/* * Copyright (C) 2009-2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.renderscript; import android.compat.annotation.UnsupportedAppUsage; /** * Class for exposing the native RenderScript rs_matrix4x4 type back to the Android system. * **/ public class Matrix4f { /** * Creates a new identity 4x4 matrix */ public Matrix4f() { mMat = new float[16]; loadIdentity(); } /** * Creates a new matrix and sets its values from the given * parameter * * @param dataArray values to set the matrix to, must be 16 * floats long */ public Matrix4f(float[] dataArray) { mMat = new float[16]; System.arraycopy(dataArray, 0, mMat, 0, mMat.length); } /** * Return a reference to the internal array representing matrix * values. Modifying this array will also change the matrix * * @return internal array representing the matrix */ public float[] getArray() { return mMat; } /** * Returns the value for a given row and column * * @param x column of the value to return * @param y row of the value to return * * @return value in the yth row and xth column */ public float get(int x, int y) { return mMat[x*4 + y]; } /** * Sets the value for a given row and column * * @param x column of the value to set * @param y row of the value to set */ public void set(int x, int y, float v) { mMat[x*4 + y] = v; } /** * Sets the matrix values to identity */ public void loadIdentity() { mMat[0] = 1; mMat[1] = 0; mMat[2] = 0; mMat[3] = 0; mMat[4] = 0; mMat[5] = 1; mMat[6] = 0; mMat[7] = 0; mMat[8] = 0; mMat[9] = 0; mMat[10] = 1; mMat[11] = 0; mMat[12] = 0; mMat[13] = 0; mMat[14] = 0; mMat[15] = 1; } /** * Sets the values of the matrix to those of the parameter * * @param src matrix to load the values from */ public void load(Matrix4f src) { System.arraycopy(src.getArray(), 0, mMat, 0, mMat.length); } /** * Sets the values of the matrix to those of the parameter * * @param src matrix to load the values from * @hide */ public void load(Matrix3f src) { mMat[0] = src.mMat[0]; mMat[1] = src.mMat[1]; mMat[2] = src.mMat[2]; mMat[3] = 0; mMat[4] = src.mMat[3]; mMat[5] = src.mMat[4]; mMat[6] = src.mMat[5]; mMat[7] = 0; mMat[8] = src.mMat[6]; mMat[9] = src.mMat[7]; mMat[10] = src.mMat[8]; mMat[11] = 0; mMat[12] = 0; mMat[13] = 0; mMat[14] = 0; mMat[15] = 1; } /** * Sets current values to be a rotation matrix of certain angle * about a given axis * * @param rot angle of rotation * @param x rotation axis x * @param y rotation axis y * @param z rotation axis z */ public void loadRotate(float rot, float x, float y, float z) { float c, s; mMat[3] = 0; mMat[7] = 0; mMat[11]= 0; mMat[12]= 0; mMat[13]= 0; mMat[14]= 0; mMat[15]= 1; rot *= (float)(java.lang.Math.PI / 180.0f); c = (float)java.lang.Math.cos(rot); s = (float)java.lang.Math.sin(rot); float len = (float)java.lang.Math.sqrt(x*x + y*y + z*z); if (!(len != 1)) { float recipLen = 1.f / len; x *= recipLen; y *= recipLen; z *= recipLen; } float nc = 1.0f - c; float xy = x * y; float yz = y * z; float zx = z * x; float xs = x * s; float ys = y * s; float zs = z * s; mMat[ 0] = x*x*nc + c; mMat[ 4] = xy*nc - zs; mMat[ 8] = zx*nc + ys; mMat[ 1] = xy*nc + zs; mMat[ 5] = y*y*nc + c; mMat[ 9] = yz*nc - xs; mMat[ 2] = zx*nc - ys; mMat[ 6] = yz*nc + xs; mMat[10] = z*z*nc + c; } /** * Sets current values to be a scale matrix of given dimensions * * @param x scale component x * @param y scale component y * @param z scale component z */ public void loadScale(float x, float y, float z) { loadIdentity(); mMat[0] = x; mMat[5] = y; mMat[10] = z; } /** * Sets current values to be a translation matrix of given * dimensions * * @param x translation component x * @param y translation component y * @param z translation component z */ public void loadTranslate(float x, float y, float z) { loadIdentity(); mMat[12] = x; mMat[13] = y; mMat[14] = z; } /** * Sets current values to be the result of multiplying two given * matrices * * @param lhs left hand side matrix * @param rhs right hand side matrix */ public void loadMultiply(Matrix4f lhs, Matrix4f rhs) { for (int i=0 ; i<4 ; i++) { float ri0 = 0; float ri1 = 0; float ri2 = 0; float ri3 = 0; for (int j=0 ; j<4 ; j++) { float rhs_ij = rhs.get(i,j); ri0 += lhs.get(j,0) * rhs_ij; ri1 += lhs.get(j,1) * rhs_ij; ri2 += lhs.get(j,2) * rhs_ij; ri3 += lhs.get(j,3) * rhs_ij; } set(i,0, ri0); set(i,1, ri1); set(i,2, ri2); set(i,3, ri3); } } /** * Set current values to be an orthographic projection matrix * * @param l location of the left vertical clipping plane * @param r location of the right vertical clipping plane * @param b location of the bottom horizontal clipping plane * @param t location of the top horizontal clipping plane * @param n location of the near clipping plane * @param f location of the far clipping plane */ public void loadOrtho(float l, float r, float b, float t, float n, float f) { loadIdentity(); mMat[0] = 2 / (r - l); mMat[5] = 2 / (t - b); mMat[10]= -2 / (f - n); mMat[12]= -(r + l) / (r - l); mMat[13]= -(t + b) / (t - b); mMat[14]= -(f + n) / (f - n); } /** * Set current values to be an orthographic projection matrix * with the right and bottom clipping planes set to the given * values. Left and top clipping planes are set to 0. Near and * far are set to -1, 1 respectively * * @param w location of the right vertical clipping plane * @param h location of the bottom horizontal clipping plane * */ public void loadOrthoWindow(int w, int h) { loadOrtho(0,w, h,0, -1,1); } /** * Sets current values to be a perspective projection matrix * * @param l location of the left vertical clipping plane * @param r location of the right vertical clipping plane * @param b location of the bottom horizontal clipping plane * @param t location of the top horizontal clipping plane * @param n location of the near clipping plane, must be positive * @param f location of the far clipping plane, must be positive * */ public void loadFrustum(float l, float r, float b, float t, float n, float f) { loadIdentity(); mMat[0] = 2 * n / (r - l); mMat[5] = 2 * n / (t - b); mMat[8] = (r + l) / (r - l); mMat[9] = (t + b) / (t - b); mMat[10]= -(f + n) / (f - n); mMat[11]= -1; mMat[14]= -2*f*n / (f - n); mMat[15]= 0; } /** * Sets current values to be a perspective projection matrix * * @param fovy vertical field of view angle in degrees * @param aspect aspect ratio of the screen * @param near near cliping plane, must be positive * @param far far clipping plane, must be positive */ public void loadPerspective(float fovy, float aspect, float near, float far) { float top = near * (float)Math.tan((float) (fovy * Math.PI / 360.0f)); float bottom = -top; float left = bottom * aspect; float right = top * aspect; loadFrustum(left, right, bottom, top, near, far); } /** * Helper function to set the current values to a perspective * projection matrix with aspect ratio defined by the parameters * and (near, far), (bottom, top) mapping to (-1, 1) at z = 0 * * @param w screen width * @param h screen height */ public void loadProjectionNormalized(int w, int h) { // range -1,1 in the narrow axis at z = 0. Matrix4f m1 = new Matrix4f(); Matrix4f m2 = new Matrix4f(); if(w > h) { float aspect = ((float)w) / h; m1.loadFrustum(-aspect,aspect, -1,1, 1,100); } else { float aspect = ((float)h) / w; m1.loadFrustum(-1,1, -aspect,aspect, 1,100); } m2.loadRotate(180, 0, 1, 0); m1.loadMultiply(m1, m2); m2.loadScale(-2, 2, 1); m1.loadMultiply(m1, m2); m2.loadTranslate(0, 0, 2); m1.loadMultiply(m1, m2); load(m1); } /** * Post-multiplies the current matrix by a given parameter * * @param rhs right hand side to multiply by */ public void multiply(Matrix4f rhs) { Matrix4f tmp = new Matrix4f(); tmp.loadMultiply(this, rhs); load(tmp); } /** * Modifies the current matrix by post-multiplying it with a * rotation matrix of certain angle about a given axis * * @param rot angle of rotation * @param x rotation axis x * @param y rotation axis y * @param z rotation axis z */ public void rotate(float rot, float x, float y, float z) { Matrix4f tmp = new Matrix4f(); tmp.loadRotate(rot, x, y, z); multiply(tmp); } /** * Modifies the current matrix by post-multiplying it with a * scale matrix of given dimensions * * @param x scale component x * @param y scale component y * @param z scale component z */ public void scale(float x, float y, float z) { Matrix4f tmp = new Matrix4f(); tmp.loadScale(x, y, z); multiply(tmp); } /** * Modifies the current matrix by post-multiplying it with a * translation matrix of given dimensions * * @param x translation component x * @param y translation component y * @param z translation component z */ public void translate(float x, float y, float z) { Matrix4f tmp = new Matrix4f(); tmp.loadTranslate(x, y, z); multiply(tmp); } private float computeCofactor(int i, int j) { int c0 = (i+1) % 4; int c1 = (i+2) % 4; int c2 = (i+3) % 4; int r0 = (j+1) % 4; int r1 = (j+2) % 4; int r2 = (j+3) % 4; float minor = (mMat[c0 + 4*r0] * (mMat[c1 + 4*r1] * mMat[c2 + 4*r2] - mMat[c1 + 4*r2] * mMat[c2 + 4*r1])) - (mMat[c0 + 4*r1] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r2] - mMat[c1 + 4*r2] * mMat[c2 + 4*r0])) + (mMat[c0 + 4*r2] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r1] - mMat[c1 + 4*r1] * mMat[c2 + 4*r0])); float cofactor = ((i+j) & 1) != 0 ? -minor : minor; return cofactor; } /** * Sets the current matrix to its inverse */ public boolean inverse() { Matrix4f result = new Matrix4f(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { result.mMat[4*i + j] = computeCofactor(i, j); } } // Dot product of 0th column of source and 0th row of result float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[1] + mMat[8]*result.mMat[2] + mMat[12]*result.mMat[3]; if (Math.abs(det) < 1e-6) { return false; } det = 1.0f / det; for (int i = 0; i < 16; ++i) { mMat[i] = result.mMat[i] * det; } return true; } /** * Sets the current matrix to its inverse transpose */ public boolean inverseTranspose() { Matrix4f result = new Matrix4f(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { result.mMat[4*j + i] = computeCofactor(i, j); } } float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[4] + mMat[8]*result.mMat[8] + mMat[12]*result.mMat[12]; if (Math.abs(det) < 1e-6) { return false; } det = 1.0f / det; for (int i = 0; i < 16; ++i) { mMat[i] = result.mMat[i] * det; } return true; } /** * Sets the current matrix to its transpose */ public void transpose() { for(int i = 0; i < 3; ++i) { for(int j = i + 1; j < 4; ++j) { float temp = mMat[i*4 + j]; mMat[i*4 + j] = mMat[j*4 + i]; mMat[j*4 + i] = temp; } } } @UnsupportedAppUsage final float[] mMat; }