/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_RESOURCES #include "androidfw/LoadedArsc.h" #include #include #include #include "android-base/logging.h" #include "android-base/stringprintf.h" #include "utils/ByteOrder.h" #include "utils/Trace.h" #ifdef _WIN32 #ifdef ERROR #undef ERROR #endif #endif #include "androidfw/ByteBucketArray.h" #include "androidfw/Chunk.h" #include "androidfw/ResourceUtils.h" #include "androidfw/Util.h" using ::android::base::StringPrintf; namespace android { constexpr const static int kAppPackageId = 0x7f; namespace { // Builder that helps accumulate Type structs and then create a single // contiguous block of memory to store both the TypeSpec struct and // the Type structs. class TypeSpecPtrBuilder { public: explicit TypeSpecPtrBuilder(const ResTable_typeSpec* header) : header_(header) { } void AddType(const ResTable_type* type) { types_.push_back(type); } TypeSpecPtr Build() { // Check for overflow. using ElementType = const ResTable_type*; if ((std::numeric_limits::max() - sizeof(TypeSpec)) / sizeof(ElementType) < types_.size()) { return {}; } TypeSpec* type_spec = (TypeSpec*)::malloc(sizeof(TypeSpec) + (types_.size() * sizeof(ElementType))); type_spec->type_spec = header_; type_spec->type_count = types_.size(); memcpy(type_spec + 1, types_.data(), types_.size() * sizeof(ElementType)); return TypeSpecPtr(type_spec); } private: DISALLOW_COPY_AND_ASSIGN(TypeSpecPtrBuilder); const ResTable_typeSpec* header_; std::vector types_; }; } // namespace LoadedPackage::LoadedPackage() = default; LoadedPackage::~LoadedPackage() = default; // Precondition: The header passed in has already been verified, so reading any fields and trusting // the ResChunk_header is safe. static bool VerifyResTableType(const ResTable_type* header) { if (header->id == 0) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE has invalid ID 0."; return false; } const size_t entry_count = dtohl(header->entryCount); if (entry_count > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE has too many entries (" << entry_count << ")."; return false; } // Make sure that there is enough room for the entry offsets. const size_t offsets_offset = dtohs(header->header.headerSize); const size_t entries_offset = dtohl(header->entriesStart); const size_t offsets_length = sizeof(uint32_t) * entry_count; if (offsets_offset > entries_offset || entries_offset - offsets_offset < offsets_length) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE entry offsets overlap actual entry data."; return false; } if (entries_offset > dtohl(header->header.size)) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE entry offsets extend beyond chunk."; return false; } if (entries_offset & 0x03) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE entries start at unaligned address."; return false; } return true; } static bool VerifyResTableEntry(const ResTable_type* type, uint32_t entry_offset) { // Check that the offset is aligned. if (entry_offset & 0x03) { LOG(ERROR) << "Entry at offset " << entry_offset << " is not 4-byte aligned."; return false; } // Check that the offset doesn't overflow. if (entry_offset > std::numeric_limits::max() - dtohl(type->entriesStart)) { // Overflow in offset. LOG(ERROR) << "Entry at offset " << entry_offset << " is too large."; return false; } const size_t chunk_size = dtohl(type->header.size); entry_offset += dtohl(type->entriesStart); if (entry_offset > chunk_size - sizeof(ResTable_entry)) { LOG(ERROR) << "Entry at offset " << entry_offset << " is too large. No room for ResTable_entry."; return false; } const ResTable_entry* entry = reinterpret_cast( reinterpret_cast(type) + entry_offset); const size_t entry_size = dtohs(entry->size); if (entry_size < sizeof(*entry)) { LOG(ERROR) << "ResTable_entry size " << entry_size << " at offset " << entry_offset << " is too small."; return false; } if (entry_size > chunk_size || entry_offset > chunk_size - entry_size) { LOG(ERROR) << "ResTable_entry size " << entry_size << " at offset " << entry_offset << " is too large."; return false; } if (entry_size < sizeof(ResTable_map_entry)) { // There needs to be room for one Res_value struct. if (entry_offset + entry_size > chunk_size - sizeof(Res_value)) { LOG(ERROR) << "No room for Res_value after ResTable_entry at offset " << entry_offset << " for type " << (int)type->id << "."; return false; } const Res_value* value = reinterpret_cast(reinterpret_cast(entry) + entry_size); const size_t value_size = dtohs(value->size); if (value_size < sizeof(Res_value)) { LOG(ERROR) << "Res_value at offset " << entry_offset << " is too small."; return false; } if (value_size > chunk_size || entry_offset + entry_size > chunk_size - value_size) { LOG(ERROR) << "Res_value size " << value_size << " at offset " << entry_offset << " is too large."; return false; } } else { const ResTable_map_entry* map = reinterpret_cast(entry); const size_t map_entry_count = dtohl(map->count); size_t map_entries_start = entry_offset + entry_size; if (map_entries_start & 0x03) { LOG(ERROR) << "Map entries at offset " << entry_offset << " start at unaligned offset."; return false; } // Each entry is sizeof(ResTable_map) big. if (map_entry_count > ((chunk_size - map_entries_start) / sizeof(ResTable_map))) { LOG(ERROR) << "Too many map entries in ResTable_map_entry at offset " << entry_offset << "."; return false; } } return true; } LoadedPackage::iterator::iterator(const LoadedPackage* lp, size_t ti, size_t ei) : loadedPackage_(lp), typeIndex_(ti), entryIndex_(ei), typeIndexEnd_(lp->resource_ids_.size() + 1) { while (typeIndex_ < typeIndexEnd_ && loadedPackage_->resource_ids_[typeIndex_] == 0) { typeIndex_++; } } LoadedPackage::iterator& LoadedPackage::iterator::operator++() { while (typeIndex_ < typeIndexEnd_) { if (entryIndex_ + 1 < loadedPackage_->resource_ids_[typeIndex_]) { entryIndex_++; break; } entryIndex_ = 0; typeIndex_++; if (typeIndex_ < typeIndexEnd_ && loadedPackage_->resource_ids_[typeIndex_] != 0) { break; } } return *this; } uint32_t LoadedPackage::iterator::operator*() const { if (typeIndex_ >= typeIndexEnd_) { return 0; } return make_resid(loadedPackage_->package_id_, typeIndex_ + loadedPackage_->type_id_offset_, entryIndex_); } const ResTable_entry* LoadedPackage::GetEntry(const ResTable_type* type_chunk, uint16_t entry_index) { uint32_t entry_offset = GetEntryOffset(type_chunk, entry_index); if (entry_offset == ResTable_type::NO_ENTRY) { return nullptr; } return GetEntryFromOffset(type_chunk, entry_offset); } uint32_t LoadedPackage::GetEntryOffset(const ResTable_type* type_chunk, uint16_t entry_index) { // The configuration matches and is better than the previous selection. // Find the entry value if it exists for this configuration. const size_t entry_count = dtohl(type_chunk->entryCount); const size_t offsets_offset = dtohs(type_chunk->header.headerSize); // Check if there is the desired entry in this type. if (type_chunk->flags & ResTable_type::FLAG_SPARSE) { // This is encoded as a sparse map, so perform a binary search. const ResTable_sparseTypeEntry* sparse_indices = reinterpret_cast( reinterpret_cast(type_chunk) + offsets_offset); const ResTable_sparseTypeEntry* sparse_indices_end = sparse_indices + entry_count; const ResTable_sparseTypeEntry* result = std::lower_bound(sparse_indices, sparse_indices_end, entry_index, [](const ResTable_sparseTypeEntry& entry, uint16_t entry_idx) { return dtohs(entry.idx) < entry_idx; }); if (result == sparse_indices_end || dtohs(result->idx) != entry_index) { // No entry found. return ResTable_type::NO_ENTRY; } // Extract the offset from the entry. Each offset must be a multiple of 4 so we store it as // the real offset divided by 4. return uint32_t{dtohs(result->offset)} * 4u; } // This type is encoded as a dense array. if (entry_index >= entry_count) { // This entry cannot be here. return ResTable_type::NO_ENTRY; } const uint32_t* entry_offsets = reinterpret_cast( reinterpret_cast(type_chunk) + offsets_offset); return dtohl(entry_offsets[entry_index]); } const ResTable_entry* LoadedPackage::GetEntryFromOffset(const ResTable_type* type_chunk, uint32_t offset) { if (UNLIKELY(!VerifyResTableEntry(type_chunk, offset))) { return nullptr; } return reinterpret_cast(reinterpret_cast(type_chunk) + offset + dtohl(type_chunk->entriesStart)); } void LoadedPackage::CollectConfigurations(bool exclude_mipmap, std::set* out_configs) const { const static std::u16string kMipMap = u"mipmap"; const size_t type_count = type_specs_.size(); for (size_t i = 0; i < type_count; i++) { const TypeSpecPtr& type_spec = type_specs_[i]; if (type_spec != nullptr) { if (exclude_mipmap) { const int type_idx = type_spec->type_spec->id - 1; size_t type_name_len; const char16_t* type_name16 = type_string_pool_.stringAt(type_idx, &type_name_len); if (type_name16 != nullptr) { if (kMipMap.compare(0, std::u16string::npos, type_name16, type_name_len) == 0) { // This is a mipmap type, skip collection. continue; } } const char* type_name = type_string_pool_.string8At(type_idx, &type_name_len); if (type_name != nullptr) { if (strncmp(type_name, "mipmap", type_name_len) == 0) { // This is a mipmap type, skip collection. continue; } } } const auto iter_end = type_spec->types + type_spec->type_count; for (auto iter = type_spec->types; iter != iter_end; ++iter) { ResTable_config config; config.copyFromDtoH((*iter)->config); out_configs->insert(config); } } } } void LoadedPackage::CollectLocales(bool canonicalize, std::set* out_locales) const { char temp_locale[RESTABLE_MAX_LOCALE_LEN]; const size_t type_count = type_specs_.size(); for (size_t i = 0; i < type_count; i++) { const TypeSpecPtr& type_spec = type_specs_[i]; if (type_spec != nullptr) { const auto iter_end = type_spec->types + type_spec->type_count; for (auto iter = type_spec->types; iter != iter_end; ++iter) { ResTable_config configuration; configuration.copyFromDtoH((*iter)->config); if (configuration.locale != 0) { configuration.getBcp47Locale(temp_locale, canonicalize); std::string locale(temp_locale); out_locales->insert(std::move(locale)); } } } } } uint32_t LoadedPackage::FindEntryByName(const std::u16string& type_name, const std::u16string& entry_name) const { ssize_t type_idx = type_string_pool_.indexOfString(type_name.data(), type_name.size()); if (type_idx < 0) { return 0u; } ssize_t key_idx = key_string_pool_.indexOfString(entry_name.data(), entry_name.size()); if (key_idx < 0) { return 0u; } const TypeSpec* type_spec = type_specs_[type_idx].get(); if (type_spec == nullptr) { return 0u; } const auto iter_end = type_spec->types + type_spec->type_count; for (auto iter = type_spec->types; iter != iter_end; ++iter) { const ResTable_type* type = *iter; size_t entry_count = dtohl(type->entryCount); for (size_t entry_idx = 0; entry_idx < entry_count; entry_idx++) { const uint32_t* entry_offsets = reinterpret_cast( reinterpret_cast(type) + dtohs(type->header.headerSize)); const uint32_t offset = dtohl(entry_offsets[entry_idx]); if (offset != ResTable_type::NO_ENTRY) { const ResTable_entry* entry = reinterpret_cast( reinterpret_cast(type) + dtohl(type->entriesStart) + offset); if (dtohl(entry->key.index) == static_cast(key_idx)) { // The package ID will be overridden by the caller (due to runtime assignment of package // IDs for shared libraries). return make_resid(0x00, type_idx + type_id_offset_ + 1, entry_idx); } } } } return 0u; } const LoadedPackage* LoadedArsc::GetPackageById(uint8_t package_id) const { for (const auto& loaded_package : packages_) { if (loaded_package->GetPackageId() == package_id) { return loaded_package.get(); } } return nullptr; } std::unique_ptr LoadedPackage::Load(const Chunk& chunk, package_property_t property_flags) { ATRACE_NAME("LoadedPackage::Load"); std::unique_ptr loaded_package(new LoadedPackage()); // typeIdOffset was added at some point, but we still must recognize apps built before this // was added. constexpr size_t kMinPackageSize = sizeof(ResTable_package) - sizeof(ResTable_package::typeIdOffset); const ResTable_package* header = chunk.header(); if (header == nullptr) { LOG(ERROR) << "RES_TABLE_PACKAGE_TYPE too small."; return {}; } if ((property_flags & PROPERTY_SYSTEM) != 0) { loaded_package->property_flags_ |= PROPERTY_SYSTEM; } if ((property_flags & PROPERTY_LOADER) != 0) { loaded_package->property_flags_ |= PROPERTY_LOADER; } if ((property_flags & PROPERTY_OVERLAY) != 0) { // Overlay resources must have an exclusive resource id space for referencing internal // resources. loaded_package->property_flags_ |= PROPERTY_OVERLAY | PROPERTY_DYNAMIC; } loaded_package->package_id_ = dtohl(header->id); if (loaded_package->package_id_ == 0 || (loaded_package->package_id_ == kAppPackageId && (property_flags & PROPERTY_DYNAMIC) != 0)) { loaded_package->property_flags_ |= PROPERTY_DYNAMIC; } if (header->header.headerSize >= sizeof(ResTable_package)) { uint32_t type_id_offset = dtohl(header->typeIdOffset); if (type_id_offset > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_PACKAGE_TYPE type ID offset too large."; return {}; } loaded_package->type_id_offset_ = static_cast(type_id_offset); } util::ReadUtf16StringFromDevice(header->name, arraysize(header->name), &loaded_package->package_name_); // A map of TypeSpec builders, each associated with an type index. // We use these to accumulate the set of Types available for a TypeSpec, and later build a single, // contiguous block of memory that holds all the Types together with the TypeSpec. std::unordered_map> type_builder_map; ChunkIterator iter(chunk.data_ptr(), chunk.data_size()); while (iter.HasNext()) { const Chunk child_chunk = iter.Next(); switch (child_chunk.type()) { case RES_STRING_POOL_TYPE: { const uintptr_t pool_address = reinterpret_cast(child_chunk.header()); const uintptr_t header_address = reinterpret_cast(header); if (pool_address == header_address + dtohl(header->typeStrings)) { // This string pool is the type string pool. status_t err = loaded_package->type_string_pool_.setTo( child_chunk.header(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "RES_STRING_POOL_TYPE for types corrupt."; return {}; } } else if (pool_address == header_address + dtohl(header->keyStrings)) { // This string pool is the key string pool. status_t err = loaded_package->key_string_pool_.setTo( child_chunk.header(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "RES_STRING_POOL_TYPE for keys corrupt."; return {}; } } else { LOG(WARNING) << "Too many RES_STRING_POOL_TYPEs found in RES_TABLE_PACKAGE_TYPE."; } } break; case RES_TABLE_TYPE_SPEC_TYPE: { const ResTable_typeSpec* type_spec = child_chunk.header(); if (type_spec == nullptr) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE too small."; return {}; } if (type_spec->id == 0) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has invalid ID 0."; return {}; } if (loaded_package->type_id_offset_ + static_cast(type_spec->id) > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has out of range ID."; return {}; } // The data portion of this chunk contains entry_count 32bit entries, // each one representing a set of flags. // Here we only validate that the chunk is well formed. const size_t entry_count = dtohl(type_spec->entryCount); // There can only be 2^16 entries in a type, because that is the ID // space for entries (EEEE) in the resource ID 0xPPTTEEEE. if (entry_count > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has too many entries (" << entry_count << ")."; return {}; } if (entry_count * sizeof(uint32_t) > chunk.data_size()) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE too small to hold entries."; return {}; } std::unique_ptr& builder_ptr = type_builder_map[type_spec->id - 1]; if (builder_ptr == nullptr) { builder_ptr = util::make_unique(type_spec); loaded_package->resource_ids_.set(type_spec->id, entry_count); } else { LOG(WARNING) << StringPrintf("RES_TABLE_TYPE_SPEC_TYPE already defined for ID %02x", type_spec->id); } } break; case RES_TABLE_TYPE_TYPE: { const ResTable_type* type = child_chunk.header(); if (type == nullptr) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE too small."; return {}; } if (!VerifyResTableType(type)) { return {}; } // Type chunks must be preceded by their TypeSpec chunks. std::unique_ptr& builder_ptr = type_builder_map[type->id - 1]; if (builder_ptr != nullptr) { builder_ptr->AddType(type); } else { LOG(ERROR) << StringPrintf( "RES_TABLE_TYPE_TYPE with ID %02x found without preceding RES_TABLE_TYPE_SPEC_TYPE.", type->id); return {}; } } break; case RES_TABLE_LIBRARY_TYPE: { const ResTable_lib_header* lib = child_chunk.header(); if (lib == nullptr) { LOG(ERROR) << "RES_TABLE_LIBRARY_TYPE too small."; return {}; } if (child_chunk.data_size() / sizeof(ResTable_lib_entry) < dtohl(lib->count)) { LOG(ERROR) << "RES_TABLE_LIBRARY_TYPE too small to hold entries."; return {}; } loaded_package->dynamic_package_map_.reserve(dtohl(lib->count)); const ResTable_lib_entry* const entry_begin = reinterpret_cast(child_chunk.data_ptr()); const ResTable_lib_entry* const entry_end = entry_begin + dtohl(lib->count); for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) { std::string package_name; util::ReadUtf16StringFromDevice(entry_iter->packageName, arraysize(entry_iter->packageName), &package_name); if (dtohl(entry_iter->packageId) >= std::numeric_limits::max()) { LOG(ERROR) << StringPrintf( "Package ID %02x in RES_TABLE_LIBRARY_TYPE too large for package '%s'.", dtohl(entry_iter->packageId), package_name.c_str()); return {}; } loaded_package->dynamic_package_map_.emplace_back(std::move(package_name), dtohl(entry_iter->packageId)); } } break; case RES_TABLE_OVERLAYABLE_TYPE: { const ResTable_overlayable_header* header = child_chunk.header(); if (header == nullptr) { LOG(ERROR) << "RES_TABLE_OVERLAYABLE_TYPE too small."; return {}; } std::string name; util::ReadUtf16StringFromDevice(header->name, arraysize(header->name), &name); std::string actor; util::ReadUtf16StringFromDevice(header->actor, arraysize(header->actor), &actor); if (loaded_package->overlayable_map_.find(name) != loaded_package->overlayable_map_.end()) { LOG(ERROR) << "Multiple blocks with the same name '" << name << "'."; return {}; } loaded_package->overlayable_map_.emplace(name, actor); // Iterate over the overlayable policy chunks contained within the overlayable chunk data ChunkIterator overlayable_iter(child_chunk.data_ptr(), child_chunk.data_size()); while (overlayable_iter.HasNext()) { const Chunk overlayable_child_chunk = overlayable_iter.Next(); switch (overlayable_child_chunk.type()) { case RES_TABLE_OVERLAYABLE_POLICY_TYPE: { const ResTable_overlayable_policy_header* policy_header = overlayable_child_chunk.header(); if (policy_header == nullptr) { LOG(ERROR) << "RES_TABLE_OVERLAYABLE_POLICY_TYPE too small."; return {}; } if ((overlayable_child_chunk.data_size() / sizeof(ResTable_ref)) < dtohl(policy_header->entry_count)) { LOG(ERROR) << "RES_TABLE_OVERLAYABLE_POLICY_TYPE too small to hold entries."; return {}; } // Retrieve all the resource ids belonging to this policy chunk std::unordered_set ids; const auto ids_begin = reinterpret_cast(overlayable_child_chunk.data_ptr()); const auto ids_end = ids_begin + dtohl(policy_header->entry_count); for (auto id_iter = ids_begin; id_iter != ids_end; ++id_iter) { ids.insert(dtohl(id_iter->ident)); } // Add the pairing of overlayable properties and resource ids to the package OverlayableInfo overlayable_info{}; overlayable_info.name = name; overlayable_info.actor = actor; overlayable_info.policy_flags = policy_header->policy_flags; loaded_package->overlayable_infos_.push_back(std::make_pair(overlayable_info, ids)); loaded_package->defines_overlayable_ = true; break; } default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (overlayable_iter.HadError()) { LOG(ERROR) << StringPrintf("Error parsing RES_TABLE_OVERLAYABLE_TYPE: %s", overlayable_iter.GetLastError().c_str()); if (overlayable_iter.HadFatalError()) { return {}; } } } break; default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); if (iter.HadFatalError()) { return {}; } } // Flatten and construct the TypeSpecs. for (auto& entry : type_builder_map) { uint8_t type_idx = static_cast(entry.first); TypeSpecPtr type_spec_ptr = entry.second->Build(); if (type_spec_ptr == nullptr) { LOG(ERROR) << "Too many type configurations, overflow detected."; return {}; } loaded_package->type_specs_.editItemAt(type_idx) = std::move(type_spec_ptr); } return std::move(loaded_package); } bool LoadedArsc::LoadTable(const Chunk& chunk, const LoadedIdmap* loaded_idmap, package_property_t property_flags) { const ResTable_header* header = chunk.header(); if (header == nullptr) { LOG(ERROR) << "RES_TABLE_TYPE too small."; return false; } if (loaded_idmap != nullptr) { global_string_pool_ = util::make_unique(loaded_idmap); } const size_t package_count = dtohl(header->packageCount); size_t packages_seen = 0; packages_.reserve(package_count); ChunkIterator iter(chunk.data_ptr(), chunk.data_size()); while (iter.HasNext()) { const Chunk child_chunk = iter.Next(); switch (child_chunk.type()) { case RES_STRING_POOL_TYPE: // Only use the first string pool. Ignore others. if (global_string_pool_->getError() == NO_INIT) { status_t err = global_string_pool_->setTo(child_chunk.header(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "RES_STRING_POOL_TYPE corrupt."; return false; } } else { LOG(WARNING) << "Multiple RES_STRING_POOL_TYPEs found in RES_TABLE_TYPE."; } break; case RES_TABLE_PACKAGE_TYPE: { if (packages_seen + 1 > package_count) { LOG(ERROR) << "More package chunks were found than the " << package_count << " declared in the header."; return false; } packages_seen++; std::unique_ptr loaded_package = LoadedPackage::Load(child_chunk, property_flags); if (!loaded_package) { return false; } packages_.push_back(std::move(loaded_package)); } break; default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); if (iter.HadFatalError()) { return false; } } return true; } std::unique_ptr LoadedArsc::Load(const StringPiece& data, const LoadedIdmap* loaded_idmap, const package_property_t property_flags) { ATRACE_NAME("LoadedArsc::Load"); // Not using make_unique because the constructor is private. std::unique_ptr loaded_arsc(new LoadedArsc()); ChunkIterator iter(data.data(), data.size()); while (iter.HasNext()) { const Chunk chunk = iter.Next(); switch (chunk.type()) { case RES_TABLE_TYPE: if (!loaded_arsc->LoadTable(chunk, loaded_idmap, property_flags)) { return {}; } break; default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); if (iter.HadFatalError()) { return {}; } } // Need to force a move for mingw32. return std::move(loaded_arsc); } std::unique_ptr LoadedArsc::CreateEmpty() { return std::unique_ptr(new LoadedArsc()); } } // namespace android