Lines Matching refs:input
385 bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize, in reshapePrepare() argument
391 int32_t numInputElements = (int32_t)getNumberOfElements(input); in reshapePrepare()
414 output->type = input.type; in reshapePrepare()
416 output->offset = input.offset; in reshapePrepare()
417 output->scale = input.scale; in reshapePrepare()
422 bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output) { in depthToSpacePrepare() argument
423 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in depthToSpacePrepare()
426 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare()
427 uint32_t height = getSizeOfDimension(input, 1); in depthToSpacePrepare()
428 uint32_t width = getSizeOfDimension(input, 2); in depthToSpacePrepare()
429 uint32_t channels = getSizeOfDimension(input, 3); in depthToSpacePrepare()
432 output->type = input.type; in depthToSpacePrepare()
435 output->offset = input.offset; in depthToSpacePrepare()
436 output->scale = input.scale; in depthToSpacePrepare()
441 bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output) { in spaceToDepthPrepare() argument
442 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in spaceToDepthPrepare()
445 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare()
446 uint32_t height = getSizeOfDimension(input, 1); in spaceToDepthPrepare()
447 uint32_t width = getSizeOfDimension(input, 2); in spaceToDepthPrepare()
448 uint32_t channels = getSizeOfDimension(input, 3); in spaceToDepthPrepare()
453 output->type = input.type; in spaceToDepthPrepare()
456 output->offset = input.offset; in spaceToDepthPrepare()
457 output->scale = input.scale; in spaceToDepthPrepare()
507 bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape, in padPrepare() argument
509 uint32_t numInputDims = getNumberOfDimensions(input); in padPrepare()
523 outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding; in padPrepare()
525 output->type = input.type; in padPrepare()
527 output->offset = input.offset; in padPrepare()
528 output->scale = input.scale; in padPrepare()
533 bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData, in batchToSpacePrepare() argument
536 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in batchToSpacePrepare()
544 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare()
545 uint32_t height = getSizeOfDimension(input, 1); in batchToSpacePrepare()
546 uint32_t width = getSizeOfDimension(input, 2); in batchToSpacePrepare()
547 uint32_t channels = getSizeOfDimension(input, 3); in batchToSpacePrepare()
550 output->type = input.type; in batchToSpacePrepare()
553 output->offset = input.offset; in batchToSpacePrepare()
554 output->scale = input.scale; in batchToSpacePrepare()
559 bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData, in spaceToBatchPrepare() argument
563 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in spaceToBatchPrepare()
577 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare()
578 uint32_t height = getSizeOfDimension(input, 1); in spaceToBatchPrepare()
579 uint32_t width = getSizeOfDimension(input, 2); in spaceToBatchPrepare()
580 uint32_t channels = getSizeOfDimension(input, 3); in spaceToBatchPrepare()
588 output->type = input.type; in spaceToBatchPrepare()
592 output->offset = input.offset; in spaceToBatchPrepare()
593 output->scale = input.scale; in spaceToBatchPrepare()
598 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, in meanPrepare() argument
604 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(input)); in meanPrepare()
621 outDims[idx] = getSizeOfDimension(input, idx); in meanPrepare()
658 outDims[idx - numSkipAxis] = getSizeOfDimension(input, idx); in meanPrepare()
668 output->type = input.type; in meanPrepare()
669 output->offset = input.offset; in meanPrepare()
670 output->scale = input.scale; in meanPrepare()
675 bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output) { in argMinMaxPrepare() argument
676 NN_CHECK(handleNegativeAxis(input, &axis)); in argMinMaxPrepare()
682 if (getNumberOfDimensions(input) > 1) { in argMinMaxPrepare()
683 output->dimensions.reserve(getNumberOfDimensions(input) - 1); in argMinMaxPrepare()
684 output->dimensions.insert(output->dimensions.end(), input.dimensions.begin(), in argMinMaxPrepare()
685 input.dimensions.begin() + axis); in argMinMaxPrepare()
686 output->dimensions.insert(output->dimensions.end(), input.dimensions.begin() + axis + 1, in argMinMaxPrepare()
687 input.dimensions.end()); in argMinMaxPrepare()
695 bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, in splitPrepare() argument
697 NN_CHECK(handleNegativeAxis(input, &axis)); in splitPrepare()
699 const int32_t sizeOfAxisToSplit = input.dimensions[axis]; in splitPrepare()
704 output->at(i).type = input.type; in splitPrepare()
705 output->at(i).dimensions = input.dimensions; in splitPrepare()
707 output->at(i).offset = input.offset; in splitPrepare()
708 output->at(i).scale = input.scale; in splitPrepare()
713 bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, in groupedConvPrepare() argument
718 NN_OPS_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM || in groupedConvPrepare()
719 input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED); in groupedConvPrepare()
721 NN_OPS_CHECK(input.type == filter.type); in groupedConvPrepare()
723 if (input.type == OperandType::TENSOR_QUANT8_ASYMM || in groupedConvPrepare()
724 input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { in groupedConvPrepare()
727 NN_OPS_CHECK(input.type == bias.type); in groupedConvPrepare()
729 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in groupedConvPrepare()
735 NN_OPS_CHECK(getSizeOfDimension(filter, 3) * numGroups == getSizeOfDimension(input, 3)); in groupedConvPrepare()
739 uint32_t width = getSizeOfDimension(input, 2); in groupedConvPrepare()
740 uint32_t height = getSizeOfDimension(input, 1); in groupedConvPrepare()
743 uint32_t batches = getSizeOfDimension(input, 0); in groupedConvPrepare()
755 output->type = input.type; in groupedConvPrepare()