/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util;
import android.annotation.Nullable;
import android.annotation.TestApi;
import android.compat.annotation.UnsupportedAppUsage;
import libcore.util.EmptyArray;
import java.lang.reflect.Array;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.function.Predicate;
/**
* ArraySet is a generic set data structure that is designed to be more memory efficient than a
* traditional {@link java.util.HashSet}. The design is very similar to
* {@link ArrayMap}, with all of the caveats described there. This implementation is
* separate from ArrayMap, however, so the Object array contains only one item for each
* entry in the set (instead of a pair for a mapping).
*
*
Note that this implementation is not intended to be appropriate for data structures
* that may contain large numbers of items. It is generally slower than a traditional
* HashSet, since lookups require a binary search and adds and removes require inserting
* and deleting entries in the array. For containers holding up to hundreds of items,
* the performance difference is not significant, less than 50%.
*
* Because this container is intended to better balance memory use, unlike most other
* standard Java containers it will shrink its array as items are removed from it. Currently
* you have no control over this shrinking -- if you set a capacity and then remove an
* item, it may reduce the capacity to better match the current size. In the future an
* explicit call to set the capacity should turn off this aggressive shrinking behavior.
*
* This structure is NOT thread-safe.
*/
public final class ArraySet implements Collection, Set {
private static final boolean DEBUG = false;
private static final String TAG = "ArraySet";
/**
* The minimum amount by which the capacity of a ArraySet will increase.
* This is tuned to be relatively space-efficient.
*/
private static final int BASE_SIZE = 4;
/**
* Maximum number of entries to have in array caches.
*/
private static final int CACHE_SIZE = 10;
/**
* Caches of small array objects to avoid spamming garbage. The cache
* Object[] variable is a pointer to a linked list of array objects.
* The first entry in the array is a pointer to the next array in the
* list; the second entry is a pointer to the int[] hash code array for it.
*/
static Object[] sBaseCache;
static int sBaseCacheSize;
static Object[] sTwiceBaseCache;
static int sTwiceBaseCacheSize;
/**
* Separate locks for each cache since each can be accessed independently of the other without
* risk of a deadlock.
*/
private static final Object sBaseCacheLock = new Object();
private static final Object sTwiceBaseCacheLock = new Object();
private final boolean mIdentityHashCode;
@UnsupportedAppUsage(maxTargetSdk = 28) // Hashes are an implementation detail. Use public API.
int[] mHashes;
@UnsupportedAppUsage(maxTargetSdk = 28) // Storage is an implementation detail. Use public API.
Object[] mArray;
@UnsupportedAppUsage(maxTargetSdk = 28) // Use size()
int mSize;
private MapCollections mCollections;
private int binarySearch(int[] hashes, int hash) {
try {
return ContainerHelpers.binarySearch(hashes, mSize, hash);
} catch (ArrayIndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
@UnsupportedAppUsage(maxTargetSdk = 28) // Hashes are an implementation detail. Use indexOfKey(Object).
private int indexOf(Object key, int hash) {
final int N = mSize;
// Important fast case: if nothing is in here, nothing to look for.
if (N == 0) {
return ~0;
}
int index = binarySearch(mHashes, hash);
// If the hash code wasn't found, then we have no entry for this key.
if (index < 0) {
return index;
}
// If the key at the returned index matches, that's what we want.
if (key.equals(mArray[index])) {
return index;
}
// Search for a matching key after the index.
int end;
for (end = index + 1; end < N && mHashes[end] == hash; end++) {
if (key.equals(mArray[end])) return end;
}
// Search for a matching key before the index.
for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) {
if (key.equals(mArray[i])) return i;
}
// Key not found -- return negative value indicating where a
// new entry for this key should go. We use the end of the
// hash chain to reduce the number of array entries that will
// need to be copied when inserting.
return ~end;
}
@UnsupportedAppUsage(maxTargetSdk = 28) // Use indexOf(null)
private int indexOfNull() {
final int N = mSize;
// Important fast case: if nothing is in here, nothing to look for.
if (N == 0) {
return ~0;
}
int index = binarySearch(mHashes, 0);
// If the hash code wasn't found, then we have no entry for this key.
if (index < 0) {
return index;
}
// If the key at the returned index matches, that's what we want.
if (null == mArray[index]) {
return index;
}
// Search for a matching key after the index.
int end;
for (end = index + 1; end < N && mHashes[end] == 0; end++) {
if (null == mArray[end]) return end;
}
// Search for a matching key before the index.
for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) {
if (null == mArray[i]) return i;
}
// Key not found -- return negative value indicating where a
// new entry for this key should go. We use the end of the
// hash chain to reduce the number of array entries that will
// need to be copied when inserting.
return ~end;
}
@UnsupportedAppUsage(maxTargetSdk = 28) // Allocations are an implementation detail.
private void allocArrays(final int size) {
if (size == (BASE_SIZE * 2)) {
synchronized (sTwiceBaseCacheLock) {
if (sTwiceBaseCache != null) {
final Object[] array = sTwiceBaseCache;
try {
mArray = array;
sTwiceBaseCache = (Object[]) array[0];
mHashes = (int[]) array[1];
if (mHashes != null) {
array[0] = array[1] = null;
sTwiceBaseCacheSize--;
if (DEBUG) {
Log.d(TAG, "Retrieving 2x cache " + mHashes + " now have "
+ sTwiceBaseCacheSize + " entries");
}
return;
}
} catch (ClassCastException e) {
}
// Whoops! Someone trampled the array (probably due to not protecting
// their access with a lock). Our cache is corrupt; report and give up.
Slog.wtf(TAG, "Found corrupt ArraySet cache: [0]=" + array[0]
+ " [1]=" + array[1]);
sTwiceBaseCache = null;
sTwiceBaseCacheSize = 0;
}
}
} else if (size == BASE_SIZE) {
synchronized (sBaseCacheLock) {
if (sBaseCache != null) {
final Object[] array = sBaseCache;
try {
mArray = array;
sBaseCache = (Object[]) array[0];
mHashes = (int[]) array[1];
if (mHashes != null) {
array[0] = array[1] = null;
sBaseCacheSize--;
if (DEBUG) {
Log.d(TAG, "Retrieving 1x cache " + mHashes + " now have "
+ sBaseCacheSize + " entries");
}
return;
}
} catch (ClassCastException e) {
}
// Whoops! Someone trampled the array (probably due to not protecting
// their access with a lock). Our cache is corrupt; report and give up.
Slog.wtf(TAG, "Found corrupt ArraySet cache: [0]=" + array[0]
+ " [1]=" + array[1]);
sBaseCache = null;
sBaseCacheSize = 0;
}
}
}
mHashes = new int[size];
mArray = new Object[size];
}
/**
* Make sure NOT to call this method with arrays that can still be modified. In other
* words, don't pass mHashes or mArray in directly.
*/
@UnsupportedAppUsage(maxTargetSdk = 28) // Allocations are an implementation detail.
private static void freeArrays(final int[] hashes, final Object[] array, final int size) {
if (hashes.length == (BASE_SIZE * 2)) {
synchronized (sTwiceBaseCacheLock) {
if (sTwiceBaseCacheSize < CACHE_SIZE) {
array[0] = sTwiceBaseCache;
array[1] = hashes;
for (int i = size - 1; i >= 2; i--) {
array[i] = null;
}
sTwiceBaseCache = array;
sTwiceBaseCacheSize++;
if (DEBUG) {
Log.d(TAG, "Storing 2x cache " + array + " now have " + sTwiceBaseCacheSize
+ " entries");
}
}
}
} else if (hashes.length == BASE_SIZE) {
synchronized (sBaseCacheLock) {
if (sBaseCacheSize < CACHE_SIZE) {
array[0] = sBaseCache;
array[1] = hashes;
for (int i = size - 1; i >= 2; i--) {
array[i] = null;
}
sBaseCache = array;
sBaseCacheSize++;
if (DEBUG) {
Log.d(TAG, "Storing 1x cache " + array + " now have "
+ sBaseCacheSize + " entries");
}
}
}
}
}
/**
* Create a new empty ArraySet. The default capacity of an array map is 0, and
* will grow once items are added to it.
*/
public ArraySet() {
this(0, false);
}
/**
* Create a new ArraySet with a given initial capacity.
*/
public ArraySet(int capacity) {
this(capacity, false);
}
/** {@hide} */
public ArraySet(int capacity, boolean identityHashCode) {
mIdentityHashCode = identityHashCode;
if (capacity == 0) {
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
} else {
allocArrays(capacity);
}
mSize = 0;
}
/**
* Create a new ArraySet with the mappings from the given ArraySet.
*/
public ArraySet(ArraySet set) {
this();
if (set != null) {
addAll(set);
}
}
/**
* Create a new ArraySet with items from the given collection.
*/
public ArraySet(Collection extends E> set) {
this();
if (set != null) {
addAll(set);
}
}
/**
* Create a new ArraySet with items from the given array
*/
public ArraySet(@Nullable E[] array) {
this();
if (array != null) {
for (E value : array) {
add(value);
}
}
}
/**
* Make the array map empty. All storage is released.
*/
@Override
public void clear() {
if (mSize != 0) {
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
final int osize = mSize;
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
mSize = 0;
freeArrays(ohashes, oarray, osize);
}
if (mSize != 0) {
throw new ConcurrentModificationException();
}
}
/**
* Ensure the array map can hold at least minimumCapacity
* items.
*/
public void ensureCapacity(int minimumCapacity) {
final int oSize = mSize;
if (mHashes.length < minimumCapacity) {
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(minimumCapacity);
if (mSize > 0) {
System.arraycopy(ohashes, 0, mHashes, 0, mSize);
System.arraycopy(oarray, 0, mArray, 0, mSize);
}
freeArrays(ohashes, oarray, mSize);
}
if (mSize != oSize) {
throw new ConcurrentModificationException();
}
}
/**
* Check whether a value exists in the set.
*
* @param key The value to search for.
* @return Returns true if the value exists, else false.
*/
@Override
public boolean contains(Object key) {
return indexOf(key) >= 0;
}
/**
* Returns the index of a value in the set.
*
* @param key The value to search for.
* @return Returns the index of the value if it exists, else a negative integer.
*/
public int indexOf(Object key) {
return key == null ? indexOfNull()
: indexOf(key, mIdentityHashCode ? System.identityHashCode(key) : key.hashCode());
}
/**
* Return the value at the given index in the array.
*
* For indices outside of the range 0...size()-1
, the behavior is undefined for
* apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an
* {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting
* {@link android.os.Build.VERSION_CODES#Q} and later.
*
* @param index The desired index, must be between 0 and {@link #size()}-1.
* @return Returns the value stored at the given index.
*/
public E valueAt(int index) {
if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) {
// The array might be slightly bigger than mSize, in which case, indexing won't fail.
// Check if exception should be thrown outside of the critical path.
throw new ArrayIndexOutOfBoundsException(index);
}
return valueAtUnchecked(index);
}
/**
* Returns the value at the given index in the array without checking that the index is within
* bounds. This allows testing values at the end of the internal array, outside of the
* [0, mSize) bounds.
*
* @hide
*/
@TestApi
public E valueAtUnchecked(int index) {
return (E) mArray[index];
}
/**
* Return true if the array map contains no items.
*/
@Override
public boolean isEmpty() {
return mSize <= 0;
}
/**
* Adds the specified object to this set. The set is not modified if it
* already contains the object.
*
* @param value the object to add.
* @return {@code true} if this set is modified, {@code false} otherwise.
*/
@Override
public boolean add(E value) {
final int oSize = mSize;
final int hash;
int index;
if (value == null) {
hash = 0;
index = indexOfNull();
} else {
hash = mIdentityHashCode ? System.identityHashCode(value) : value.hashCode();
index = indexOf(value, hash);
}
if (index >= 0) {
return false;
}
index = ~index;
if (oSize >= mHashes.length) {
final int n = oSize >= (BASE_SIZE * 2) ? (oSize + (oSize >> 1))
: (oSize >= BASE_SIZE ? (BASE_SIZE * 2) : BASE_SIZE);
if (DEBUG) Log.d(TAG, "add: grow from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);
if (oSize != mSize) {
throw new ConcurrentModificationException();
}
if (mHashes.length > 0) {
if (DEBUG) Log.d(TAG, "add: copy 0-" + oSize + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
System.arraycopy(oarray, 0, mArray, 0, oarray.length);
}
freeArrays(ohashes, oarray, oSize);
}
if (index < oSize) {
if (DEBUG) {
Log.d(TAG, "add: move " + index + "-" + (oSize - index) + " to " + (index + 1));
}
System.arraycopy(mHashes, index, mHashes, index + 1, oSize - index);
System.arraycopy(mArray, index, mArray, index + 1, oSize - index);
}
if (oSize != mSize || index >= mHashes.length) {
throw new ConcurrentModificationException();
}
mHashes[index] = hash;
mArray[index] = value;
mSize++;
return true;
}
/**
* Special fast path for appending items to the end of the array without validation.
* The array must already be large enough to contain the item.
* @hide
*/
public void append(E value) {
final int oSize = mSize;
final int index = mSize;
final int hash = value == null ? 0
: (mIdentityHashCode ? System.identityHashCode(value) : value.hashCode());
if (index >= mHashes.length) {
throw new IllegalStateException("Array is full");
}
if (index > 0 && mHashes[index - 1] > hash) {
// Cannot optimize since it would break the sorted order - fallback to add()
if (DEBUG) {
RuntimeException e = new RuntimeException("here");
e.fillInStackTrace();
Log.w(TAG, "New hash " + hash
+ " is before end of array hash " + mHashes[index - 1]
+ " at index " + index, e);
}
add(value);
return;
}
if (oSize != mSize) {
throw new ConcurrentModificationException();
}
mSize = index + 1;
mHashes[index] = hash;
mArray[index] = value;
}
/**
* Perform a {@link #add(Object)} of all values in array
* @param array The array whose contents are to be retrieved.
*/
public void addAll(ArraySet extends E> array) {
final int N = array.mSize;
ensureCapacity(mSize + N);
if (mSize == 0) {
if (N > 0) {
System.arraycopy(array.mHashes, 0, mHashes, 0, N);
System.arraycopy(array.mArray, 0, mArray, 0, N);
if (0 != mSize) {
throw new ConcurrentModificationException();
}
mSize = N;
}
} else {
for (int i = 0; i < N; i++) {
add(array.valueAt(i));
}
}
}
/**
* Removes the specified object from this set.
*
* @param object the object to remove.
* @return {@code true} if this set was modified, {@code false} otherwise.
*/
@Override
public boolean remove(Object object) {
final int index = indexOf(object);
if (index >= 0) {
removeAt(index);
return true;
}
return false;
}
/** Returns true if the array size should be decreased. */
private boolean shouldShrink() {
return mHashes.length > (BASE_SIZE * 2) && mSize < mHashes.length / 3;
}
/**
* Returns the new size the array should have. Is only valid if {@link #shouldShrink} returns
* true.
*/
private int getNewShrunkenSize() {
// We don't allow it to shrink smaller than (BASE_SIZE*2) to avoid flapping between that
// and BASE_SIZE.
return mSize > (BASE_SIZE * 2) ? (mSize + (mSize >> 1)) : (BASE_SIZE * 2);
}
/**
* Remove the key/value mapping at the given index.
*
* For indices outside of the range 0...size()-1
, the behavior is undefined for
* apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an
* {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting
* {@link android.os.Build.VERSION_CODES#Q} and later.
*
* @param index The desired index, must be between 0 and {@link #size()}-1.
* @return Returns the value that was stored at this index.
*/
public E removeAt(int index) {
if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) {
// The array might be slightly bigger than mSize, in which case, indexing won't fail.
// Check if exception should be thrown outside of the critical path.
throw new ArrayIndexOutOfBoundsException(index);
}
final int oSize = mSize;
final Object old = mArray[index];
if (oSize <= 1) {
// Now empty.
if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0");
clear();
} else {
final int nSize = oSize - 1;
if (shouldShrink()) {
// Shrunk enough to reduce size of arrays.
final int n = getNewShrunkenSize();
if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);
if (index > 0) {
if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, index);
System.arraycopy(oarray, 0, mArray, 0, index);
}
if (index < nSize) {
if (DEBUG) {
Log.d(TAG, "remove: copy from " + (index + 1) + "-" + nSize
+ " to " + index);
}
System.arraycopy(ohashes, index + 1, mHashes, index, nSize - index);
System.arraycopy(oarray, index + 1, mArray, index, nSize - index);
}
} else {
if (index < nSize) {
if (DEBUG) {
Log.d(TAG, "remove: move " + (index + 1) + "-" + nSize + " to " + index);
}
System.arraycopy(mHashes, index + 1, mHashes, index, nSize - index);
System.arraycopy(mArray, index + 1, mArray, index, nSize - index);
}
mArray[nSize] = null;
}
if (oSize != mSize) {
throw new ConcurrentModificationException();
}
mSize = nSize;
}
return (E) old;
}
/**
* Perform a {@link #remove(Object)} of all values in array
* @param array The array whose contents are to be removed.
*/
public boolean removeAll(ArraySet extends E> array) {
// TODO: If array is sufficiently large, a marking approach might be beneficial. In a first
// pass, use the property that the sets are sorted by hash to make this linear passes
// (except for hash collisions, which means worst case still n*m), then do one
// collection pass into a new array. This avoids binary searches and excessive memcpy.
final int N = array.mSize;
// Note: ArraySet does not make thread-safety guarantees. So instead of OR-ing together all
// the single results, compare size before and after.
final int originalSize = mSize;
for (int i = 0; i < N; i++) {
remove(array.valueAt(i));
}
return originalSize != mSize;
}
/**
* Removes all values that satisfy the predicate. This implementation avoids using the
* {@link #iterator()}.
*
* @param filter A predicate which returns true for elements to be removed
*/
@Override
public boolean removeIf(Predicate super E> filter) {
if (mSize == 0) {
return false;
}
// Intentionally not using removeAt() to avoid unnecessary intermediate resizing.
int replaceIndex = 0;
int numRemoved = 0;
for (int i = 0; i < mSize; ++i) {
if (filter.test((E) mArray[i])) {
numRemoved++;
} else {
if (replaceIndex != i) {
mArray[replaceIndex] = mArray[i];
mHashes[replaceIndex] = mHashes[i];
}
replaceIndex++;
}
}
if (numRemoved == 0) {
return false;
} else if (numRemoved == mSize) {
clear();
return true;
}
mSize -= numRemoved;
if (shouldShrink()) {
// Shrunk enough to reduce size of arrays.
final int n = getNewShrunkenSize();
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);
System.arraycopy(ohashes, 0, mHashes, 0, mSize);
System.arraycopy(oarray, 0, mArray, 0, mSize);
} else {
// Null out values at the end of the array. Not doing it in the loop above to avoid
// writing twice to the same index or writing unnecessarily if the array would have been
// discarded anyway.
for (int i = mSize; i < mArray.length; ++i) {
mArray[i] = null;
}
}
return true;
}
/**
* Return the number of items in this array map.
*/
@Override
public int size() {
return mSize;
}
@Override
public Object[] toArray() {
Object[] result = new Object[mSize];
System.arraycopy(mArray, 0, result, 0, mSize);
return result;
}
@Override
public T[] toArray(T[] array) {
if (array.length < mSize) {
@SuppressWarnings("unchecked") T[] newArray =
(T[]) Array.newInstance(array.getClass().getComponentType(), mSize);
array = newArray;
}
System.arraycopy(mArray, 0, array, 0, mSize);
if (array.length > mSize) {
array[mSize] = null;
}
return array;
}
/**
* {@inheritDoc}
*
* This implementation returns false if the object is not a set, or
* if the sets have different sizes. Otherwise, for each value in this
* set, it checks to make sure the value also exists in the other set.
* If any value doesn't exist, the method returns false; otherwise, it
* returns true.
*/
@Override
public boolean equals(Object object) {
if (this == object) {
return true;
}
if (object instanceof Set) {
Set> set = (Set>) object;
if (size() != set.size()) {
return false;
}
try {
for (int i = 0; i < mSize; i++) {
E mine = valueAt(i);
if (!set.contains(mine)) {
return false;
}
}
} catch (NullPointerException ignored) {
return false;
} catch (ClassCastException ignored) {
return false;
}
return true;
}
return false;
}
/**
* {@inheritDoc}
*/
@Override
public int hashCode() {
final int[] hashes = mHashes;
int result = 0;
for (int i = 0, s = mSize; i < s; i++) {
result += hashes[i];
}
return result;
}
/**
* {@inheritDoc}
*
*
This implementation composes a string by iterating over its values. If
* this set contains itself as a value, the string "(this Set)"
* will appear in its place.
*/
@Override
public String toString() {
if (isEmpty()) {
return "{}";
}
StringBuilder buffer = new StringBuilder(mSize * 14);
buffer.append('{');
for (int i = 0; i < mSize; i++) {
if (i > 0) {
buffer.append(", ");
}
Object value = valueAt(i);
if (value != this) {
buffer.append(value);
} else {
buffer.append("(this Set)");
}
}
buffer.append('}');
return buffer.toString();
}
// ------------------------------------------------------------------------
// Interop with traditional Java containers. Not as efficient as using
// specialized collection APIs.
// ------------------------------------------------------------------------
private MapCollections getCollection() {
if (mCollections == null) {
mCollections = new MapCollections() {
@Override
protected int colGetSize() {
return mSize;
}
@Override
protected Object colGetEntry(int index, int offset) {
return mArray[index];
}
@Override
protected int colIndexOfKey(Object key) {
return indexOf(key);
}
@Override
protected int colIndexOfValue(Object value) {
return indexOf(value);
}
@Override
protected Map colGetMap() {
throw new UnsupportedOperationException("not a map");
}
@Override
protected void colPut(E key, E value) {
add(key);
}
@Override
protected E colSetValue(int index, E value) {
throw new UnsupportedOperationException("not a map");
}
@Override
protected void colRemoveAt(int index) {
removeAt(index);
}
@Override
protected void colClear() {
clear();
}
};
}
return mCollections;
}
/**
* Return an {@link java.util.Iterator} over all values in the set.
*
* Note: this is a fairly inefficient way to access the array contents, it
* requires generating a number of temporary objects and allocates additional state
* information associated with the container that will remain for the life of the container.
*/
@Override
public Iterator iterator() {
return getCollection().getKeySet().iterator();
}
/**
* Determine if the array set contains all of the values in the given collection.
* @param collection The collection whose contents are to be checked against.
* @return Returns true if this array set contains a value for every entry
* in collection, else returns false.
*/
@Override
public boolean containsAll(Collection> collection) {
Iterator> it = collection.iterator();
while (it.hasNext()) {
if (!contains(it.next())) {
return false;
}
}
return true;
}
/**
* Perform an {@link #add(Object)} of all values in collection
* @param collection The collection whose contents are to be retrieved.
*/
@Override
public boolean addAll(Collection extends E> collection) {
ensureCapacity(mSize + collection.size());
boolean added = false;
for (E value : collection) {
added |= add(value);
}
return added;
}
/**
* Remove all values in the array set that exist in the given collection.
* @param collection The collection whose contents are to be used to remove values.
* @return Returns true if any values were removed from the array set, else false.
*/
@Override
public boolean removeAll(Collection> collection) {
boolean removed = false;
for (Object value : collection) {
removed |= remove(value);
}
return removed;
}
/**
* Remove all values in the array set that do not exist in the given collection.
* @param collection The collection whose contents are to be used to determine which
* values to keep.
* @return Returns true if any values were removed from the array set, else false.
*/
@Override
public boolean retainAll(Collection> collection) {
boolean removed = false;
for (int i = mSize - 1; i >= 0; i--) {
if (!collection.contains(mArray[i])) {
removeAt(i);
removed = true;
}
}
return removed;
}
}