/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_ #define ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_ #include "interpreter_switch_impl.h" #include "base/enums.h" #include "base/globals.h" #include "base/memory_tool.h" #include "base/quasi_atomic.h" #include "dex/dex_file_types.h" #include "dex/dex_instruction_list.h" #include "experimental_flags.h" #include "handle_scope.h" #include "interpreter_common.h" #include "interpreter/shadow_frame.h" #include "jit/jit-inl.h" #include "jvalue-inl.h" #include "mirror/string-alloc-inl.h" #include "mirror/throwable.h" #include "monitor.h" #include "nth_caller_visitor.h" #include "safe_math.h" #include "shadow_frame-inl.h" #include "thread.h" #include "verifier/method_verifier.h" namespace art { namespace interpreter { // Short-lived helper class which executes single DEX bytecode. It is inlined by compiler. // Any relevant execution information is stored in the fields - it should be kept to minimum. // All instance functions must be inlined so that the fields can be stored in registers. // // The function names must match the names from dex_instruction_list.h and have no arguments. // Return value: The handlers must return false if the instruction throws or returns (exits). // template class InstructionHandler { public: #define HANDLER_ATTRIBUTES ALWAYS_INLINE FLATTEN WARN_UNUSED REQUIRES_SHARED(Locks::mutator_lock_) HANDLER_ATTRIBUTES bool CheckForceReturn() { if (PerformNonStandardReturn(self, shadow_frame, ctx->result, instrumentation, Accessor().InsSize(), inst->GetDexPc(Insns()))) { exit_interpreter_loop = true; return false; } return true; } HANDLER_ATTRIBUTES bool HandlePendingException() { DCHECK(self->IsExceptionPending()); self->AllowThreadSuspension(); if (!CheckForceReturn()) { return false; } bool skip_event = shadow_frame.GetSkipNextExceptionEvent(); shadow_frame.SetSkipNextExceptionEvent(false); if (!MoveToExceptionHandler(self, shadow_frame, skip_event ? nullptr : instrumentation)) { /* Structured locking is to be enforced for abnormal termination, too. */ DoMonitorCheckOnExit(self, &shadow_frame); ctx->result = JValue(); /* Handled in caller. */ exit_interpreter_loop = true; return false; // Return to caller. } if (!CheckForceReturn()) { return false; } int32_t displacement = static_cast(shadow_frame.GetDexPC()) - static_cast(dex_pc); SetNextInstruction(inst->RelativeAt(displacement)); return true; } HANDLER_ATTRIBUTES bool PossiblyHandlePendingExceptionOnInvoke(bool is_exception_pending) { if (UNLIKELY(shadow_frame.GetForceRetryInstruction())) { /* Don't need to do anything except clear the flag and exception. We leave the */ /* instruction the same so it will be re-executed on the next go-around. */ DCHECK(inst->IsInvoke()); shadow_frame.SetForceRetryInstruction(false); if (UNLIKELY(is_exception_pending)) { DCHECK(self->IsExceptionPending()); if (kIsDebugBuild) { LOG(WARNING) << "Suppressing exception for instruction-retry: " << self->GetException()->Dump(); } self->ClearException(); } SetNextInstruction(inst); } else if (UNLIKELY(is_exception_pending)) { /* Should have succeeded. */ DCHECK(!shadow_frame.GetForceRetryInstruction()); return false; // Pending exception. } return true; } HANDLER_ATTRIBUTES bool HandleMonitorChecks() { if (!DoMonitorCheckOnExit(self, &shadow_frame)) { return false; // Pending exception. } return true; } // Code to run before each dex instruction. HANDLER_ATTRIBUTES bool Preamble() { /* We need to put this before & after the instrumentation to avoid having to put in a */ /* post-script macro. */ if (!CheckForceReturn()) { return false; } if (UNLIKELY(instrumentation->HasDexPcListeners())) { uint8_t opcode = inst->Opcode(inst_data); bool is_move_result_object = (opcode == Instruction::MOVE_RESULT_OBJECT); JValue* save_ref = is_move_result_object ? &ctx->result_register : nullptr; if (UNLIKELY(!DoDexPcMoveEvent(self, Accessor(), shadow_frame, dex_pc, instrumentation, save_ref))) { DCHECK(self->IsExceptionPending()); // Do not raise exception event if it is caused by other instrumentation event. shadow_frame.SetSkipNextExceptionEvent(true); return false; // Pending exception. } if (!CheckForceReturn()) { return false; } } return true; } HANDLER_ATTRIBUTES bool BranchInstrumentation(int32_t offset) { if (UNLIKELY(instrumentation->HasBranchListeners())) { instrumentation->Branch(self, shadow_frame.GetMethod(), dex_pc, offset); } JValue result; if (jit::Jit::MaybeDoOnStackReplacement(self, shadow_frame.GetMethod(), dex_pc, offset, &result)) { ctx->result = result; exit_interpreter_loop = true; return false; } return true; } ALWAYS_INLINE void HotnessUpdate() REQUIRES_SHARED(Locks::mutator_lock_) { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->AddSamples(self, shadow_frame.GetMethod(), 1, /*with_backedges=*/ true); } } HANDLER_ATTRIBUTES bool HandleAsyncException() { if (UNLIKELY(self->ObserveAsyncException())) { return false; // Pending exception. } return true; } ALWAYS_INLINE void HandleBackwardBranch(int32_t offset) REQUIRES_SHARED(Locks::mutator_lock_) { if (IsBackwardBranch(offset)) { HotnessUpdate(); /* Record new dex pc early to have consistent suspend point at loop header. */ shadow_frame.SetDexPC(next->GetDexPc(Insns())); self->AllowThreadSuspension(); } } // Unlike most other events the DexPcMovedEvent can be sent when there is a pending exception (if // the next instruction is MOVE_EXCEPTION). This means it needs to be handled carefully to be able // to detect exceptions thrown by the DexPcMovedEvent itself. These exceptions could be thrown by // jvmti-agents while handling breakpoint or single step events. We had to move this into its own // function because it was making ExecuteSwitchImpl have too large a stack. NO_INLINE static bool DoDexPcMoveEvent(Thread* self, const CodeItemDataAccessor& accessor, const ShadowFrame& shadow_frame, uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation, JValue* save_ref) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(instrumentation->HasDexPcListeners()); StackHandleScope<2> hs(self); Handle thr(hs.NewHandle(self->GetException())); mirror::Object* null_obj = nullptr; HandleWrapper h( hs.NewHandleWrapper(LIKELY(save_ref == nullptr) ? &null_obj : save_ref->GetGCRoot())); self->ClearException(); instrumentation->DexPcMovedEvent(self, shadow_frame.GetThisObject(accessor.InsSize()), shadow_frame.GetMethod(), dex_pc); if (UNLIKELY(self->IsExceptionPending())) { // We got a new exception in the dex-pc-moved event. // We just let this exception replace the old one. // TODO It would be good to add the old exception to the // suppressed exceptions of the new one if possible. return false; // Pending exception. } else { if (UNLIKELY(!thr.IsNull())) { self->SetException(thr.Get()); } return true; } } HANDLER_ATTRIBUTES bool HandleReturn(JValue result) { self->AllowThreadSuspension(); if (!HandleMonitorChecks()) { return false; } if (UNLIKELY(NeedsMethodExitEvent(instrumentation) && !SendMethodExitEvents(self, instrumentation, shadow_frame, shadow_frame.GetThisObject(Accessor().InsSize()), shadow_frame.GetMethod(), inst->GetDexPc(Insns()), result))) { DCHECK(self->IsExceptionPending()); // Do not raise exception event if it is caused by other instrumentation event. shadow_frame.SetSkipNextExceptionEvent(true); return false; // Pending exception. } ctx->result = result; exit_interpreter_loop = true; return false; } HANDLER_ATTRIBUTES bool HandleGoto(int32_t offset) { if (!HandleAsyncException()) { return false; } if (!BranchInstrumentation(offset)) { return false; } SetNextInstruction(inst->RelativeAt(offset)); HandleBackwardBranch(offset); return true; } #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wfloat-equal" template HANDLER_ATTRIBUTES bool HandleCmpl(T val1, T val2) { int32_t result; if (val1 > val2) { result = 1; } else if (val1 == val2) { result = 0; } else { result = -1; } SetVReg(A(), result); return true; } // Returns the same result as the function above. It only differs for NaN values. template HANDLER_ATTRIBUTES bool HandleCmpg(T val1, T val2) { int32_t result; if (val1 < val2) { result = -1; } else if (val1 == val2) { result = 0; } else { result = 1; } SetVReg(A(), result); return true; } #pragma clang diagnostic pop HANDLER_ATTRIBUTES bool HandleIf(bool cond, int32_t offset) { if (cond) { if (!BranchInstrumentation(offset)) { return false; } SetNextInstruction(inst->RelativeAt(offset)); HandleBackwardBranch(offset); } else { if (!BranchInstrumentation(2)) { return false; } } return true; } template HANDLER_ATTRIBUTES bool HandleAGet(SetVRegFn setVReg) { ObjPtr a = GetVRegReference(B()); if (UNLIKELY(a == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; // Pending exception. } int32_t index = GetVReg(C()); ObjPtr array = ObjPtr::DownCast(a); if (UNLIKELY(!array->CheckIsValidIndex(index))) { return false; // Pending exception. } else { (this->*setVReg)(A(), array->GetWithoutChecks(index)); } return true; } template HANDLER_ATTRIBUTES bool HandleAPut(T value) { ObjPtr a = GetVRegReference(B()); if (UNLIKELY(a == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; // Pending exception. } int32_t index = GetVReg(C()); ObjPtr array = ObjPtr::DownCast(a); if (UNLIKELY(!array->CheckIsValidIndex(index))) { return false; // Pending exception. } else { if (transaction_active && !CheckWriteConstraint(self, array)) { return false; } array->template SetWithoutChecks(index, value); } return true; } template HANDLER_ATTRIBUTES bool HandleGet() { return DoFieldGet( self, shadow_frame, inst, inst_data); } template HANDLER_ATTRIBUTES bool HandleGetQuick() { return DoIGetQuick(shadow_frame, inst, inst_data); } template HANDLER_ATTRIBUTES bool HandlePut() { return DoFieldPut( self, shadow_frame, inst, inst_data); } template HANDLER_ATTRIBUTES bool HandlePutQuick() { return DoIPutQuick( shadow_frame, inst, inst_data); } template HANDLER_ATTRIBUTES bool HandleInvoke() { bool success = DoInvoke( self, shadow_frame, inst, inst_data, ResultRegister()); return PossiblyHandlePendingExceptionOnInvoke(!success); } HANDLER_ATTRIBUTES bool HandleUnused() { UnexpectedOpcode(inst, shadow_frame); return true; } HANDLER_ATTRIBUTES bool NOP() { return true; } HANDLER_ATTRIBUTES bool MOVE() { SetVReg(A(), GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_FROM16() { SetVReg(A(), GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_16() { SetVReg(A(), GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_WIDE() { SetVRegLong(A(), GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_WIDE_FROM16() { SetVRegLong(A(), GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_WIDE_16() { SetVRegLong(A(), GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_OBJECT() { SetVRegReference(A(), GetVRegReference(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_OBJECT_FROM16() { SetVRegReference(A(), GetVRegReference(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_OBJECT_16() { SetVRegReference(A(), GetVRegReference(B())); return true; } HANDLER_ATTRIBUTES bool MOVE_RESULT() { SetVReg(A(), ResultRegister()->GetI()); return true; } HANDLER_ATTRIBUTES bool MOVE_RESULT_WIDE() { SetVRegLong(A(), ResultRegister()->GetJ()); return true; } HANDLER_ATTRIBUTES bool MOVE_RESULT_OBJECT() { SetVRegReference(A(), ResultRegister()->GetL()); return true; } HANDLER_ATTRIBUTES bool MOVE_EXCEPTION() { ObjPtr exception = self->GetException(); DCHECK(exception != nullptr) << "No pending exception on MOVE_EXCEPTION instruction"; SetVRegReference(A(), exception); self->ClearException(); return true; } HANDLER_ATTRIBUTES bool RETURN_VOID_NO_BARRIER() { JValue result; return HandleReturn(result); } HANDLER_ATTRIBUTES bool RETURN_VOID() { QuasiAtomic::ThreadFenceForConstructor(); JValue result; return HandleReturn(result); } HANDLER_ATTRIBUTES bool RETURN() { JValue result; result.SetJ(0); result.SetI(GetVReg(A())); return HandleReturn(result); } HANDLER_ATTRIBUTES bool RETURN_WIDE() { JValue result; result.SetJ(GetVRegLong(A())); return HandleReturn(result); } HANDLER_ATTRIBUTES bool RETURN_OBJECT() { JValue result; self->AllowThreadSuspension(); if (!HandleMonitorChecks()) { return false; } const size_t ref_idx = A(); ObjPtr obj_result = GetVRegReference(ref_idx); if (do_assignability_check && obj_result != nullptr) { ObjPtr return_type = shadow_frame.GetMethod()->ResolveReturnType(); // Re-load since it might have moved. obj_result = GetVRegReference(ref_idx); if (return_type == nullptr) { // Return the pending exception. return false; // Pending exception. } if (!obj_result->VerifierInstanceOf(return_type)) { CHECK_LE(Runtime::Current()->GetTargetSdkVersion(), 29u); // This should never happen. std::string temp1, temp2; self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Returning '%s' that is not instance of return type '%s'", obj_result->GetClass()->GetDescriptor(&temp1), return_type->GetDescriptor(&temp2)); return false; // Pending exception. } } StackHandleScope<1> hs(self); MutableHandle h_result(hs.NewHandle(obj_result)); result.SetL(obj_result); if (UNLIKELY(NeedsMethodExitEvent(instrumentation) && !SendMethodExitEvents(self, instrumentation, shadow_frame, shadow_frame.GetThisObject(Accessor().InsSize()), shadow_frame.GetMethod(), inst->GetDexPc(Insns()), h_result))) { DCHECK(self->IsExceptionPending()); // Do not raise exception event if it is caused by other instrumentation event. shadow_frame.SetSkipNextExceptionEvent(true); return false; // Pending exception. } // Re-load since it might have moved or been replaced during the MethodExitEvent. result.SetL(h_result.Get()); ctx->result = result; exit_interpreter_loop = true; return false; } HANDLER_ATTRIBUTES bool CONST_4() { uint4_t dst = inst->VRegA_11n(inst_data); int4_t val = inst->VRegB_11n(inst_data); SetVReg(dst, val); if (val == 0) { SetVRegReference(dst, nullptr); } return true; } HANDLER_ATTRIBUTES bool CONST_16() { uint8_t dst = A(); int16_t val = B(); SetVReg(dst, val); if (val == 0) { SetVRegReference(dst, nullptr); } return true; } HANDLER_ATTRIBUTES bool CONST() { uint8_t dst = A(); int32_t val = B(); SetVReg(dst, val); if (val == 0) { SetVRegReference(dst, nullptr); } return true; } HANDLER_ATTRIBUTES bool CONST_HIGH16() { uint8_t dst = A(); int32_t val = static_cast(B() << 16); SetVReg(dst, val); if (val == 0) { SetVRegReference(dst, nullptr); } return true; } HANDLER_ATTRIBUTES bool CONST_WIDE_16() { SetVRegLong(A(), B()); return true; } HANDLER_ATTRIBUTES bool CONST_WIDE_32() { SetVRegLong(A(), B()); return true; } HANDLER_ATTRIBUTES bool CONST_WIDE() { SetVRegLong(A(), inst->WideVRegB()); return true; } HANDLER_ATTRIBUTES bool CONST_WIDE_HIGH16() { SetVRegLong(A(), static_cast(B()) << 48); return true; } HANDLER_ATTRIBUTES bool CONST_STRING() { ObjPtr s = ResolveString(self, shadow_frame, dex::StringIndex(B())); if (UNLIKELY(s == nullptr)) { return false; // Pending exception. } else { SetVRegReference(A(), s); } return true; } HANDLER_ATTRIBUTES bool CONST_STRING_JUMBO() { ObjPtr s = ResolveString(self, shadow_frame, dex::StringIndex(B())); if (UNLIKELY(s == nullptr)) { return false; // Pending exception. } else { SetVRegReference(A(), s); } return true; } HANDLER_ATTRIBUTES bool CONST_CLASS() { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(B()), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(c == nullptr)) { return false; // Pending exception. } else { SetVRegReference(A(), c); } return true; } HANDLER_ATTRIBUTES bool CONST_METHOD_HANDLE() { ClassLinker* cl = Runtime::Current()->GetClassLinker(); ObjPtr mh = cl->ResolveMethodHandle(self, B(), shadow_frame.GetMethod()); if (UNLIKELY(mh == nullptr)) { return false; // Pending exception. } else { SetVRegReference(A(), mh); } return true; } HANDLER_ATTRIBUTES bool CONST_METHOD_TYPE() { ClassLinker* cl = Runtime::Current()->GetClassLinker(); ObjPtr mt = cl->ResolveMethodType(self, dex::ProtoIndex(B()), shadow_frame.GetMethod()); if (UNLIKELY(mt == nullptr)) { return false; // Pending exception. } else { SetVRegReference(A(), mt); } return true; } HANDLER_ATTRIBUTES bool MONITOR_ENTER() { if (!HandleAsyncException()) { return false; } ObjPtr obj = GetVRegReference(A()); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; // Pending exception. } else { DoMonitorEnter(self, &shadow_frame, obj); return !self->IsExceptionPending(); } } HANDLER_ATTRIBUTES bool MONITOR_EXIT() { if (!HandleAsyncException()) { return false; } ObjPtr obj = GetVRegReference(A()); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; // Pending exception. } else { DoMonitorExit(self, &shadow_frame, obj); return !self->IsExceptionPending(); } } HANDLER_ATTRIBUTES bool CHECK_CAST() { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(B()), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(c == nullptr)) { return false; // Pending exception. } else { ObjPtr obj = GetVRegReference(A()); if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) { ThrowClassCastException(c, obj->GetClass()); return false; // Pending exception. } } return true; } HANDLER_ATTRIBUTES bool INSTANCE_OF() { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(C()), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(c == nullptr)) { return false; // Pending exception. } else { ObjPtr obj = GetVRegReference(B()); SetVReg(A(), (obj != nullptr && obj->InstanceOf(c)) ? 1 : 0); } return true; } HANDLER_ATTRIBUTES bool ARRAY_LENGTH() { ObjPtr array = GetVRegReference(B()); if (UNLIKELY(array == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; // Pending exception. } else { SetVReg(A(), array->AsArray()->GetLength()); } return true; } HANDLER_ATTRIBUTES bool NEW_INSTANCE() { ObjPtr obj = nullptr; ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(B()), shadow_frame.GetMethod(), self, false, do_access_check); if (LIKELY(c != nullptr)) { // Don't allow finalizable objects to be allocated during a transaction since these can't // be finalized without a started runtime. if (transaction_active && c->IsFinalizable()) { AbortTransactionF(self, "Allocating finalizable object in transaction: %s", c->PrettyDescriptor().c_str()); return false; // Pending exception. } gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator(); if (UNLIKELY(c->IsStringClass())) { obj = mirror::String::AllocEmptyString(self, allocator_type); } else { obj = AllocObjectFromCode(c, self, allocator_type); } } if (UNLIKELY(obj == nullptr)) { return false; // Pending exception. } else { obj->GetClass()->AssertInitializedOrInitializingInThread(self); SetVRegReference(A(), obj); } return true; } HANDLER_ATTRIBUTES bool NEW_ARRAY() { int32_t length = GetVReg(B()); ObjPtr obj = AllocArrayFromCode( dex::TypeIndex(C()), length, shadow_frame.GetMethod(), self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); if (UNLIKELY(obj == nullptr)) { return false; // Pending exception. } else { SetVRegReference(A(), obj); } return true; } HANDLER_ATTRIBUTES bool FILLED_NEW_ARRAY() { return DoFilledNewArray( inst, shadow_frame, self, ResultRegister()); } HANDLER_ATTRIBUTES bool FILLED_NEW_ARRAY_RANGE() { return DoFilledNewArray( inst, shadow_frame, self, ResultRegister()); } HANDLER_ATTRIBUTES bool FILL_ARRAY_DATA() { const uint16_t* payload_addr = reinterpret_cast(inst) + B(); const Instruction::ArrayDataPayload* payload = reinterpret_cast(payload_addr); ObjPtr obj = GetVRegReference(A()); if (!FillArrayData(obj, payload)) { return false; // Pending exception. } if (transaction_active) { RecordArrayElementsInTransaction(obj->AsArray(), payload->element_count); } return true; } HANDLER_ATTRIBUTES bool THROW() { if (!HandleAsyncException()) { return false; } ObjPtr exception = GetVRegReference(A()); if (UNLIKELY(exception == nullptr)) { ThrowNullPointerException(); } else if (do_assignability_check && !exception->GetClass()->IsThrowableClass()) { // This should never happen. std::string temp; self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Throwing '%s' that is not instance of Throwable", exception->GetClass()->GetDescriptor(&temp)); } else { self->SetException(exception->AsThrowable()); } return false; // Pending exception. } HANDLER_ATTRIBUTES bool GOTO() { return HandleGoto(A()); } HANDLER_ATTRIBUTES bool GOTO_16() { return HandleGoto(A()); } HANDLER_ATTRIBUTES bool GOTO_32() { return HandleGoto(A()); } HANDLER_ATTRIBUTES bool PACKED_SWITCH() { int32_t offset = DoPackedSwitch(inst, shadow_frame, inst_data); if (!BranchInstrumentation(offset)) { return false; } SetNextInstruction(inst->RelativeAt(offset)); HandleBackwardBranch(offset); return true; } HANDLER_ATTRIBUTES bool SPARSE_SWITCH() { int32_t offset = DoSparseSwitch(inst, shadow_frame, inst_data); if (!BranchInstrumentation(offset)) { return false; } SetNextInstruction(inst->RelativeAt(offset)); HandleBackwardBranch(offset); return true; } HANDLER_ATTRIBUTES bool CMPL_FLOAT() { return HandleCmpl(GetVRegFloat(B()), GetVRegFloat(C())); } HANDLER_ATTRIBUTES bool CMPG_FLOAT() { return HandleCmpg(GetVRegFloat(B()), GetVRegFloat(C())); } HANDLER_ATTRIBUTES bool CMPL_DOUBLE() { return HandleCmpl(GetVRegDouble(B()), GetVRegDouble(C())); } HANDLER_ATTRIBUTES bool CMPG_DOUBLE() { return HandleCmpg(GetVRegDouble(B()), GetVRegDouble(C())); } HANDLER_ATTRIBUTES bool CMP_LONG() { return HandleCmpl(GetVRegLong(B()), GetVRegLong(C())); } HANDLER_ATTRIBUTES bool IF_EQ() { return HandleIf(GetVReg(A()) == GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool IF_NE() { return HandleIf(GetVReg(A()) != GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool IF_LT() { return HandleIf(GetVReg(A()) < GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool IF_GE() { return HandleIf(GetVReg(A()) >= GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool IF_GT() { return HandleIf(GetVReg(A()) > GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool IF_LE() { return HandleIf(GetVReg(A()) <= GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool IF_EQZ() { return HandleIf(GetVReg(A()) == 0, B()); } HANDLER_ATTRIBUTES bool IF_NEZ() { return HandleIf(GetVReg(A()) != 0, B()); } HANDLER_ATTRIBUTES bool IF_LTZ() { return HandleIf(GetVReg(A()) < 0, B()); } HANDLER_ATTRIBUTES bool IF_GEZ() { return HandleIf(GetVReg(A()) >= 0, B()); } HANDLER_ATTRIBUTES bool IF_GTZ() { return HandleIf(GetVReg(A()) > 0, B()); } HANDLER_ATTRIBUTES bool IF_LEZ() { return HandleIf(GetVReg(A()) <= 0, B()); } HANDLER_ATTRIBUTES bool AGET_BOOLEAN() { return HandleAGet(&InstructionHandler::SetVReg); } HANDLER_ATTRIBUTES bool AGET_BYTE() { return HandleAGet(&InstructionHandler::SetVReg); } HANDLER_ATTRIBUTES bool AGET_CHAR() { return HandleAGet(&InstructionHandler::SetVReg); } HANDLER_ATTRIBUTES bool AGET_SHORT() { return HandleAGet(&InstructionHandler::SetVReg); } HANDLER_ATTRIBUTES bool AGET() { return HandleAGet(&InstructionHandler::SetVReg); } HANDLER_ATTRIBUTES bool AGET_WIDE() { return HandleAGet(&InstructionHandler::SetVRegLong); } HANDLER_ATTRIBUTES bool AGET_OBJECT() { return HandleAGet>(&InstructionHandler::SetVRegReference); } HANDLER_ATTRIBUTES bool APUT_BOOLEAN() { return HandleAPut(GetVReg(A())); } HANDLER_ATTRIBUTES bool APUT_BYTE() { return HandleAPut(GetVReg(A())); } HANDLER_ATTRIBUTES bool APUT_CHAR() { return HandleAPut(GetVReg(A())); } HANDLER_ATTRIBUTES bool APUT_SHORT() { return HandleAPut(GetVReg(A())); } HANDLER_ATTRIBUTES bool APUT() { return HandleAPut(GetVReg(A())); } HANDLER_ATTRIBUTES bool APUT_WIDE() { return HandleAPut(GetVRegLong(A())); } HANDLER_ATTRIBUTES bool APUT_OBJECT() { ObjPtr a = GetVRegReference(B()); if (UNLIKELY(a == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return false; // Pending exception. } int32_t index = GetVReg(C()); ObjPtr val = GetVRegReference(A()); ObjPtr> array = a->AsObjectArray(); if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) { if (transaction_active && (!CheckWriteConstraint(self, array) || !CheckWriteValueConstraint(self, val))) { return false; } array->SetWithoutChecks(index, val); } else { return false; // Pending exception. } return true; } HANDLER_ATTRIBUTES bool IGET_BOOLEAN() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET_BYTE() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET_CHAR() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET_SHORT() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET_WIDE() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET_OBJECT() { return HandleGet(); } HANDLER_ATTRIBUTES bool IGET_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool IGET_WIDE_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool IGET_OBJECT_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool IGET_BOOLEAN_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool IGET_BYTE_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool IGET_CHAR_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool IGET_SHORT_QUICK() { return HandleGetQuick(); } HANDLER_ATTRIBUTES bool SGET_BOOLEAN() { return HandleGet(); } HANDLER_ATTRIBUTES bool SGET_BYTE() { return HandleGet(); } HANDLER_ATTRIBUTES bool SGET_CHAR() { return HandleGet(); } HANDLER_ATTRIBUTES bool SGET_SHORT() { return HandleGet(); } HANDLER_ATTRIBUTES bool SGET() { return HandleGet(); } HANDLER_ATTRIBUTES bool SGET_WIDE() { return HandleGet(); } HANDLER_ATTRIBUTES bool SGET_OBJECT() { return HandleGet(); } HANDLER_ATTRIBUTES bool IPUT_BOOLEAN() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT_BYTE() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT_CHAR() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT_SHORT() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT_WIDE() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT_OBJECT() { return HandlePut(); } HANDLER_ATTRIBUTES bool IPUT_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool IPUT_BOOLEAN_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool IPUT_BYTE_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool IPUT_CHAR_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool IPUT_SHORT_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool IPUT_WIDE_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool IPUT_OBJECT_QUICK() { return HandlePutQuick(); } HANDLER_ATTRIBUTES bool SPUT_BOOLEAN() { return HandlePut(); } HANDLER_ATTRIBUTES bool SPUT_BYTE() { return HandlePut(); } HANDLER_ATTRIBUTES bool SPUT_CHAR() { return HandlePut(); } HANDLER_ATTRIBUTES bool SPUT_SHORT() { return HandlePut(); } HANDLER_ATTRIBUTES bool SPUT() { return HandlePut(); } HANDLER_ATTRIBUTES bool SPUT_WIDE() { return HandlePut(); } HANDLER_ATTRIBUTES bool SPUT_OBJECT() { return HandlePut(); } HANDLER_ATTRIBUTES bool INVOKE_VIRTUAL() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_VIRTUAL_RANGE() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_SUPER() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_SUPER_RANGE() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_DIRECT() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_DIRECT_RANGE() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_INTERFACE() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_INTERFACE_RANGE() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_STATIC() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_STATIC_RANGE() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_VIRTUAL_QUICK() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_VIRTUAL_RANGE_QUICK() { return HandleInvoke(); } HANDLER_ATTRIBUTES bool INVOKE_POLYMORPHIC() { DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); bool success = DoInvokePolymorphic( self, shadow_frame, inst, inst_data, ResultRegister()); return PossiblyHandlePendingExceptionOnInvoke(!success); } HANDLER_ATTRIBUTES bool INVOKE_POLYMORPHIC_RANGE() { DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); bool success = DoInvokePolymorphic( self, shadow_frame, inst, inst_data, ResultRegister()); return PossiblyHandlePendingExceptionOnInvoke(!success); } HANDLER_ATTRIBUTES bool INVOKE_CUSTOM() { DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); bool success = DoInvokeCustom( self, shadow_frame, inst, inst_data, ResultRegister()); return PossiblyHandlePendingExceptionOnInvoke(!success); } HANDLER_ATTRIBUTES bool INVOKE_CUSTOM_RANGE() { DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); bool success = DoInvokeCustom( self, shadow_frame, inst, inst_data, ResultRegister()); return PossiblyHandlePendingExceptionOnInvoke(!success); } HANDLER_ATTRIBUTES bool NEG_INT() { SetVReg(A(), -GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool NOT_INT() { SetVReg(A(), ~GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool NEG_LONG() { SetVRegLong(A(), -GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool NOT_LONG() { SetVRegLong(A(), ~GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool NEG_FLOAT() { SetVRegFloat(A(), -GetVRegFloat(B())); return true; } HANDLER_ATTRIBUTES bool NEG_DOUBLE() { SetVRegDouble(A(), -GetVRegDouble(B())); return true; } HANDLER_ATTRIBUTES bool INT_TO_LONG() { SetVRegLong(A(), GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool INT_TO_FLOAT() { SetVRegFloat(A(), GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool INT_TO_DOUBLE() { SetVRegDouble(A(), GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool LONG_TO_INT() { SetVReg(A(), GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool LONG_TO_FLOAT() { SetVRegFloat(A(), GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool LONG_TO_DOUBLE() { SetVRegDouble(A(), GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool FLOAT_TO_INT() { float val = GetVRegFloat(B()); int32_t result = art_float_to_integral(val); SetVReg(A(), result); return true; } HANDLER_ATTRIBUTES bool FLOAT_TO_LONG() { float val = GetVRegFloat(B()); int64_t result = art_float_to_integral(val); SetVRegLong(A(), result); return true; } HANDLER_ATTRIBUTES bool FLOAT_TO_DOUBLE() { SetVRegDouble(A(), GetVRegFloat(B())); return true; } HANDLER_ATTRIBUTES bool DOUBLE_TO_INT() { double val = GetVRegDouble(B()); int32_t result = art_float_to_integral(val); SetVReg(A(), result); return true; } HANDLER_ATTRIBUTES bool DOUBLE_TO_LONG() { double val = GetVRegDouble(B()); int64_t result = art_float_to_integral(val); SetVRegLong(A(), result); return true; } HANDLER_ATTRIBUTES bool DOUBLE_TO_FLOAT() { SetVRegFloat(A(), GetVRegDouble(B())); return true; } HANDLER_ATTRIBUTES bool INT_TO_BYTE() { SetVReg(A(), static_cast(GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool INT_TO_CHAR() { SetVReg(A(), static_cast(GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool INT_TO_SHORT() { SetVReg(A(), static_cast(GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool ADD_INT() { SetVReg(A(), SafeAdd(GetVReg(B()), GetVReg(C()))); return true; } HANDLER_ATTRIBUTES bool SUB_INT() { SetVReg(A(), SafeSub(GetVReg(B()), GetVReg(C()))); return true; } HANDLER_ATTRIBUTES bool MUL_INT() { SetVReg(A(), SafeMul(GetVReg(B()), GetVReg(C()))); return true; } HANDLER_ATTRIBUTES bool DIV_INT() { return DoIntDivide(shadow_frame, A(), GetVReg(B()), GetVReg(C())); } HANDLER_ATTRIBUTES bool REM_INT() { return DoIntRemainder(shadow_frame, A(), GetVReg(B()), GetVReg(C())); } HANDLER_ATTRIBUTES bool SHL_INT() { SetVReg(A(), GetVReg(B()) << (GetVReg(C()) & 0x1f)); return true; } HANDLER_ATTRIBUTES bool SHR_INT() { SetVReg(A(), GetVReg(B()) >> (GetVReg(C()) & 0x1f)); return true; } HANDLER_ATTRIBUTES bool USHR_INT() { SetVReg(A(), static_cast(GetVReg(B())) >> (GetVReg(C()) & 0x1f)); return true; } HANDLER_ATTRIBUTES bool AND_INT() { SetVReg(A(), GetVReg(B()) & GetVReg(C())); return true; } HANDLER_ATTRIBUTES bool OR_INT() { SetVReg(A(), GetVReg(B()) | GetVReg(C())); return true; } HANDLER_ATTRIBUTES bool XOR_INT() { SetVReg(A(), GetVReg(B()) ^ GetVReg(C())); return true; } HANDLER_ATTRIBUTES bool ADD_LONG() { SetVRegLong(A(), SafeAdd(GetVRegLong(B()), GetVRegLong(C()))); return true; } HANDLER_ATTRIBUTES bool SUB_LONG() { SetVRegLong(A(), SafeSub(GetVRegLong(B()), GetVRegLong(C()))); return true; } HANDLER_ATTRIBUTES bool MUL_LONG() { SetVRegLong(A(), SafeMul(GetVRegLong(B()), GetVRegLong(C()))); return true; } HANDLER_ATTRIBUTES bool DIV_LONG() { return DoLongDivide(shadow_frame, A(), GetVRegLong(B()), GetVRegLong(C())); } HANDLER_ATTRIBUTES bool REM_LONG() { return DoLongRemainder(shadow_frame, A(), GetVRegLong(B()), GetVRegLong(C())); } HANDLER_ATTRIBUTES bool AND_LONG() { SetVRegLong(A(), GetVRegLong(B()) & GetVRegLong(C())); return true; } HANDLER_ATTRIBUTES bool OR_LONG() { SetVRegLong(A(), GetVRegLong(B()) | GetVRegLong(C())); return true; } HANDLER_ATTRIBUTES bool XOR_LONG() { SetVRegLong(A(), GetVRegLong(B()) ^ GetVRegLong(C())); return true; } HANDLER_ATTRIBUTES bool SHL_LONG() { SetVRegLong(A(), GetVRegLong(B()) << (GetVReg(C()) & 0x3f)); return true; } HANDLER_ATTRIBUTES bool SHR_LONG() { SetVRegLong(A(), GetVRegLong(B()) >> (GetVReg(C()) & 0x3f)); return true; } HANDLER_ATTRIBUTES bool USHR_LONG() { SetVRegLong(A(), static_cast(GetVRegLong(B())) >> (GetVReg(C()) & 0x3f)); return true; } HANDLER_ATTRIBUTES bool ADD_FLOAT() { SetVRegFloat(A(), GetVRegFloat(B()) + GetVRegFloat(C())); return true; } HANDLER_ATTRIBUTES bool SUB_FLOAT() { SetVRegFloat(A(), GetVRegFloat(B()) - GetVRegFloat(C())); return true; } HANDLER_ATTRIBUTES bool MUL_FLOAT() { SetVRegFloat(A(), GetVRegFloat(B()) * GetVRegFloat(C())); return true; } HANDLER_ATTRIBUTES bool DIV_FLOAT() { SetVRegFloat(A(), GetVRegFloat(B()) / GetVRegFloat(C())); return true; } HANDLER_ATTRIBUTES bool REM_FLOAT() { SetVRegFloat(A(), fmodf(GetVRegFloat(B()), GetVRegFloat(C()))); return true; } HANDLER_ATTRIBUTES bool ADD_DOUBLE() { SetVRegDouble(A(), GetVRegDouble(B()) + GetVRegDouble(C())); return true; } HANDLER_ATTRIBUTES bool SUB_DOUBLE() { SetVRegDouble(A(), GetVRegDouble(B()) - GetVRegDouble(C())); return true; } HANDLER_ATTRIBUTES bool MUL_DOUBLE() { SetVRegDouble(A(), GetVRegDouble(B()) * GetVRegDouble(C())); return true; } HANDLER_ATTRIBUTES bool DIV_DOUBLE() { SetVRegDouble(A(), GetVRegDouble(B()) / GetVRegDouble(C())); return true; } HANDLER_ATTRIBUTES bool REM_DOUBLE() { SetVRegDouble(A(), fmod(GetVRegDouble(B()), GetVRegDouble(C()))); return true; } HANDLER_ATTRIBUTES bool ADD_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, SafeAdd(GetVReg(vregA), GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool SUB_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, SafeSub(GetVReg(vregA), GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool MUL_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, SafeMul(GetVReg(vregA), GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool DIV_INT_2ADDR() { uint4_t vregA = A(); return DoIntDivide(shadow_frame, vregA, GetVReg(vregA), GetVReg(B())); } HANDLER_ATTRIBUTES bool REM_INT_2ADDR() { uint4_t vregA = A(); return DoIntRemainder(shadow_frame, vregA, GetVReg(vregA), GetVReg(B())); } HANDLER_ATTRIBUTES bool SHL_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, GetVReg(vregA) << (GetVReg(B()) & 0x1f)); return true; } HANDLER_ATTRIBUTES bool SHR_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, GetVReg(vregA) >> (GetVReg(B()) & 0x1f)); return true; } HANDLER_ATTRIBUTES bool USHR_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, static_cast(GetVReg(vregA)) >> (GetVReg(B()) & 0x1f)); return true; } HANDLER_ATTRIBUTES bool AND_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, GetVReg(vregA) & GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool OR_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, GetVReg(vregA) | GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool XOR_INT_2ADDR() { uint4_t vregA = A(); SetVReg(vregA, GetVReg(vregA) ^ GetVReg(B())); return true; } HANDLER_ATTRIBUTES bool ADD_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, SafeAdd(GetVRegLong(vregA), GetVRegLong(B()))); return true; } HANDLER_ATTRIBUTES bool SUB_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, SafeSub(GetVRegLong(vregA), GetVRegLong(B()))); return true; } HANDLER_ATTRIBUTES bool MUL_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, SafeMul(GetVRegLong(vregA), GetVRegLong(B()))); return true; } HANDLER_ATTRIBUTES bool DIV_LONG_2ADDR() { uint4_t vregA = A(); return DoLongDivide(shadow_frame, vregA, GetVRegLong(vregA), GetVRegLong(B())); } HANDLER_ATTRIBUTES bool REM_LONG_2ADDR() { uint4_t vregA = A(); return DoLongRemainder(shadow_frame, vregA, GetVRegLong(vregA), GetVRegLong(B())); } HANDLER_ATTRIBUTES bool AND_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, GetVRegLong(vregA) & GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool OR_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, GetVRegLong(vregA) | GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool XOR_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, GetVRegLong(vregA) ^ GetVRegLong(B())); return true; } HANDLER_ATTRIBUTES bool SHL_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, GetVRegLong(vregA) << (GetVReg(B()) & 0x3f)); return true; } HANDLER_ATTRIBUTES bool SHR_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, GetVRegLong(vregA) >> (GetVReg(B()) & 0x3f)); return true; } HANDLER_ATTRIBUTES bool USHR_LONG_2ADDR() { uint4_t vregA = A(); SetVRegLong(vregA, static_cast(GetVRegLong(vregA)) >> (GetVReg(B()) & 0x3f)); return true; } HANDLER_ATTRIBUTES bool ADD_FLOAT_2ADDR() { uint4_t vregA = A(); SetVRegFloat(vregA, GetVRegFloat(vregA) + GetVRegFloat(B())); return true; } HANDLER_ATTRIBUTES bool SUB_FLOAT_2ADDR() { uint4_t vregA = A(); SetVRegFloat(vregA, GetVRegFloat(vregA) - GetVRegFloat(B())); return true; } HANDLER_ATTRIBUTES bool MUL_FLOAT_2ADDR() { uint4_t vregA = A(); SetVRegFloat(vregA, GetVRegFloat(vregA) * GetVRegFloat(B())); return true; } HANDLER_ATTRIBUTES bool DIV_FLOAT_2ADDR() { uint4_t vregA = A(); SetVRegFloat(vregA, GetVRegFloat(vregA) / GetVRegFloat(B())); return true; } HANDLER_ATTRIBUTES bool REM_FLOAT_2ADDR() { uint4_t vregA = A(); SetVRegFloat(vregA, fmodf(GetVRegFloat(vregA), GetVRegFloat(B()))); return true; } HANDLER_ATTRIBUTES bool ADD_DOUBLE_2ADDR() { uint4_t vregA = A(); SetVRegDouble(vregA, GetVRegDouble(vregA) + GetVRegDouble(B())); return true; } HANDLER_ATTRIBUTES bool SUB_DOUBLE_2ADDR() { uint4_t vregA = A(); SetVRegDouble(vregA, GetVRegDouble(vregA) - GetVRegDouble(B())); return true; } HANDLER_ATTRIBUTES bool MUL_DOUBLE_2ADDR() { uint4_t vregA = A(); SetVRegDouble(vregA, GetVRegDouble(vregA) * GetVRegDouble(B())); return true; } HANDLER_ATTRIBUTES bool DIV_DOUBLE_2ADDR() { uint4_t vregA = A(); SetVRegDouble(vregA, GetVRegDouble(vregA) / GetVRegDouble(B())); return true; } HANDLER_ATTRIBUTES bool REM_DOUBLE_2ADDR() { uint4_t vregA = A(); SetVRegDouble(vregA, fmod(GetVRegDouble(vregA), GetVRegDouble(B()))); return true; } HANDLER_ATTRIBUTES bool ADD_INT_LIT16() { SetVReg(A(), SafeAdd(GetVReg(B()), C())); return true; } HANDLER_ATTRIBUTES bool RSUB_INT() { SetVReg(A(), SafeSub(C(), GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool MUL_INT_LIT16() { SetVReg(A(), SafeMul(GetVReg(B()), C())); return true; } HANDLER_ATTRIBUTES bool DIV_INT_LIT16() { return DoIntDivide(shadow_frame, A(), GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool REM_INT_LIT16() { return DoIntRemainder(shadow_frame, A(), GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool AND_INT_LIT16() { SetVReg(A(), GetVReg(B()) & C()); return true; } HANDLER_ATTRIBUTES bool OR_INT_LIT16() { SetVReg(A(), GetVReg(B()) | C()); return true; } HANDLER_ATTRIBUTES bool XOR_INT_LIT16() { SetVReg(A(), GetVReg(B()) ^ C()); return true; } HANDLER_ATTRIBUTES bool ADD_INT_LIT8() { SetVReg(A(), SafeAdd(GetVReg(B()), C())); return true; } HANDLER_ATTRIBUTES bool RSUB_INT_LIT8() { SetVReg(A(), SafeSub(C(), GetVReg(B()))); return true; } HANDLER_ATTRIBUTES bool MUL_INT_LIT8() { SetVReg(A(), SafeMul(GetVReg(B()), C())); return true; } HANDLER_ATTRIBUTES bool DIV_INT_LIT8() { return DoIntDivide(shadow_frame, A(), GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool REM_INT_LIT8() { return DoIntRemainder(shadow_frame, A(), GetVReg(B()), C()); } HANDLER_ATTRIBUTES bool AND_INT_LIT8() { SetVReg(A(), GetVReg(B()) & C()); return true; } HANDLER_ATTRIBUTES bool OR_INT_LIT8() { SetVReg(A(), GetVReg(B()) | C()); return true; } HANDLER_ATTRIBUTES bool XOR_INT_LIT8() { SetVReg(A(), GetVReg(B()) ^ C()); return true; } HANDLER_ATTRIBUTES bool SHL_INT_LIT8() { SetVReg(A(), GetVReg(B()) << (C() & 0x1f)); return true; } HANDLER_ATTRIBUTES bool SHR_INT_LIT8() { SetVReg(A(), GetVReg(B()) >> (C() & 0x1f)); return true; } HANDLER_ATTRIBUTES bool USHR_INT_LIT8() { SetVReg(A(), static_cast(GetVReg(B())) >> (C() & 0x1f)); return true; } HANDLER_ATTRIBUTES bool UNUSED_3E() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_3F() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_40() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_41() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_42() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_43() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_79() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_7A() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F3() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F4() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F5() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F6() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F7() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F8() { return HandleUnused(); } HANDLER_ATTRIBUTES bool UNUSED_F9() { return HandleUnused(); } ALWAYS_INLINE InstructionHandler(SwitchImplContext* ctx, const instrumentation::Instrumentation* instrumentation, Thread* self, ShadowFrame& shadow_frame, uint16_t dex_pc, const Instruction* inst, uint16_t inst_data, const Instruction*& next, bool& exit_interpreter_loop) : ctx(ctx), instrumentation(instrumentation), self(self), shadow_frame(shadow_frame), dex_pc(dex_pc), inst(inst), inst_data(inst_data), next(next), exit_interpreter_loop(exit_interpreter_loop) { } private: static constexpr bool do_assignability_check = do_access_check; static constexpr MonitorState kMonitorState = do_assignability_check ? MonitorState::kCountingMonitors : MonitorState::kNormalMonitors; const CodeItemDataAccessor& Accessor() { return ctx->accessor; } const uint16_t* Insns() { return ctx->accessor.Insns(); } JValue* ResultRegister() { return &ctx->result_register; } ALWAYS_INLINE int32_t A() { return inst->VRegA(kFormat, inst_data); } ALWAYS_INLINE int32_t B() { return inst->VRegB(kFormat, inst_data); } ALWAYS_INLINE int32_t C() { return inst->VRegC(kFormat); } int32_t GetVReg(size_t i) const { return shadow_frame.GetVReg(i); } int64_t GetVRegLong(size_t i) const { return shadow_frame.GetVRegLong(i); } float GetVRegFloat(size_t i) const { return shadow_frame.GetVRegFloat(i); } double GetVRegDouble(size_t i) const { return shadow_frame.GetVRegDouble(i); } ObjPtr GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) { return shadow_frame.GetVRegReference(i); } void SetVReg(size_t i, int32_t val) { shadow_frame.SetVReg(i, val); } void SetVRegLong(size_t i, int64_t val) { shadow_frame.SetVRegLong(i, val); } void SetVRegFloat(size_t i, float val) { shadow_frame.SetVRegFloat(i, val); } void SetVRegDouble(size_t i, double val) { shadow_frame.SetVRegDouble(i, val); } void SetVRegReference(size_t i, ObjPtr val) REQUIRES_SHARED(Locks::mutator_lock_) { shadow_frame.SetVRegReference(i, val); } // Set the next instruction to be executed. It is the 'fall-through' instruction by default. ALWAYS_INLINE void SetNextInstruction(const Instruction* next_inst) { DCHECK_LT(next_inst->GetDexPc(Insns()), Accessor().InsnsSizeInCodeUnits()); next = next_inst; } SwitchImplContext* const ctx; const instrumentation::Instrumentation* const instrumentation; Thread* const self; ShadowFrame& shadow_frame; uint32_t const dex_pc; const Instruction* const inst; uint16_t const inst_data; const Instruction*& next; bool& exit_interpreter_loop; }; // Don't inline in ASAN. It would create massive stack frame. #if defined(ADDRESS_SANITIZER) || defined(HWADDRESS_SANITIZER) #define ASAN_NO_INLINE NO_INLINE #else #define ASAN_NO_INLINE ALWAYS_INLINE #endif #define OPCODE_CASE(OPCODE, OPCODE_NAME, NAME, FORMAT, i, a, e, v) \ template \ ASAN_NO_INLINE static bool OP_##OPCODE_NAME( \ SwitchImplContext* ctx, \ const instrumentation::Instrumentation* instrumentation, \ Thread* self, \ ShadowFrame& shadow_frame, \ uint16_t dex_pc, \ const Instruction* inst, \ uint16_t inst_data, \ const Instruction*& next, \ bool& exit) REQUIRES_SHARED(Locks::mutator_lock_) { \ InstructionHandler handler( \ ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit); \ return LIKELY(handler.OPCODE_NAME()); \ } DEX_INSTRUCTION_LIST(OPCODE_CASE) #undef OPCODE_CASE template void ExecuteSwitchImplCpp(SwitchImplContext* ctx) { Thread* self = ctx->self; const CodeItemDataAccessor& accessor = ctx->accessor; ShadowFrame& shadow_frame = ctx->shadow_frame; self->VerifyStack(); uint32_t dex_pc = shadow_frame.GetDexPC(); const auto* const instrumentation = Runtime::Current()->GetInstrumentation(); const uint16_t* const insns = accessor.Insns(); const Instruction* next = Instruction::At(insns + dex_pc); DCHECK(!shadow_frame.GetForceRetryInstruction()) << "Entered interpreter from invoke without retry instruction being handled!"; bool const interpret_one_instruction = ctx->interpret_one_instruction; while (true) { const Instruction* const inst = next; dex_pc = inst->GetDexPc(insns); shadow_frame.SetDexPC(dex_pc); TraceExecution(shadow_frame, inst, dex_pc); uint16_t inst_data = inst->Fetch16(0); bool exit = false; if (InstructionHandler( ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit). Preamble()) { switch (inst->Opcode(inst_data)) { #define OPCODE_CASE(OPCODE, OPCODE_NAME, NAME, FORMAT, i, a, e, v) \ case OPCODE: { \ DCHECK_EQ(self->IsExceptionPending(), (OPCODE == Instruction::MOVE_EXCEPTION)); \ next = inst->RelativeAt(Instruction::SizeInCodeUnits(Instruction::FORMAT)); \ bool success = OP_##OPCODE_NAME( \ ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit); \ if (success && LIKELY(!interpret_one_instruction)) { \ DCHECK(!exit) << NAME; \ continue; \ } \ if (exit) { \ shadow_frame.SetDexPC(dex::kDexNoIndex); \ return; \ } \ break; \ } DEX_INSTRUCTION_LIST(OPCODE_CASE) #undef OPCODE_CASE } } else { // Preamble returned false due to debugger event. if (exit) { shadow_frame.SetDexPC(dex::kDexNoIndex); return; // Return statement or debugger forced exit. } } if (self->IsExceptionPending()) { if (!InstructionHandler( ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit). HandlePendingException()) { shadow_frame.SetDexPC(dex::kDexNoIndex); return; // Locally unhandled exception - return to caller. } // Continue execution in the catch block. } if (interpret_one_instruction) { shadow_frame.SetDexPC(next->GetDexPc(insns)); // Record where we stopped. ctx->result = ctx->result_register; return; } } } // NOLINT(readability/fn_size) } // namespace interpreter } // namespace art #endif // ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_