/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_x86.h" #include "mirror/array-inl.h" #include "mirror/string.h" namespace art { namespace x86 { // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(GetAssembler())-> // NOLINT void LocationsBuilderX86::VisitVecReplicateScalar(HVecReplicateScalar* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); HInstruction* input = instruction->InputAt(0); bool is_zero = IsZeroBitPattern(input); switch (instruction->GetPackedType()) { case DataType::Type::kInt64: // Long needs extra temporary to load from the register pair. if (!is_zero) { locations->AddTemp(Location::RequiresFpuRegister()); } FALLTHROUGH_INTENDED; case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant()) : Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant()) : Location::RequiresFpuRegister()); locations->SetOut(is_zero ? Location::RequiresFpuRegister() : Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void InstructionCodeGeneratorX86::VisitVecReplicateScalar(HVecReplicateScalar* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister dst = locations->Out().AsFpuRegister(); bool cpu_has_avx = CpuHasAvxFeatureFlag(); // Shorthand for any type of zero. if (IsZeroBitPattern(instruction->InputAt(0))) { cpu_has_avx ? __ vxorps(dst, dst, dst) : __ xorps(dst, dst); return; } switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ movd(dst, locations->InAt(0).AsRegister()); __ punpcklbw(dst, dst); __ punpcklwd(dst, dst); __ pshufd(dst, dst, Immediate(0)); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ movd(dst, locations->InAt(0).AsRegister()); __ punpcklwd(dst, dst); __ pshufd(dst, dst, Immediate(0)); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ movd(dst, locations->InAt(0).AsRegister()); __ pshufd(dst, dst, Immediate(0)); break; case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); __ movd(dst, locations->InAt(0).AsRegisterPairLow()); __ movd(tmp, locations->InAt(0).AsRegisterPairHigh()); __ punpckldq(dst, tmp); __ punpcklqdq(dst, dst); break; } case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); DCHECK(locations->InAt(0).Equals(locations->Out())); __ shufps(dst, dst, Immediate(0)); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); DCHECK(locations->InAt(0).Equals(locations->Out())); __ shufpd(dst, dst, Immediate(0)); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecExtractScalar(HVecExtractScalar* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kInt64: // Long needs extra temporary to store into the register pair. locations->AddTemp(Location::RequiresFpuRegister()); FALLTHROUGH_INTENDED; case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void InstructionCodeGeneratorX86::VisitVecExtractScalar(HVecExtractScalar* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(0).AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: // TODO: up to here, and? LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); case DataType::Type::kInt32: DCHECK_LE(4u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); __ movd(locations->Out().AsRegister(), src); break; case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); __ movd(locations->Out().AsRegisterPairLow(), src); __ pshufd(tmp, src, Immediate(1)); __ movd(locations->Out().AsRegisterPairHigh(), tmp); break; } case DataType::Type::kFloat32: case DataType::Type::kFloat64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 4u); DCHECK(locations->InAt(0).Equals(locations->Out())); // no code required break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } // Helper to set up locations for vector unary operations. static void CreateVecUnOpLocations(ArenaAllocator* allocator, HVecUnaryOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecReduce(HVecReduce* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); // Long reduction or min/max require a temporary. if (instruction->GetPackedType() == DataType::Type::kInt64 || instruction->GetReductionKind() == HVecReduce::kMin || instruction->GetReductionKind() == HVecReduce::kMax) { instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister()); } } void InstructionCodeGeneratorX86::VisitVecReduce(HVecReduce* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); switch (instruction->GetReductionKind()) { case HVecReduce::kSum: __ movaps(dst, src); __ phaddd(dst, dst); __ phaddd(dst, dst); break; case HVecReduce::kMin: case HVecReduce::kMax: // Historical note: We've had a broken implementation here. b/117863065 // Do not draw on the old code if we ever want to bring MIN/MAX reduction back. LOG(FATAL) << "Unsupported reduction type."; } break; case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); switch (instruction->GetReductionKind()) { case HVecReduce::kSum: __ movaps(tmp, src); __ movaps(dst, src); __ punpckhqdq(tmp, tmp); __ paddq(dst, tmp); break; case HVecReduce::kMin: case HVecReduce::kMax: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); } break; } default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecCnv(HVecCnv* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecCnv(HVecCnv* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DataType::Type from = instruction->GetInputType(); DataType::Type to = instruction->GetResultType(); if (from == DataType::Type::kInt32 && to == DataType::Type::kFloat32) { DCHECK_EQ(4u, instruction->GetVectorLength()); __ cvtdq2ps(dst, src); } else { LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); } } void LocationsBuilderX86::VisitVecNeg(HVecNeg* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecNeg(HVecNeg* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ pxor(dst, dst); __ psubb(dst, src); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ pxor(dst, dst); __ psubw(dst, src); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pxor(dst, dst); __ psubd(dst, src); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ pxor(dst, dst); __ psubq(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ xorps(dst, dst); __ subps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ xorpd(dst, dst); __ subpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecAbs(HVecAbs* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); // Integral-abs requires a temporary for the comparison. if (instruction->GetPackedType() == DataType::Type::kInt32) { instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister()); } } void InstructionCodeGeneratorX86::VisitVecAbs(HVecAbs* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: { DCHECK_EQ(4u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); __ movaps(dst, src); __ pxor(tmp, tmp); __ pcmpgtd(tmp, dst); __ pxor(dst, tmp); __ psubd(dst, tmp); break; } case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pcmpeqb(dst, dst); // all ones __ psrld(dst, Immediate(1)); __ andps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ pcmpeqb(dst, dst); // all ones __ psrlq(dst, Immediate(1)); __ andpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecNot(HVecNot* instruction) { CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction); // Boolean-not requires a temporary to construct the 16 x one. if (instruction->GetPackedType() == DataType::Type::kBool) { instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister()); } } void InstructionCodeGeneratorX86::VisitVecNot(HVecNot* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kBool: { // special case boolean-not DCHECK_EQ(16u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); __ pxor(dst, dst); __ pcmpeqb(tmp, tmp); // all ones __ psubb(dst, tmp); // 16 x one __ pxor(dst, src); break; } case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); __ pcmpeqb(dst, dst); // all ones __ pxor(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pcmpeqb(dst, dst); // all ones __ xorps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ pcmpeqb(dst, dst); // all ones __ xorpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } // Helper to set up locations for vector binary operations. static void CreateVecBinOpLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } static void CreateVecTerOpLocations(ArenaAllocator* allocator, HVecOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unsupported SIMD type"; UNREACHABLE(); } } void LocationsBuilderX86::VisitVecAdd(HVecAdd* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecAdd(HVecAdd* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); cpu_has_avx ? __ vpaddb(dst, other_src, src) : __ paddb(dst, src); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); cpu_has_avx ? __ vpaddw(dst, other_src, src) : __ paddw(dst, src); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vpaddd(dst, other_src, src) : __ paddd(dst, src); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vpaddq(dst, other_src, src) : __ paddq(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vaddps(dst, other_src, src) : __ addps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vaddpd(dst, other_src, src) : __ addpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecSaturationAdd(HVecSaturationAdd* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecSaturationAdd(HVecSaturationAdd* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ paddusb(dst, src); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ paddsb(dst, src); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ paddusw(dst, src); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ paddsw(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecHalvingAdd(HVecHalvingAdd* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecHalvingAdd(HVecHalvingAdd* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(instruction->IsRounded()); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ pavgb(dst, src); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ pavgw(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecSub(HVecSub* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecSub(HVecSub* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); cpu_has_avx ? __ vpsubb(dst, other_src, src) : __ psubb(dst, src); break; case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); cpu_has_avx ? __ vpsubw(dst, other_src, src) : __ psubw(dst, src); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vpsubd(dst, other_src, src) : __ psubd(dst, src); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vpsubq(dst, other_src, src) : __ psubq(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vsubps(dst, other_src, src) : __ subps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vsubpd(dst, other_src, src) : __ subpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecSaturationSub(HVecSaturationSub* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecSaturationSub(HVecSaturationSub* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ psubusb(dst, src); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ psubsb(dst, src); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ psubusw(dst, src); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ psubsw(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecMul(HVecMul* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecMul(HVecMul* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); cpu_has_avx ? __ vpmullw(dst, other_src, src) : __ pmullw(dst, src); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vpmulld(dst, other_src, src) : __ pmulld(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vmulps(dst, other_src, src) : __ mulps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vmulpd(dst, other_src, src) : __ mulpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecDiv(HVecDiv* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecDiv(HVecDiv* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vdivps(dst, other_src, src) : __ divps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vdivpd(dst, other_src, src) : __ divpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecMin(HVecMin* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecMin(HVecMin* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ pminub(dst, src); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ pminsb(dst, src); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ pminuw(dst, src); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ pminsw(dst, src); break; case DataType::Type::kUint32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pminud(dst, src); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pminsd(dst, src); break; // Next cases are sloppy wrt 0.0 vs -0.0. case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ minps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ minpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecMax(HVecMax* instruction) { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecMax(HVecMax* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ pmaxub(dst, src); break; case DataType::Type::kInt8: DCHECK_EQ(16u, instruction->GetVectorLength()); __ pmaxsb(dst, src); break; case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ pmaxuw(dst, src); break; case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ pmaxsw(dst, src); break; case DataType::Type::kUint32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pmaxud(dst, src); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pmaxsd(dst, src); break; // Next cases are sloppy wrt 0.0 vs -0.0. case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ maxps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ maxpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecAnd(HVecAnd* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecAnd(HVecAnd* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); cpu_has_avx ? __ vpand(dst, other_src, src) : __ pand(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vandps(dst, other_src, src) : __ andps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vandpd(dst, other_src, src) : __ andpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecAndNot(HVecAndNot* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecAndNot(HVecAndNot* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); cpu_has_avx ? __ vpandn(dst, other_src, src) : __ pandn(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vandnps(dst, other_src, src) : __ andnps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vandnpd(dst, other_src, src) : __ andnpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecOr(HVecOr* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecOr(HVecOr* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); cpu_has_avx ? __ vpor(dst, other_src, src) : __ por(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vorps(dst, other_src, src) : __ orps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vorpd(dst, other_src, src) : __ orpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecXor(HVecXor* instruction) { if (CpuHasAvxFeatureFlag()) { CreateVecTerOpLocations(GetGraph()->GetAllocator(), instruction); } else { CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction); } } void InstructionCodeGeneratorX86::VisitVecXor(HVecXor* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister other_src = locations->InAt(0).AsFpuRegister(); XmmRegister src = locations->InAt(1).AsFpuRegister(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK(cpu_has_avx || other_src == dst); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); cpu_has_avx ? __ vpxor(dst, other_src, src) : __ pxor(dst, src); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); cpu_has_avx ? __ vxorps(dst, other_src, src) : __ xorps(dst, src); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); cpu_has_avx ? __ vxorpd(dst, other_src, src) : __ xorpd(dst, src); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } // Helper to set up locations for vector shift operations. static void CreateVecShiftLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecShl(HVecShl* instruction) { CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecShl(HVecShl* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ psllw(dst, Immediate(static_cast(value))); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ pslld(dst, Immediate(static_cast(value))); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ psllq(dst, Immediate(static_cast(value))); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecShr(HVecShr* instruction) { CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecShr(HVecShr* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ psraw(dst, Immediate(static_cast(value))); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ psrad(dst, Immediate(static_cast(value))); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecUShr(HVecUShr* instruction) { CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecUShr(HVecUShr* instruction) { LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); XmmRegister dst = locations->Out().AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kUint16: case DataType::Type::kInt16: DCHECK_EQ(8u, instruction->GetVectorLength()); __ psrlw(dst, Immediate(static_cast(value))); break; case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ psrld(dst, Immediate(static_cast(value))); break; case DataType::Type::kInt64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ psrlq(dst, Immediate(static_cast(value))); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecSetScalars(HVecSetScalars* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented HInstruction* input = instruction->InputAt(0); bool is_zero = IsZeroBitPattern(input); switch (instruction->GetPackedType()) { case DataType::Type::kInt64: // Long needs extra temporary to load from register pairs. if (!is_zero) { locations->AddTemp(Location::RequiresFpuRegister()); } FALLTHROUGH_INTENDED; case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant()) : Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant()) : Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void InstructionCodeGeneratorX86::VisitVecSetScalars(HVecSetScalars* instruction) { LocationSummary* locations = instruction->GetLocations(); XmmRegister dst = locations->Out().AsFpuRegister(); DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented // Zero out all other elements first. bool cpu_has_avx = CpuHasAvxFeatureFlag(); cpu_has_avx ? __ vxorps(dst, dst, dst) : __ xorps(dst, dst); // Shorthand for any type of zero. if (IsZeroBitPattern(instruction->InputAt(0))) { return; } // Set required elements. switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: // TODO: up to here, and? LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); case DataType::Type::kInt32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ movd(dst, locations->InAt(0).AsRegister()); break; case DataType::Type::kInt64: { DCHECK_EQ(2u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); __ xorps(tmp, tmp); __ movd(dst, locations->InAt(0).AsRegisterPairLow()); __ movd(tmp, locations->InAt(0).AsRegisterPairHigh()); __ punpckldq(dst, tmp); break; } case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); __ movss(dst, locations->InAt(1).AsFpuRegister()); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); __ movsd(dst, locations->InAt(1).AsFpuRegister()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } // Helper to set up locations for vector accumulations. static void CreateVecAccumLocations(ArenaAllocator* allocator, HVecOperation* instruction) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetInAt(2, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) { CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) { // TODO: pmaddwd? LOG(FATAL) << "No SIMD for " << instruction->GetId(); } void LocationsBuilderX86::VisitVecSADAccumulate(HVecSADAccumulate* instruction) { CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction); } void InstructionCodeGeneratorX86::VisitVecSADAccumulate(HVecSADAccumulate* instruction) { // TODO: psadbw for unsigned? LOG(FATAL) << "No SIMD for " << instruction->GetId(); } void LocationsBuilderX86::VisitVecDotProd(HVecDotProd* instruction) { LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetInAt(2, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); } void InstructionCodeGeneratorX86::VisitVecDotProd(HVecDotProd* instruction) { bool cpu_has_avx = CpuHasAvxFeatureFlag(); LocationSummary* locations = instruction->GetLocations(); XmmRegister acc = locations->InAt(0).AsFpuRegister(); XmmRegister left = locations->InAt(1).AsFpuRegister(); XmmRegister right = locations->InAt(2).AsFpuRegister(); switch (instruction->GetPackedType()) { case DataType::Type::kInt32: { DCHECK_EQ(4u, instruction->GetVectorLength()); XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); if (!cpu_has_avx) { __ movaps(tmp, right); __ pmaddwd(tmp, left); __ paddd(acc, tmp); } else { __ vpmaddwd(tmp, left, right); __ vpaddd(acc, acc, tmp); } break; } default: LOG(FATAL) << "Unsupported SIMD Type" << instruction->GetPackedType(); UNREACHABLE(); } } // Helper to set up locations for vector memory operations. static void CreateVecMemLocations(ArenaAllocator* allocator, HVecMemoryOperation* instruction, bool is_load) { LocationSummary* locations = new (allocator) LocationSummary(instruction); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (is_load) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RequiresFpuRegister()); } break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } // Helper to construct address for vector memory operations. static Address VecAddress(LocationSummary* locations, size_t size, bool is_string_char_at) { Location base = locations->InAt(0); Location index = locations->InAt(1); ScaleFactor scale = TIMES_1; switch (size) { case 2: scale = TIMES_2; break; case 4: scale = TIMES_4; break; case 8: scale = TIMES_8; break; default: break; } // Incorporate the string or array offset in the address computation. uint32_t offset = is_string_char_at ? mirror::String::ValueOffset().Uint32Value() : mirror::Array::DataOffset(size).Uint32Value(); return CodeGeneratorX86::ArrayAddress(base.AsRegister(), index, scale, offset); } void LocationsBuilderX86::VisitVecLoad(HVecLoad* instruction) { CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ true); // String load requires a temporary for the compressed load. if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister()); } } void InstructionCodeGeneratorX86::VisitVecLoad(HVecLoad* instruction) { LocationSummary* locations = instruction->GetLocations(); size_t size = DataType::Size(instruction->GetPackedType()); Address address = VecAddress(locations, size, instruction->IsStringCharAt()); XmmRegister reg = locations->Out().AsFpuRegister(); bool is_aligned16 = instruction->GetAlignment().IsAlignedAt(16); switch (instruction->GetPackedType()) { case DataType::Type::kInt16: // (short) s.charAt(.) can yield HVecLoad/Int16/StringCharAt. case DataType::Type::kUint16: DCHECK_EQ(8u, instruction->GetVectorLength()); // Special handling of compressed/uncompressed string load. if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { NearLabel done, not_compressed; XmmRegister tmp = locations->GetTemp(0).AsFpuRegister(); // Test compression bit. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); __ testb(Address(locations->InAt(0).AsRegister(), count_offset), Immediate(1)); __ j(kNotZero, ¬_compressed); // Zero extend 8 compressed bytes into 8 chars. __ movsd(reg, VecAddress(locations, 1, instruction->IsStringCharAt())); __ pxor(tmp, tmp); __ punpcklbw(reg, tmp); __ jmp(&done); // Load 4 direct uncompressed chars. __ Bind(¬_compressed); is_aligned16 ? __ movdqa(reg, address) : __ movdqu(reg, address); __ Bind(&done); return; } FALLTHROUGH_INTENDED; case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); is_aligned16 ? __ movdqa(reg, address) : __ movdqu(reg, address); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); is_aligned16 ? __ movaps(reg, address) : __ movups(reg, address); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); is_aligned16 ? __ movapd(reg, address) : __ movupd(reg, address); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitVecStore(HVecStore* instruction) { CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ false); } void InstructionCodeGeneratorX86::VisitVecStore(HVecStore* instruction) { LocationSummary* locations = instruction->GetLocations(); size_t size = DataType::Size(instruction->GetPackedType()); Address address = VecAddress(locations, size, /*is_string_char_at*/ false); XmmRegister reg = locations->InAt(2).AsFpuRegister(); bool is_aligned16 = instruction->GetAlignment().IsAlignedAt(16); switch (instruction->GetPackedType()) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: case DataType::Type::kInt64: DCHECK_LE(2u, instruction->GetVectorLength()); DCHECK_LE(instruction->GetVectorLength(), 16u); is_aligned16 ? __ movdqa(address, reg) : __ movdqu(address, reg); break; case DataType::Type::kFloat32: DCHECK_EQ(4u, instruction->GetVectorLength()); is_aligned16 ? __ movaps(address, reg) : __ movups(address, reg); break; case DataType::Type::kFloat64: DCHECK_EQ(2u, instruction->GetVectorLength()); is_aligned16 ? __ movapd(address, reg) : __ movupd(address, reg); break; default: LOG(FATAL) << "Unsupported SIMD type: " << instruction->GetPackedType(); UNREACHABLE(); } } #undef __ } // namespace x86 } // namespace art