/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Camera3-ZoomRatioMapper" //#define LOG_NDEBUG 0 #include #include "device3/ZoomRatioMapper.h" namespace android { namespace camera3 { status_t ZoomRatioMapper::initZoomRatioInTemplate(CameraMetadata *request) { camera_metadata_entry_t entry; entry = request->find(ANDROID_CONTROL_ZOOM_RATIO); float defaultZoomRatio = 1.0f; if (entry.count == 0) { return request->update(ANDROID_CONTROL_ZOOM_RATIO, &defaultZoomRatio, 1); } return OK; } status_t ZoomRatioMapper::overrideZoomRatioTags( CameraMetadata* deviceInfo, bool* supportNativeZoomRatio) { if (deviceInfo == nullptr || supportNativeZoomRatio == nullptr) { return BAD_VALUE; } camera_metadata_entry_t entry; entry = deviceInfo->find(ANDROID_CONTROL_ZOOM_RATIO_RANGE); if (entry.count != 2 && entry.count != 0) return BAD_VALUE; // Hal has zoom ratio support if (entry.count == 2) { *supportNativeZoomRatio = true; return OK; } // Hal has no zoom ratio support *supportNativeZoomRatio = false; entry = deviceInfo->find(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM); if (entry.count != 1) { ALOGI("%s: Camera device doesn't support SCALER_AVAILABLE_MAX_DIGITAL_ZOOM key!", __FUNCTION__); return OK; } float zoomRange[] = {1.0f, entry.data.f[0]}; status_t res = deviceInfo->update(ANDROID_CONTROL_ZOOM_RATIO_RANGE, zoomRange, 2); if (res != OK) { ALOGE("%s: Failed to update CONTROL_ZOOM_RATIO_RANGE key: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } std::vector requestKeys; entry = deviceInfo->find(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS); if (entry.count > 0) { requestKeys.insert(requestKeys.end(), entry.data.i32, entry.data.i32 + entry.count); } requestKeys.push_back(ANDROID_CONTROL_ZOOM_RATIO); res = deviceInfo->update(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, requestKeys.data(), requestKeys.size()); if (res != OK) { ALOGE("%s: Failed to update REQUEST_AVAILABLE_REQUEST_KEYS: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } std::vector resultKeys; entry = deviceInfo->find(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS); if (entry.count > 0) { resultKeys.insert(resultKeys.end(), entry.data.i32, entry.data.i32 + entry.count); } resultKeys.push_back(ANDROID_CONTROL_ZOOM_RATIO); res = deviceInfo->update(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, resultKeys.data(), resultKeys.size()); if (res != OK) { ALOGE("%s: Failed to update REQUEST_AVAILABLE_RESULT_KEYS: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } std::vector charKeys; entry = deviceInfo->find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS); if (entry.count > 0) { charKeys.insert(charKeys.end(), entry.data.i32, entry.data.i32 + entry.count); } charKeys.push_back(ANDROID_CONTROL_ZOOM_RATIO_RANGE); res = deviceInfo->update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, charKeys.data(), charKeys.size()); if (res != OK) { ALOGE("%s: Failed to update REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } return OK; } ZoomRatioMapper::ZoomRatioMapper(const CameraMetadata* deviceInfo, bool supportNativeZoomRatio, bool usePrecorrectArray) { camera_metadata_ro_entry_t entry; entry = deviceInfo->find(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE); if (entry.count != 4) return; int32_t arrayW = entry.data.i32[2]; int32_t arrayH = entry.data.i32[3]; entry = deviceInfo->find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE); if (entry.count != 4) return; int32_t activeW = entry.data.i32[2]; int32_t activeH = entry.data.i32[3]; if (usePrecorrectArray) { mArrayWidth = arrayW; mArrayHeight = arrayH; } else { mArrayWidth = activeW; mArrayHeight = activeH; } mHalSupportsZoomRatio = supportNativeZoomRatio; ALOGV("%s: array size: %d x %d, mHalSupportsZoomRatio %d", __FUNCTION__, mArrayWidth, mArrayHeight, mHalSupportsZoomRatio); mIsValid = true; } status_t ZoomRatioMapper::updateCaptureRequest(CameraMetadata* request) { if (!mIsValid) return INVALID_OPERATION; status_t res = OK; bool zoomRatioIs1 = true; camera_metadata_entry_t entry; entry = request->find(ANDROID_CONTROL_ZOOM_RATIO); if (entry.count == 1 && entry.data.f[0] != 1.0f) { zoomRatioIs1 = false; } if (mHalSupportsZoomRatio && zoomRatioIs1) { res = separateZoomFromCropLocked(request, false/*isResult*/); } else if (!mHalSupportsZoomRatio && !zoomRatioIs1) { res = combineZoomAndCropLocked(request, false/*isResult*/); } // If CONTROL_ZOOM_RATIO is in request, but HAL doesn't support // CONTROL_ZOOM_RATIO, remove it from the request. if (!mHalSupportsZoomRatio && entry.count == 1) { request->erase(ANDROID_CONTROL_ZOOM_RATIO); } return res; } status_t ZoomRatioMapper::updateCaptureResult(CameraMetadata* result, bool requestedZoomRatioIs1) { if (!mIsValid) return INVALID_OPERATION; status_t res = OK; if (mHalSupportsZoomRatio && requestedZoomRatioIs1) { res = combineZoomAndCropLocked(result, true/*isResult*/); } else if (!mHalSupportsZoomRatio && !requestedZoomRatioIs1) { res = separateZoomFromCropLocked(result, true/*isResult*/); } else { camera_metadata_entry_t entry = result->find(ANDROID_CONTROL_ZOOM_RATIO); if (entry.count == 0) { float zoomRatio1x = 1.0f; result->update(ANDROID_CONTROL_ZOOM_RATIO, &zoomRatio1x, 1); } } return res; } float ZoomRatioMapper::deriveZoomRatio(const CameraMetadata* metadata) { float zoomRatio = 1.0; camera_metadata_ro_entry_t entry; entry = metadata->find(ANDROID_SCALER_CROP_REGION); if (entry.count != 4) return zoomRatio; // Center of the preCorrection/active size float arrayCenterX = mArrayWidth / 2.0; float arrayCenterY = mArrayHeight / 2.0; // Re-map crop region to coordinate system centered to (arrayCenterX, // arrayCenterY). float cropRegionLeft = arrayCenterX - entry.data.i32[0] ; float cropRegionTop = arrayCenterY - entry.data.i32[1]; float cropRegionRight = entry.data.i32[0] + entry.data.i32[2] - arrayCenterX; float cropRegionBottom = entry.data.i32[1] + entry.data.i32[3] - arrayCenterY; // Calculate the scaling factor for left, top, bottom, right float zoomRatioLeft = std::max(mArrayWidth / (2 * cropRegionLeft), 1.0f); float zoomRatioTop = std::max(mArrayHeight / (2 * cropRegionTop), 1.0f); float zoomRatioRight = std::max(mArrayWidth / (2 * cropRegionRight), 1.0f); float zoomRatioBottom = std::max(mArrayHeight / (2 * cropRegionBottom), 1.0f); // Use minimum scaling factor to handle letterboxing or pillarboxing zoomRatio = std::min(std::min(zoomRatioLeft, zoomRatioRight), std::min(zoomRatioTop, zoomRatioBottom)); ALOGV("%s: derived zoomRatio is %f", __FUNCTION__, zoomRatio); return zoomRatio; } status_t ZoomRatioMapper::separateZoomFromCropLocked(CameraMetadata* metadata, bool isResult) { status_t res; float zoomRatio = deriveZoomRatio(metadata); // Update zoomRatio metadata tag res = metadata->update(ANDROID_CONTROL_ZOOM_RATIO, &zoomRatio, 1); if (res != OK) { ALOGE("%s: Failed to update ANDROID_CONTROL_ZOOM_RATIO: %s(%d)", __FUNCTION__, strerror(-res), res); return res; } // Scale regions using zoomRatio camera_metadata_entry_t entry; for (auto region : kMeteringRegionsToCorrect) { entry = metadata->find(region); for (size_t j = 0; j < entry.count; j += 5) { int32_t weight = entry.data.i32[j + 4]; if (weight == 0) { continue; } // Top left (inclusive) scaleCoordinates(entry.data.i32 + j, 1, zoomRatio, true /*clamp*/); // Bottom right (exclusive): Use adjacent inclusive pixel to // calculate. entry.data.i32[j+2] -= 1; entry.data.i32[j+3] -= 1; scaleCoordinates(entry.data.i32 + j + 2, 1, zoomRatio, true /*clamp*/); entry.data.i32[j+2] += 1; entry.data.i32[j+3] += 1; } } for (auto rect : kRectsToCorrect) { entry = metadata->find(rect); scaleRects(entry.data.i32, entry.count / 4, zoomRatio); } if (isResult) { for (auto pts : kResultPointsToCorrectNoClamp) { entry = metadata->find(pts); scaleCoordinates(entry.data.i32, entry.count / 2, zoomRatio, false /*clamp*/); } } return OK; } status_t ZoomRatioMapper::combineZoomAndCropLocked(CameraMetadata* metadata, bool isResult) { float zoomRatio = 1.0f; camera_metadata_entry_t entry; entry = metadata->find(ANDROID_CONTROL_ZOOM_RATIO); if (entry.count == 1) { zoomRatio = entry.data.f[0]; } // Unscale regions with zoomRatio status_t res; for (auto region : kMeteringRegionsToCorrect) { entry = metadata->find(region); for (size_t j = 0; j < entry.count; j += 5) { int32_t weight = entry.data.i32[j + 4]; if (weight == 0) { continue; } // Top-left (inclusive) scaleCoordinates(entry.data.i32 + j, 1, 1.0 / zoomRatio, true /*clamp*/); // Bottom-right (exclusive): Use adjacent inclusive pixel to // calculate. entry.data.i32[j+2] -= 1; entry.data.i32[j+3] -= 1; scaleCoordinates(entry.data.i32 + j + 2, 1, 1.0 / zoomRatio, true /*clamp*/); entry.data.i32[j+2] += 1; entry.data.i32[j+3] += 1; } } for (auto rect : kRectsToCorrect) { entry = metadata->find(rect); scaleRects(entry.data.i32, entry.count / 4, 1.0 / zoomRatio); } if (isResult) { for (auto pts : kResultPointsToCorrectNoClamp) { entry = metadata->find(pts); scaleCoordinates(entry.data.i32, entry.count / 2, 1.0 / zoomRatio, false /*clamp*/); } } zoomRatio = 1.0; res = metadata->update(ANDROID_CONTROL_ZOOM_RATIO, &zoomRatio, 1); if (res != OK) { return res; } return OK; } void ZoomRatioMapper::scaleCoordinates(int32_t* coordPairs, int coordCount, float scaleRatio, bool clamp) { // A pixel's coordinate is represented by the position of its top-left corner. // To avoid the rounding error, we use the coordinate for the center of the // pixel instead: // 1. First shift the coordinate system half pixel both horizontally and // vertically, so that [x, y] is the center of the pixel, not the top-left corner. // 2. Do zoom operation to scale the coordinate relative to the center of // the active array (shifted by 0.5 pixel as well). // 3. Shift the coordinate system back by directly using the pixel center // coordinate. for (int i = 0; i < coordCount * 2; i += 2) { float x = coordPairs[i]; float y = coordPairs[i + 1]; float xCentered = x - (mArrayWidth - 2) / 2; float yCentered = y - (mArrayHeight - 2) / 2; float scaledX = xCentered * scaleRatio; float scaledY = yCentered * scaleRatio; scaledX += (mArrayWidth - 2) / 2; scaledY += (mArrayHeight - 2) / 2; coordPairs[i] = static_cast(std::round(scaledX)); coordPairs[i+1] = static_cast(std::round(scaledY)); // Clamp to within activeArray/preCorrectionActiveArray if (clamp) { int32_t right = mArrayWidth - 1; int32_t bottom = mArrayHeight - 1; coordPairs[i] = std::min(right, std::max(0, coordPairs[i])); coordPairs[i+1] = std::min(bottom, std::max(0, coordPairs[i+1])); } ALOGV("%s: coordinates: %d, %d", __FUNCTION__, coordPairs[i], coordPairs[i+1]); } } void ZoomRatioMapper::scaleRects(int32_t* rects, int rectCount, float scaleRatio) { for (int i = 0; i < rectCount * 4; i += 4) { // Map from (l, t, width, height) to (l, t, l+width-1, t+height-1), // where both top-left and bottom-right are inclusive. int32_t coords[4] = { rects[i], rects[i + 1], rects[i] + rects[i + 2] - 1, rects[i + 1] + rects[i + 3] - 1 }; // top-left scaleCoordinates(coords, 1, scaleRatio, true /*clamp*/); // bottom-right scaleCoordinates(coords+2, 1, scaleRatio, true /*clamp*/); // Map back to (l, t, width, height) rects[i] = coords[0]; rects[i + 1] = coords[1]; rects[i + 2] = coords[2] - coords[0] + 1; rects[i + 3] = coords[3] - coords[1] + 1; } } } // namespace camera3 } // namespace android