1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a hash set that can be used to remove duplication of nodes
11 // in a graph. This code was originally created by Chris Lattner for use with
12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_FOLDINGSET_H
17 #define LLVM_ADT_FOLDINGSET_H
18
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator.h"
21 #include "llvm/Support/Allocator.h"
22 #include <cassert>
23 #include <cstddef>
24 #include <cstdint>
25 #include <utility>
26
27 namespace llvm {
28
29 /// This folding set used for two purposes:
30 /// 1. Given information about a node we want to create, look up the unique
31 /// instance of the node in the set. If the node already exists, return
32 /// it, otherwise return the bucket it should be inserted into.
33 /// 2. Given a node that has already been created, remove it from the set.
34 ///
35 /// This class is implemented as a single-link chained hash table, where the
36 /// "buckets" are actually the nodes themselves (the next pointer is in the
37 /// node). The last node points back to the bucket to simplify node removal.
38 ///
39 /// Any node that is to be included in the folding set must be a subclass of
40 /// FoldingSetNode. The node class must also define a Profile method used to
41 /// establish the unique bits of data for the node. The Profile method is
42 /// passed a FoldingSetNodeID object which is used to gather the bits. Just
43 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
44 /// NOTE: That the folding set does not own the nodes and it is the
45 /// responsibility of the user to dispose of the nodes.
46 ///
47 /// Eg.
48 /// class MyNode : public FoldingSetNode {
49 /// private:
50 /// std::string Name;
51 /// unsigned Value;
52 /// public:
53 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
54 /// ...
55 /// void Profile(FoldingSetNodeID &ID) const {
56 /// ID.AddString(Name);
57 /// ID.AddInteger(Value);
58 /// }
59 /// ...
60 /// };
61 ///
62 /// To define the folding set itself use the FoldingSet template;
63 ///
64 /// Eg.
65 /// FoldingSet<MyNode> MyFoldingSet;
66 ///
67 /// Four public methods are available to manipulate the folding set;
68 ///
69 /// 1) If you have an existing node that you want add to the set but unsure
70 /// that the node might already exist then call;
71 ///
72 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N);
73 ///
74 /// If The result is equal to the input then the node has been inserted.
75 /// Otherwise, the result is the node existing in the folding set, and the
76 /// input can be discarded (use the result instead.)
77 ///
78 /// 2) If you are ready to construct a node but want to check if it already
79 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
80 /// check;
81 ///
82 /// FoldingSetNodeID ID;
83 /// ID.AddString(Name);
84 /// ID.AddInteger(Value);
85 /// void *InsertPoint;
86 ///
87 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
88 ///
89 /// If found then M with be non-NULL, else InsertPoint will point to where it
90 /// should be inserted using InsertNode.
91 ///
92 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
93 /// node with FindNodeOrInsertPos;
94 ///
95 /// InsertNode(N, InsertPoint);
96 ///
97 /// 4) Finally, if you want to remove a node from the folding set call;
98 ///
99 /// bool WasRemoved = RemoveNode(N);
100 ///
101 /// The result indicates whether the node existed in the folding set.
102
103 class FoldingSetNodeID;
104 class StringRef;
105
106 //===----------------------------------------------------------------------===//
107 /// FoldingSetImpl - Implements the folding set functionality. The main
108 /// structure is an array of buckets. Each bucket is indexed by the hash of
109 /// the nodes it contains. The bucket itself points to the nodes contained
110 /// in the bucket via a singly linked list. The last node in the list points
111 /// back to the bucket to facilitate node removal.
112 ///
113 class FoldingSetImpl {
114 virtual void anchor(); // Out of line virtual method.
115
116 protected:
117 /// Buckets - Array of bucket chains.
118 ///
119 void **Buckets;
120
121 /// NumBuckets - Length of the Buckets array. Always a power of 2.
122 ///
123 unsigned NumBuckets;
124
125 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
126 /// is greater than twice the number of buckets.
127 unsigned NumNodes;
128
129 explicit FoldingSetImpl(unsigned Log2InitSize = 6);
130 FoldingSetImpl(FoldingSetImpl &&Arg);
131 FoldingSetImpl &operator=(FoldingSetImpl &&RHS);
132 ~FoldingSetImpl();
133
134 public:
135 //===--------------------------------------------------------------------===//
136 /// Node - This class is used to maintain the singly linked bucket list in
137 /// a folding set.
138 ///
139 class Node {
140 private:
141 // NextInFoldingSetBucket - next link in the bucket list.
142 void *NextInFoldingSetBucket;
143
144 public:
Node()145 Node() : NextInFoldingSetBucket(nullptr) {}
146
147 // Accessors
getNextInBucket()148 void *getNextInBucket() const { return NextInFoldingSetBucket; }
SetNextInBucket(void * N)149 void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
150 };
151
152 /// clear - Remove all nodes from the folding set.
153 void clear();
154
155 /// RemoveNode - Remove a node from the folding set, returning true if one
156 /// was removed or false if the node was not in the folding set.
157 bool RemoveNode(Node *N);
158
159 /// GetOrInsertNode - If there is an existing simple Node exactly
160 /// equal to the specified node, return it. Otherwise, insert 'N' and return
161 /// it instead.
162 Node *GetOrInsertNode(Node *N);
163
164 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
165 /// return it. If not, return the insertion token that will make insertion
166 /// faster.
167 Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
168
169 /// InsertNode - Insert the specified node into the folding set, knowing that
170 /// it is not already in the folding set. InsertPos must be obtained from
171 /// FindNodeOrInsertPos.
172 void InsertNode(Node *N, void *InsertPos);
173
174 /// InsertNode - Insert the specified node into the folding set, knowing that
175 /// it is not already in the folding set.
InsertNode(Node * N)176 void InsertNode(Node *N) {
177 Node *Inserted = GetOrInsertNode(N);
178 (void)Inserted;
179 assert(Inserted == N && "Node already inserted!");
180 }
181
182 /// size - Returns the number of nodes in the folding set.
size()183 unsigned size() const { return NumNodes; }
184
185 /// empty - Returns true if there are no nodes in the folding set.
empty()186 bool empty() const { return NumNodes == 0; }
187
188 /// reserve - Increase the number of buckets such that adding the
189 /// EltCount-th node won't cause a rebucket operation. reserve is permitted
190 /// to allocate more space than requested by EltCount.
191 void reserve(unsigned EltCount);
192
193 /// capacity - Returns the number of nodes permitted in the folding set
194 /// before a rebucket operation is performed.
capacity()195 unsigned capacity() {
196 // We allow a load factor of up to 2.0,
197 // so that means our capacity is NumBuckets * 2
198 return NumBuckets * 2;
199 }
200
201 private:
202 /// GrowHashTable - Double the size of the hash table and rehash everything.
203 void GrowHashTable();
204
205 /// GrowBucketCount - resize the hash table and rehash everything.
206 /// NewBucketCount must be a power of two, and must be greater than the old
207 /// bucket count.
208 void GrowBucketCount(unsigned NewBucketCount);
209
210 protected:
211 /// GetNodeProfile - Instantiations of the FoldingSet template implement
212 /// this function to gather data bits for the given node.
213 virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
214
215 /// NodeEquals - Instantiations of the FoldingSet template implement
216 /// this function to compare the given node with the given ID.
217 virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
218 FoldingSetNodeID &TempID) const=0;
219
220 /// ComputeNodeHash - Instantiations of the FoldingSet template implement
221 /// this function to compute a hash value for the given node.
222 virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
223 };
224
225 //===----------------------------------------------------------------------===//
226
227 /// DefaultFoldingSetTrait - This class provides default implementations
228 /// for FoldingSetTrait implementations.
229 ///
230 template<typename T> struct DefaultFoldingSetTrait {
ProfileDefaultFoldingSetTrait231 static void Profile(const T &X, FoldingSetNodeID &ID) {
232 X.Profile(ID);
233 }
ProfileDefaultFoldingSetTrait234 static void Profile(T &X, FoldingSetNodeID &ID) {
235 X.Profile(ID);
236 }
237
238 // Equals - Test if the profile for X would match ID, using TempID
239 // to compute a temporary ID if necessary. The default implementation
240 // just calls Profile and does a regular comparison. Implementations
241 // can override this to provide more efficient implementations.
242 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
243 FoldingSetNodeID &TempID);
244
245 // ComputeHash - Compute a hash value for X, using TempID to
246 // compute a temporary ID if necessary. The default implementation
247 // just calls Profile and does a regular hash computation.
248 // Implementations can override this to provide more efficient
249 // implementations.
250 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
251 };
252
253 /// FoldingSetTrait - This trait class is used to define behavior of how
254 /// to "profile" (in the FoldingSet parlance) an object of a given type.
255 /// The default behavior is to invoke a 'Profile' method on an object, but
256 /// through template specialization the behavior can be tailored for specific
257 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects
258 /// to FoldingSets that were not originally designed to have that behavior.
259 template<typename T> struct FoldingSetTrait
260 : public DefaultFoldingSetTrait<T> {};
261
262 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
263 /// for ContextualFoldingSets.
264 template<typename T, typename Ctx>
265 struct DefaultContextualFoldingSetTrait {
ProfileDefaultContextualFoldingSetTrait266 static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
267 X.Profile(ID, Context);
268 }
269
270 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
271 FoldingSetNodeID &TempID, Ctx Context);
272 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
273 Ctx Context);
274 };
275
276 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
277 /// ContextualFoldingSets.
278 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
279 : public DefaultContextualFoldingSetTrait<T, Ctx> {};
280
281 //===--------------------------------------------------------------------===//
282 /// FoldingSetNodeIDRef - This class describes a reference to an interned
283 /// FoldingSetNodeID, which can be a useful to store node id data rather
284 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
285 /// is often much larger than necessary, and the possibility of heap
286 /// allocation means it requires a non-trivial destructor call.
287 class FoldingSetNodeIDRef {
288 const unsigned *Data = nullptr;
289 size_t Size = 0;
290
291 public:
292 FoldingSetNodeIDRef() = default;
FoldingSetNodeIDRef(const unsigned * D,size_t S)293 FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
294
295 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
296 /// used to lookup the node in the FoldingSetImpl.
297 unsigned ComputeHash() const;
298
299 bool operator==(FoldingSetNodeIDRef) const;
300
301 bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
302
303 /// Used to compare the "ordering" of two nodes as defined by the
304 /// profiled bits and their ordering defined by memcmp().
305 bool operator<(FoldingSetNodeIDRef) const;
306
getData()307 const unsigned *getData() const { return Data; }
getSize()308 size_t getSize() const { return Size; }
309 };
310
311 //===--------------------------------------------------------------------===//
312 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
313 /// a node. When all the bits are gathered this class is used to produce a
314 /// hash value for the node.
315 ///
316 class FoldingSetNodeID {
317 /// Bits - Vector of all the data bits that make the node unique.
318 /// Use a SmallVector to avoid a heap allocation in the common case.
319 SmallVector<unsigned, 32> Bits;
320
321 public:
322 FoldingSetNodeID() = default;
323
FoldingSetNodeID(FoldingSetNodeIDRef Ref)324 FoldingSetNodeID(FoldingSetNodeIDRef Ref)
325 : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
326
327 /// Add* - Add various data types to Bit data.
328 ///
329 void AddPointer(const void *Ptr);
330 void AddInteger(signed I);
331 void AddInteger(unsigned I);
332 void AddInteger(long I);
333 void AddInteger(unsigned long I);
334 void AddInteger(long long I);
335 void AddInteger(unsigned long long I);
AddBoolean(bool B)336 void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
337 void AddString(StringRef String);
338 void AddNodeID(const FoldingSetNodeID &ID);
339
340 template <typename T>
Add(const T & x)341 inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
342
343 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
344 /// object to be used to compute a new profile.
clear()345 inline void clear() { Bits.clear(); }
346
347 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
348 /// to lookup the node in the FoldingSetImpl.
349 unsigned ComputeHash() const;
350
351 /// operator== - Used to compare two nodes to each other.
352 ///
353 bool operator==(const FoldingSetNodeID &RHS) const;
354 bool operator==(const FoldingSetNodeIDRef RHS) const;
355
356 bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
357 bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
358
359 /// Used to compare the "ordering" of two nodes as defined by the
360 /// profiled bits and their ordering defined by memcmp().
361 bool operator<(const FoldingSetNodeID &RHS) const;
362 bool operator<(const FoldingSetNodeIDRef RHS) const;
363
364 /// Intern - Copy this node's data to a memory region allocated from the
365 /// given allocator and return a FoldingSetNodeIDRef describing the
366 /// interned data.
367 FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
368 };
369
370 // Convenience type to hide the implementation of the folding set.
371 typedef FoldingSetImpl::Node FoldingSetNode;
372 template<class T> class FoldingSetIterator;
373 template<class T> class FoldingSetBucketIterator;
374
375 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
376 // require the definition of FoldingSetNodeID.
377 template<typename T>
378 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID)379 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
380 unsigned /*IDHash*/,
381 FoldingSetNodeID &TempID) {
382 FoldingSetTrait<T>::Profile(X, TempID);
383 return TempID == ID;
384 }
385 template<typename T>
386 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID)387 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
388 FoldingSetTrait<T>::Profile(X, TempID);
389 return TempID.ComputeHash();
390 }
391 template<typename T, typename Ctx>
392 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID,Ctx Context)393 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
394 const FoldingSetNodeID &ID,
395 unsigned /*IDHash*/,
396 FoldingSetNodeID &TempID,
397 Ctx Context) {
398 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
399 return TempID == ID;
400 }
401 template<typename T, typename Ctx>
402 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID,Ctx Context)403 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
404 FoldingSetNodeID &TempID,
405 Ctx Context) {
406 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
407 return TempID.ComputeHash();
408 }
409
410 //===----------------------------------------------------------------------===//
411 /// FoldingSet - This template class is used to instantiate a specialized
412 /// implementation of the folding set to the node class T. T must be a
413 /// subclass of FoldingSetNode and implement a Profile function.
414 ///
415 /// Note that this set type is movable and move-assignable. However, its
416 /// moved-from state is not a valid state for anything other than
417 /// move-assigning and destroying. This is primarily to enable movable APIs
418 /// that incorporate these objects.
419 template <class T> class FoldingSet final : public FoldingSetImpl {
420 private:
421 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
422 /// way to convert nodes into a unique specifier.
GetNodeProfile(Node * N,FoldingSetNodeID & ID)423 void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
424 T *TN = static_cast<T *>(N);
425 FoldingSetTrait<T>::Profile(*TN, ID);
426 }
427
428 /// NodeEquals - Instantiations may optionally provide a way to compare a
429 /// node with a specified ID.
NodeEquals(Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)430 bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
431 FoldingSetNodeID &TempID) const override {
432 T *TN = static_cast<T *>(N);
433 return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
434 }
435
436 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
437 /// hash value directly from a node.
ComputeNodeHash(Node * N,FoldingSetNodeID & TempID)438 unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
439 T *TN = static_cast<T *>(N);
440 return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
441 }
442
443 public:
444 explicit FoldingSet(unsigned Log2InitSize = 6)
FoldingSetImpl(Log2InitSize)445 : FoldingSetImpl(Log2InitSize) {}
446
FoldingSet(FoldingSet && Arg)447 FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {}
448 FoldingSet &operator=(FoldingSet &&RHS) {
449 (void)FoldingSetImpl::operator=(std::move(RHS));
450 return *this;
451 }
452
453 typedef FoldingSetIterator<T> iterator;
begin()454 iterator begin() { return iterator(Buckets); }
end()455 iterator end() { return iterator(Buckets+NumBuckets); }
456
457 typedef FoldingSetIterator<const T> const_iterator;
begin()458 const_iterator begin() const { return const_iterator(Buckets); }
end()459 const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
460
461 typedef FoldingSetBucketIterator<T> bucket_iterator;
462
bucket_begin(unsigned hash)463 bucket_iterator bucket_begin(unsigned hash) {
464 return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
465 }
466
bucket_end(unsigned hash)467 bucket_iterator bucket_end(unsigned hash) {
468 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
469 }
470
471 /// GetOrInsertNode - If there is an existing simple Node exactly
472 /// equal to the specified node, return it. Otherwise, insert 'N' and
473 /// return it instead.
GetOrInsertNode(Node * N)474 T *GetOrInsertNode(Node *N) {
475 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
476 }
477
478 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
479 /// return it. If not, return the insertion token that will make insertion
480 /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)481 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
482 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
483 }
484 };
485
486 //===----------------------------------------------------------------------===//
487 /// ContextualFoldingSet - This template class is a further refinement
488 /// of FoldingSet which provides a context argument when calling
489 /// Profile on its nodes. Currently, that argument is fixed at
490 /// initialization time.
491 ///
492 /// T must be a subclass of FoldingSetNode and implement a Profile
493 /// function with signature
494 /// void Profile(FoldingSetNodeID &, Ctx);
495 template <class T, class Ctx>
496 class ContextualFoldingSet final : public FoldingSetImpl {
497 // Unfortunately, this can't derive from FoldingSet<T> because the
498 // construction vtable for FoldingSet<T> requires
499 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
500 // requires a single-argument T::Profile().
501
502 private:
503 Ctx Context;
504
505 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
506 /// way to convert nodes into a unique specifier.
GetNodeProfile(FoldingSetImpl::Node * N,FoldingSetNodeID & ID)507 void GetNodeProfile(FoldingSetImpl::Node *N,
508 FoldingSetNodeID &ID) const override {
509 T *TN = static_cast<T *>(N);
510 ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
511 }
512
NodeEquals(FoldingSetImpl::Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)513 bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
514 unsigned IDHash, FoldingSetNodeID &TempID) const override {
515 T *TN = static_cast<T *>(N);
516 return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
517 Context);
518 }
519
ComputeNodeHash(FoldingSetImpl::Node * N,FoldingSetNodeID & TempID)520 unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
521 FoldingSetNodeID &TempID) const override {
522 T *TN = static_cast<T *>(N);
523 return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
524 }
525
526 public:
527 explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
FoldingSetImpl(Log2InitSize)528 : FoldingSetImpl(Log2InitSize), Context(Context)
529 {}
530
getContext()531 Ctx getContext() const { return Context; }
532
533 typedef FoldingSetIterator<T> iterator;
begin()534 iterator begin() { return iterator(Buckets); }
end()535 iterator end() { return iterator(Buckets+NumBuckets); }
536
537 typedef FoldingSetIterator<const T> const_iterator;
begin()538 const_iterator begin() const { return const_iterator(Buckets); }
end()539 const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
540
541 typedef FoldingSetBucketIterator<T> bucket_iterator;
542
bucket_begin(unsigned hash)543 bucket_iterator bucket_begin(unsigned hash) {
544 return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
545 }
546
bucket_end(unsigned hash)547 bucket_iterator bucket_end(unsigned hash) {
548 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
549 }
550
551 /// GetOrInsertNode - If there is an existing simple Node exactly
552 /// equal to the specified node, return it. Otherwise, insert 'N'
553 /// and return it instead.
GetOrInsertNode(Node * N)554 T *GetOrInsertNode(Node *N) {
555 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
556 }
557
558 /// FindNodeOrInsertPos - Look up the node specified by ID. If it
559 /// exists, return it. If not, return the insertion token that will
560 /// make insertion faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)561 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
562 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
563 }
564 };
565
566 //===----------------------------------------------------------------------===//
567 /// FoldingSetVector - This template class combines a FoldingSet and a vector
568 /// to provide the interface of FoldingSet but with deterministic iteration
569 /// order based on the insertion order. T must be a subclass of FoldingSetNode
570 /// and implement a Profile function.
571 template <class T, class VectorT = SmallVector<T*, 8>>
572 class FoldingSetVector {
573 FoldingSet<T> Set;
574 VectorT Vector;
575
576 public:
577 explicit FoldingSetVector(unsigned Log2InitSize = 6)
Set(Log2InitSize)578 : Set(Log2InitSize) {
579 }
580
581 typedef pointee_iterator<typename VectorT::iterator> iterator;
begin()582 iterator begin() { return Vector.begin(); }
end()583 iterator end() { return Vector.end(); }
584
585 typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
begin()586 const_iterator begin() const { return Vector.begin(); }
end()587 const_iterator end() const { return Vector.end(); }
588
589 /// clear - Remove all nodes from the folding set.
clear()590 void clear() { Set.clear(); Vector.clear(); }
591
592 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
593 /// return it. If not, return the insertion token that will make insertion
594 /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)595 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
596 return Set.FindNodeOrInsertPos(ID, InsertPos);
597 }
598
599 /// GetOrInsertNode - If there is an existing simple Node exactly
600 /// equal to the specified node, return it. Otherwise, insert 'N' and
601 /// return it instead.
GetOrInsertNode(T * N)602 T *GetOrInsertNode(T *N) {
603 T *Result = Set.GetOrInsertNode(N);
604 if (Result == N) Vector.push_back(N);
605 return Result;
606 }
607
608 /// InsertNode - Insert the specified node into the folding set, knowing that
609 /// it is not already in the folding set. InsertPos must be obtained from
610 /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)611 void InsertNode(T *N, void *InsertPos) {
612 Set.InsertNode(N, InsertPos);
613 Vector.push_back(N);
614 }
615
616 /// InsertNode - Insert the specified node into the folding set, knowing that
617 /// it is not already in the folding set.
InsertNode(T * N)618 void InsertNode(T *N) {
619 Set.InsertNode(N);
620 Vector.push_back(N);
621 }
622
623 /// size - Returns the number of nodes in the folding set.
size()624 unsigned size() const { return Set.size(); }
625
626 /// empty - Returns true if there are no nodes in the folding set.
empty()627 bool empty() const { return Set.empty(); }
628 };
629
630 //===----------------------------------------------------------------------===//
631 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
632 /// folding sets, which knows how to walk the folding set hash table.
633 class FoldingSetIteratorImpl {
634 protected:
635 FoldingSetNode *NodePtr;
636
637 FoldingSetIteratorImpl(void **Bucket);
638
639 void advance();
640
641 public:
642 bool operator==(const FoldingSetIteratorImpl &RHS) const {
643 return NodePtr == RHS.NodePtr;
644 }
645 bool operator!=(const FoldingSetIteratorImpl &RHS) const {
646 return NodePtr != RHS.NodePtr;
647 }
648 };
649
650 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
651 public:
FoldingSetIterator(void ** Bucket)652 explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
653
654 T &operator*() const {
655 return *static_cast<T*>(NodePtr);
656 }
657
658 T *operator->() const {
659 return static_cast<T*>(NodePtr);
660 }
661
662 inline FoldingSetIterator &operator++() { // Preincrement
663 advance();
664 return *this;
665 }
666 FoldingSetIterator operator++(int) { // Postincrement
667 FoldingSetIterator tmp = *this; ++*this; return tmp;
668 }
669 };
670
671 //===----------------------------------------------------------------------===//
672 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
673 /// shared by all folding sets, which knows how to walk a particular bucket
674 /// of a folding set hash table.
675
676 class FoldingSetBucketIteratorImpl {
677 protected:
678 void *Ptr;
679
680 explicit FoldingSetBucketIteratorImpl(void **Bucket);
681
FoldingSetBucketIteratorImpl(void ** Bucket,bool)682 FoldingSetBucketIteratorImpl(void **Bucket, bool)
683 : Ptr(Bucket) {}
684
advance()685 void advance() {
686 void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
687 uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
688 Ptr = reinterpret_cast<void*>(x);
689 }
690
691 public:
692 bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
693 return Ptr == RHS.Ptr;
694 }
695 bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
696 return Ptr != RHS.Ptr;
697 }
698 };
699
700 template <class T>
701 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
702 public:
FoldingSetBucketIterator(void ** Bucket)703 explicit FoldingSetBucketIterator(void **Bucket) :
704 FoldingSetBucketIteratorImpl(Bucket) {}
705
FoldingSetBucketIterator(void ** Bucket,bool)706 FoldingSetBucketIterator(void **Bucket, bool) :
707 FoldingSetBucketIteratorImpl(Bucket, true) {}
708
709 T &operator*() const { return *static_cast<T*>(Ptr); }
710 T *operator->() const { return static_cast<T*>(Ptr); }
711
712 inline FoldingSetBucketIterator &operator++() { // Preincrement
713 advance();
714 return *this;
715 }
716 FoldingSetBucketIterator operator++(int) { // Postincrement
717 FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
718 }
719 };
720
721 //===----------------------------------------------------------------------===//
722 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
723 /// types in an enclosing object so that they can be inserted into FoldingSets.
724 template <typename T>
725 class FoldingSetNodeWrapper : public FoldingSetNode {
726 T data;
727
728 public:
729 template <typename... Ts>
FoldingSetNodeWrapper(Ts &&...Args)730 explicit FoldingSetNodeWrapper(Ts &&... Args)
731 : data(std::forward<Ts>(Args)...) {}
732
Profile(FoldingSetNodeID & ID)733 void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
734
getValue()735 T &getValue() { return data; }
getValue()736 const T &getValue() const { return data; }
737
738 operator T&() { return data; }
739 operator const T&() const { return data; }
740 };
741
742 //===----------------------------------------------------------------------===//
743 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
744 /// a FoldingSetNodeID value rather than requiring the node to recompute it
745 /// each time it is needed. This trades space for speed (which can be
746 /// significant if the ID is long), and it also permits nodes to drop
747 /// information that would otherwise only be required for recomputing an ID.
748 class FastFoldingSetNode : public FoldingSetNode {
749 FoldingSetNodeID FastID;
750
751 protected:
FastFoldingSetNode(const FoldingSetNodeID & ID)752 explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
753
754 public:
Profile(FoldingSetNodeID & ID)755 void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
756 };
757
758 //===----------------------------------------------------------------------===//
759 // Partial specializations of FoldingSetTrait.
760
761 template<typename T> struct FoldingSetTrait<T*> {
762 static inline void Profile(T *X, FoldingSetNodeID &ID) {
763 ID.AddPointer(X);
764 }
765 };
766 template <typename T1, typename T2>
767 struct FoldingSetTrait<std::pair<T1, T2>> {
768 static inline void Profile(const std::pair<T1, T2> &P,
769 FoldingSetNodeID &ID) {
770 ID.Add(P.first);
771 ID.Add(P.second);
772 }
773 };
774
775 } // end namespace llvm
776
777 #endif // LLVM_ADT_FOLDINGSET_H
778