1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16 
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm-c/Types.h"
22 #include <cassert>
23 #include <iterator>
24 
25 namespace llvm {
26 
27 class APInt;
28 class Argument;
29 class BasicBlock;
30 class Constant;
31 class ConstantData;
32 class ConstantAggregate;
33 class DataLayout;
34 class Function;
35 class GlobalAlias;
36 class GlobalIFunc;
37 class GlobalIndirectSymbol;
38 class GlobalObject;
39 class GlobalValue;
40 class GlobalVariable;
41 class InlineAsm;
42 class Instruction;
43 class LLVMContext;
44 class Module;
45 class ModuleSlotTracker;
46 class raw_ostream;
47 class StringRef;
48 class Twine;
49 class Type;
50 
51 template<typename ValueTy> class StringMapEntry;
52 typedef StringMapEntry<Value*> ValueName;
53 
54 //===----------------------------------------------------------------------===//
55 //                                 Value Class
56 //===----------------------------------------------------------------------===//
57 
58 /// \brief LLVM Value Representation
59 ///
60 /// This is a very important LLVM class. It is the base class of all values
61 /// computed by a program that may be used as operands to other values. Value is
62 /// the super class of other important classes such as Instruction and Function.
63 /// All Values have a Type. Type is not a subclass of Value. Some values can
64 /// have a name and they belong to some Module.  Setting the name on the Value
65 /// automatically updates the module's symbol table.
66 ///
67 /// Every value has a "use list" that keeps track of which other Values are
68 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
69 /// objects that watch it and listen to RAUW and Destroy events.  See
70 /// llvm/IR/ValueHandle.h for details.
71 class Value {
72   Type *VTy;
73   Use *UseList;
74 
75   friend class ValueAsMetadata; // Allow access to IsUsedByMD.
76   friend class ValueHandleBase;
77 
78   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
79   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
80 
81 protected:
82   /// \brief Hold subclass data that can be dropped.
83   ///
84   /// This member is similar to SubclassData, however it is for holding
85   /// information which may be used to aid optimization, but which may be
86   /// cleared to zero without affecting conservative interpretation.
87   unsigned char SubclassOptionalData : 7;
88 
89 private:
90   /// \brief Hold arbitrary subclass data.
91   ///
92   /// This member is defined by this class, but is not used for anything.
93   /// Subclasses can use it to hold whatever state they find useful.  This
94   /// field is initialized to zero by the ctor.
95   unsigned short SubclassData;
96 
97 protected:
98   /// \brief The number of operands in the subclass.
99   ///
100   /// This member is defined by this class, but not used for anything.
101   /// Subclasses can use it to store their number of operands, if they have
102   /// any.
103   ///
104   /// This is stored here to save space in User on 64-bit hosts.  Since most
105   /// instances of Value have operands, 32-bit hosts aren't significantly
106   /// affected.
107   ///
108   /// Note, this should *NOT* be used directly by any class other than User.
109   /// User uses this value to find the Use list.
110   enum : unsigned { NumUserOperandsBits = 28 };
111   unsigned NumUserOperands : NumUserOperandsBits;
112 
113   // Use the same type as the bitfield above so that MSVC will pack them.
114   unsigned IsUsedByMD : 1;
115   unsigned HasName : 1;
116   unsigned HasHungOffUses : 1;
117   unsigned HasDescriptor : 1;
118 
119 private:
120   template <typename UseT> // UseT == 'Use' or 'const Use'
121   class use_iterator_impl
122       : public std::iterator<std::forward_iterator_tag, UseT *> {
123     UseT *U;
use_iterator_impl(UseT * u)124     explicit use_iterator_impl(UseT *u) : U(u) {}
125     friend class Value;
126 
127   public:
use_iterator_impl()128     use_iterator_impl() : U() {}
129 
130     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
131     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
132 
133     use_iterator_impl &operator++() { // Preincrement
134       assert(U && "Cannot increment end iterator!");
135       U = U->getNext();
136       return *this;
137     }
138 
139     use_iterator_impl operator++(int) { // Postincrement
140       auto tmp = *this;
141       ++*this;
142       return tmp;
143     }
144 
145     UseT &operator*() const {
146       assert(U && "Cannot dereference end iterator!");
147       return *U;
148     }
149 
150     UseT *operator->() const { return &operator*(); }
151 
152     operator use_iterator_impl<const UseT>() const {
153       return use_iterator_impl<const UseT>(U);
154     }
155   };
156 
157   template <typename UserTy> // UserTy == 'User' or 'const User'
158   class user_iterator_impl
159       : public std::iterator<std::forward_iterator_tag, UserTy *> {
160     use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)161     explicit user_iterator_impl(Use *U) : UI(U) {}
162     friend class Value;
163 
164   public:
165     user_iterator_impl() = default;
166 
167     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
168     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
169 
170     /// \brief Returns true if this iterator is equal to user_end() on the value.
atEnd()171     bool atEnd() const { return *this == user_iterator_impl(); }
172 
173     user_iterator_impl &operator++() { // Preincrement
174       ++UI;
175       return *this;
176     }
177 
178     user_iterator_impl operator++(int) { // Postincrement
179       auto tmp = *this;
180       ++*this;
181       return tmp;
182     }
183 
184     // Retrieve a pointer to the current User.
185     UserTy *operator*() const {
186       return UI->getUser();
187     }
188 
189     UserTy *operator->() const { return operator*(); }
190 
191     operator user_iterator_impl<const UserTy>() const {
192       return user_iterator_impl<const UserTy>(*UI);
193     }
194 
getUse()195     Use &getUse() const { return *UI; }
196   };
197 
198 protected:
199   Value(Type *Ty, unsigned scid);
200 
201 public:
202   Value(const Value &) = delete;
203   void operator=(const Value &) = delete;
204   virtual ~Value();
205 
206   /// \brief Support for debugging, callable in GDB: V->dump()
207   void dump() const;
208 
209   /// \brief Implement operator<< on Value.
210   /// @{
211   void print(raw_ostream &O, bool IsForDebug = false) const;
212   void print(raw_ostream &O, ModuleSlotTracker &MST,
213              bool IsForDebug = false) const;
214   /// @}
215 
216   /// \brief Print the name of this Value out to the specified raw_ostream.
217   ///
218   /// This is useful when you just want to print 'int %reg126', not the
219   /// instruction that generated it. If you specify a Module for context, then
220   /// even constanst get pretty-printed; for example, the type of a null
221   /// pointer is printed symbolically.
222   /// @{
223   void printAsOperand(raw_ostream &O, bool PrintType = true,
224                       const Module *M = nullptr) const;
225   void printAsOperand(raw_ostream &O, bool PrintType,
226                       ModuleSlotTracker &MST) const;
227   /// @}
228 
229   /// \brief All values are typed, get the type of this value.
getType()230   Type *getType() const { return VTy; }
231 
232   /// \brief All values hold a context through their type.
233   LLVMContext &getContext() const;
234 
235   // \brief All values can potentially be named.
hasName()236   bool hasName() const { return HasName; }
237   ValueName *getValueName() const;
238   void setValueName(ValueName *VN);
239 
240 private:
241   void destroyValueName();
242   void doRAUW(Value *New, bool NoMetadata);
243   void setNameImpl(const Twine &Name);
244 
245 public:
246   /// \brief Return a constant reference to the value's name.
247   ///
248   /// This is cheap and guaranteed to return the same reference as long as the
249   /// value is not modified.
250   StringRef getName() const;
251 
252   /// \brief Change the name of the value.
253   ///
254   /// Choose a new unique name if the provided name is taken.
255   ///
256   /// \param Name The new name; or "" if the value's name should be removed.
257   void setName(const Twine &Name);
258 
259   /// \brief Transfer the name from V to this value.
260   ///
261   /// After taking V's name, sets V's name to empty.
262   ///
263   /// \note It is an error to call V->takeName(V).
264   void takeName(Value *V);
265 
266   /// \brief Change all uses of this to point to a new Value.
267   ///
268   /// Go through the uses list for this definition and make each use point to
269   /// "V" instead of "this".  After this completes, 'this's use list is
270   /// guaranteed to be empty.
271   void replaceAllUsesWith(Value *V);
272 
273   /// \brief Change non-metadata uses of this to point to a new Value.
274   ///
275   /// Go through the uses list for this definition and make each use point to
276   /// "V" instead of "this". This function skips metadata entries in the list.
277   void replaceNonMetadataUsesWith(Value *V);
278 
279   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
280   /// make each use point to "V" instead of "this" when the use is outside the
281   /// block. 'This's use list is expected to have at least one element.
282   /// Unlike replaceAllUsesWith this function does not support basic block
283   /// values or constant users.
284   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
285 
286   //----------------------------------------------------------------------
287   // Methods for handling the chain of uses of this Value.
288   //
289   // Materializing a function can introduce new uses, so these methods come in
290   // two variants:
291   // The methods that start with materialized_ check the uses that are
292   // currently known given which functions are materialized. Be very careful
293   // when using them since you might not get all uses.
294   // The methods that don't start with materialized_ assert that modules is
295   // fully materialized.
296   void assertModuleIsMaterialized() const;
297 
use_empty()298   bool use_empty() const {
299     assertModuleIsMaterialized();
300     return UseList == nullptr;
301   }
302 
303   typedef use_iterator_impl<Use> use_iterator;
304   typedef use_iterator_impl<const Use> const_use_iterator;
materialized_use_begin()305   use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()306   const_use_iterator materialized_use_begin() const {
307     return const_use_iterator(UseList);
308   }
use_begin()309   use_iterator use_begin() {
310     assertModuleIsMaterialized();
311     return materialized_use_begin();
312   }
use_begin()313   const_use_iterator use_begin() const {
314     assertModuleIsMaterialized();
315     return materialized_use_begin();
316   }
use_end()317   use_iterator use_end() { return use_iterator(); }
use_end()318   const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()319   iterator_range<use_iterator> materialized_uses() {
320     return make_range(materialized_use_begin(), use_end());
321   }
materialized_uses()322   iterator_range<const_use_iterator> materialized_uses() const {
323     return make_range(materialized_use_begin(), use_end());
324   }
uses()325   iterator_range<use_iterator> uses() {
326     assertModuleIsMaterialized();
327     return materialized_uses();
328   }
uses()329   iterator_range<const_use_iterator> uses() const {
330     assertModuleIsMaterialized();
331     return materialized_uses();
332   }
333 
user_empty()334   bool user_empty() const {
335     assertModuleIsMaterialized();
336     return UseList == nullptr;
337   }
338 
339   typedef user_iterator_impl<User> user_iterator;
340   typedef user_iterator_impl<const User> const_user_iterator;
materialized_user_begin()341   user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()342   const_user_iterator materialized_user_begin() const {
343     return const_user_iterator(UseList);
344   }
user_begin()345   user_iterator user_begin() {
346     assertModuleIsMaterialized();
347     return materialized_user_begin();
348   }
user_begin()349   const_user_iterator user_begin() const {
350     assertModuleIsMaterialized();
351     return materialized_user_begin();
352   }
user_end()353   user_iterator user_end() { return user_iterator(); }
user_end()354   const_user_iterator user_end() const { return const_user_iterator(); }
user_back()355   User *user_back() {
356     assertModuleIsMaterialized();
357     return *materialized_user_begin();
358   }
user_back()359   const User *user_back() const {
360     assertModuleIsMaterialized();
361     return *materialized_user_begin();
362   }
materialized_users()363   iterator_range<user_iterator> materialized_users() {
364     return make_range(materialized_user_begin(), user_end());
365   }
materialized_users()366   iterator_range<const_user_iterator> materialized_users() const {
367     return make_range(materialized_user_begin(), user_end());
368   }
users()369   iterator_range<user_iterator> users() {
370     assertModuleIsMaterialized();
371     return materialized_users();
372   }
users()373   iterator_range<const_user_iterator> users() const {
374     assertModuleIsMaterialized();
375     return materialized_users();
376   }
377 
378   /// \brief Return true if there is exactly one user of this value.
379   ///
380   /// This is specialized because it is a common request and does not require
381   /// traversing the whole use list.
hasOneUse()382   bool hasOneUse() const {
383     const_use_iterator I = use_begin(), E = use_end();
384     if (I == E) return false;
385     return ++I == E;
386   }
387 
388   /// \brief Return true if this Value has exactly N users.
389   bool hasNUses(unsigned N) const;
390 
391   /// \brief Return true if this value has N users or more.
392   ///
393   /// This is logically equivalent to getNumUses() >= N.
394   bool hasNUsesOrMore(unsigned N) const;
395 
396   /// \brief Check if this value is used in the specified basic block.
397   bool isUsedInBasicBlock(const BasicBlock *BB) const;
398 
399   /// \brief This method computes the number of uses of this Value.
400   ///
401   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
402   /// hasNUsesOrMore to check for specific values.
403   unsigned getNumUses() const;
404 
405   /// \brief This method should only be used by the Use class.
addUse(Use & U)406   void addUse(Use &U) { U.addToList(&UseList); }
407 
408   /// \brief Concrete subclass of this.
409   ///
410   /// An enumeration for keeping track of the concrete subclass of Value that
411   /// is actually instantiated. Values of this enumeration are kept in the
412   /// Value classes SubclassID field. They are used for concrete type
413   /// identification.
414   enum ValueTy {
415 #define HANDLE_VALUE(Name) Name##Val,
416 #include "llvm/IR/Value.def"
417 
418     // Markers:
419 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
420 #include "llvm/IR/Value.def"
421   };
422 
423   /// \brief Return an ID for the concrete type of this object.
424   ///
425   /// This is used to implement the classof checks.  This should not be used
426   /// for any other purpose, as the values may change as LLVM evolves.  Also,
427   /// note that for instructions, the Instruction's opcode is added to
428   /// InstructionVal. So this means three things:
429   /// # there is no value with code InstructionVal (no opcode==0).
430   /// # there are more possible values for the value type than in ValueTy enum.
431   /// # the InstructionVal enumerator must be the highest valued enumerator in
432   ///   the ValueTy enum.
getValueID()433   unsigned getValueID() const {
434     return SubclassID;
435   }
436 
437   /// \brief Return the raw optional flags value contained in this value.
438   ///
439   /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()440   unsigned getRawSubclassOptionalData() const {
441     return SubclassOptionalData;
442   }
443 
444   /// \brief Clear the optional flags contained in this value.
clearSubclassOptionalData()445   void clearSubclassOptionalData() {
446     SubclassOptionalData = 0;
447   }
448 
449   /// \brief Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)450   bool hasSameSubclassOptionalData(const Value *V) const {
451     return SubclassOptionalData == V->SubclassOptionalData;
452   }
453 
454   /// \brief Return true if there is a value handle associated with this value.
hasValueHandle()455   bool hasValueHandle() const { return HasValueHandle; }
456 
457   /// \brief Return true if there is metadata referencing this value.
isUsedByMetadata()458   bool isUsedByMetadata() const { return IsUsedByMD; }
459 
460   /// \brief Return true if this value is a swifterror value.
461   ///
462   /// swifterror values can be either a function argument or an alloca with a
463   /// swifterror attribute.
464   bool isSwiftError() const;
465 
466   /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
467   ///
468   /// Returns the original uncasted value.  If this is called on a non-pointer
469   /// value, it returns 'this'.
470   Value *stripPointerCasts();
stripPointerCasts()471   const Value *stripPointerCasts() const {
472     return const_cast<Value*>(this)->stripPointerCasts();
473   }
474 
475   /// \brief Strip off pointer casts and all-zero GEPs.
476   ///
477   /// Returns the original uncasted value.  If this is called on a non-pointer
478   /// value, it returns 'this'.
479   Value *stripPointerCastsNoFollowAliases();
stripPointerCastsNoFollowAliases()480   const Value *stripPointerCastsNoFollowAliases() const {
481     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
482   }
483 
484   /// \brief Strip off pointer casts and all-constant inbounds GEPs.
485   ///
486   /// Returns the original pointer value.  If this is called on a non-pointer
487   /// value, it returns 'this'.
488   Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()489   const Value *stripInBoundsConstantOffsets() const {
490     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
491   }
492 
493   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
494   ///
495   /// Stores the resulting constant offset stripped into the APInt provided.
496   /// The provided APInt will be extended or truncated as needed to be the
497   /// correct bitwidth for an offset of this pointer type.
498   ///
499   /// If this is called on a non-pointer value, it returns 'this'.
500   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
501                                                    APInt &Offset);
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)502   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
503                                                          APInt &Offset) const {
504     return const_cast<Value *>(this)
505         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
506   }
507 
508   /// \brief Strip off pointer casts and inbounds GEPs.
509   ///
510   /// Returns the original pointer value.  If this is called on a non-pointer
511   /// value, it returns 'this'.
512   Value *stripInBoundsOffsets();
stripInBoundsOffsets()513   const Value *stripInBoundsOffsets() const {
514     return const_cast<Value*>(this)->stripInBoundsOffsets();
515   }
516 
517   /// \brief Returns the number of bytes known to be dereferenceable for the
518   /// pointer value.
519   ///
520   /// If CanBeNull is set by this function the pointer can either be null or be
521   /// dereferenceable up to the returned number of bytes.
522   unsigned getPointerDereferenceableBytes(const DataLayout &DL,
523                                           bool &CanBeNull) const;
524 
525   /// \brief Returns an alignment of the pointer value.
526   ///
527   /// Returns an alignment which is either specified explicitly, e.g. via
528   /// align attribute of a function argument, or guaranteed by DataLayout.
529   unsigned getPointerAlignment(const DataLayout &DL) const;
530 
531   /// \brief Translate PHI node to its predecessor from the given basic block.
532   ///
533   /// If this value is a PHI node with CurBB as its parent, return the value in
534   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
535   /// useful if you want to know the value something has in a predecessor
536   /// block.
537   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
538 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)539   const Value *DoPHITranslation(const BasicBlock *CurBB,
540                                 const BasicBlock *PredBB) const{
541     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
542   }
543 
544   /// \brief The maximum alignment for instructions.
545   ///
546   /// This is the greatest alignment value supported by load, store, and alloca
547   /// instructions, and global values.
548   static const unsigned MaxAlignmentExponent = 29;
549   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
550 
551   /// \brief Mutate the type of this Value to be of the specified type.
552   ///
553   /// Note that this is an extremely dangerous operation which can create
554   /// completely invalid IR very easily.  It is strongly recommended that you
555   /// recreate IR objects with the right types instead of mutating them in
556   /// place.
mutateType(Type * Ty)557   void mutateType(Type *Ty) {
558     VTy = Ty;
559   }
560 
561   /// \brief Sort the use-list.
562   ///
563   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
564   /// expected to compare two \a Use references.
565   template <class Compare> void sortUseList(Compare Cmp);
566 
567   /// \brief Reverse the use-list.
568   void reverseUseList();
569 
570 private:
571   /// \brief Merge two lists together.
572   ///
573   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
574   /// "equal" items from L before items from R.
575   ///
576   /// \return the first element in the list.
577   ///
578   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
579   template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)580   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
581     Use *Merged;
582     Use **Next = &Merged;
583 
584     for (;;) {
585       if (!L) {
586         *Next = R;
587         break;
588       }
589       if (!R) {
590         *Next = L;
591         break;
592       }
593       if (Cmp(*R, *L)) {
594         *Next = R;
595         Next = &R->Next;
596         R = R->Next;
597       } else {
598         *Next = L;
599         Next = &L->Next;
600         L = L->Next;
601       }
602     }
603 
604     return Merged;
605   }
606 
607   /// \brief Tail-recursive helper for \a mergeUseLists().
608   ///
609   /// \param[out] Next the first element in the list.
610   template <class Compare>
611   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
612 
613 protected:
getSubclassDataFromValue()614   unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)615   void setValueSubclassData(unsigned short D) { SubclassData = D; }
616 };
617 
618 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
619   V.print(OS);
620   return OS;
621 }
622 
set(Value * V)623 void Use::set(Value *V) {
624   if (Val) removeFromList();
625   Val = V;
626   if (V) V->addUse(*this);
627 }
628 
629 Value *Use::operator=(Value *RHS) {
630   set(RHS);
631   return RHS;
632 }
633 
634 const Use &Use::operator=(const Use &RHS) {
635   set(RHS.Val);
636   return *this;
637 }
638 
sortUseList(Compare Cmp)639 template <class Compare> void Value::sortUseList(Compare Cmp) {
640   if (!UseList || !UseList->Next)
641     // No need to sort 0 or 1 uses.
642     return;
643 
644   // Note: this function completely ignores Prev pointers until the end when
645   // they're fixed en masse.
646 
647   // Create a binomial vector of sorted lists, visiting uses one at a time and
648   // merging lists as necessary.
649   const unsigned MaxSlots = 32;
650   Use *Slots[MaxSlots];
651 
652   // Collect the first use, turning it into a single-item list.
653   Use *Next = UseList->Next;
654   UseList->Next = nullptr;
655   unsigned NumSlots = 1;
656   Slots[0] = UseList;
657 
658   // Collect all but the last use.
659   while (Next->Next) {
660     Use *Current = Next;
661     Next = Current->Next;
662 
663     // Turn Current into a single-item list.
664     Current->Next = nullptr;
665 
666     // Save Current in the first available slot, merging on collisions.
667     unsigned I;
668     for (I = 0; I < NumSlots; ++I) {
669       if (!Slots[I])
670         break;
671 
672       // Merge two lists, doubling the size of Current and emptying slot I.
673       //
674       // Since the uses in Slots[I] originally preceded those in Current, send
675       // Slots[I] in as the left parameter to maintain a stable sort.
676       Current = mergeUseLists(Slots[I], Current, Cmp);
677       Slots[I] = nullptr;
678     }
679     // Check if this is a new slot.
680     if (I == NumSlots) {
681       ++NumSlots;
682       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
683     }
684 
685     // Found an open slot.
686     Slots[I] = Current;
687   }
688 
689   // Merge all the lists together.
690   assert(Next && "Expected one more Use");
691   assert(!Next->Next && "Expected only one Use");
692   UseList = Next;
693   for (unsigned I = 0; I < NumSlots; ++I)
694     if (Slots[I])
695       // Since the uses in Slots[I] originally preceded those in UseList, send
696       // Slots[I] in as the left parameter to maintain a stable sort.
697       UseList = mergeUseLists(Slots[I], UseList, Cmp);
698 
699   // Fix the Prev pointers.
700   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
701     I->setPrev(Prev);
702     Prev = &I->Next;
703   }
704 }
705 
706 // isa - Provide some specializations of isa so that we don't have to include
707 // the subtype header files to test to see if the value is a subclass...
708 //
709 template <> struct isa_impl<Constant, Value> {
710   static inline bool doit(const Value &Val) {
711     return Val.getValueID() >= Value::ConstantFirstVal &&
712       Val.getValueID() <= Value::ConstantLastVal;
713   }
714 };
715 
716 template <> struct isa_impl<ConstantData, Value> {
717   static inline bool doit(const Value &Val) {
718     return Val.getValueID() >= Value::ConstantDataFirstVal &&
719            Val.getValueID() <= Value::ConstantDataLastVal;
720   }
721 };
722 
723 template <> struct isa_impl<ConstantAggregate, Value> {
724   static inline bool doit(const Value &Val) {
725     return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
726            Val.getValueID() <= Value::ConstantAggregateLastVal;
727   }
728 };
729 
730 template <> struct isa_impl<Argument, Value> {
731   static inline bool doit (const Value &Val) {
732     return Val.getValueID() == Value::ArgumentVal;
733   }
734 };
735 
736 template <> struct isa_impl<InlineAsm, Value> {
737   static inline bool doit(const Value &Val) {
738     return Val.getValueID() == Value::InlineAsmVal;
739   }
740 };
741 
742 template <> struct isa_impl<Instruction, Value> {
743   static inline bool doit(const Value &Val) {
744     return Val.getValueID() >= Value::InstructionVal;
745   }
746 };
747 
748 template <> struct isa_impl<BasicBlock, Value> {
749   static inline bool doit(const Value &Val) {
750     return Val.getValueID() == Value::BasicBlockVal;
751   }
752 };
753 
754 template <> struct isa_impl<Function, Value> {
755   static inline bool doit(const Value &Val) {
756     return Val.getValueID() == Value::FunctionVal;
757   }
758 };
759 
760 template <> struct isa_impl<GlobalVariable, Value> {
761   static inline bool doit(const Value &Val) {
762     return Val.getValueID() == Value::GlobalVariableVal;
763   }
764 };
765 
766 template <> struct isa_impl<GlobalAlias, Value> {
767   static inline bool doit(const Value &Val) {
768     return Val.getValueID() == Value::GlobalAliasVal;
769   }
770 };
771 
772 template <> struct isa_impl<GlobalIFunc, Value> {
773   static inline bool doit(const Value &Val) {
774     return Val.getValueID() == Value::GlobalIFuncVal;
775   }
776 };
777 
778 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
779   static inline bool doit(const Value &Val) {
780     return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
781   }
782 };
783 
784 template <> struct isa_impl<GlobalValue, Value> {
785   static inline bool doit(const Value &Val) {
786     return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
787   }
788 };
789 
790 template <> struct isa_impl<GlobalObject, Value> {
791   static inline bool doit(const Value &Val) {
792     return isa<GlobalVariable>(Val) || isa<Function>(Val);
793   }
794 };
795 
796 // Create wrappers for C Binding types (see CBindingWrapping.h).
797 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
798 
799 // Specialized opaque value conversions.
800 inline Value **unwrap(LLVMValueRef *Vals) {
801   return reinterpret_cast<Value**>(Vals);
802 }
803 
804 template<typename T>
805 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
806 #ifndef NDEBUG
807   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
808     unwrap<T>(*I); // For side effect of calling assert on invalid usage.
809 #endif
810   (void)Length;
811   return reinterpret_cast<T**>(Vals);
812 }
813 
814 inline LLVMValueRef *wrap(const Value **Vals) {
815   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
816 }
817 
818 } // end namespace llvm
819 
820 #endif // LLVM_IR_VALUE_H
821