/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "OperationsUtils.h" #define LOG_TAG "Operations" #include "HalInterfaces.h" #include "OperationResolver.h" namespace android { namespace nn { namespace fill_op { constexpr uint32_t kNumInputs = 2; constexpr uint32_t kDimsTensor = 0; constexpr uint32_t kValueScalar = 1; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; namespace { using namespace hal; template bool executeTyped(IOperationExecutionContext* context) { T* output = context->getOutputBuffer(kOutputTensor); const int numElements = getNumberOfElements(context->getOutputShape(kOutputTensor)); const T value = context->getInputValue(kValueScalar); for (int i = 0; i < numElements; ++i) { output[i] = value; } return true; } bool getValueType(OperandType outputType, OperandType* valueType) { switch (outputType) { case OperandType::TENSOR_FLOAT16: *valueType = OperandType::FLOAT16; return true; case OperandType::TENSOR_FLOAT32: *valueType = OperandType::FLOAT32; return true; case OperandType::TENSOR_INT32: *valueType = OperandType::INT32; return true; default: NN_RET_CHECK_FAIL() << "Unsupported value type for fill op: " << toString(outputType); } } } // namespace bool validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); // Check output type first because input value type is dependent on the // output type. OperandType outputType = context->getOutputType(kOutputTensor); NN_RET_CHECK(outputType == OperandType::TENSOR_FLOAT16 || outputType == OperandType::TENSOR_FLOAT32 || outputType == OperandType::TENSOR_INT32) << "Unsupported output type for fill op: " << toString(outputType); NN_RET_CHECK(validateOutputTypes(context, {outputType})); OperandType valueType; NN_RET_CHECK(getValueType(outputType, &valueType)); NN_RET_CHECK(validateInputTypes(context, {OperandType::TENSOR_INT32, valueType})); return validateHalVersion(context, HalVersion::V1_3); } bool prepare(IOperationExecutionContext* context) { Shape dimsShape = context->getInputShape(kDimsTensor); NN_RET_CHECK_EQ(getNumberOfDimensions(dimsShape), 1); Shape outputShape = context->getOutputShape(kOutputTensor); outputShape.dimensions.resize(dimsShape.dimensions[0]); const int32_t* dims = context->getInputBuffer(kDimsTensor); for (int i = 0; i < dimsShape.dimensions[0]; ++i) { outputShape.dimensions[i] = dims[i]; } return context->setOutputShape(kOutputTensor, outputShape); } bool execute(IOperationExecutionContext* context) { switch (context->getInputType(kValueScalar)) { case OperandType::FLOAT16: return executeTyped<_Float16>(context); case OperandType::FLOAT32: return executeTyped(context); case OperandType::INT32: return executeTyped(context); default: NN_RET_CHECK_FAIL() << "Unsupported value type for fill op."; } } } // namespace fill_op NN_REGISTER_OPERATION(FILL, "FILL", fill_op::validate, fill_op::prepare, fill_op::execute); } // namespace nn } // namespace android