1// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE.md file.
4
5// Package cmp determines equality of values.
6//
7// This package is intended to be a more powerful and safer alternative to
8// reflect.DeepEqual for comparing whether two values are semantically equal.
9//
10// The primary features of cmp are:
11//
12// • When the default behavior of equality does not suit the needs of the test,
13// custom equality functions can override the equality operation.
14// For example, an equality function may report floats as equal so long as they
15// are within some tolerance of each other.
16//
17// • Types that have an Equal method may use that method to determine equality.
18// This allows package authors to determine the equality operation for the types
19// that they define.
20//
21// • If no custom equality functions are used and no Equal method is defined,
22// equality is determined by recursively comparing the primitive kinds on both
23// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
24// fields are not compared by default; they result in panics unless suppressed
25// by using an Ignore option (see cmpopts.IgnoreUnexported) or explictly compared
26// using the AllowUnexported option.
27package cmp
28
29import (
30	"fmt"
31	"reflect"
32
33	"github.com/google/go-cmp/cmp/internal/diff"
34	"github.com/google/go-cmp/cmp/internal/function"
35	"github.com/google/go-cmp/cmp/internal/value"
36)
37
38// BUG: Maps with keys containing NaN values cannot be properly compared due to
39// the reflection package's inability to retrieve such entries. Equal will panic
40// anytime it comes across a NaN key, but this behavior may change.
41//
42// See https://golang.org/issue/11104 for more details.
43
44var nothing = reflect.Value{}
45
46// Equal reports whether x and y are equal by recursively applying the
47// following rules in the given order to x and y and all of their sub-values:
48//
49// • If two values are not of the same type, then they are never equal
50// and the overall result is false.
51//
52// • Let S be the set of all Ignore, Transformer, and Comparer options that
53// remain after applying all path filters, value filters, and type filters.
54// If at least one Ignore exists in S, then the comparison is ignored.
55// If the number of Transformer and Comparer options in S is greater than one,
56// then Equal panics because it is ambiguous which option to use.
57// If S contains a single Transformer, then use that to transform the current
58// values and recursively call Equal on the output values.
59// If S contains a single Comparer, then use that to compare the current values.
60// Otherwise, evaluation proceeds to the next rule.
61//
62// • If the values have an Equal method of the form "(T) Equal(T) bool" or
63// "(T) Equal(I) bool" where T is assignable to I, then use the result of
64// x.Equal(y). Otherwise, no such method exists and evaluation proceeds to
65// the next rule.
66//
67// • Lastly, try to compare x and y based on their basic kinds.
68// Simple kinds like booleans, integers, floats, complex numbers, strings, and
69// channels are compared using the equivalent of the == operator in Go.
70// Functions are only equal if they are both nil, otherwise they are unequal.
71// Pointers are equal if the underlying values they point to are also equal.
72// Interfaces are equal if their underlying concrete values are also equal.
73//
74// Structs are equal if all of their fields are equal. If a struct contains
75// unexported fields, Equal panics unless the AllowUnexported option is used or
76// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field.
77//
78// Arrays, slices, and maps are equal if they are both nil or both non-nil
79// with the same length and the elements at each index or key are equal.
80// Note that a non-nil empty slice and a nil slice are not equal.
81// To equate empty slices and maps, consider using cmpopts.EquateEmpty.
82// Map keys are equal according to the == operator.
83// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
84func Equal(x, y interface{}, opts ...Option) bool {
85	s := newState(opts)
86	s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y))
87	return s.result.Equal()
88}
89
90// Diff returns a human-readable report of the differences between two values.
91// It returns an empty string if and only if Equal returns true for the same
92// input values and options. The output string will use the "-" symbol to
93// indicate elements removed from x, and the "+" symbol to indicate elements
94// added to y.
95//
96// Do not depend on this output being stable.
97func Diff(x, y interface{}, opts ...Option) string {
98	r := new(defaultReporter)
99	opts = Options{Options(opts), r}
100	eq := Equal(x, y, opts...)
101	d := r.String()
102	if (d == "") != eq {
103		panic("inconsistent difference and equality results")
104	}
105	return d
106}
107
108type state struct {
109	// These fields represent the "comparison state".
110	// Calling statelessCompare must not result in observable changes to these.
111	result   diff.Result // The current result of comparison
112	curPath  Path        // The current path in the value tree
113	reporter reporter    // Optional reporter used for difference formatting
114
115	// dynChecker triggers pseudo-random checks for option correctness.
116	// It is safe for statelessCompare to mutate this value.
117	dynChecker dynChecker
118
119	// These fields, once set by processOption, will not change.
120	exporters map[reflect.Type]bool // Set of structs with unexported field visibility
121	opts      Options               // List of all fundamental and filter options
122}
123
124func newState(opts []Option) *state {
125	s := new(state)
126	for _, opt := range opts {
127		s.processOption(opt)
128	}
129	return s
130}
131
132func (s *state) processOption(opt Option) {
133	switch opt := opt.(type) {
134	case nil:
135	case Options:
136		for _, o := range opt {
137			s.processOption(o)
138		}
139	case coreOption:
140		type filtered interface {
141			isFiltered() bool
142		}
143		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
144			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
145		}
146		s.opts = append(s.opts, opt)
147	case visibleStructs:
148		if s.exporters == nil {
149			s.exporters = make(map[reflect.Type]bool)
150		}
151		for t := range opt {
152			s.exporters[t] = true
153		}
154	case reporter:
155		if s.reporter != nil {
156			panic("difference reporter already registered")
157		}
158		s.reporter = opt
159	default:
160		panic(fmt.Sprintf("unknown option %T", opt))
161	}
162}
163
164// statelessCompare compares two values and returns the result.
165// This function is stateless in that it does not alter the current result,
166// or output to any registered reporters.
167func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result {
168	// We do not save and restore the curPath because all of the compareX
169	// methods should properly push and pop from the path.
170	// It is an implementation bug if the contents of curPath differs from
171	// when calling this function to when returning from it.
172
173	oldResult, oldReporter := s.result, s.reporter
174	s.result = diff.Result{} // Reset result
175	s.reporter = nil         // Remove reporter to avoid spurious printouts
176	s.compareAny(vx, vy)
177	res := s.result
178	s.result, s.reporter = oldResult, oldReporter
179	return res
180}
181
182func (s *state) compareAny(vx, vy reflect.Value) {
183	// TODO: Support cyclic data structures.
184
185	// Rule 0: Differing types are never equal.
186	if !vx.IsValid() || !vy.IsValid() {
187		s.report(vx.IsValid() == vy.IsValid(), vx, vy)
188		return
189	}
190	if vx.Type() != vy.Type() {
191		s.report(false, vx, vy) // Possible for path to be empty
192		return
193	}
194	t := vx.Type()
195	if len(s.curPath) == 0 {
196		s.curPath.push(&pathStep{typ: t})
197		defer s.curPath.pop()
198	}
199	vx, vy = s.tryExporting(vx, vy)
200
201	// Rule 1: Check whether an option applies on this node in the value tree.
202	if s.tryOptions(vx, vy, t) {
203		return
204	}
205
206	// Rule 2: Check whether the type has a valid Equal method.
207	if s.tryMethod(vx, vy, t) {
208		return
209	}
210
211	// Rule 3: Recursively descend into each value's underlying kind.
212	switch t.Kind() {
213	case reflect.Bool:
214		s.report(vx.Bool() == vy.Bool(), vx, vy)
215		return
216	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
217		s.report(vx.Int() == vy.Int(), vx, vy)
218		return
219	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
220		s.report(vx.Uint() == vy.Uint(), vx, vy)
221		return
222	case reflect.Float32, reflect.Float64:
223		s.report(vx.Float() == vy.Float(), vx, vy)
224		return
225	case reflect.Complex64, reflect.Complex128:
226		s.report(vx.Complex() == vy.Complex(), vx, vy)
227		return
228	case reflect.String:
229		s.report(vx.String() == vy.String(), vx, vy)
230		return
231	case reflect.Chan, reflect.UnsafePointer:
232		s.report(vx.Pointer() == vy.Pointer(), vx, vy)
233		return
234	case reflect.Func:
235		s.report(vx.IsNil() && vy.IsNil(), vx, vy)
236		return
237	case reflect.Ptr:
238		if vx.IsNil() || vy.IsNil() {
239			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
240			return
241		}
242		s.curPath.push(&indirect{pathStep{t.Elem()}})
243		defer s.curPath.pop()
244		s.compareAny(vx.Elem(), vy.Elem())
245		return
246	case reflect.Interface:
247		if vx.IsNil() || vy.IsNil() {
248			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
249			return
250		}
251		if vx.Elem().Type() != vy.Elem().Type() {
252			s.report(false, vx.Elem(), vy.Elem())
253			return
254		}
255		s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
256		defer s.curPath.pop()
257		s.compareAny(vx.Elem(), vy.Elem())
258		return
259	case reflect.Slice:
260		if vx.IsNil() || vy.IsNil() {
261			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
262			return
263		}
264		fallthrough
265	case reflect.Array:
266		s.compareArray(vx, vy, t)
267		return
268	case reflect.Map:
269		s.compareMap(vx, vy, t)
270		return
271	case reflect.Struct:
272		s.compareStruct(vx, vy, t)
273		return
274	default:
275		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
276	}
277}
278
279func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) {
280	if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
281		if sf.force {
282			// Use unsafe pointer arithmetic to get read-write access to an
283			// unexported field in the struct.
284			vx = unsafeRetrieveField(sf.pvx, sf.field)
285			vy = unsafeRetrieveField(sf.pvy, sf.field)
286		} else {
287			// We are not allowed to export the value, so invalidate them
288			// so that tryOptions can panic later if not explicitly ignored.
289			vx = nothing
290			vy = nothing
291		}
292	}
293	return vx, vy
294}
295
296func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
297	// If there were no FilterValues, we will not detect invalid inputs,
298	// so manually check for them and append invalid if necessary.
299	// We still evaluate the options since an ignore can override invalid.
300	opts := s.opts
301	if !vx.IsValid() || !vy.IsValid() {
302		opts = Options{opts, invalid{}}
303	}
304
305	// Evaluate all filters and apply the remaining options.
306	if opt := opts.filter(s, vx, vy, t); opt != nil {
307		return opt.apply(s, vx, vy)
308	}
309	return false
310}
311
312func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
313	// Check if this type even has an Equal method.
314	m, ok := t.MethodByName("Equal")
315	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
316		return false
317	}
318
319	eq := s.callTTBFunc(m.Func, vx, vy)
320	s.report(eq, vx, vy)
321	return true
322}
323
324func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
325	if !s.dynChecker.Next() {
326		return f.Call([]reflect.Value{v})[0]
327	}
328
329	// Run the function twice and ensure that we get the same results back.
330	// We run in goroutines so that the race detector (if enabled) can detect
331	// unsafe mutations to the input.
332	c := make(chan reflect.Value)
333	go detectRaces(c, f, v)
334	want := f.Call([]reflect.Value{v})[0]
335	if got := <-c; !s.statelessCompare(got, want).Equal() {
336		// To avoid false-positives with non-reflexive equality operations,
337		// we sanity check whether a value is equal to itself.
338		if !s.statelessCompare(want, want).Equal() {
339			return want
340		}
341		fn := getFuncName(f.Pointer())
342		panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
343	}
344	return want
345}
346
347func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
348	if !s.dynChecker.Next() {
349		return f.Call([]reflect.Value{x, y})[0].Bool()
350	}
351
352	// Swapping the input arguments is sufficient to check that
353	// f is symmetric and deterministic.
354	// We run in goroutines so that the race detector (if enabled) can detect
355	// unsafe mutations to the input.
356	c := make(chan reflect.Value)
357	go detectRaces(c, f, y, x)
358	want := f.Call([]reflect.Value{x, y})[0].Bool()
359	if got := <-c; !got.IsValid() || got.Bool() != want {
360		fn := getFuncName(f.Pointer())
361		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
362	}
363	return want
364}
365
366func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
367	var ret reflect.Value
368	defer func() {
369		recover() // Ignore panics, let the other call to f panic instead
370		c <- ret
371	}()
372	ret = f.Call(vs)[0]
373}
374
375func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) {
376	step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
377	s.curPath.push(step)
378
379	// Compute an edit-script for slices vx and vy.
380	eq, es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
381		step.xkey, step.ykey = ix, iy
382		return s.statelessCompare(vx.Index(ix), vy.Index(iy))
383	})
384
385	// Equal or no edit-script, so report entire slices as is.
386	if eq || es == nil {
387		s.curPath.pop() // Pop first since we are reporting the whole slice
388		s.report(eq, vx, vy)
389		return
390	}
391
392	// Replay the edit-script.
393	var ix, iy int
394	for _, e := range es {
395		switch e {
396		case diff.UniqueX:
397			step.xkey, step.ykey = ix, -1
398			s.report(false, vx.Index(ix), nothing)
399			ix++
400		case diff.UniqueY:
401			step.xkey, step.ykey = -1, iy
402			s.report(false, nothing, vy.Index(iy))
403			iy++
404		default:
405			step.xkey, step.ykey = ix, iy
406			if e == diff.Identity {
407				s.report(true, vx.Index(ix), vy.Index(iy))
408			} else {
409				s.compareAny(vx.Index(ix), vy.Index(iy))
410			}
411			ix++
412			iy++
413		}
414	}
415	s.curPath.pop()
416	return
417}
418
419func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
420	if vx.IsNil() || vy.IsNil() {
421		s.report(vx.IsNil() && vy.IsNil(), vx, vy)
422		return
423	}
424
425	// We combine and sort the two map keys so that we can perform the
426	// comparisons in a deterministic order.
427	step := &mapIndex{pathStep: pathStep{t.Elem()}}
428	s.curPath.push(step)
429	defer s.curPath.pop()
430	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
431		step.key = k
432		vvx := vx.MapIndex(k)
433		vvy := vy.MapIndex(k)
434		switch {
435		case vvx.IsValid() && vvy.IsValid():
436			s.compareAny(vvx, vvy)
437		case vvx.IsValid() && !vvy.IsValid():
438			s.report(false, vvx, nothing)
439		case !vvx.IsValid() && vvy.IsValid():
440			s.report(false, nothing, vvy)
441		default:
442			// It is possible for both vvx and vvy to be invalid if the
443			// key contained a NaN value in it. There is no way in
444			// reflection to be able to retrieve these values.
445			// See https://golang.org/issue/11104
446			panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
447		}
448	}
449}
450
451func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
452	var vax, vay reflect.Value // Addressable versions of vx and vy
453
454	step := &structField{}
455	s.curPath.push(step)
456	defer s.curPath.pop()
457	for i := 0; i < t.NumField(); i++ {
458		vvx := vx.Field(i)
459		vvy := vy.Field(i)
460		step.typ = t.Field(i).Type
461		step.name = t.Field(i).Name
462		step.idx = i
463		step.unexported = !isExported(step.name)
464		if step.unexported {
465			// Defer checking of unexported fields until later to give an
466			// Ignore a chance to ignore the field.
467			if !vax.IsValid() || !vay.IsValid() {
468				// For unsafeRetrieveField to work, the parent struct must
469				// be addressable. Create a new copy of the values if
470				// necessary to make them addressable.
471				vax = makeAddressable(vx)
472				vay = makeAddressable(vy)
473			}
474			step.force = s.exporters[t]
475			step.pvx = vax
476			step.pvy = vay
477			step.field = t.Field(i)
478		}
479		s.compareAny(vvx, vvy)
480	}
481}
482
483// report records the result of a single comparison.
484// It also calls Report if any reporter is registered.
485func (s *state) report(eq bool, vx, vy reflect.Value) {
486	if eq {
487		s.result.NSame++
488	} else {
489		s.result.NDiff++
490	}
491	if s.reporter != nil {
492		s.reporter.Report(vx, vy, eq, s.curPath)
493	}
494}
495
496// dynChecker tracks the state needed to periodically perform checks that
497// user provided functions are symmetric and deterministic.
498// The zero value is safe for immediate use.
499type dynChecker struct{ curr, next int }
500
501// Next increments the state and reports whether a check should be performed.
502//
503// Checks occur every Nth function call, where N is a triangular number:
504//	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
505// See https://en.wikipedia.org/wiki/Triangular_number
506//
507// This sequence ensures that the cost of checks drops significantly as
508// the number of functions calls grows larger.
509func (dc *dynChecker) Next() bool {
510	ok := dc.curr == dc.next
511	if ok {
512		dc.curr = 0
513		dc.next++
514	}
515	dc.curr++
516	return ok
517}
518
519// makeAddressable returns a value that is always addressable.
520// It returns the input verbatim if it is already addressable,
521// otherwise it creates a new value and returns an addressable copy.
522func makeAddressable(v reflect.Value) reflect.Value {
523	if v.CanAddr() {
524		return v
525	}
526	vc := reflect.New(v.Type()).Elem()
527	vc.Set(v)
528	return vc
529}
530