/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "FastThread" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_AUDIO #include "Configuration.h" #include #include #include #include #include #include #include "FastThread.h" #include "FastThreadDumpState.h" #include "TypedLogger.h" #define FAST_DEFAULT_NS 999999999L // ~1 sec: default time to sleep #define FAST_HOT_IDLE_NS 1000000L // 1 ms: time to sleep while hot idling #define MIN_WARMUP_CYCLES 2 // minimum number of consecutive in-range loop cycles // to wait for warmup #define MAX_WARMUP_CYCLES 10 // maximum number of loop cycles to wait for warmup namespace android { FastThread::FastThread(const char *cycleMs, const char *loadUs) : Thread(false /*canCallJava*/), // re-initialized to &sInitial by subclass constructor mPrevious(NULL), mCurrent(NULL), /* mOldTs({0, 0}), */ mOldTsValid(false), mSleepNs(-1), mPeriodNs(0), mUnderrunNs(0), mOverrunNs(0), mForceNs(0), mWarmupNsMin(0), mWarmupNsMax(LONG_MAX), // re-initialized to &mDummySubclassDumpState by subclass constructor mDummyDumpState(NULL), mDumpState(NULL), mIgnoreNextOverrun(true), #ifdef FAST_THREAD_STATISTICS // mOldLoad mOldLoadValid(false), mBounds(0), mFull(false), // mTcu #endif mColdGen(0), mIsWarm(false), /* mMeasuredWarmupTs({0, 0}), */ mWarmupCycles(0), mWarmupConsecutiveInRangeCycles(0), mTimestampStatus(INVALID_OPERATION), mCommand(FastThreadState::INITIAL), #if 0 frameCount(0), #endif mAttemptedWrite(false) // mCycleMs(cycleMs) // mLoadUs(loadUs) { mOldTs.tv_sec = 0; mOldTs.tv_nsec = 0; mMeasuredWarmupTs.tv_sec = 0; mMeasuredWarmupTs.tv_nsec = 0; strlcpy(mCycleMs, cycleMs, sizeof(mCycleMs)); strlcpy(mLoadUs, loadUs, sizeof(mLoadUs)); } FastThread::~FastThread() { } bool FastThread::threadLoop() { // LOGT now works even if tlNBLogWriter is nullptr, but we're considering changing that, // so this initialization permits a future change to remove the check for nullptr. tlNBLogWriter = mDummyNBLogWriter.get(); for (;;) { // either nanosleep, sched_yield, or busy wait if (mSleepNs >= 0) { if (mSleepNs > 0) { ALOG_ASSERT(mSleepNs < 1000000000); const struct timespec req = {0, mSleepNs}; nanosleep(&req, NULL); } else { sched_yield(); } } // default to long sleep for next cycle mSleepNs = FAST_DEFAULT_NS; // poll for state change const FastThreadState *next = poll(); if (next == NULL) { // continue to use the default initial state until a real state is available // FIXME &sInitial not available, should save address earlier //ALOG_ASSERT(mCurrent == &sInitial && previous == &sInitial); next = mCurrent; } mCommand = next->mCommand; if (next != mCurrent) { // As soon as possible of learning of a new dump area, start using it mDumpState = next->mDumpState != NULL ? next->mDumpState : mDummyDumpState; tlNBLogWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : mDummyNBLogWriter.get(); setNBLogWriter(tlNBLogWriter); // This is used for debugging only // We want to always have a valid reference to the previous (non-idle) state. // However, the state queue only guarantees access to current and previous states. // So when there is a transition from a non-idle state into an idle state, we make a // copy of the last known non-idle state so it is still available on return from idle. // The possible transitions are: // non-idle -> non-idle update previous from current in-place // non-idle -> idle update previous from copy of current // idle -> idle don't update previous // idle -> non-idle don't update previous if (!(mCurrent->mCommand & FastThreadState::IDLE)) { if (mCommand & FastThreadState::IDLE) { onIdle(); mOldTsValid = false; #ifdef FAST_THREAD_STATISTICS mOldLoadValid = false; #endif mIgnoreNextOverrun = true; } mPrevious = mCurrent; } mCurrent = next; } #if !LOG_NDEBUG next = NULL; // not referenced again #endif mDumpState->mCommand = mCommand; // FIXME what does this comment mean? // << current, previous, command, dumpState >> switch (mCommand) { case FastThreadState::INITIAL: case FastThreadState::HOT_IDLE: mSleepNs = FAST_HOT_IDLE_NS; continue; case FastThreadState::COLD_IDLE: // only perform a cold idle command once // FIXME consider checking previous state and only perform if previous != COLD_IDLE if (mCurrent->mColdGen != mColdGen) { int32_t *coldFutexAddr = mCurrent->mColdFutexAddr; ALOG_ASSERT(coldFutexAddr != NULL); int32_t old = android_atomic_dec(coldFutexAddr); if (old <= 0) { syscall(__NR_futex, coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL); } int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK; if (!(policy == SCHED_FIFO || policy == SCHED_RR)) { ALOGE("did not receive expected priority boost on time"); } // This may be overly conservative; there could be times that the normal mixer // requests such a brief cold idle that it doesn't require resetting this flag. mIsWarm = false; mMeasuredWarmupTs.tv_sec = 0; mMeasuredWarmupTs.tv_nsec = 0; mWarmupCycles = 0; mWarmupConsecutiveInRangeCycles = 0; mSleepNs = -1; mColdGen = mCurrent->mColdGen; #ifdef FAST_THREAD_STATISTICS mBounds = 0; mFull = false; #endif mOldTsValid = !clock_gettime(CLOCK_MONOTONIC, &mOldTs); mTimestampStatus = INVALID_OPERATION; } else { mSleepNs = FAST_HOT_IDLE_NS; } continue; case FastThreadState::EXIT: onExit(); return false; default: LOG_ALWAYS_FATAL_IF(!isSubClassCommand(mCommand)); break; } // there is a non-idle state available to us; did the state change? if (mCurrent != mPrevious) { onStateChange(); #if 1 // FIXME shouldn't need this // only process state change once mPrevious = mCurrent; #endif } // do work using current state here mAttemptedWrite = false; onWork(); // To be exactly periodic, compute the next sleep time based on current time. // This code doesn't have long-term stability when the sink is non-blocking. // FIXME To avoid drift, use the local audio clock or watch the sink's fill status. struct timespec newTs; int rc = clock_gettime(CLOCK_MONOTONIC, &newTs); if (rc == 0) { if (mOldTsValid) { time_t sec = newTs.tv_sec - mOldTs.tv_sec; long nsec = newTs.tv_nsec - mOldTs.tv_nsec; ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0), "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld", mOldTs.tv_sec, mOldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec); if (nsec < 0) { --sec; nsec += 1000000000; } // To avoid an initial underrun on fast tracks after exiting standby, // do not start pulling data from tracks and mixing until warmup is complete. // Warmup is considered complete after the earlier of: // MIN_WARMUP_CYCLES consecutive in-range write() attempts, // where "in-range" means mWarmupNsMin <= cycle time <= mWarmupNsMax // MAX_WARMUP_CYCLES write() attempts. // This is overly conservative, but to get better accuracy requires a new HAL API. if (!mIsWarm && mAttemptedWrite) { mMeasuredWarmupTs.tv_sec += sec; mMeasuredWarmupTs.tv_nsec += nsec; if (mMeasuredWarmupTs.tv_nsec >= 1000000000) { mMeasuredWarmupTs.tv_sec++; mMeasuredWarmupTs.tv_nsec -= 1000000000; } ++mWarmupCycles; if (mWarmupNsMin <= nsec && nsec <= mWarmupNsMax) { ALOGV("warmup cycle %d in range: %.03f ms", mWarmupCycles, nsec * 1e-9); ++mWarmupConsecutiveInRangeCycles; } else { ALOGV("warmup cycle %d out of range: %.03f ms", mWarmupCycles, nsec * 1e-9); mWarmupConsecutiveInRangeCycles = 0; } if ((mWarmupConsecutiveInRangeCycles >= MIN_WARMUP_CYCLES) || (mWarmupCycles >= MAX_WARMUP_CYCLES)) { mIsWarm = true; mDumpState->mMeasuredWarmupTs = mMeasuredWarmupTs; mDumpState->mWarmupCycles = mWarmupCycles; const double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1e3) + (mMeasuredWarmupTs.tv_nsec * 1e-6); LOG_WARMUP_TIME(measuredWarmupMs); } } mSleepNs = -1; if (mIsWarm) { if (sec > 0 || nsec > mUnderrunNs) { ATRACE_NAME("underrun"); // FIXME only log occasionally ALOGV("underrun: time since last cycle %d.%03ld sec", (int) sec, nsec / 1000000L); mDumpState->mUnderruns++; LOG_UNDERRUN(audio_utils_ns_from_timespec(&newTs)); mIgnoreNextOverrun = true; } else if (nsec < mOverrunNs) { if (mIgnoreNextOverrun) { mIgnoreNextOverrun = false; } else { // FIXME only log occasionally ALOGV("overrun: time since last cycle %d.%03ld sec", (int) sec, nsec / 1000000L); mDumpState->mOverruns++; LOG_OVERRUN(audio_utils_ns_from_timespec(&newTs)); } // This forces a minimum cycle time. It: // - compensates for an audio HAL with jitter due to sample rate conversion // - works with a variable buffer depth audio HAL that never pulls at a // rate < than mOverrunNs per buffer. // - recovers from overrun immediately after underrun // It doesn't work with a non-blocking audio HAL. mSleepNs = mForceNs - nsec; } else { mIgnoreNextOverrun = false; } } #ifdef FAST_THREAD_STATISTICS if (mIsWarm) { // advance the FIFO queue bounds size_t i = mBounds & (mDumpState->mSamplingN - 1); mBounds = (mBounds & 0xFFFF0000) | ((mBounds + 1) & 0xFFFF); if (mFull) { //mBounds += 0x10000; __builtin_add_overflow(mBounds, 0x10000, &mBounds); } else if (!(mBounds & (mDumpState->mSamplingN - 1))) { mFull = true; } // compute the delta value of clock_gettime(CLOCK_MONOTONIC) uint32_t monotonicNs = nsec; if (sec > 0 && sec < 4) { monotonicNs += sec * 1000000000U; // unsigned to prevent signed overflow. } // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID) uint32_t loadNs = 0; struct timespec newLoad; rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad); if (rc == 0) { if (mOldLoadValid) { sec = newLoad.tv_sec - mOldLoad.tv_sec; nsec = newLoad.tv_nsec - mOldLoad.tv_nsec; if (nsec < 0) { --sec; nsec += 1000000000; } loadNs = nsec; if (sec > 0 && sec < 4) { loadNs += sec * 1000000000U; // unsigned to prevent signed overflow. } } else { // first time through the loop mOldLoadValid = true; } mOldLoad = newLoad; } #ifdef CPU_FREQUENCY_STATISTICS // get the absolute value of CPU clock frequency in kHz int cpuNum = sched_getcpu(); uint32_t kHz = mTcu.getCpukHz(cpuNum); kHz = (kHz << 4) | (cpuNum & 0xF); #endif // save values in FIFO queues for dumpsys // these stores #1, #2, #3 are not atomic with respect to each other, // or with respect to store #4 below mDumpState->mMonotonicNs[i] = monotonicNs; LOG_WORK_TIME(monotonicNs); mDumpState->mLoadNs[i] = loadNs; #ifdef CPU_FREQUENCY_STATISTICS mDumpState->mCpukHz[i] = kHz; #endif // this store #4 is not atomic with respect to stores #1, #2, #3 above, but // the newest open & oldest closed halves are atomic with respect to each other mDumpState->mBounds = mBounds; ATRACE_INT(mCycleMs, monotonicNs / 1000000); ATRACE_INT(mLoadUs, loadNs / 1000); } #endif } else { // first time through the loop mOldTsValid = true; mSleepNs = mPeriodNs; mIgnoreNextOverrun = true; } mOldTs = newTs; } else { // monotonic clock is broken mOldTsValid = false; mSleepNs = mPeriodNs; } } // for (;;) // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion } } // namespace android