/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fuzzing/RandomGraphGenerator.h" #include #include #include #include #include #include #include #include #include #include "TestHarness.h" #include "TestNeuralNetworksWrapper.h" #include "fuzzing/OperationManager.h" #include "fuzzing/RandomGraphGeneratorUtils.h" #include "fuzzing/RandomVariable.h" namespace android { namespace nn { namespace fuzzing_test { using test_wrapper::Result; using namespace test_helper; // Construct a RandomOperand from OperandSignature. RandomOperand::RandomOperand(const OperandSignature& operand, TestOperandType dataType, uint32_t rank) : type(operand.type), finalizer(operand.finalizer) { NN_FUZZER_LOG << "Operand: " << toString(type); if (operand.constructor) operand.constructor(dataType, rank, this); } std::vector RandomOperand::getDimensions() const { std::vector result(dimensions.size(), 0); for (uint32_t i = 0; i < dimensions.size(); i++) result[i] = dimensions[i].getValue(); return result; } static bool areValuePropertiesCompatible(int guaranteed, int required) { return !(~guaranteed & required); } // Check if an edge between [this, other] is valid. If yes, add the edge. bool RandomOperand::createEdgeIfValid(const RandomOperand& other) const { if (other.type != RandomOperandType::INPUT) return false; if (dataType != other.dataType || dimensions.size() != other.dimensions.size() || scale != other.scale || zeroPoint != other.zeroPoint || doNotConnect || other.doNotConnect || !areValuePropertiesCompatible(valueProperties, other.valueProperties)) return false; return RandomVariableNetwork::get()->setEqualIfCompatible(dimensions, other.dimensions); } uint32_t RandomOperand::getNumberOfElements() const { uint32_t num = 1; for (const auto& d : dimensions) num *= d.getValue(); return num; } size_t RandomOperand::getBufferSize() const { return kSizeOfDataType[static_cast(dataType)] * getNumberOfElements(); } // Construct a RandomOperation from OperationSignature. RandomOperation::RandomOperation(const OperationSignature& operation) : opType(operation.opType), finalizer(operation.finalizer) { NN_FUZZER_LOG << "Operation: " << toString(opType); // Determine the data type and rank of the operation and invoke the constructor. TestOperandType dataType = getRandomChoice(operation.supportedDataTypes); uint32_t rank = getRandomChoice(operation.supportedRanks); // Initialize operands and operation. for (const auto& op : operation.inputs) { inputs.emplace_back(new RandomOperand(op, dataType, rank)); } for (const auto& op : operation.outputs) { outputs.emplace_back(new RandomOperand(op, dataType, rank)); } if (operation.constructor) operation.constructor(dataType, rank, this); // Add constraints on the number of elements. if (RandomVariable::defaultValue > 10) { for (auto in : inputs) RandomVariableNetwork::get()->addDimensionProd(in->dimensions); for (auto out : outputs) RandomVariableNetwork::get()->addDimensionProd(out->dimensions); } // The output operands should have dimensions larger than 0. for (auto out : outputs) { for (auto& dim : out->dimensions) dim.setRange(1, kInvalidValue); } } bool RandomGraph::generate(uint32_t seed, uint32_t numOperations, uint32_t dimensionRange) { RandomNumberGenerator::generator.seed(seed); // The generator may (with low probability) end up with an invalid graph. // If so, regenerate the graph until a valid one is produced. while (true) { RandomVariableNetwork::get()->initialize(dimensionRange); mOperations.clear(); mOperands.clear(); if (generateGraph(numOperations) && generateValue()) break; std::cout << "[ Retry ] The RandomGraphGenerator produces an invalid graph.\n"; } return true; } bool RandomGraph::generateGraph(uint32_t numOperations) { NN_FUZZER_LOG << "Generate Graph"; // Randomly generate a vector of operations, this is a valid topological sort. for (uint32_t i = 0; i < numOperations; i++) { mOperations.emplace_back(OperationManager::get()->getRandomOperation()); } // Randomly add edges from the output of one operation to the input of another operation // with larger positional index. for (uint32_t i = 0; i < numOperations; i++) { for (auto& output : mOperations[i].outputs) { for (uint32_t j = i + 1; j < numOperations; j++) { for (auto& input : mOperations[j].inputs) { // For each [output, input] pair, add an edge with probability prob. // TODO: Find a better formula by first defining what "better" is. float prob = 0.1f; if (getBernoulli(prob)) { if (output->createEdgeIfValid(*input)) { NN_FUZZER_LOG << "Add edge: operation " << i << " -> " << j; input = output; output->type = RandomOperandType::INTERNAL; } } } } } } return true; } static bool asConstant(const std::shared_ptr& operand, float prob = 0.5f) { if (operand->type == RandomOperandType::CONST) return true; if (operand->type != RandomOperandType::INPUT) return false; // Force all scalars to be CONST. if (kScalarDataType[static_cast(operand->dataType)]) return true; if (getBernoulli(prob)) return true; return false; } // Freeze the dimensions to a random but valid combination. // Generate random buffer values for model inputs and constants. bool RandomGraph::generateValue() { NN_FUZZER_LOG << "Generate Value"; if (!RandomVariableNetwork::get()->freeze()) return false; // Fill all unique operands into mOperands. std::set> seen; auto fillOperands = [&seen, this](const std::vector>& ops) { for (const auto& op : ops) { if (seen.find(op) == seen.end()) { seen.insert(op); mOperands.push_back(op); } } }; for (const auto& operation : mOperations) { fillOperands(operation.inputs); fillOperands(operation.outputs); } // Count the number of INPUTs. uint32_t numInputs = 0; for (auto& operand : mOperands) { if (operand->type == RandomOperandType::INPUT) numInputs++; } for (auto& operand : mOperands) { // Turn INPUT into CONST with probability prob. Need to keep at least one INPUT. float prob = 0.5f; if (asConstant(operand, prob) && numInputs > 1) { if (operand->type == RandomOperandType::INPUT) numInputs--; operand->type = RandomOperandType::CONST; } if (operand->type != RandomOperandType::INTERNAL && operand->type != RandomOperandType::NO_VALUE) { if (operand->buffer.empty()) operand->resizeBuffer(operand->getBufferSize()); // If operand is set by randomBuffer, copy the frozen values into buffer. if (!operand->randomBuffer.empty()) { int32_t* data = reinterpret_cast(operand->buffer.data()); for (uint32_t i = 0; i < operand->randomBuffer.size(); i++) { data[i] = operand->randomBuffer[i].getValue(); } } if (operand->finalizer) operand->finalizer(operand.get()); } } for (auto& operation : mOperations) { if (operation.finalizer) operation.finalizer(&operation); } return true; } static TestOperandLifeTime convertToTestOperandLifeTime(RandomOperandType type) { switch (type) { case RandomOperandType::INPUT: return TestOperandLifeTime::SUBGRAPH_INPUT; case RandomOperandType::OUTPUT: return TestOperandLifeTime::SUBGRAPH_OUTPUT; case RandomOperandType::INTERNAL: return TestOperandLifeTime::TEMPORARY_VARIABLE; case RandomOperandType::CONST: return TestOperandLifeTime::CONSTANT_COPY; case RandomOperandType::NO_VALUE: return TestOperandLifeTime::NO_VALUE; } } TestModel RandomGraph::createTestModel() { NN_FUZZER_LOG << "Create Test Model"; TestModel testModel; // Set model operands. for (auto& operand : mOperands) { operand->opIndex = testModel.main.operands.size(); TestOperand testOperand = { .type = static_cast(operand->dataType), .dimensions = operand->getDimensions(), // It is safe to always set numberOfConsumers to 0 here because // this field is not used in NDK. .numberOfConsumers = 0, .scale = operand->scale, .zeroPoint = operand->zeroPoint, .lifetime = convertToTestOperandLifeTime(operand->type), .isIgnored = operand->doNotCheckAccuracy, }; // Test buffers. switch (testOperand.lifetime) { case TestOperandLifeTime::SUBGRAPH_OUTPUT: testOperand.data = TestBuffer(operand->getBufferSize()); break; case TestOperandLifeTime::SUBGRAPH_INPUT: case TestOperandLifeTime::CONSTANT_COPY: case TestOperandLifeTime::CONSTANT_REFERENCE: testOperand.data = TestBuffer(operand->getBufferSize(), operand->buffer.data()); break; case TestOperandLifeTime::TEMPORARY_VARIABLE: case TestOperandLifeTime::NO_VALUE: break; default: NN_FUZZER_CHECK(false) << "Unknown lifetime"; } // Input/Output indexes. if (testOperand.lifetime == TestOperandLifeTime::SUBGRAPH_INPUT) { testModel.main.inputIndexes.push_back(operand->opIndex); } else if (testOperand.lifetime == TestOperandLifeTime::SUBGRAPH_OUTPUT) { testModel.main.outputIndexes.push_back(operand->opIndex); } testModel.main.operands.push_back(std::move(testOperand)); } // Set model operations. for (auto& operation : mOperations) { NN_FUZZER_LOG << "Operation: " << toString(operation.opType); TestOperation testOperation = {.type = static_cast(operation.opType)}; for (auto& op : operation.inputs) { NN_FUZZER_LOG << toString(*op); testOperation.inputs.push_back(op->opIndex); } for (auto& op : operation.outputs) { NN_FUZZER_LOG << toString(*op); testOperation.outputs.push_back(op->opIndex); } testModel.main.operations.push_back(std::move(testOperation)); } return testModel; } } // namespace fuzzing_test } // namespace nn } // namespace android