/* ** Copyright 2011, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ //#define LOG_NDEBUG 0 #include "BlobCache.h" #include #include #if defined(__ANDROID__) #include #else #include #include static const char property_value[] = "[HOST]"; #define PROPERTY_VALUE_MAX (sizeof(property_value) - 1) static int property_get(const char* key, char* value, const char* default_value) { if (!strcmp(key, "ro.build.id")) { memcpy(value, property_value, PROPERTY_VALUE_MAX); return PROPERTY_VALUE_MAX; } if (default_value) { const size_t len = std::max(strlen(default_value) + 1, size_t(PROPERTY_VALUE_MAX)); memcpy(value, default_value, len); } return 0; } #endif #include #include #include namespace android { // BlobCache::Header::mMagicNumber value static const uint32_t blobCacheMagic = ('_' << 24) + ('B' << 16) + ('b' << 8) + '$'; // BlobCache::Header::mBlobCacheVersion value static const uint32_t blobCacheVersion = 3; // BlobCache::Header::mDeviceVersion value static const uint32_t blobCacheDeviceVersion = 1; BlobCache::BlobCache(size_t maxKeySize, size_t maxValueSize, size_t maxTotalSize, Policy policy) : mMaxKeySize(maxKeySize), mMaxValueSize(maxValueSize), mMaxTotalSize(maxTotalSize), mPolicySelect(policy.first), mPolicyCapacity(policy.second), mTotalSize(0), mAccessCount(0) { int64_t now = std::chrono::steady_clock::now().time_since_epoch().count(); #ifdef _WIN32 srand(now); #else mRandState[0] = (now >> 0) & 0xFFFF; mRandState[1] = (now >> 16) & 0xFFFF; mRandState[2] = (now >> 32) & 0xFFFF; #endif ALOGV("initializing random seed using %lld", (unsigned long long)now); } void BlobCache::set(const void* key, size_t keySize, const void* value, size_t valueSize) { if (mMaxKeySize < keySize) { ALOGV("set: not caching because the key is too large: %zu (limit: %zu)", keySize, mMaxKeySize); return; } if (mMaxValueSize < valueSize) { ALOGV("set: not caching because the value is too large: %zu (limit: %zu)", valueSize, mMaxValueSize); return; } if (mMaxTotalSize < keySize + valueSize) { ALOGV("set: not caching because the combined key/value size is too " "large: %zu (limit: %zu)", keySize + valueSize, mMaxTotalSize); return; } if (keySize == 0) { ALOGW("set: not caching because keySize is 0"); return; } if (valueSize <= 0) { ALOGW("set: not caching because valueSize is 0"); return; } std::shared_ptr dummyKey(new Blob(key, keySize, false)); CacheEntry dummyEntry(dummyKey, NULL, 0); while (true) { auto index = std::lower_bound(mCacheEntries.begin(), mCacheEntries.end(), dummyEntry); if (index == mCacheEntries.end() || dummyEntry < *index) { // Create a new cache entry. std::shared_ptr keyBlob(new Blob(key, keySize, true)); std::shared_ptr valueBlob(new Blob(value, valueSize, true)); size_t newEntrySize = keySize + valueSize; size_t newTotalSize = mTotalSize + newEntrySize; if (mMaxTotalSize < newTotalSize) { if (isCleanable()) { // Clean the cache and try again. if (!clean(newEntrySize, NoEntry)) { // We have some kind of logic error -- perhaps // an inconsistency between isCleanable() and // findDownTo(). ALOGE("set: not caching new key/value pair because " "cleaning failed"); break; } continue; } else { ALOGV("set: not caching new key/value pair because the " "total cache size limit would be exceeded: %zu " "(limit: %zu)", keySize + valueSize, mMaxTotalSize); break; } } mCacheEntries.insert(index, CacheEntry(keyBlob, valueBlob, ++mAccessCount)); mTotalSize = newTotalSize; ALOGV("set: created new cache entry with %zu byte key and %zu byte value", keySize, valueSize); } else { // Update the existing cache entry. std::shared_ptr valueBlob(new Blob(value, valueSize, true)); std::shared_ptr oldValueBlob(index->getValue()); size_t newTotalSize = mTotalSize + valueSize - oldValueBlob->getSize(); if (mMaxTotalSize < newTotalSize) { if (isCleanable()) { // Clean the cache and try again. if (!clean(index->getKey()->getSize() + valueSize, index - mCacheEntries.begin())) { // We have some kind of logic error -- perhaps // an inconsistency between isCleanable() and // findDownTo(). ALOGE("set: not caching new value because " "cleaning failed"); break; } continue; } else { ALOGV("set: not caching new value because the total cache " "size limit would be exceeded: %zu (limit: %zu)", keySize + valueSize, mMaxTotalSize); break; } } index->setValue(valueBlob); index->setRecency(++mAccessCount); mTotalSize = newTotalSize; ALOGV("set: updated existing cache entry with %zu byte key and %zu byte " "value", keySize, valueSize); } break; } } size_t BlobCache::get(const void* key, size_t keySize, void* value, size_t valueSize) { void* dummy; return get(key, keySize, &dummy, [value, valueSize](size_t allocSize) { return (allocSize <= valueSize ? value : nullptr); }); } size_t BlobCache::get(const void* key, size_t keySize, void** value, std::function alloc) { if (mMaxKeySize < keySize) { ALOGV("get: not searching because the key is too large: %zu (limit %zu)", keySize, mMaxKeySize); *value = nullptr; return 0; } std::shared_ptr dummyKey(new Blob(key, keySize, false)); CacheEntry dummyEntry(dummyKey, NULL, 0); auto index = std::lower_bound(mCacheEntries.begin(), mCacheEntries.end(), dummyEntry); if (index == mCacheEntries.end() || dummyEntry < *index) { ALOGV("get: no cache entry found for key of size %zu", keySize); *value = nullptr; return 0; } // The key was found. Return the value if we can allocate a buffer. std::shared_ptr valueBlob(index->getValue()); size_t valueBlobSize = valueBlob->getSize(); void* buf = alloc(valueBlobSize); if (buf != nullptr) { ALOGV("get: copying %zu bytes to caller's buffer", valueBlobSize); memcpy(buf, valueBlob->getData(), valueBlobSize); *value = buf; index->setRecency(++mAccessCount); } else { ALOGV("get: cannot allocate caller's buffer: needs %zu", valueBlobSize); *value = nullptr; } return valueBlobSize; } static inline size_t align4(size_t size) { return (size + 3) & ~3; } size_t BlobCache::getFlattenedSize() const { size_t size = align4(sizeof(Header) + PROPERTY_VALUE_MAX); for (const CacheEntry& e : mCacheEntries) { std::shared_ptr const& keyBlob = e.getKey(); std::shared_ptr const& valueBlob = e.getValue(); size += align4(sizeof(EntryHeader) + keyBlob->getSize() + valueBlob->getSize()); } return size; } int BlobCache::flatten(void* buffer, size_t size) const { // Write the cache header if (size < sizeof(Header)) { ALOGE("flatten: not enough room for cache header"); return 0; } Header* header = reinterpret_cast(buffer); header->mMagicNumber = blobCacheMagic; header->mBlobCacheVersion = blobCacheVersion; header->mDeviceVersion = blobCacheDeviceVersion; header->mNumEntries = mCacheEntries.size(); char buildId[PROPERTY_VALUE_MAX]; header->mBuildIdLength = property_get("ro.build.id", buildId, ""); memcpy(header->mBuildId, buildId, header->mBuildIdLength); // Write cache entries uint8_t* byteBuffer = reinterpret_cast(buffer); off_t byteOffset = align4(sizeof(Header) + header->mBuildIdLength); for (const CacheEntry& e : mCacheEntries) { std::shared_ptr const& keyBlob = e.getKey(); std::shared_ptr const& valueBlob = e.getValue(); size_t keySize = keyBlob->getSize(); size_t valueSize = valueBlob->getSize(); size_t entrySize = sizeof(EntryHeader) + keySize + valueSize; size_t totalSize = align4(entrySize); if (byteOffset + totalSize > size) { ALOGE("flatten: not enough room for cache entries"); return -EINVAL; } EntryHeader* eheader = reinterpret_cast(&byteBuffer[byteOffset]); eheader->mKeySize = keySize; eheader->mValueSize = valueSize; memcpy(eheader->mData, keyBlob->getData(), keySize); memcpy(eheader->mData + keySize, valueBlob->getData(), valueSize); if (totalSize > entrySize) { // We have padding bytes. Those will get written to storage, and contribute to the CRC, // so make sure we zero-them to have reproducible results. memset(eheader->mData + keySize + valueSize, 0, totalSize - entrySize); } byteOffset += totalSize; } return 0; } int BlobCache::unflatten(void const* buffer, size_t size) { // All errors should result in the BlobCache being in an empty state. mCacheEntries.clear(); // Read the cache header if (size < sizeof(Header)) { ALOGE("unflatten: not enough room for cache header"); return -EINVAL; } const Header* header = reinterpret_cast(buffer); if (header->mMagicNumber != blobCacheMagic) { ALOGE("unflatten: bad magic number: %" PRIu32, header->mMagicNumber); return -EINVAL; } char buildId[PROPERTY_VALUE_MAX]; int len = property_get("ro.build.id", buildId, ""); if (header->mBlobCacheVersion != blobCacheVersion || header->mDeviceVersion != blobCacheDeviceVersion || len != header->mBuildIdLength || strncmp(buildId, header->mBuildId, len)) { // We treat version mismatches as an empty cache. return 0; } // Read cache entries const uint8_t* byteBuffer = reinterpret_cast(buffer); off_t byteOffset = align4(sizeof(Header) + header->mBuildIdLength); size_t numEntries = header->mNumEntries; for (size_t i = 0; i < numEntries; i++) { if (byteOffset + sizeof(EntryHeader) > size) { mCacheEntries.clear(); ALOGE("unflatten: not enough room for cache entry header"); return -EINVAL; } const EntryHeader* eheader = reinterpret_cast(&byteBuffer[byteOffset]); size_t keySize = eheader->mKeySize; size_t valueSize = eheader->mValueSize; size_t entrySize = sizeof(EntryHeader) + keySize + valueSize; size_t totalSize = align4(entrySize); if (byteOffset + totalSize > size) { mCacheEntries.clear(); ALOGE("unflatten: not enough room for cache entry"); return -EINVAL; } const uint8_t* data = eheader->mData; set(data, keySize, data + keySize, valueSize); byteOffset += totalSize; } return 0; } long int BlobCache::blob_random() { #ifdef _WIN32 return rand(); #else return nrand48(mRandState); #endif } size_t BlobCache::findVictim() { switch (mPolicySelect) { case Select::RANDOM: return size_t(blob_random() % (mCacheEntries.size())); case Select::LRU: return std::min_element(mCacheEntries.begin(), mCacheEntries.end(), [](const CacheEntry& a, const CacheEntry& b) { return a.getRecency() < b.getRecency(); }) - mCacheEntries.begin(); default: ALOGE("findVictim: unknown mPolicySelect: %d", mPolicySelect); return 0; } } size_t BlobCache::findDownTo(size_t newEntrySize, size_t onBehalfOf) { auto oldEntrySize = [this, onBehalfOf]() -> size_t { if (onBehalfOf == NoEntry) return 0; const auto& entry = mCacheEntries[onBehalfOf]; return entry.getKey()->getSize() + entry.getValue()->getSize(); }; switch (mPolicyCapacity) { case Capacity::HALVE: return mMaxTotalSize / 2; case Capacity::FIT: return mMaxTotalSize - (newEntrySize - oldEntrySize()); case Capacity::FIT_HALVE: return std::min(mMaxTotalSize - (newEntrySize - oldEntrySize()), mMaxTotalSize / 2); default: ALOGE("findDownTo: unknown mPolicyCapacity: %d", mPolicyCapacity); return 0; } } bool BlobCache::isFit(Capacity capacity) { switch (capacity) { case Capacity::HALVE: return false; case Capacity::FIT: case Capacity::FIT_HALVE: return true; default: ALOGE("isFit: unknown capacity: %d", capacity); return false; } } bool BlobCache::clean(size_t newEntrySize, size_t onBehalfOf) { // Remove a selected cache entry until the total cache size does // not exceed downTo. const size_t downTo = findDownTo(newEntrySize, onBehalfOf); bool cleaned = false; while (mTotalSize > downTo) { const size_t i = findVictim(); const CacheEntry& entry(mCacheEntries[i]); const size_t entrySize = entry.getKey()->getSize() + entry.getValue()->getSize(); mTotalSize -= entrySize; mCacheEntries.erase(mCacheEntries.begin() + i); cleaned = true; } return cleaned; } bool BlobCache::isCleanable() const { switch (mPolicyCapacity) { case Capacity::HALVE: return mTotalSize > mMaxTotalSize / 2; default: ALOGE("isCleanable: unknown mPolicyCapacity: %d", mPolicyCapacity); [[fallthrough]]; case Capacity::FIT: case Capacity::FIT_HALVE: return mTotalSize > 0; } } BlobCache::Blob::Blob(const void* data, size_t size, bool copyData) : mData(copyData ? malloc(size) : data), mSize(size), mOwnsData(copyData) { if (data != NULL && copyData) { memcpy(const_cast(mData), data, size); } } BlobCache::Blob::~Blob() { if (mOwnsData) { free(const_cast(mData)); } } bool BlobCache::Blob::operator<(const Blob& rhs) const { if (mSize == rhs.mSize) { return memcmp(mData, rhs.mData, mSize) < 0; } else { return mSize < rhs.mSize; } } const void* BlobCache::Blob::getData() const { return mData; } size_t BlobCache::Blob::getSize() const { return mSize; } BlobCache::CacheEntry::CacheEntry() : mRecency(0) {} BlobCache::CacheEntry::CacheEntry(const std::shared_ptr& key, const std::shared_ptr& value, uint32_t recency) : mKey(key), mValue(value), mRecency(recency) {} BlobCache::CacheEntry::CacheEntry(const CacheEntry& ce) : mKey(ce.mKey), mValue(ce.mValue), mRecency(ce.mRecency) {} bool BlobCache::CacheEntry::operator<(const CacheEntry& rhs) const { return *mKey < *rhs.mKey; } const BlobCache::CacheEntry& BlobCache::CacheEntry::operator=(const CacheEntry& rhs) { mKey = rhs.mKey; mValue = rhs.mValue; mRecency = rhs.mRecency; return *this; } std::shared_ptr BlobCache::CacheEntry::getKey() const { return mKey; } std::shared_ptr BlobCache::CacheEntry::getValue() const { return mValue; } void BlobCache::CacheEntry::setValue(const std::shared_ptr& value) { mValue = value; } uint32_t BlobCache::CacheEntry::getRecency() const { return mRecency; } void BlobCache::CacheEntry::setRecency(uint32_t recency) { mRecency = recency; } } // namespace android