/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.util; import android.annotation.Nullable; import android.annotation.TestApi; import android.compat.annotation.UnsupportedAppUsage; import libcore.util.EmptyArray; import java.lang.reflect.Array; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.Map; import java.util.Set; import java.util.function.Predicate; /** * ArraySet is a generic set data structure that is designed to be more memory efficient than a * traditional {@link java.util.HashSet}. The design is very similar to * {@link ArrayMap}, with all of the caveats described there. This implementation is * separate from ArrayMap, however, so the Object array contains only one item for each * entry in the set (instead of a pair for a mapping). * *

Note that this implementation is not intended to be appropriate for data structures * that may contain large numbers of items. It is generally slower than a traditional * HashSet, since lookups require a binary search and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is not significant, less than 50%.

* *

Because this container is intended to better balance memory use, unlike most other * standard Java containers it will shrink its array as items are removed from it. Currently * you have no control over this shrinking -- if you set a capacity and then remove an * item, it may reduce the capacity to better match the current size. In the future an * explicit call to set the capacity should turn off this aggressive shrinking behavior.

* *

This structure is NOT thread-safe.

*/ public final class ArraySet implements Collection, Set { private static final boolean DEBUG = false; private static final String TAG = "ArraySet"; /** * The minimum amount by which the capacity of a ArraySet will increase. * This is tuned to be relatively space-efficient. */ private static final int BASE_SIZE = 4; /** * Maximum number of entries to have in array caches. */ private static final int CACHE_SIZE = 10; /** * Caches of small array objects to avoid spamming garbage. The cache * Object[] variable is a pointer to a linked list of array objects. * The first entry in the array is a pointer to the next array in the * list; the second entry is a pointer to the int[] hash code array for it. */ static Object[] sBaseCache; static int sBaseCacheSize; static Object[] sTwiceBaseCache; static int sTwiceBaseCacheSize; /** * Separate locks for each cache since each can be accessed independently of the other without * risk of a deadlock. */ private static final Object sBaseCacheLock = new Object(); private static final Object sTwiceBaseCacheLock = new Object(); private final boolean mIdentityHashCode; @UnsupportedAppUsage(maxTargetSdk = 28) // Hashes are an implementation detail. Use public API. int[] mHashes; @UnsupportedAppUsage(maxTargetSdk = 28) // Storage is an implementation detail. Use public API. Object[] mArray; @UnsupportedAppUsage(maxTargetSdk = 28) // Use size() int mSize; private MapCollections mCollections; private int binarySearch(int[] hashes, int hash) { try { return ContainerHelpers.binarySearch(hashes, mSize, hash); } catch (ArrayIndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } @UnsupportedAppUsage(maxTargetSdk = 28) // Hashes are an implementation detail. Use indexOfKey(Object). private int indexOf(Object key, int hash) { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = binarySearch(mHashes, hash); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (key.equals(mArray[index])) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == hash; end++) { if (key.equals(mArray[end])) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) { if (key.equals(mArray[i])) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } @UnsupportedAppUsage(maxTargetSdk = 28) // Use indexOf(null) private int indexOfNull() { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = binarySearch(mHashes, 0); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (null == mArray[index]) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == 0; end++) { if (null == mArray[end]) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) { if (null == mArray[i]) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } @UnsupportedAppUsage(maxTargetSdk = 28) // Allocations are an implementation detail. private void allocArrays(final int size) { if (size == (BASE_SIZE * 2)) { synchronized (sTwiceBaseCacheLock) { if (sTwiceBaseCache != null) { final Object[] array = sTwiceBaseCache; try { mArray = array; sTwiceBaseCache = (Object[]) array[0]; mHashes = (int[]) array[1]; if (mHashes != null) { array[0] = array[1] = null; sTwiceBaseCacheSize--; if (DEBUG) { Log.d(TAG, "Retrieving 2x cache " + mHashes + " now have " + sTwiceBaseCacheSize + " entries"); } return; } } catch (ClassCastException e) { } // Whoops! Someone trampled the array (probably due to not protecting // their access with a lock). Our cache is corrupt; report and give up. Slog.wtf(TAG, "Found corrupt ArraySet cache: [0]=" + array[0] + " [1]=" + array[1]); sTwiceBaseCache = null; sTwiceBaseCacheSize = 0; } } } else if (size == BASE_SIZE) { synchronized (sBaseCacheLock) { if (sBaseCache != null) { final Object[] array = sBaseCache; try { mArray = array; sBaseCache = (Object[]) array[0]; mHashes = (int[]) array[1]; if (mHashes != null) { array[0] = array[1] = null; sBaseCacheSize--; if (DEBUG) { Log.d(TAG, "Retrieving 1x cache " + mHashes + " now have " + sBaseCacheSize + " entries"); } return; } } catch (ClassCastException e) { } // Whoops! Someone trampled the array (probably due to not protecting // their access with a lock). Our cache is corrupt; report and give up. Slog.wtf(TAG, "Found corrupt ArraySet cache: [0]=" + array[0] + " [1]=" + array[1]); sBaseCache = null; sBaseCacheSize = 0; } } } mHashes = new int[size]; mArray = new Object[size]; } /** * Make sure NOT to call this method with arrays that can still be modified. In other * words, don't pass mHashes or mArray in directly. */ @UnsupportedAppUsage(maxTargetSdk = 28) // Allocations are an implementation detail. private static void freeArrays(final int[] hashes, final Object[] array, final int size) { if (hashes.length == (BASE_SIZE * 2)) { synchronized (sTwiceBaseCacheLock) { if (sTwiceBaseCacheSize < CACHE_SIZE) { array[0] = sTwiceBaseCache; array[1] = hashes; for (int i = size - 1; i >= 2; i--) { array[i] = null; } sTwiceBaseCache = array; sTwiceBaseCacheSize++; if (DEBUG) { Log.d(TAG, "Storing 2x cache " + array + " now have " + sTwiceBaseCacheSize + " entries"); } } } } else if (hashes.length == BASE_SIZE) { synchronized (sBaseCacheLock) { if (sBaseCacheSize < CACHE_SIZE) { array[0] = sBaseCache; array[1] = hashes; for (int i = size - 1; i >= 2; i--) { array[i] = null; } sBaseCache = array; sBaseCacheSize++; if (DEBUG) { Log.d(TAG, "Storing 1x cache " + array + " now have " + sBaseCacheSize + " entries"); } } } } } /** * Create a new empty ArraySet. The default capacity of an array map is 0, and * will grow once items are added to it. */ public ArraySet() { this(0, false); } /** * Create a new ArraySet with a given initial capacity. */ public ArraySet(int capacity) { this(capacity, false); } /** {@hide} */ public ArraySet(int capacity, boolean identityHashCode) { mIdentityHashCode = identityHashCode; if (capacity == 0) { mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; } else { allocArrays(capacity); } mSize = 0; } /** * Create a new ArraySet with the mappings from the given ArraySet. */ public ArraySet(ArraySet set) { this(); if (set != null) { addAll(set); } } /** * Create a new ArraySet with items from the given collection. */ public ArraySet(Collection set) { this(); if (set != null) { addAll(set); } } /** * Create a new ArraySet with items from the given array */ public ArraySet(@Nullable E[] array) { this(); if (array != null) { for (E value : array) { add(value); } } } /** * Make the array map empty. All storage is released. */ @Override public void clear() { if (mSize != 0) { final int[] ohashes = mHashes; final Object[] oarray = mArray; final int osize = mSize; mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; mSize = 0; freeArrays(ohashes, oarray, osize); } if (mSize != 0) { throw new ConcurrentModificationException(); } } /** * Ensure the array map can hold at least minimumCapacity * items. */ public void ensureCapacity(int minimumCapacity) { final int oSize = mSize; if (mHashes.length < minimumCapacity) { final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(minimumCapacity); if (mSize > 0) { System.arraycopy(ohashes, 0, mHashes, 0, mSize); System.arraycopy(oarray, 0, mArray, 0, mSize); } freeArrays(ohashes, oarray, mSize); } if (mSize != oSize) { throw new ConcurrentModificationException(); } } /** * Check whether a value exists in the set. * * @param key The value to search for. * @return Returns true if the value exists, else false. */ @Override public boolean contains(Object key) { return indexOf(key) >= 0; } /** * Returns the index of a value in the set. * * @param key The value to search for. * @return Returns the index of the value if it exists, else a negative integer. */ public int indexOf(Object key) { return key == null ? indexOfNull() : indexOf(key, mIdentityHashCode ? System.identityHashCode(key) : key.hashCode()); } /** * Return the value at the given index in the array. * *

For indices outside of the range 0...size()-1, the behavior is undefined for * apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an * {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting * {@link android.os.Build.VERSION_CODES#Q} and later.

* * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value stored at the given index. */ public E valueAt(int index) { if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) { // The array might be slightly bigger than mSize, in which case, indexing won't fail. // Check if exception should be thrown outside of the critical path. throw new ArrayIndexOutOfBoundsException(index); } return valueAtUnchecked(index); } /** * Returns the value at the given index in the array without checking that the index is within * bounds. This allows testing values at the end of the internal array, outside of the * [0, mSize) bounds. * * @hide */ @TestApi public E valueAtUnchecked(int index) { return (E) mArray[index]; } /** * Return true if the array map contains no items. */ @Override public boolean isEmpty() { return mSize <= 0; } /** * Adds the specified object to this set. The set is not modified if it * already contains the object. * * @param value the object to add. * @return {@code true} if this set is modified, {@code false} otherwise. */ @Override public boolean add(E value) { final int oSize = mSize; final int hash; int index; if (value == null) { hash = 0; index = indexOfNull(); } else { hash = mIdentityHashCode ? System.identityHashCode(value) : value.hashCode(); index = indexOf(value, hash); } if (index >= 0) { return false; } index = ~index; if (oSize >= mHashes.length) { final int n = oSize >= (BASE_SIZE * 2) ? (oSize + (oSize >> 1)) : (oSize >= BASE_SIZE ? (BASE_SIZE * 2) : BASE_SIZE); if (DEBUG) Log.d(TAG, "add: grow from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (oSize != mSize) { throw new ConcurrentModificationException(); } if (mHashes.length > 0) { if (DEBUG) Log.d(TAG, "add: copy 0-" + oSize + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length); System.arraycopy(oarray, 0, mArray, 0, oarray.length); } freeArrays(ohashes, oarray, oSize); } if (index < oSize) { if (DEBUG) { Log.d(TAG, "add: move " + index + "-" + (oSize - index) + " to " + (index + 1)); } System.arraycopy(mHashes, index, mHashes, index + 1, oSize - index); System.arraycopy(mArray, index, mArray, index + 1, oSize - index); } if (oSize != mSize || index >= mHashes.length) { throw new ConcurrentModificationException(); } mHashes[index] = hash; mArray[index] = value; mSize++; return true; } /** * Special fast path for appending items to the end of the array without validation. * The array must already be large enough to contain the item. * @hide */ public void append(E value) { final int oSize = mSize; final int index = mSize; final int hash = value == null ? 0 : (mIdentityHashCode ? System.identityHashCode(value) : value.hashCode()); if (index >= mHashes.length) { throw new IllegalStateException("Array is full"); } if (index > 0 && mHashes[index - 1] > hash) { // Cannot optimize since it would break the sorted order - fallback to add() if (DEBUG) { RuntimeException e = new RuntimeException("here"); e.fillInStackTrace(); Log.w(TAG, "New hash " + hash + " is before end of array hash " + mHashes[index - 1] + " at index " + index, e); } add(value); return; } if (oSize != mSize) { throw new ConcurrentModificationException(); } mSize = index + 1; mHashes[index] = hash; mArray[index] = value; } /** * Perform a {@link #add(Object)} of all values in array * @param array The array whose contents are to be retrieved. */ public void addAll(ArraySet array) { final int N = array.mSize; ensureCapacity(mSize + N); if (mSize == 0) { if (N > 0) { System.arraycopy(array.mHashes, 0, mHashes, 0, N); System.arraycopy(array.mArray, 0, mArray, 0, N); if (0 != mSize) { throw new ConcurrentModificationException(); } mSize = N; } } else { for (int i = 0; i < N; i++) { add(array.valueAt(i)); } } } /** * Removes the specified object from this set. * * @param object the object to remove. * @return {@code true} if this set was modified, {@code false} otherwise. */ @Override public boolean remove(Object object) { final int index = indexOf(object); if (index >= 0) { removeAt(index); return true; } return false; } /** Returns true if the array size should be decreased. */ private boolean shouldShrink() { return mHashes.length > (BASE_SIZE * 2) && mSize < mHashes.length / 3; } /** * Returns the new size the array should have. Is only valid if {@link #shouldShrink} returns * true. */ private int getNewShrunkenSize() { // We don't allow it to shrink smaller than (BASE_SIZE*2) to avoid flapping between that // and BASE_SIZE. return mSize > (BASE_SIZE * 2) ? (mSize + (mSize >> 1)) : (BASE_SIZE * 2); } /** * Remove the key/value mapping at the given index. * *

For indices outside of the range 0...size()-1, the behavior is undefined for * apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an * {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting * {@link android.os.Build.VERSION_CODES#Q} and later.

* * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value that was stored at this index. */ public E removeAt(int index) { if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) { // The array might be slightly bigger than mSize, in which case, indexing won't fail. // Check if exception should be thrown outside of the critical path. throw new ArrayIndexOutOfBoundsException(index); } final int oSize = mSize; final Object old = mArray[index]; if (oSize <= 1) { // Now empty. if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0"); clear(); } else { final int nSize = oSize - 1; if (shouldShrink()) { // Shrunk enough to reduce size of arrays. final int n = getNewShrunkenSize(); if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (index > 0) { if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, index); System.arraycopy(oarray, 0, mArray, 0, index); } if (index < nSize) { if (DEBUG) { Log.d(TAG, "remove: copy from " + (index + 1) + "-" + nSize + " to " + index); } System.arraycopy(ohashes, index + 1, mHashes, index, nSize - index); System.arraycopy(oarray, index + 1, mArray, index, nSize - index); } } else { if (index < nSize) { if (DEBUG) { Log.d(TAG, "remove: move " + (index + 1) + "-" + nSize + " to " + index); } System.arraycopy(mHashes, index + 1, mHashes, index, nSize - index); System.arraycopy(mArray, index + 1, mArray, index, nSize - index); } mArray[nSize] = null; } if (oSize != mSize) { throw new ConcurrentModificationException(); } mSize = nSize; } return (E) old; } /** * Perform a {@link #remove(Object)} of all values in array * @param array The array whose contents are to be removed. */ public boolean removeAll(ArraySet array) { // TODO: If array is sufficiently large, a marking approach might be beneficial. In a first // pass, use the property that the sets are sorted by hash to make this linear passes // (except for hash collisions, which means worst case still n*m), then do one // collection pass into a new array. This avoids binary searches and excessive memcpy. final int N = array.mSize; // Note: ArraySet does not make thread-safety guarantees. So instead of OR-ing together all // the single results, compare size before and after. final int originalSize = mSize; for (int i = 0; i < N; i++) { remove(array.valueAt(i)); } return originalSize != mSize; } /** * Removes all values that satisfy the predicate. This implementation avoids using the * {@link #iterator()}. * * @param filter A predicate which returns true for elements to be removed */ @Override public boolean removeIf(Predicate filter) { if (mSize == 0) { return false; } // Intentionally not using removeAt() to avoid unnecessary intermediate resizing. int replaceIndex = 0; int numRemoved = 0; for (int i = 0; i < mSize; ++i) { if (filter.test((E) mArray[i])) { numRemoved++; } else { if (replaceIndex != i) { mArray[replaceIndex] = mArray[i]; mHashes[replaceIndex] = mHashes[i]; } replaceIndex++; } } if (numRemoved == 0) { return false; } else if (numRemoved == mSize) { clear(); return true; } mSize -= numRemoved; if (shouldShrink()) { // Shrunk enough to reduce size of arrays. final int n = getNewShrunkenSize(); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); System.arraycopy(ohashes, 0, mHashes, 0, mSize); System.arraycopy(oarray, 0, mArray, 0, mSize); } else { // Null out values at the end of the array. Not doing it in the loop above to avoid // writing twice to the same index or writing unnecessarily if the array would have been // discarded anyway. for (int i = mSize; i < mArray.length; ++i) { mArray[i] = null; } } return true; } /** * Return the number of items in this array map. */ @Override public int size() { return mSize; } @Override public Object[] toArray() { Object[] result = new Object[mSize]; System.arraycopy(mArray, 0, result, 0, mSize); return result; } @Override public T[] toArray(T[] array) { if (array.length < mSize) { @SuppressWarnings("unchecked") T[] newArray = (T[]) Array.newInstance(array.getClass().getComponentType(), mSize); array = newArray; } System.arraycopy(mArray, 0, array, 0, mSize); if (array.length > mSize) { array[mSize] = null; } return array; } /** * {@inheritDoc} * *

This implementation returns false if the object is not a set, or * if the sets have different sizes. Otherwise, for each value in this * set, it checks to make sure the value also exists in the other set. * If any value doesn't exist, the method returns false; otherwise, it * returns true. */ @Override public boolean equals(Object object) { if (this == object) { return true; } if (object instanceof Set) { Set set = (Set) object; if (size() != set.size()) { return false; } try { for (int i = 0; i < mSize; i++) { E mine = valueAt(i); if (!set.contains(mine)) { return false; } } } catch (NullPointerException ignored) { return false; } catch (ClassCastException ignored) { return false; } return true; } return false; } /** * {@inheritDoc} */ @Override public int hashCode() { final int[] hashes = mHashes; int result = 0; for (int i = 0, s = mSize; i < s; i++) { result += hashes[i]; } return result; } /** * {@inheritDoc} * *

This implementation composes a string by iterating over its values. If * this set contains itself as a value, the string "(this Set)" * will appear in its place. */ @Override public String toString() { if (isEmpty()) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 14); buffer.append('{'); for (int i = 0; i < mSize; i++) { if (i > 0) { buffer.append(", "); } Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Set)"); } } buffer.append('}'); return buffer.toString(); } // ------------------------------------------------------------------------ // Interop with traditional Java containers. Not as efficient as using // specialized collection APIs. // ------------------------------------------------------------------------ private MapCollections getCollection() { if (mCollections == null) { mCollections = new MapCollections() { @Override protected int colGetSize() { return mSize; } @Override protected Object colGetEntry(int index, int offset) { return mArray[index]; } @Override protected int colIndexOfKey(Object key) { return indexOf(key); } @Override protected int colIndexOfValue(Object value) { return indexOf(value); } @Override protected Map colGetMap() { throw new UnsupportedOperationException("not a map"); } @Override protected void colPut(E key, E value) { add(key); } @Override protected E colSetValue(int index, E value) { throw new UnsupportedOperationException("not a map"); } @Override protected void colRemoveAt(int index) { removeAt(index); } @Override protected void colClear() { clear(); } }; } return mCollections; } /** * Return an {@link java.util.Iterator} over all values in the set. * *

Note: this is a fairly inefficient way to access the array contents, it * requires generating a number of temporary objects and allocates additional state * information associated with the container that will remain for the life of the container.

*/ @Override public Iterator iterator() { return getCollection().getKeySet().iterator(); } /** * Determine if the array set contains all of the values in the given collection. * @param collection The collection whose contents are to be checked against. * @return Returns true if this array set contains a value for every entry * in collection, else returns false. */ @Override public boolean containsAll(Collection collection) { Iterator it = collection.iterator(); while (it.hasNext()) { if (!contains(it.next())) { return false; } } return true; } /** * Perform an {@link #add(Object)} of all values in collection * @param collection The collection whose contents are to be retrieved. */ @Override public boolean addAll(Collection collection) { ensureCapacity(mSize + collection.size()); boolean added = false; for (E value : collection) { added |= add(value); } return added; } /** * Remove all values in the array set that exist in the given collection. * @param collection The collection whose contents are to be used to remove values. * @return Returns true if any values were removed from the array set, else false. */ @Override public boolean removeAll(Collection collection) { boolean removed = false; for (Object value : collection) { removed |= remove(value); } return removed; } /** * Remove all values in the array set that do not exist in the given collection. * @param collection The collection whose contents are to be used to determine which * values to keep. * @return Returns true if any values were removed from the array set, else false. */ @Override public boolean retainAll(Collection collection) { boolean removed = false; for (int i = mSize - 1; i >= 0; i--) { if (!collection.contains(mArray[i])) { removeAt(i); removed = true; } } return removed; } }