();
1512   BaseOrd.clear();
1513   CellOrd.clear();
1514 
1515   const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1516   HII = ST.getInstrInfo();
1517   HRI = ST.getRegisterInfo();
1518   MFN = &MF;
1519   MRI = &MF.getRegInfo();
1520   MDT = &getAnalysis<MachineDominatorTree>();
1521 
1522   // Clean up before any further processing, so that dead code does not
1523   // get used in a newly generated "insert" instruction. Have a custom
1524   // version of DCE that preserves lifetime markers. Without it, merging
1525   // of stack objects can fail to recognize and merge disjoint objects
1526   // leading to unnecessary stack growth.
1527   Changed = removeDeadCode(MDT->getRootNode());
1528 
1529   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1530   BitTracker BTLoc(HE, MF);
1531   BTLoc.trace(isDebug());
1532   BTLoc.run();
1533   CellMapShadow MS(BTLoc);
1534   CMS = &MS;
1535 
1536   buildOrderingMF(BaseOrd);
1537   buildOrderingBT(BaseOrd, CellOrd);
1538 
1539   if (isDebug()) {
1540     dbgs() << "Cell ordering:\n";
1541     for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1542         I != E; ++I) {
1543       unsigned VR = I->first, Pos = I->second;
1544       dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1545     }
1546   }
1547 
1548   // Collect candidates for conversion into the insert forms.
1549   MachineBasicBlock *RootB = MDT->getRoot();
1550   OrderedRegisterList AvailR(CellOrd);
1551 
1552   const char *const TGName = "hexinsert";
1553   const char *const TGDesc = "Generate Insert Instructions";
1554 
1555   {
1556     NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1557                         TimingDetail);
1558     collectInBlock(RootB, AvailR);
1559     // Complete the information gathered in IFMap.
1560     computeRemovableRegisters();
1561   }
1562 
1563   if (isDebug()) {
1564     dbgs() << "Candidates after collection:\n";
1565     dump_map();
1566   }
1567 
1568   if (IFMap.empty())
1569     return Changed;
1570 
1571   {
1572     NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1573     pruneCandidates();
1574   }
1575 
1576   if (isDebug()) {
1577     dbgs() << "Candidates after pruning:\n";
1578     dump_map();
1579   }
1580 
1581   if (IFMap.empty())
1582     return Changed;
1583 
1584   {
1585     NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1586     selectCandidates();
1587   }
1588 
1589   if (isDebug()) {
1590     dbgs() << "Candidates after selection:\n";
1591     dump_map();
1592   }
1593 
1594   // Filter out vregs beyond the cutoff.
1595   if (VRegIndexCutoff.getPosition()) {
1596     unsigned Cutoff = VRegIndexCutoff;
1597 
1598     using IterListType = SmallVector<IFMapType::iterator, 16>;
1599 
1600     IterListType Out;
1601     for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1602       unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1603       if (Idx >= Cutoff)
1604         Out.push_back(I);
1605     }
1606     for (unsigned i = 0, n = Out.size(); i < n; ++i)
1607       IFMap.erase(Out[i]);
1608   }
1609   if (IFMap.empty())
1610     return Changed;
1611 
1612   {
1613     NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1614                         TimingDetail);
1615     generateInserts();
1616   }
1617 
1618   return true;
1619 }
1620 
createHexagonGenInsert()1621 FunctionPass *llvm::createHexagonGenInsert() {
1622   return new HexagonGenInsert();
1623 }
1624 
1625 //===----------------------------------------------------------------------===//
1626 //                         Public Constructor Functions
1627 //===----------------------------------------------------------------------===//
1628 
1629 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1630   "Hexagon generate \"insert\" instructions", false, false)
1631 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1632 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1633   "Hexagon generate \"insert\" instructions", false, false)
1634