/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fuzzing/operation_signatures/OperationSignatureUtils.h" namespace android { namespace nn { namespace fuzzing_test { // CONCATENATION with fixed number of input tensors. static void concatConstructor(uint32_t numInputs, bool isV1_0, uint32_t rank, RandomOperation* op) { for (uint32_t i = 0; i < numInputs; i++) { op->inputs[i]->dimensions.resize(rank); if (isV1_0) setSameQuantization(op->inputs[i], op->inputs[0]); } op->outputs[0]->dimensions.resize(rank); int32_t axis = getUniform(0, rank - 1); op->inputs[numInputs]->setScalarValue(axis); for (uint32_t i = 0; i < rank; i++) { op->inputs[0]->dimensions[i] = RandomVariableType::FREE; op->outputs[0]->dimensions[i] = op->inputs[0]->dimensions[i]; for (uint32_t j = 1; j < numInputs; j++) { if (axis == static_cast(i)) { op->inputs[j]->dimensions[i] = RandomVariableType::FREE; op->outputs[0]->dimensions[i] = op->outputs[0]->dimensions[i] + op->inputs[j]->dimensions[i]; } else { op->inputs[j]->dimensions[i] = op->inputs[0]->dimensions[i]; } } } } DEFINE_OPERATION_SIGNATURE(CONCAT_2_V1_0){ .opType = TestOperationType::CONCATENATION, .supportedDataTypes = {TestOperandType::TENSOR_FLOAT32, TestOperandType::TENSOR_QUANT8_ASYMM}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_0, .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32)}, .outputs = {OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { concatConstructor(/*numInputs=*/2, /*isV1_0=*/true, rank, op); }}; DEFINE_OPERATION_SIGNATURE(CONCAT_3_V1_0){ .opType = TestOperationType::CONCATENATION, .supportedDataTypes = {TestOperandType::TENSOR_FLOAT32, TestOperandType::TENSOR_QUANT8_ASYMM}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_0, .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32)}, .outputs = {OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { concatConstructor(/*numInputs=*/3, /*isV1_0=*/true, rank, op); }}; DEFINE_OPERATION_SIGNATURE(CONCAT_2_V1_2){ .opType = TestOperationType::CONCATENATION, .supportedDataTypes = {TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_QUANT8_ASYMM}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_2, .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32)}, .outputs = {OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { concatConstructor(/*numInputs=*/2, /*isV1_0=*/false, rank, op); }}; DEFINE_OPERATION_SIGNATURE(CONCAT_3_V1_2){ .opType = TestOperationType::CONCATENATION, .supportedDataTypes = {TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_QUANT8_ASYMM}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_2, .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32)}, .outputs = {OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { concatConstructor(/*numInputs=*/3, /*isV1_0=*/false, rank, op); }}; DEFINE_OPERATION_SIGNATURE(CONCAT_2_V1_3){ .opType = TestOperationType::CONCATENATION, .supportedDataTypes = {TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_3, .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32)}, .outputs = {OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { concatConstructor(/*numInputs=*/2, /*isV1_0=*/false, rank, op); }}; DEFINE_OPERATION_SIGNATURE(CONCAT_3_V1_3){ .opType = TestOperationType::CONCATENATION, .supportedDataTypes = {TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_3, .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32)}, .outputs = {OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { concatConstructor(/*numInputs=*/3, /*isV1_0=*/false, rank, op); }}; // SPLIT with fixed number of splits. static void splitConstructor(uint32_t numSplits, uint32_t rank, RandomOperation* op) { int32_t axis = getUniform(-rank, rank - 1); op->inputs[1]->setScalarValue(axis); if (axis < 0) axis += rank; op->inputs[0]->dimensions.resize(rank); for (uint32_t i = 0; i < numSplits; i++) { op->outputs[i]->dimensions.resize(rank); setSameQuantization(op->outputs[i], op->inputs[0]); } for (uint32_t i = 0; i < rank; i++) { op->inputs[0]->dimensions[i] = RandomVariableType::FREE; RandomVariable outDim; if (axis == static_cast(i)) { outDim = op->inputs[0]->dimensions[i].exactDiv(numSplits); } else { outDim = op->inputs[0]->dimensions[i]; } for (uint32_t j = 0; j < numSplits; j++) op->outputs[j]->dimensions[i] = outDim; } } DEFINE_OPERATION_SIGNATURE(SPLIT_2_V1_2){ .opType = TestOperationType::SPLIT, .supportedDataTypes = {TestOperandType::TENSOR_FLOAT32, TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32, TestOperandType::TENSOR_QUANT8_ASYMM}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_2, .inputs = {INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32), PARAMETER_CHOICE(TestOperandType::INT32, 2)}, .outputs = {OUTPUT_DEFAULT, OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { splitConstructor(/*numSplits=*/2, rank, op); }}; DEFINE_OPERATION_SIGNATURE(SPLIT_3_V1_2){ .opType = TestOperationType::SPLIT, .supportedDataTypes = {TestOperandType::TENSOR_FLOAT32, TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32, TestOperandType::TENSOR_QUANT8_ASYMM}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_2, .inputs = {INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32), PARAMETER_CHOICE(TestOperandType::INT32, 3)}, .outputs = {OUTPUT_DEFAULT, OUTPUT_DEFAULT, OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { splitConstructor(/*numSplits=*/3, rank, op); }}; DEFINE_OPERATION_SIGNATURE(SPLIT_2_V1_3){ .opType = TestOperationType::SPLIT, .supportedDataTypes = {TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_3, .inputs = {INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32), PARAMETER_CHOICE(TestOperandType::INT32, 2)}, .outputs = {OUTPUT_DEFAULT, OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { splitConstructor(/*numSplits=*/2, rank, op); }}; DEFINE_OPERATION_SIGNATURE(SPLIT_3_V1_3){ .opType = TestOperationType::SPLIT, .supportedDataTypes = {TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED}, .supportedRanks = {1, 2, 3, 4}, .version = TestHalVersion::V1_3, .inputs = {INPUT_DEFAULT, PARAMETER_NONE(TestOperandType::INT32), PARAMETER_CHOICE(TestOperandType::INT32, 3)}, .outputs = {OUTPUT_DEFAULT, OUTPUT_DEFAULT, OUTPUT_DEFAULT}, .constructor = [](TestOperandType, uint32_t rank, RandomOperation* op) { splitConstructor(/*numSplits=*/3, rank, op); }}; } // namespace fuzzing_test } // namespace nn } // namespace android