/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Memory" #include "Memory.h" #include #include #include #include #include #include #include #include #include #include #include "CompilationBuilder.h" #include "CpuExecutor.h" #include "ExecutionBurstController.h" #include "Manager.h" #include "MemoryUtils.h" #include "TypeManager.h" #include "Utils.h" namespace android { namespace nn { using namespace hal; namespace { // The validator for a client-managed single-dimensional memory pool with a known size. // The memory may be used for request inputs, request outputs, or model constants. class SizedMemoryValidator : public MemoryValidatorBase { public: SizedMemoryValidator(uint32_t size) : kSize(size) {} bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*, uint32_t offset, uint32_t length) const override { NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size."; NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied."; return true; } Metadata getMetadata() const override { return {.logicalSize = kSize}; } bool updateMetadata(const Metadata& metadata) override { return metadata.logicalSize == 0 || metadata.logicalSize == kSize; } private: const uint32_t kSize; }; // The validator for an AHardwareBuffer with Non-BLOB format. // We require the memory only used for request inputs or request outputs, // with both offset and length set to zero. class AHardwareBufferNonBlobValidator : public MemoryValidatorBase { public: AHardwareBufferNonBlobValidator() = default; bool validate(const CompilationBuilder* compilation, IOType, uint32_t, const ANeuralNetworksOperandType*, uint32_t offset, uint32_t length) const override { NN_RET_CHECK(compilation != nullptr) << "cannot use Non-BLOB AHardwareBuffer as model constant"; NN_RET_CHECK(offset == 0 && length == 0) << "non-zero offset (" << offset << ") and/or length (" << length << ") for Non-BLOB format AHardwareBuffer."; return true; } Metadata getMetadata() const override { return {}; } bool updateMetadata(const Metadata&) override { return true; } }; // The validator for a memory created from ANNMemory_createFromDesc. // We require the memory only used as one of the pre-specified roles, // with both offset and length set to zero. class DeviceMemoryValidator : public MemoryValidatorBase { public: DeviceMemoryValidator(std::set roles, Operand operand, std::vector dimensions) : kCompilationRoles(std::move(roles)), kOperand(std::move(operand)), kInitialDimensions(std::move(dimensions)), mUpdatedDimensions(kInitialDimensions) {} bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index, const ANeuralNetworksOperandType* type, uint32_t offset, uint32_t length) const override { NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0) << "invalid compilation role."; NN_RET_CHECK(offset == 0 && length == 0) << "non-zero offset and/or length for driver-allocated memory."; if (type) { const bool isTensor = TypeManager::get()->isTensorType(kOperand.type); NN_RET_CHECK(isTensor || type->dimensionCount == 0) << "invalid dimensions for scalar memory."; std::vector dimensions(type->dimensions, type->dimensions + type->dimensionCount); // We only check against kInitialDimensions here. // For input memories, mUpdatedDimensions will be checked in validateInputDimensions // at the beginning of a computation. const auto combined = combineDimensions(dimensions, kInitialDimensions); NN_RET_CHECK(combined.has_value()) << "incompatible dimensions between request and memory. (request: " << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")"; } return true; } bool validateInputDimensions(const std::vector& dimensions) const override { NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input"; NN_RET_CHECK(dimensions == mUpdatedDimensions) << "incompatible input dimensions between request and memory. (request: " << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")"; return true; } Metadata getMetadata() const override { return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions), .dimensions = mUpdatedDimensions, .operand = kOperand}; } bool updateMetadata(const Metadata& metadata) override { NN_RET_CHECK(!metadata.operand.has_value() || (metadata.operand->type == kOperand.type && metadata.operand->scale == kOperand.scale && metadata.operand->zeroPoint == kOperand.zeroPoint && metadata.operand->extraParams == kOperand.extraParams)); NN_RET_CHECK(metadata.dimensions.empty() || TypeManager::get()->isTensorType(kOperand.type)); auto combined = combineDimensions(metadata.dimensions, kInitialDimensions); NN_RET_CHECK(combined.has_value()); NN_RET_CHECK(metadata.logicalSize == 0 || metadata.logicalSize == TypeManager::get()->getSizeOfData(kOperand.type, combined.value())); mUpdatedDimensions = std::move(combined.value()); return true; } bool createdWithUnknownShape() const override { return TypeManager::get()->getSizeOfData(kOperand.type, kInitialDimensions) == 0; } void setInitialized(bool initialized) override { mInitialized = initialized; } bool isInitialized() const override { return mInitialized; } private: const std::set kCompilationRoles; // Keep track of the data type, scale, zero point, and extra parameters of the target operand. // Other fields will be ignored, including dimensions, lifetime, location, etc. const Operand kOperand; // The dimensions of the memory when the memory object is created. // May have unknown dimensions or rank. const std::vector kInitialDimensions; // The updated dimensions after a successful execution or memory copying. std::vector mUpdatedDimensions; bool mInitialized = false; }; } // namespace Memory::Memory(hal::hidl_memory memory) : kHidlMemory(std::move(memory)), mValidator(std::make_unique(kHidlMemory.size())) {} Memory::Memory(hal::hidl_memory memory, std::unique_ptr validator) : kHidlMemory(std::move(memory)), mValidator(std::move(validator)) {} Memory::Memory(sp buffer, uint32_t token) : kBuffer(std::move(buffer)), kToken(token) {} Memory::~Memory() { for (const auto& [ptr, weakBurst] : mUsedBy) { if (const std::shared_ptr burst = weakBurst.lock()) { burst->freeMemory(getKey()); } } } Request::MemoryPool Memory::getMemoryPool() const { Request::MemoryPool pool; if (kToken > 0) { pool.token(kToken); } else { pool.hidlMemory(kHidlMemory); } return pool; } std::optional Memory::getRunTimePoolInfo() const { std::lock_guard guard(mMutex); if (!mHasCachedRunTimePoolInfo) { mCachedRunTimePoolInfo = RunTimePoolInfo::createFromHidlMemory(kHidlMemory); mHasCachedRunTimePoolInfo = true; } return mCachedRunTimePoolInfo; } intptr_t Memory::getKey() const { return reinterpret_cast(this); } void Memory::usedBy(const std::shared_ptr& burst) const { std::lock_guard guard(mMutex); mUsedBy.emplace(burst.get(), burst); } static int copyHidlMemories(const std::optional& src, const std::optional& dst) { if (!src.has_value() || !dst.has_value()) { LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory"; return ANEURALNETWORKS_UNMAPPABLE; } if (src->getSize() != dst->getSize()) { LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size"; return ANEURALNETWORKS_BAD_DATA; } CHECK(src->getBuffer() != nullptr); CHECK(dst->getBuffer() != nullptr); std::copy(src->getBuffer(), src->getBuffer() + src->getSize(), dst->getBuffer()); dst->flush(); return ANEURALNETWORKS_NO_ERROR; } int copyIBufferToHidlMemory(const sp& src, const hidl_memory& dst) { const auto ret = src->copyTo(dst); if (!ret.isOk()) { LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description(); return ANEURALNETWORKS_OP_FAILED; } return convertErrorStatusToResultCode(static_cast(ret)); } int copyHidlMemoryToIBuffer(const hidl_memory& src, const sp& dst, const std::vector& dimensions) { const auto ret = dst->copyFrom(src, dimensions); if (!ret.isOk()) { LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description(); return ANEURALNETWORKS_OP_FAILED; } return convertErrorStatusToResultCode(static_cast(ret)); } static int copyIBuffers(const sp& src, const sp& dst, const MemoryValidatorBase::Metadata& srcMetadata) { const auto [n, memory] = MemoryRuntimeAHWB::create(srcMetadata.logicalSize); NN_RETURN_IF_ERROR(n); const hidl_memory& hidlMemory = memory->getHidlMemory(); if (!hidlMemory.valid()) return ANEURALNETWORKS_OUT_OF_MEMORY; NN_RETURN_IF_ERROR(copyIBufferToHidlMemory(src, hidlMemory)); NN_RETURN_IF_ERROR(copyHidlMemoryToIBuffer(hidlMemory, dst, srcMetadata.dimensions)); return ANEURALNETWORKS_NO_ERROR; } static int copyInternal(const Memory& src, const Memory& dst) { if (&src == &dst) return ANEURALNETWORKS_NO_ERROR; if (!src.getValidator().isInitialized()) { LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory"; return ANEURALNETWORKS_BAD_DATA; } const auto srcMetadata = src.getValidator().getMetadata(); if (!dst.getValidator().updateMetadata(srcMetadata)) { LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories"; return ANEURALNETWORKS_BAD_DATA; } bool srcHasHidlMemory = src.getHidlMemory().valid(); bool dstHasHidlMemory = dst.getHidlMemory().valid(); bool srcHasIBuffer = src.getIBuffer() != nullptr; bool dstHasIBuffer = dst.getIBuffer() != nullptr; if (srcHasIBuffer && dstHasIBuffer) { return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata); } else if (srcHasHidlMemory && dstHasHidlMemory) { return copyHidlMemories(src.getRunTimePoolInfo(), dst.getRunTimePoolInfo()); } else if (srcHasHidlMemory && dstHasIBuffer) { return copyHidlMemoryToIBuffer(src.getHidlMemory(), dst.getIBuffer(), srcMetadata.dimensions); } else if (srcHasIBuffer && dstHasHidlMemory) { return copyIBufferToHidlMemory(src.getIBuffer(), dst.getHidlMemory()); } return ANEURALNETWORKS_OP_FAILED; } int Memory::copy(const Memory& src, const Memory& dst) { int n = copyInternal(src, dst); dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR); return n; } bool MemoryBuilder::badState(const char* name) const { if (mFinished) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished"; return true; } return false; } int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index, float freq) { const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole"; if (badState(tag)) { return ANEURALNETWORKS_BAD_STATE; } if (mRoles.count({&compilation, ioType, index}) > 0) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- the same operand is specified twice."; return ANEURALNETWORKS_BAD_DATA; } std::vector> roles; auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) { roles.emplace_back(preparedModel, type, index); }; if (ioType == IOType::INPUT) { if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) { return ANEURALNETWORKS_BAD_DATA; } } else { if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) { return ANEURALNETWORKS_BAD_DATA; } } const ModelBuilder* model = compilation.getModel(); CHECK(model != nullptr); Operand operand; if (ioType == IOType::INPUT) { if (index >= model->inputCount()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range."; return ANEURALNETWORKS_BAD_DATA; } operand = model->getInputOperand(index); } else { if (index >= model->outputCount()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range."; return ANEURALNETWORKS_BAD_DATA; } operand = model->getOutputOperand(index); } if (mOperand.has_value()) { if (operand.type != mOperand->type || operand.scale != mOperand->scale || operand.zeroPoint != mOperand->zeroPoint || operand.extraParams != mOperand->extraParams) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible operand metadata."; return ANEURALNETWORKS_BAD_DATA; } } if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; return ANEURALNETWORKS_BAD_DATA; } auto combined = combineDimensions(mDesc.dimensions, operand.dimensions); if (!combined.has_value()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; return ANEURALNETWORKS_BAD_DATA; } if (freq > 1.0f || freq <= 0.0f) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << freq; return ANEURALNETWORKS_BAD_DATA; } mRoles.emplace(&compilation, ioType, index); for (const auto [preparedModel, type, ind] : roles) { uint32_t modelIndex = mDesc.preparedModels.add(preparedModel); BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .frequency = freq}; if (type == IOType::INPUT) { mDesc.inputRoles.push_back(role); } else { mDesc.outputRoles.push_back(role); } } mOperand = std::move(operand); mDesc.dimensions = std::move(combined.value()); return ANEURALNETWORKS_NO_ERROR; } int MemoryBuilder::setDimensions(const std::vector& dimensions) { if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE; if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) && !dimensions.empty()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for " "scalars."; return ANEURALNETWORKS_BAD_DATA; } auto combined = combineDimensions(mDesc.dimensions, dimensions); if (!combined.has_value()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions."; return ANEURALNETWORKS_BAD_DATA; } mDesc.dimensions = std::move(combined.value()); return ANEURALNETWORKS_NO_ERROR; } static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) { LOG(INFO) << "MemoryDescriptor start"; LOG(INFO) << " Data type: " << toString(operand.type); LOG(INFO) << " Scale: " << toString(operand.scale); LOG(INFO) << " Zero point: " << toString(operand.zeroPoint); LOG(INFO) << " Extra params: " << toString(operand.extraParams); LOG(INFO) << " Dimensions: " << toString(desc.dimensions); LOG(INFO) << " Prepared models [" << desc.preparedModels.size() << "]:"; for (const auto* preparedModel : desc.preparedModels) { LOG(INFO) << " service = " << preparedModel->getDevice()->getName(); } LOG(INFO) << " Input roles [" << desc.inputRoles.size() << "]:"; for (const auto& usage : desc.inputRoles) { LOG(INFO) << " " << toString(usage); } LOG(INFO) << " Output roles [" << desc.outputRoles.size() << "]:"; for (const auto& usage : desc.outputRoles) { LOG(INFO) << " " << toString(usage); } LOG(INFO) << "MemoryDescriptor end"; } static std::set getDevices(const MemoryDescriptor& desc) { std::set devices; for (const auto* preparedModel : desc.preparedModels) { const auto* device = preparedModel->getDevice(); devices.insert(device); } return devices; } int MemoryBuilder::finish() { if (badState("finish")) return ANEURALNETWORKS_BAD_STATE; if (mRoles.empty()) { LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified."; return ANEURALNETWORKS_BAD_DATA; } CHECK(mOperand.has_value()); if (VLOG_IS_ON(MEMORY)) { logMemoryDescriptorToInfo(mDesc, mOperand.value()); } std::set devices = getDevices(mDesc); if (devices.empty()) { // This can happen with interpreted control flow. mAllocator = nullptr; } else if (devices.size() == 1) { mAllocator = *devices.begin(); VLOG(MEMORY) << "Using " << mAllocator->getName() << " as allocator."; } else { LOG(INFO) << "MemoryBuilder::finish -- cannot handle multiple devices."; mAllocator = nullptr; } mSupportsAhwb = std::all_of(devices.begin(), devices.end(), [](const auto* device) { return device->getFeatureLevel() >= __ANDROID_API_R__; }); mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) { const auto* cb = std::get(role); return cb->createdWithExplicitDeviceList(); }); const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions); mShouldFallback &= (size != 0); mFinished = true; return ANEURALNETWORKS_NO_ERROR; } std::pair> MemoryBuilder::allocate() const { if (!mFinished) { LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor"; return {ANEURALNETWORKS_BAD_STATE, nullptr}; } int n = ANEURALNETWORKS_OP_FAILED; std::unique_ptr memory; CHECK(mOperand.has_value()); // Try allocate the memory on device. if (mAllocator != nullptr) { std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type); } // If failed, fallback to ashmem or BLOB mode AHWB. if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) { const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions); if (mSupportsAhwb) { VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to BLOB mode AHWB."; std::tie(n, memory) = MemoryRuntimeAHWB::create(size); } else { VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem."; std::tie(n, memory) = MemoryAshmem::create(size); } } if (n == ANEURALNETWORKS_NO_ERROR) { CHECK(memory != nullptr); auto validator = std::make_unique(mRoles, mOperand.value(), mDesc.dimensions); memory->setValidator(std::move(validator)); } return {n, std::move(memory)}; } std::pair> MemoryAshmem::create(uint32_t size) { hidl_memory hidlMemory = allocateSharedMemory(size); sp mapped = mapMemory(hidlMemory); if (mapped == nullptr || mapped->getPointer() == nullptr) { LOG(ERROR) << "Memory::create failed"; return {ANEURALNETWORKS_OUT_OF_MEMORY, nullptr}; } return {ANEURALNETWORKS_NO_ERROR, std::make_unique(std::move(mapped), std::move(hidlMemory))}; } uint8_t* MemoryAshmem::getPointer() const { return static_cast(static_cast(kMappedMemory->getPointer())); } MemoryAshmem::MemoryAshmem(sp mapped, hidl_memory memory) : Memory(std::move(memory)), kMappedMemory(std::move(mapped)) {} std::pair> MemoryFd::create(size_t size, int prot, int fd, size_t offset) { if (size == 0 || fd < 0) { LOG(ERROR) << "Invalid size or fd"; return {ANEURALNETWORKS_BAD_DATA, nullptr}; } // Duplicate the file descriptor so MemoryFd owns its own version. int dupfd = dup(fd); if (dupfd == -1) { LOG(ERROR) << "Failed to dup the fd"; // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct // error to return here? return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; } // Create a temporary native handle to own the dupfd. native_handle_t* nativeHandle = native_handle_create(1, 3); if (nativeHandle == nullptr) { LOG(ERROR) << "Failed to create native_handle"; // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct // error to return here? return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; } nativeHandle->data[0] = dupfd; nativeHandle->data[1] = prot; const uint64_t bits = static_cast(offset); nativeHandle->data[2] = (int32_t)(uint32_t)(bits & 0xffffffff); nativeHandle->data[3] = (int32_t)(uint32_t)(bits >> 32); // Create a hidl_handle which owns the native handle and fd so that we don't // have to manually clean either the native handle or the fd. hardware::hidl_handle hidlHandle; hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true); // Push the hidl_handle into a hidl_memory object. The hidl_memory object is // responsible for cleaning the hidl_handle, the native handle, and the fd. hidl_memory hidlMemory = hidl_memory("mmap_fd", std::move(hidlHandle), size); return {ANEURALNETWORKS_NO_ERROR, std::make_unique(std::move(hidlMemory))}; } MemoryFd::MemoryFd(hidl_memory memory) : Memory(std::move(memory)) {} std::pair> MemoryAHWB::create(const AHardwareBuffer& ahwb) { AHardwareBuffer_Desc bufferDesc; AHardwareBuffer_describe(&ahwb, &bufferDesc); const native_handle_t* handle = AHardwareBuffer_getNativeHandle(&ahwb); hidl_memory hidlMemory; std::unique_ptr validator; if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) { hidlMemory = hidl_memory("hardware_buffer_blob", handle, bufferDesc.width); validator = std::make_unique(bufferDesc.width); } else { // memory size is not used. hidlMemory = hidl_memory("hardware_buffer", handle, 0); validator = std::make_unique(); } auto memory = std::make_unique(std::move(hidlMemory), std::move(validator)); return {ANEURALNETWORKS_NO_ERROR, std::move(memory)}; }; std::pair> MemoryRuntimeAHWB::create(uint32_t size) { AHardwareBuffer* ahwb = nullptr; const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; const AHardwareBuffer_Desc desc = { .width = size, .height = 1, .layers = 1, .format = AHARDWAREBUFFER_FORMAT_BLOB, .usage = usage, .stride = size, }; int err = AHardwareBuffer_allocate(&desc, &ahwb); if (err != 0 || ahwb == nullptr) { LOG(ERROR) << "Failed to allocate BLOB mode AHWB."; return {ANEURALNETWORKS_OP_FAILED, nullptr}; } auto allocateGuard = base::make_scope_guard([&ahwb]() { AHardwareBuffer_release(ahwb); }); void* buffer = nullptr; err = AHardwareBuffer_lock(ahwb, usage, -1, nullptr, &buffer); if (err != 0 || buffer == nullptr) { LOG(ERROR) << "Failed to lock BLOB mode AHWB."; return {ANEURALNETWORKS_OP_FAILED, nullptr}; } auto lockGuard = base::make_scope_guard([&ahwb]() { AHardwareBuffer_unlock(ahwb, nullptr); }); const native_handle_t* handle = AHardwareBuffer_getNativeHandle(ahwb); if (handle == nullptr) { LOG(ERROR) << "Failed to retrieve the native handle from the AHWB."; return {ANEURALNETWORKS_OP_FAILED, nullptr}; } hidl_memory hidlMemory = hidl_memory("hardware_buffer_blob", handle, desc.width); auto memory = std::make_unique(std::move(hidlMemory), ahwb, static_cast(buffer)); allocateGuard.Disable(); lockGuard.Disable(); return {ANEURALNETWORKS_NO_ERROR, std::move(memory)}; } MemoryRuntimeAHWB::MemoryRuntimeAHWB(hal::hidl_memory memory, AHardwareBuffer* ahwb, uint8_t* buffer) : Memory(std::move(memory)), mAhwb(ahwb), mBuffer(buffer) { CHECK(mAhwb != nullptr); CHECK(mBuffer != nullptr); } MemoryRuntimeAHWB::~MemoryRuntimeAHWB() { AHardwareBuffer_unlock(mAhwb, nullptr); AHardwareBuffer_release(mAhwb); } std::pair> MemoryFromDevice::create(sp buffer, uint32_t token) { if (buffer == nullptr) { LOG(ERROR) << "nullptr IBuffer for device memory."; return {ANEURALNETWORKS_OP_FAILED, nullptr}; } if (token <= 0) { LOG(ERROR) << "Invalid token for device memory: " << token; return {ANEURALNETWORKS_OP_FAILED, nullptr}; } return {ANEURALNETWORKS_NO_ERROR, std::make_unique(std::move(buffer), token)}; }; MemoryFromDevice::MemoryFromDevice(sp buffer, uint32_t token) : Memory(std::move(buffer), token) {} } // namespace nn } // namespace android