/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "VectorDrawableUtils.h" #include "PathParser.h" #include #include namespace android { namespace uirenderer { class PathResolver { public: float currentX = 0; float currentY = 0; float ctrlPointX = 0; float ctrlPointY = 0; float currentSegmentStartX = 0; float currentSegmentStartY = 0; void addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector* points, size_t start, size_t end); }; bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) { if (morphFrom.verbs.size() != morphTo.verbs.size()) { return false; } for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) { if (morphFrom.verbs[i] != morphTo.verbs[i] || morphFrom.verbSizes[i] != morphTo.verbSizes[i]) { return false; } } return true; } bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom, const PathData& morphTo, float fraction) { if (!canMorph(morphFrom, morphTo)) { return false; } interpolatePaths(outData, morphFrom, morphTo, fraction); return true; } /** * Convert an array of PathVerb to Path. */ void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) { PathResolver resolver; char previousCommand = 'm'; size_t start = 0; outPath->reset(); for (unsigned int i = 0; i < data.verbs.size(); i++) { size_t verbSize = data.verbSizes[i]; resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start, start + verbSize); previousCommand = data.verbs[i]; start += verbSize; } } /** * The current PathVerb will be interpolated between the * nodeFrom and nodeTo according to the * fraction. * * @param nodeFrom The start value as a PathVerb. * @param nodeTo The end value as a PathVerb * @param fraction The fraction to interpolate. */ void VectorDrawableUtils::interpolatePaths(PathData* outData, const PathData& from, const PathData& to, float fraction) { outData->points.resize(from.points.size()); outData->verbSizes = from.verbSizes; outData->verbs = from.verbs; for (size_t i = 0; i < from.points.size(); i++) { outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction; } } // Use the given verb, and points in the range [start, end) to insert a command into the SkPath. void PathResolver::addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector* points, size_t start, size_t end) { int incr = 2; float reflectiveCtrlPointX; float reflectiveCtrlPointY; switch (cmd) { case 'z': case 'Z': outPath->close(); // Path is closed here, but we need to move the pen to the // closed position. So we cache the segment's starting position, // and restore it here. currentX = currentSegmentStartX; currentY = currentSegmentStartY; ctrlPointX = currentSegmentStartX; ctrlPointY = currentSegmentStartY; outPath->moveTo(currentX, currentY); break; case 'm': case 'M': case 'l': case 'L': case 't': case 'T': incr = 2; break; case 'h': case 'H': case 'v': case 'V': incr = 1; break; case 'c': case 'C': incr = 6; break; case 's': case 'S': case 'q': case 'Q': incr = 4; break; case 'a': case 'A': incr = 7; break; } for (unsigned int k = start; k < end; k += incr) { switch (cmd) { case 'm': // moveto - Start a new sub-path (relative) currentX += points->at(k + 0); currentY += points->at(k + 1); if (k > start) { // According to the spec, if a moveto is followed by multiple // pairs of coordinates, the subsequent pairs are treated as // implicit lineto commands. outPath->rLineTo(points->at(k + 0), points->at(k + 1)); } else { outPath->rMoveTo(points->at(k + 0), points->at(k + 1)); currentSegmentStartX = currentX; currentSegmentStartY = currentY; } break; case 'M': // moveto - Start a new sub-path currentX = points->at(k + 0); currentY = points->at(k + 1); if (k > start) { // According to the spec, if a moveto is followed by multiple // pairs of coordinates, the subsequent pairs are treated as // implicit lineto commands. outPath->lineTo(points->at(k + 0), points->at(k + 1)); } else { outPath->moveTo(points->at(k + 0), points->at(k + 1)); currentSegmentStartX = currentX; currentSegmentStartY = currentY; } break; case 'l': // lineto - Draw a line from the current point (relative) outPath->rLineTo(points->at(k + 0), points->at(k + 1)); currentX += points->at(k + 0); currentY += points->at(k + 1); break; case 'L': // lineto - Draw a line from the current point outPath->lineTo(points->at(k + 0), points->at(k + 1)); currentX = points->at(k + 0); currentY = points->at(k + 1); break; case 'h': // horizontal lineto - Draws a horizontal line (relative) outPath->rLineTo(points->at(k + 0), 0); currentX += points->at(k + 0); break; case 'H': // horizontal lineto - Draws a horizontal line outPath->lineTo(points->at(k + 0), currentY); currentX = points->at(k + 0); break; case 'v': // vertical lineto - Draws a vertical line from the current point (r) outPath->rLineTo(0, points->at(k + 0)); currentY += points->at(k + 0); break; case 'V': // vertical lineto - Draws a vertical line from the current point outPath->lineTo(currentX, points->at(k + 0)); currentY = points->at(k + 0); break; case 'c': // curveto - Draws a cubic Bézier curve (relative) outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3), points->at(k + 4), points->at(k + 5)); ctrlPointX = currentX + points->at(k + 2); ctrlPointY = currentY + points->at(k + 3); currentX += points->at(k + 4); currentY += points->at(k + 5); break; case 'C': // curveto - Draws a cubic Bézier curve outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3), points->at(k + 4), points->at(k + 5)); currentX = points->at(k + 4); currentY = points->at(k + 5); ctrlPointX = points->at(k + 2); ctrlPointY = points->at(k + 3); break; case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp) reflectiveCtrlPointX = 0; reflectiveCtrlPointY = 0; if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' || previousCmd == 'S') { reflectiveCtrlPointX = currentX - ctrlPointX; reflectiveCtrlPointY = currentY - ctrlPointY; } outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = currentX + points->at(k + 0); ctrlPointY = currentY + points->at(k + 1); currentX += points->at(k + 2); currentY += points->at(k + 3); break; case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp) reflectiveCtrlPointX = currentX; reflectiveCtrlPointY = currentY; if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' || previousCmd == 'S') { reflectiveCtrlPointX = 2 * currentX - ctrlPointX; reflectiveCtrlPointY = 2 * currentY - ctrlPointY; } outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = points->at(k + 0); ctrlPointY = points->at(k + 1); currentX = points->at(k + 2); currentY = points->at(k + 3); break; case 'q': // Draws a quadratic Bézier (relative) outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = currentX + points->at(k + 0); ctrlPointY = currentY + points->at(k + 1); currentX += points->at(k + 2); currentY += points->at(k + 3); break; case 'Q': // Draws a quadratic Bézier outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = points->at(k + 0); ctrlPointY = points->at(k + 1); currentX = points->at(k + 2); currentY = points->at(k + 3); break; case 't': // Draws a quadratic Bézier curve(reflective control point)(relative) reflectiveCtrlPointX = 0; reflectiveCtrlPointY = 0; if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' || previousCmd == 'T') { reflectiveCtrlPointX = currentX - ctrlPointX; reflectiveCtrlPointY = currentY - ctrlPointY; } outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1)); ctrlPointX = currentX + reflectiveCtrlPointX; ctrlPointY = currentY + reflectiveCtrlPointY; currentX += points->at(k + 0); currentY += points->at(k + 1); break; case 'T': // Draws a quadratic Bézier curve (reflective control point) reflectiveCtrlPointX = currentX; reflectiveCtrlPointY = currentY; if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' || previousCmd == 'T') { reflectiveCtrlPointX = 2 * currentX - ctrlPointX; reflectiveCtrlPointY = 2 * currentY - ctrlPointY; } outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1)); ctrlPointX = reflectiveCtrlPointX; ctrlPointY = reflectiveCtrlPointY; currentX = points->at(k + 0); currentY = points->at(k + 1); break; case 'a': // Draws an elliptical arc // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), (SkPath::ArcSize) (points->at(k + 3) != 0), (SkPathDirection) (points->at(k + 4) == 0), points->at(k + 5) + currentX, points->at(k + 6) + currentY); currentX += points->at(k + 5); currentY += points->at(k + 6); ctrlPointX = currentX; ctrlPointY = currentY; break; case 'A': // Draws an elliptical arc outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), (SkPath::ArcSize) (points->at(k + 3) != 0), (SkPathDirection) (points->at(k + 4) == 0), points->at(k + 5), points->at(k + 6)); currentX = points->at(k + 5); currentY = points->at(k + 6); ctrlPointX = currentX; ctrlPointY = currentY; break; default: LOG_ALWAYS_FATAL("Unsupported command: %c", cmd); break; } previousCmd = cmd; } } } // namespace uirenderer } // namespace android