/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace android { using std::chrono_literals::operator""ms; // Timeout for waiting for an expected event static constexpr std::chrono::duration WAIT_TIMEOUT = 100ms; // An arbitrary time value. static const nsecs_t ARBITRARY_TIME = 1234; // Arbitrary display properties. static const int32_t DISPLAY_ID = 0; static const int32_t SECONDARY_DISPLAY_ID = DISPLAY_ID + 1; static const int32_t DISPLAY_WIDTH = 480; static const int32_t DISPLAY_HEIGHT = 800; static const int32_t VIRTUAL_DISPLAY_ID = 1; static const int32_t VIRTUAL_DISPLAY_WIDTH = 400; static const int32_t VIRTUAL_DISPLAY_HEIGHT = 500; static const char* VIRTUAL_DISPLAY_UNIQUE_ID = "virtual:1"; static constexpr std::optional NO_PORT = std::nullopt; // no physical port is specified // Error tolerance for floating point assertions. static const float EPSILON = 0.001f; template static inline T min(T a, T b) { return a < b ? a : b; } static inline float avg(float x, float y) { return (x + y) / 2; } // --- FakePointerController --- class FakePointerController : public PointerControllerInterface { bool mHaveBounds; float mMinX, mMinY, mMaxX, mMaxY; float mX, mY; int32_t mButtonState; int32_t mDisplayId; protected: virtual ~FakePointerController() { } public: FakePointerController() : mHaveBounds(false), mMinX(0), mMinY(0), mMaxX(0), mMaxY(0), mX(0), mY(0), mButtonState(0), mDisplayId(ADISPLAY_ID_DEFAULT) { } void setBounds(float minX, float minY, float maxX, float maxY) { mHaveBounds = true; mMinX = minX; mMinY = minY; mMaxX = maxX; mMaxY = maxY; } virtual void setPosition(float x, float y) { mX = x; mY = y; } virtual void setButtonState(int32_t buttonState) { mButtonState = buttonState; } virtual int32_t getButtonState() const { return mButtonState; } virtual void getPosition(float* outX, float* outY) const { *outX = mX; *outY = mY; } virtual int32_t getDisplayId() const { return mDisplayId; } virtual void setDisplayViewport(const DisplayViewport& viewport) { mDisplayId = viewport.displayId; } const std::map>& getSpots() { return mSpotsByDisplay; } private: virtual bool getBounds(float* outMinX, float* outMinY, float* outMaxX, float* outMaxY) const { *outMinX = mMinX; *outMinY = mMinY; *outMaxX = mMaxX; *outMaxY = mMaxY; return mHaveBounds; } virtual void move(float deltaX, float deltaY) { mX += deltaX; if (mX < mMinX) mX = mMinX; if (mX > mMaxX) mX = mMaxX; mY += deltaY; if (mY < mMinY) mY = mMinY; if (mY > mMaxY) mY = mMaxY; } virtual void fade(Transition) { } virtual void unfade(Transition) { } virtual void setPresentation(Presentation) { } virtual void setSpots(const PointerCoords*, const uint32_t*, BitSet32 spotIdBits, int32_t displayId) { std::vector newSpots; // Add spots for fingers that are down. for (BitSet32 idBits(spotIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); newSpots.push_back(id); } mSpotsByDisplay[displayId] = newSpots; } virtual void clearSpots() { } std::map> mSpotsByDisplay; }; // --- FakeInputReaderPolicy --- class FakeInputReaderPolicy : public InputReaderPolicyInterface { std::mutex mLock; std::condition_variable mDevicesChangedCondition; InputReaderConfiguration mConfig; KeyedVector > mPointerControllers; std::vector mInputDevices GUARDED_BY(mLock); bool mInputDevicesChanged GUARDED_BY(mLock){false}; std::vector mViewports; TouchAffineTransformation transform; protected: virtual ~FakeInputReaderPolicy() { } public: FakeInputReaderPolicy() { } void assertInputDevicesChanged() { waitForInputDevices([](bool devicesChanged) { if (!devicesChanged) { FAIL() << "Timed out waiting for notifyInputDevicesChanged() to be called."; } }); } void assertInputDevicesNotChanged() { waitForInputDevices([](bool devicesChanged) { if (devicesChanged) { FAIL() << "Expected notifyInputDevicesChanged() to not be called."; } }); } virtual void clearViewports() { mViewports.clear(); mConfig.setDisplayViewports(mViewports); } std::optional getDisplayViewportByUniqueId(const std::string& uniqueId) const { return mConfig.getDisplayViewportByUniqueId(uniqueId); } std::optional getDisplayViewportByType(ViewportType type) const { return mConfig.getDisplayViewportByType(type); } std::optional getDisplayViewportByPort(uint8_t displayPort) const { return mConfig.getDisplayViewportByPort(displayPort); } void addDisplayViewport(int32_t displayId, int32_t width, int32_t height, int32_t orientation, const std::string& uniqueId, std::optional physicalPort, ViewportType viewportType) { const DisplayViewport viewport = createDisplayViewport(displayId, width, height, orientation, uniqueId, physicalPort, viewportType); mViewports.push_back(viewport); mConfig.setDisplayViewports(mViewports); } bool updateViewport(const DisplayViewport& viewport) { size_t count = mViewports.size(); for (size_t i = 0; i < count; i++) { const DisplayViewport& currentViewport = mViewports[i]; if (currentViewport.displayId == viewport.displayId) { mViewports[i] = viewport; mConfig.setDisplayViewports(mViewports); return true; } } // no viewport found. return false; } void addExcludedDeviceName(const std::string& deviceName) { mConfig.excludedDeviceNames.push_back(deviceName); } void addInputPortAssociation(const std::string& inputPort, uint8_t displayPort) { mConfig.portAssociations.insert({inputPort, displayPort}); } void addDisabledDevice(int32_t deviceId) { mConfig.disabledDevices.insert(deviceId); } void removeDisabledDevice(int32_t deviceId) { mConfig.disabledDevices.erase(deviceId); } void setPointerController(int32_t deviceId, const sp& controller) { mPointerControllers.add(deviceId, controller); } const InputReaderConfiguration* getReaderConfiguration() const { return &mConfig; } const std::vector& getInputDevices() const { return mInputDevices; } TouchAffineTransformation getTouchAffineTransformation(const std::string& inputDeviceDescriptor, int32_t surfaceRotation) { return transform; } void setTouchAffineTransformation(const TouchAffineTransformation t) { transform = t; } void setPointerCapture(bool enabled) { mConfig.pointerCapture = enabled; } void setShowTouches(bool enabled) { mConfig.showTouches = enabled; } void setDefaultPointerDisplayId(int32_t pointerDisplayId) { mConfig.defaultPointerDisplayId = pointerDisplayId; } private: DisplayViewport createDisplayViewport(int32_t displayId, int32_t width, int32_t height, int32_t orientation, const std::string& uniqueId, std::optional physicalPort, ViewportType type) { bool isRotated = (orientation == DISPLAY_ORIENTATION_90 || orientation == DISPLAY_ORIENTATION_270); DisplayViewport v; v.displayId = displayId; v.orientation = orientation; v.logicalLeft = 0; v.logicalTop = 0; v.logicalRight = isRotated ? height : width; v.logicalBottom = isRotated ? width : height; v.physicalLeft = 0; v.physicalTop = 0; v.physicalRight = isRotated ? height : width; v.physicalBottom = isRotated ? width : height; v.deviceWidth = isRotated ? height : width; v.deviceHeight = isRotated ? width : height; v.uniqueId = uniqueId; v.physicalPort = physicalPort; v.type = type; return v; } virtual void getReaderConfiguration(InputReaderConfiguration* outConfig) { *outConfig = mConfig; } virtual sp obtainPointerController(int32_t deviceId) { return mPointerControllers.valueFor(deviceId); } virtual void notifyInputDevicesChanged(const std::vector& inputDevices) { std::scoped_lock lock(mLock); mInputDevices = inputDevices; mInputDevicesChanged = true; mDevicesChangedCondition.notify_all(); } virtual sp getKeyboardLayoutOverlay(const InputDeviceIdentifier&) { return nullptr; } virtual std::string getDeviceAlias(const InputDeviceIdentifier&) { return ""; } void waitForInputDevices(std::function processDevicesChanged) { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); const bool devicesChanged = mDevicesChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { return mInputDevicesChanged; }); ASSERT_NO_FATAL_FAILURE(processDevicesChanged(devicesChanged)); mInputDevicesChanged = false; } }; // --- FakeEventHub --- class FakeEventHub : public EventHubInterface { struct KeyInfo { int32_t keyCode; uint32_t flags; }; struct Device { InputDeviceIdentifier identifier; uint32_t classes; PropertyMap configuration; KeyedVector absoluteAxes; KeyedVector relativeAxes; KeyedVector keyCodeStates; KeyedVector scanCodeStates; KeyedVector switchStates; KeyedVector absoluteAxisValue; KeyedVector keysByScanCode; KeyedVector keysByUsageCode; KeyedVector leds; std::vector virtualKeys; bool enabled; status_t enable() { enabled = true; return OK; } status_t disable() { enabled = false; return OK; } explicit Device(uint32_t classes) : classes(classes), enabled(true) { } }; std::mutex mLock; std::condition_variable mEventsCondition; KeyedVector mDevices; std::vector mExcludedDevices; List mEvents GUARDED_BY(mLock); std::unordered_map> mVideoFrames; public: virtual ~FakeEventHub() { for (size_t i = 0; i < mDevices.size(); i++) { delete mDevices.valueAt(i); } } FakeEventHub() { } void addDevice(int32_t deviceId, const std::string& name, uint32_t classes) { Device* device = new Device(classes); device->identifier.name = name; mDevices.add(deviceId, device); enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0); } void removeDevice(int32_t deviceId) { delete mDevices.valueFor(deviceId); mDevices.removeItem(deviceId); enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0); } bool isDeviceEnabled(int32_t deviceId) { Device* device = getDevice(deviceId); if (device == nullptr) { ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__); return false; } return device->enabled; } status_t enableDevice(int32_t deviceId) { status_t result; Device* device = getDevice(deviceId); if (device == nullptr) { ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__); return BAD_VALUE; } if (device->enabled) { ALOGW("Duplicate call to %s, device %" PRId32 " already enabled", __func__, deviceId); return OK; } result = device->enable(); return result; } status_t disableDevice(int32_t deviceId) { Device* device = getDevice(deviceId); if (device == nullptr) { ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__); return BAD_VALUE; } if (!device->enabled) { ALOGW("Duplicate call to %s, device %" PRId32 " already disabled", __func__, deviceId); return OK; } return device->disable(); } void finishDeviceScan() { enqueueEvent(ARBITRARY_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0); } void addConfigurationProperty(int32_t deviceId, const String8& key, const String8& value) { Device* device = getDevice(deviceId); device->configuration.addProperty(key, value); } void addConfigurationMap(int32_t deviceId, const PropertyMap* configuration) { Device* device = getDevice(deviceId); device->configuration.addAll(configuration); } void addAbsoluteAxis(int32_t deviceId, int axis, int32_t minValue, int32_t maxValue, int flat, int fuzz, int resolution = 0) { Device* device = getDevice(deviceId); RawAbsoluteAxisInfo info; info.valid = true; info.minValue = minValue; info.maxValue = maxValue; info.flat = flat; info.fuzz = fuzz; info.resolution = resolution; device->absoluteAxes.add(axis, info); } void addRelativeAxis(int32_t deviceId, int32_t axis) { Device* device = getDevice(deviceId); device->relativeAxes.add(axis, true); } void setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) { Device* device = getDevice(deviceId); device->keyCodeStates.replaceValueFor(keyCode, state); } void setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) { Device* device = getDevice(deviceId); device->scanCodeStates.replaceValueFor(scanCode, state); } void setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) { Device* device = getDevice(deviceId); device->switchStates.replaceValueFor(switchCode, state); } void setAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t value) { Device* device = getDevice(deviceId); device->absoluteAxisValue.replaceValueFor(axis, value); } void addKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t keyCode, uint32_t flags) { Device* device = getDevice(deviceId); KeyInfo info; info.keyCode = keyCode; info.flags = flags; if (scanCode) { device->keysByScanCode.add(scanCode, info); } if (usageCode) { device->keysByUsageCode.add(usageCode, info); } } void addLed(int32_t deviceId, int32_t led, bool initialState) { Device* device = getDevice(deviceId); device->leds.add(led, initialState); } bool getLedState(int32_t deviceId, int32_t led) { Device* device = getDevice(deviceId); return device->leds.valueFor(led); } std::vector& getExcludedDevices() { return mExcludedDevices; } void addVirtualKeyDefinition(int32_t deviceId, const VirtualKeyDefinition& definition) { Device* device = getDevice(deviceId); device->virtualKeys.push_back(definition); } void enqueueEvent(nsecs_t when, int32_t deviceId, int32_t type, int32_t code, int32_t value) { std::scoped_lock lock(mLock); RawEvent event; event.when = when; event.deviceId = deviceId; event.type = type; event.code = code; event.value = value; mEvents.push_back(event); if (type == EV_ABS) { setAbsoluteAxisValue(deviceId, code, value); } } void setVideoFrames(std::unordered_map> videoFrames) { mVideoFrames = std::move(videoFrames); } void assertQueueIsEmpty() { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); const bool queueIsEmpty = mEventsCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { return mEvents.size() == 0; }); if (!queueIsEmpty) { FAIL() << "Timed out waiting for EventHub queue to be emptied."; } } private: Device* getDevice(int32_t deviceId) const { ssize_t index = mDevices.indexOfKey(deviceId); return index >= 0 ? mDevices.valueAt(index) : nullptr; } virtual uint32_t getDeviceClasses(int32_t deviceId) const { Device* device = getDevice(deviceId); return device ? device->classes : 0; } virtual InputDeviceIdentifier getDeviceIdentifier(int32_t deviceId) const { Device* device = getDevice(deviceId); return device ? device->identifier : InputDeviceIdentifier(); } virtual int32_t getDeviceControllerNumber(int32_t) const { return 0; } virtual void getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { Device* device = getDevice(deviceId); if (device) { *outConfiguration = device->configuration; } } virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis, RawAbsoluteAxisInfo* outAxisInfo) const { Device* device = getDevice(deviceId); if (device && device->enabled) { ssize_t index = device->absoluteAxes.indexOfKey(axis); if (index >= 0) { *outAxisInfo = device->absoluteAxes.valueAt(index); return OK; } } outAxisInfo->clear(); return -1; } virtual bool hasRelativeAxis(int32_t deviceId, int axis) const { Device* device = getDevice(deviceId); if (device) { return device->relativeAxes.indexOfKey(axis) >= 0; } return false; } virtual bool hasInputProperty(int32_t, int) const { return false; } virtual status_t mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState, int32_t* outKeycode, int32_t *outMetaState, uint32_t* outFlags) const { Device* device = getDevice(deviceId); if (device) { const KeyInfo* key = getKey(device, scanCode, usageCode); if (key) { if (outKeycode) { *outKeycode = key->keyCode; } if (outFlags) { *outFlags = key->flags; } if (outMetaState) { *outMetaState = metaState; } return OK; } } return NAME_NOT_FOUND; } const KeyInfo* getKey(Device* device, int32_t scanCode, int32_t usageCode) const { if (usageCode) { ssize_t index = device->keysByUsageCode.indexOfKey(usageCode); if (index >= 0) { return &device->keysByUsageCode.valueAt(index); } } if (scanCode) { ssize_t index = device->keysByScanCode.indexOfKey(scanCode); if (index >= 0) { return &device->keysByScanCode.valueAt(index); } } return nullptr; } virtual status_t mapAxis(int32_t, int32_t, AxisInfo*) const { return NAME_NOT_FOUND; } virtual void setExcludedDevices(const std::vector& devices) { mExcludedDevices = devices; } virtual size_t getEvents(int, RawEvent* buffer, size_t) { std::scoped_lock lock(mLock); if (mEvents.empty()) { return 0; } *buffer = *mEvents.begin(); mEvents.erase(mEvents.begin()); mEventsCondition.notify_all(); return 1; } virtual std::vector getVideoFrames(int32_t deviceId) { auto it = mVideoFrames.find(deviceId); if (it != mVideoFrames.end()) { std::vector frames = std::move(it->second); mVideoFrames.erase(deviceId); return frames; } return {}; } virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->scanCodeStates.indexOfKey(scanCode); if (index >= 0) { return device->scanCodeStates.valueAt(index); } } return AKEY_STATE_UNKNOWN; } virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->keyCodeStates.indexOfKey(keyCode); if (index >= 0) { return device->keyCodeStates.valueAt(index); } } return AKEY_STATE_UNKNOWN; } virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->switchStates.indexOfKey(sw); if (index >= 0) { return device->switchStates.valueAt(index); } } return AKEY_STATE_UNKNOWN; } virtual status_t getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->absoluteAxisValue.indexOfKey(axis); if (index >= 0) { *outValue = device->absoluteAxisValue.valueAt(index); return OK; } } *outValue = 0; return -1; } virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const { bool result = false; Device* device = getDevice(deviceId); if (device) { for (size_t i = 0; i < numCodes; i++) { for (size_t j = 0; j < device->keysByScanCode.size(); j++) { if (keyCodes[i] == device->keysByScanCode.valueAt(j).keyCode) { outFlags[i] = 1; result = true; } } for (size_t j = 0; j < device->keysByUsageCode.size(); j++) { if (keyCodes[i] == device->keysByUsageCode.valueAt(j).keyCode) { outFlags[i] = 1; result = true; } } } } return result; } virtual bool hasScanCode(int32_t deviceId, int32_t scanCode) const { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->keysByScanCode.indexOfKey(scanCode); return index >= 0; } return false; } virtual bool hasLed(int32_t deviceId, int32_t led) const { Device* device = getDevice(deviceId); return device && device->leds.indexOfKey(led) >= 0; } virtual void setLedState(int32_t deviceId, int32_t led, bool on) { Device* device = getDevice(deviceId); if (device) { ssize_t index = device->leds.indexOfKey(led); if (index >= 0) { device->leds.replaceValueAt(led, on); } else { ADD_FAILURE() << "Attempted to set the state of an LED that the EventHub declared " "was not present. led=" << led; } } } virtual void getVirtualKeyDefinitions(int32_t deviceId, std::vector& outVirtualKeys) const { outVirtualKeys.clear(); Device* device = getDevice(deviceId); if (device) { outVirtualKeys = device->virtualKeys; } } virtual sp getKeyCharacterMap(int32_t) const { return nullptr; } virtual bool setKeyboardLayoutOverlay(int32_t, const sp&) { return false; } virtual void vibrate(int32_t, nsecs_t) { } virtual void cancelVibrate(int32_t) { } virtual bool isExternal(int32_t) const { return false; } virtual void dump(std::string&) { } virtual void monitor() { } virtual void requestReopenDevices() { } virtual void wake() { } }; // --- FakeInputReaderContext --- class FakeInputReaderContext : public InputReaderContext { std::shared_ptr mEventHub; sp mPolicy; sp mListener; int32_t mGlobalMetaState; bool mUpdateGlobalMetaStateWasCalled; int32_t mGeneration; int32_t mNextId; wp mPointerController; public: FakeInputReaderContext(std::shared_ptr eventHub, const sp& policy, const sp& listener) : mEventHub(eventHub), mPolicy(policy), mListener(listener), mGlobalMetaState(0), mNextId(1) {} virtual ~FakeInputReaderContext() { } void assertUpdateGlobalMetaStateWasCalled() { ASSERT_TRUE(mUpdateGlobalMetaStateWasCalled) << "Expected updateGlobalMetaState() to have been called."; mUpdateGlobalMetaStateWasCalled = false; } void setGlobalMetaState(int32_t state) { mGlobalMetaState = state; } uint32_t getGeneration() { return mGeneration; } void updatePointerDisplay() { sp controller = mPointerController.promote(); if (controller != nullptr) { InputReaderConfiguration config; mPolicy->getReaderConfiguration(&config); auto viewport = config.getDisplayViewportById(config.defaultPointerDisplayId); if (viewport) { controller->setDisplayViewport(*viewport); } } } private: virtual void updateGlobalMetaState() { mUpdateGlobalMetaStateWasCalled = true; } virtual int32_t getGlobalMetaState() { return mGlobalMetaState; } virtual EventHubInterface* getEventHub() { return mEventHub.get(); } virtual InputReaderPolicyInterface* getPolicy() { return mPolicy.get(); } virtual InputListenerInterface* getListener() { return mListener.get(); } virtual void disableVirtualKeysUntil(nsecs_t) { } virtual bool shouldDropVirtualKey(nsecs_t, int32_t, int32_t) { return false; } virtual sp getPointerController(int32_t deviceId) { sp controller = mPointerController.promote(); if (controller == nullptr) { controller = mPolicy->obtainPointerController(deviceId); mPointerController = controller; updatePointerDisplay(); } return controller; } virtual void fadePointer() { } virtual void requestTimeoutAtTime(nsecs_t) { } virtual int32_t bumpGeneration() { return ++mGeneration; } virtual void getExternalStylusDevices(std::vector& outDevices) { } virtual void dispatchExternalStylusState(const StylusState&) { } virtual int32_t getNextId() { return mNextId++; } }; // --- FakeInputMapper --- class FakeInputMapper : public InputMapper { uint32_t mSources; int32_t mKeyboardType; int32_t mMetaState; KeyedVector mKeyCodeStates; KeyedVector mScanCodeStates; KeyedVector mSwitchStates; std::vector mSupportedKeyCodes; std::mutex mLock; std::condition_variable mStateChangedCondition; bool mConfigureWasCalled GUARDED_BY(mLock); bool mResetWasCalled GUARDED_BY(mLock); bool mProcessWasCalled GUARDED_BY(mLock); RawEvent mLastEvent GUARDED_BY(mLock); std::optional mViewport; public: FakeInputMapper(InputDeviceContext& deviceContext, uint32_t sources) : InputMapper(deviceContext), mSources(sources), mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE), mMetaState(0), mConfigureWasCalled(false), mResetWasCalled(false), mProcessWasCalled(false) {} virtual ~FakeInputMapper() { } void setKeyboardType(int32_t keyboardType) { mKeyboardType = keyboardType; } void setMetaState(int32_t metaState) { mMetaState = metaState; } void assertConfigureWasCalled() { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); const bool configureCalled = mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { return mConfigureWasCalled; }); if (!configureCalled) { FAIL() << "Expected configure() to have been called."; } mConfigureWasCalled = false; } void assertResetWasCalled() { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); const bool resetCalled = mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { return mResetWasCalled; }); if (!resetCalled) { FAIL() << "Expected reset() to have been called."; } mResetWasCalled = false; } void assertProcessWasCalled(RawEvent* outLastEvent = nullptr) { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); const bool processCalled = mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { return mProcessWasCalled; }); if (!processCalled) { FAIL() << "Expected process() to have been called."; } if (outLastEvent) { *outLastEvent = mLastEvent; } mProcessWasCalled = false; } void setKeyCodeState(int32_t keyCode, int32_t state) { mKeyCodeStates.replaceValueFor(keyCode, state); } void setScanCodeState(int32_t scanCode, int32_t state) { mScanCodeStates.replaceValueFor(scanCode, state); } void setSwitchState(int32_t switchCode, int32_t state) { mSwitchStates.replaceValueFor(switchCode, state); } void addSupportedKeyCode(int32_t keyCode) { mSupportedKeyCodes.push_back(keyCode); } private: virtual uint32_t getSources() { return mSources; } virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo) { InputMapper::populateDeviceInfo(deviceInfo); if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) { deviceInfo->setKeyboardType(mKeyboardType); } } virtual void configure(nsecs_t, const InputReaderConfiguration* config, uint32_t changes) { std::scoped_lock lock(mLock); mConfigureWasCalled = true; // Find the associated viewport if exist. const std::optional displayPort = getDeviceContext().getAssociatedDisplayPort(); if (displayPort && (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { mViewport = config->getDisplayViewportByPort(*displayPort); } mStateChangedCondition.notify_all(); } virtual void reset(nsecs_t) { std::scoped_lock lock(mLock); mResetWasCalled = true; mStateChangedCondition.notify_all(); } virtual void process(const RawEvent* rawEvent) { std::scoped_lock lock(mLock); mLastEvent = *rawEvent; mProcessWasCalled = true; mStateChangedCondition.notify_all(); } virtual int32_t getKeyCodeState(uint32_t, int32_t keyCode) { ssize_t index = mKeyCodeStates.indexOfKey(keyCode); return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN; } virtual int32_t getScanCodeState(uint32_t, int32_t scanCode) { ssize_t index = mScanCodeStates.indexOfKey(scanCode); return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN; } virtual int32_t getSwitchState(uint32_t, int32_t switchCode) { ssize_t index = mSwitchStates.indexOfKey(switchCode); return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN; } virtual bool markSupportedKeyCodes(uint32_t, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { bool result = false; for (size_t i = 0; i < numCodes; i++) { for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) { if (keyCodes[i] == mSupportedKeyCodes[j]) { outFlags[i] = 1; result = true; } } } return result; } virtual int32_t getMetaState() { return mMetaState; } virtual void fadePointer() { } virtual std::optional getAssociatedDisplay() { if (mViewport) { return std::make_optional(mViewport->displayId); } return std::nullopt; } }; // --- InstrumentedInputReader --- class InstrumentedInputReader : public InputReader { std::shared_ptr mNextDevice; public: InstrumentedInputReader(std::shared_ptr eventHub, const sp& policy, const sp& listener) : InputReader(eventHub, policy, listener), mNextDevice(nullptr) {} virtual ~InstrumentedInputReader() {} void setNextDevice(std::shared_ptr device) { mNextDevice = device; } std::shared_ptr newDevice(int32_t deviceId, const std::string& name, const std::string& location = "") { InputDeviceIdentifier identifier; identifier.name = name; identifier.location = location; int32_t generation = deviceId + 1; return std::make_shared(&mContext, deviceId, generation, identifier); } // Make the protected loopOnce method accessible to tests. using InputReader::loopOnce; protected: virtual std::shared_ptr createDeviceLocked( int32_t eventHubId, const InputDeviceIdentifier& identifier) { if (mNextDevice) { std::shared_ptr device(mNextDevice); mNextDevice = nullptr; return device; } return InputReader::createDeviceLocked(eventHubId, identifier); } friend class InputReaderTest; }; // --- InputReaderPolicyTest --- class InputReaderPolicyTest : public testing::Test { protected: sp mFakePolicy; virtual void SetUp() override { mFakePolicy = new FakeInputReaderPolicy(); } virtual void TearDown() override { mFakePolicy.clear(); } }; /** * Check that empty set of viewports is an acceptable configuration. * Also try to get internal viewport two different ways - by type and by uniqueId. * * There will be confusion if two viewports with empty uniqueId and identical type are present. * Such configuration is not currently allowed. */ TEST_F(InputReaderPolicyTest, Viewports_GetCleared) { static const std::string uniqueId = "local:0"; // We didn't add any viewports yet, so there shouldn't be any. std::optional internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::VIEWPORT_INTERNAL); ASSERT_FALSE(internalViewport); // Add an internal viewport, then clear it mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, uniqueId, NO_PORT, ViewportType::VIEWPORT_INTERNAL); // Check matching by uniqueId internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId); ASSERT_TRUE(internalViewport); ASSERT_EQ(ViewportType::VIEWPORT_INTERNAL, internalViewport->type); // Check matching by viewport type internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::VIEWPORT_INTERNAL); ASSERT_TRUE(internalViewport); ASSERT_EQ(uniqueId, internalViewport->uniqueId); mFakePolicy->clearViewports(); // Make sure nothing is found after clear internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId); ASSERT_FALSE(internalViewport); internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::VIEWPORT_INTERNAL); ASSERT_FALSE(internalViewport); } TEST_F(InputReaderPolicyTest, Viewports_GetByType) { const std::string internalUniqueId = "local:0"; const std::string externalUniqueId = "local:1"; const std::string virtualUniqueId1 = "virtual:2"; const std::string virtualUniqueId2 = "virtual:3"; constexpr int32_t virtualDisplayId1 = 2; constexpr int32_t virtualDisplayId2 = 3; // Add an internal viewport mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, internalUniqueId, NO_PORT, ViewportType::VIEWPORT_INTERNAL); // Add an external viewport mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, externalUniqueId, NO_PORT, ViewportType::VIEWPORT_EXTERNAL); // Add an virtual viewport mFakePolicy->addDisplayViewport(virtualDisplayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, virtualUniqueId1, NO_PORT, ViewportType::VIEWPORT_VIRTUAL); // Add another virtual viewport mFakePolicy->addDisplayViewport(virtualDisplayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, virtualUniqueId2, NO_PORT, ViewportType::VIEWPORT_VIRTUAL); // Check matching by type for internal std::optional internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::VIEWPORT_INTERNAL); ASSERT_TRUE(internalViewport); ASSERT_EQ(internalUniqueId, internalViewport->uniqueId); // Check matching by type for external std::optional externalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::VIEWPORT_EXTERNAL); ASSERT_TRUE(externalViewport); ASSERT_EQ(externalUniqueId, externalViewport->uniqueId); // Check matching by uniqueId for virtual viewport #1 std::optional virtualViewport1 = mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId1); ASSERT_TRUE(virtualViewport1); ASSERT_EQ(ViewportType::VIEWPORT_VIRTUAL, virtualViewport1->type); ASSERT_EQ(virtualUniqueId1, virtualViewport1->uniqueId); ASSERT_EQ(virtualDisplayId1, virtualViewport1->displayId); // Check matching by uniqueId for virtual viewport #2 std::optional virtualViewport2 = mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId2); ASSERT_TRUE(virtualViewport2); ASSERT_EQ(ViewportType::VIEWPORT_VIRTUAL, virtualViewport2->type); ASSERT_EQ(virtualUniqueId2, virtualViewport2->uniqueId); ASSERT_EQ(virtualDisplayId2, virtualViewport2->displayId); } /** * We can have 2 viewports of the same kind. We can distinguish them by uniqueId, and confirm * that lookup works by checking display id. * Check that 2 viewports of each kind is possible, for all existing viewport types. */ TEST_F(InputReaderPolicyTest, Viewports_TwoOfSameType) { const std::string uniqueId1 = "uniqueId1"; const std::string uniqueId2 = "uniqueId2"; constexpr int32_t displayId1 = 2; constexpr int32_t displayId2 = 3; std::vector types = {ViewportType::VIEWPORT_INTERNAL, ViewportType::VIEWPORT_EXTERNAL, ViewportType::VIEWPORT_VIRTUAL}; for (const ViewportType& type : types) { mFakePolicy->clearViewports(); // Add a viewport mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, uniqueId1, NO_PORT, type); // Add another viewport mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, uniqueId2, NO_PORT, type); // Check that correct display viewport was returned by comparing the display IDs. std::optional viewport1 = mFakePolicy->getDisplayViewportByUniqueId(uniqueId1); ASSERT_TRUE(viewport1); ASSERT_EQ(displayId1, viewport1->displayId); ASSERT_EQ(type, viewport1->type); std::optional viewport2 = mFakePolicy->getDisplayViewportByUniqueId(uniqueId2); ASSERT_TRUE(viewport2); ASSERT_EQ(displayId2, viewport2->displayId); ASSERT_EQ(type, viewport2->type); // When there are multiple viewports of the same kind, and uniqueId is not specified // in the call to getDisplayViewport, then that situation is not supported. // The viewports can be stored in any order, so we cannot rely on the order, since that // is just implementation detail. // However, we can check that it still returns *a* viewport, we just cannot assert // which one specifically is returned. std::optional someViewport = mFakePolicy->getDisplayViewportByType(type); ASSERT_TRUE(someViewport); } } /** * Check getDisplayViewportByPort */ TEST_F(InputReaderPolicyTest, Viewports_GetByPort) { constexpr ViewportType type = ViewportType::VIEWPORT_EXTERNAL; const std::string uniqueId1 = "uniqueId1"; const std::string uniqueId2 = "uniqueId2"; constexpr int32_t displayId1 = 1; constexpr int32_t displayId2 = 2; const uint8_t hdmi1 = 0; const uint8_t hdmi2 = 1; const uint8_t hdmi3 = 2; mFakePolicy->clearViewports(); // Add a viewport that's associated with some display port that's not of interest. mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, uniqueId1, hdmi3, type); // Add another viewport, connected to HDMI1 port mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, uniqueId2, hdmi1, type); // Check that correct display viewport was returned by comparing the display ports. std::optional hdmi1Viewport = mFakePolicy->getDisplayViewportByPort(hdmi1); ASSERT_TRUE(hdmi1Viewport); ASSERT_EQ(displayId2, hdmi1Viewport->displayId); ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId); // Check that we can still get the same viewport using the uniqueId hdmi1Viewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId2); ASSERT_TRUE(hdmi1Viewport); ASSERT_EQ(displayId2, hdmi1Viewport->displayId); ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId); ASSERT_EQ(type, hdmi1Viewport->type); // Check that we cannot find a port with "HDMI2", because we never added one std::optional hdmi2Viewport = mFakePolicy->getDisplayViewportByPort(hdmi2); ASSERT_FALSE(hdmi2Viewport); } // --- InputReaderTest --- class InputReaderTest : public testing::Test { protected: sp mFakeListener; sp mFakePolicy; std::shared_ptr mFakeEventHub; std::unique_ptr mReader; virtual void SetUp() override { mFakeEventHub = std::make_unique(); mFakePolicy = new FakeInputReaderPolicy(); mFakeListener = new TestInputListener(); mReader = std::make_unique(mFakeEventHub, mFakePolicy, mFakeListener); } virtual void TearDown() override { mFakeListener.clear(); mFakePolicy.clear(); } void addDevice(int32_t eventHubId, const std::string& name, uint32_t classes, const PropertyMap* configuration) { mFakeEventHub->addDevice(eventHubId, name, classes); if (configuration) { mFakeEventHub->addConfigurationMap(eventHubId, configuration); } mFakeEventHub->finishDeviceScan(); mReader->loopOnce(); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty()); } void disableDevice(int32_t deviceId) { mFakePolicy->addDisabledDevice(deviceId); mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_ENABLED_STATE); } void enableDevice(int32_t deviceId) { mFakePolicy->removeDisabledDevice(deviceId); mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_ENABLED_STATE); } FakeInputMapper& addDeviceWithFakeInputMapper(int32_t deviceId, int32_t eventHubId, const std::string& name, uint32_t classes, uint32_t sources, const PropertyMap* configuration) { std::shared_ptr device = mReader->newDevice(deviceId, name); FakeInputMapper& mapper = device->addMapper(eventHubId, sources); mReader->setNextDevice(device); addDevice(eventHubId, name, classes, configuration); return mapper; } }; TEST_F(InputReaderTest, GetInputDevices) { ASSERT_NO_FATAL_FAILURE(addDevice(1, "keyboard", INPUT_DEVICE_CLASS_KEYBOARD, nullptr)); ASSERT_NO_FATAL_FAILURE(addDevice(2, "ignored", 0, nullptr)); // no classes so device will be ignored std::vector inputDevices; mReader->getInputDevices(inputDevices); ASSERT_EQ(1U, inputDevices.size()); ASSERT_EQ(END_RESERVED_ID + 1, inputDevices[0].getId()); ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.c_str()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType()); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources()); ASSERT_EQ(size_t(0), inputDevices[0].getMotionRanges().size()); // Should also have received a notification describing the new input devices. inputDevices = mFakePolicy->getInputDevices(); ASSERT_EQ(1U, inputDevices.size()); ASSERT_EQ(END_RESERVED_ID + 1, inputDevices[0].getId()); ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.c_str()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType()); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources()); ASSERT_EQ(size_t(0), inputDevices[0].getMotionRanges().size()); } TEST_F(InputReaderTest, WhenEnabledChanges_SendsDeviceResetNotification) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; std::shared_ptr device = mReader->newDevice(deviceId, "fake"); // Must add at least one mapper or the device will be ignored! device->addMapper(eventHubId, AINPUT_SOURCE_KEYBOARD); mReader->setNextDevice(device); ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr)); NotifyDeviceResetArgs resetArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(deviceId, resetArgs.deviceId); ASSERT_EQ(device->isEnabled(), true); disableDevice(deviceId); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(deviceId, resetArgs.deviceId); ASSERT_EQ(device->isEnabled(), false); disableDevice(deviceId); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasNotCalled()); ASSERT_EQ(device->isEnabled(), false); enableDevice(deviceId); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(deviceId, resetArgs.deviceId); ASSERT_EQ(device->isEnabled(), true); } TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, AINPUT_SOURCE_KEYBOARD, nullptr); mapper.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0, AINPUT_SOURCE_ANY, AKEYCODE_A)) << "Should return unknown when the device id is >= 0 but unknown."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown when the device id is valid but the sources are not " "supported by the device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return value provided by mapper when device id is valid and the device " "supports some of the sources."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; } TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, AINPUT_SOURCE_KEYBOARD, nullptr); mapper.setScanCodeState(KEY_A, AKEY_STATE_DOWN); ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0, AINPUT_SOURCE_ANY, KEY_A)) << "Should return unknown when the device id is >= 0 but unknown."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return unknown when the device id is valid but the sources are not " "supported by the device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return value provided by mapper when device id is valid and the device " "supports some of the sources."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1, AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; } TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, AINPUT_SOURCE_KEYBOARD, nullptr); mapper.setSwitchState(SW_LID, AKEY_STATE_DOWN); ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0, AINPUT_SOURCE_ANY, SW_LID)) << "Should return unknown when the device id is >= 0 but unknown."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(deviceId, AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return unknown when the device id is valid but the sources are not " "supported by the device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return value provided by mapper when device id is valid and the device " "supports some of the sources."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1, AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; } TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, AINPUT_SOURCE_KEYBOARD, nullptr); mapper.addSupportedKeyCode(AKEYCODE_A); mapper.addSupportedKeyCode(AKEYCODE_B); const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 }; uint8_t flags[4] = { 0, 0, 0, 1 }; ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, 4, keyCodes, flags)) << "Should return false when device id is >= 0 but unknown."; ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_FALSE(mReader->hasKeys(deviceId, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return false when device id is valid but the sources are not supported by " "the device."; ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_TRUE(mReader->hasKeys(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return value provided by mapper when device id is valid and the device " "supports some of the sources."; ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return false when the device id is < 0 but the sources are not supported by any device."; ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); flags[3] = 1; ASSERT_TRUE(mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]); } TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) { constexpr int32_t eventHubId = 1; addDevice(eventHubId, "ignored", INPUT_DEVICE_CLASS_KEYBOARD, nullptr); NotifyConfigurationChangedArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); } TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, AINPUT_SOURCE_KEYBOARD, nullptr); mFakeEventHub->enqueueEvent(0, eventHubId, EV_KEY, KEY_A, 1); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty()); RawEvent event; ASSERT_NO_FATAL_FAILURE(mapper.assertProcessWasCalled(&event)); ASSERT_EQ(0, event.when); ASSERT_EQ(eventHubId, event.deviceId); ASSERT_EQ(EV_KEY, event.type); ASSERT_EQ(KEY_A, event.code); ASSERT_EQ(1, event.value); } TEST_F(InputReaderTest, DeviceReset_RandomId) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; std::shared_ptr device = mReader->newDevice(deviceId, "fake"); // Must add at least one mapper or the device will be ignored! device->addMapper(eventHubId, AINPUT_SOURCE_KEYBOARD); mReader->setNextDevice(device); ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); NotifyDeviceResetArgs resetArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); int32_t prevId = resetArgs.id; disableDevice(deviceId); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_NE(prevId, resetArgs.id); prevId = resetArgs.id; enableDevice(deviceId); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_NE(prevId, resetArgs.id); prevId = resetArgs.id; disableDevice(deviceId); mReader->loopOnce(); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_NE(prevId, resetArgs.id); prevId = resetArgs.id; } TEST_F(InputReaderTest, DeviceReset_GenerateIdWithInputReaderSource) { constexpr int32_t deviceId = 1; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; std::shared_ptr device = mReader->newDevice(deviceId, "fake"); // Must add at least one mapper or the device will be ignored! device->addMapper(eventHubId, AINPUT_SOURCE_KEYBOARD); mReader->setNextDevice(device); ASSERT_NO_FATAL_FAILURE(addDevice(deviceId, "fake", deviceClass, nullptr)); NotifyDeviceResetArgs resetArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(IdGenerator::Source::INPUT_READER, IdGenerator::getSource(resetArgs.id)); } TEST_F(InputReaderTest, Device_CanDispatchToDisplay) { constexpr int32_t deviceId = END_RESERVED_ID + 1000; constexpr uint32_t deviceClass = INPUT_DEVICE_CLASS_KEYBOARD; constexpr int32_t eventHubId = 1; const char* DEVICE_LOCATION = "USB1"; std::shared_ptr device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); FakeInputMapper& mapper = device->addMapper(eventHubId, AINPUT_SOURCE_TOUCHSCREEN); mReader->setNextDevice(device); const uint8_t hdmi1 = 1; // Associated touch screen with second display. mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); // Add default and second display. mFakePolicy->clearViewports(); mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, "local:0", NO_PORT, ViewportType::VIEWPORT_INTERNAL); mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, "local:1", hdmi1, ViewportType::VIEWPORT_EXTERNAL); mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_DISPLAY_INFO); mReader->loopOnce(); // Add the device, and make sure all of the callbacks are triggered. // The device is added after the input port associations are processed since // we do not yet support dynamic device-to-display associations. ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled()); // Device should only dispatch to the specified display. ASSERT_EQ(deviceId, device->getId()); ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, DISPLAY_ID)); ASSERT_TRUE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID)); // Can't dispatch event from a disabled device. disableDevice(deviceId); mReader->loopOnce(); ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID)); } // --- InputReaderIntegrationTest --- // These tests create and interact with the InputReader only through its interface. // The InputReader is started during SetUp(), which starts its processing in its own // thread. The tests use linux uinput to emulate input devices. // NOTE: Interacting with the physical device while these tests are running may cause // the tests to fail. class InputReaderIntegrationTest : public testing::Test { protected: sp mTestListener; sp mFakePolicy; sp mReader; virtual void SetUp() override { mFakePolicy = new FakeInputReaderPolicy(); mTestListener = new TestInputListener(2000ms /*eventHappenedTimeout*/, 30ms /*eventDidNotHappenTimeout*/); mReader = new InputReader(std::make_shared(), mFakePolicy, mTestListener); ASSERT_EQ(mReader->start(), OK); // Since this test is run on a real device, all the input devices connected // to the test device will show up in mReader. We wait for those input devices to // show up before beginning the tests. ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); } virtual void TearDown() override { ASSERT_EQ(mReader->stop(), OK); mTestListener.clear(); mFakePolicy.clear(); } }; TEST_F(InputReaderIntegrationTest, TestInvalidDevice) { // An invalid input device that is only used for this test. class InvalidUinputDevice : public UinputDevice { public: InvalidUinputDevice() : UinputDevice("Invalid Device") {} private: void configureDevice(int fd, uinput_user_dev* device) override {} }; const size_t numDevices = mFakePolicy->getInputDevices().size(); // UinputDevice does not set any event or key bits, so InputReader should not // consider it as a valid device. std::unique_ptr invalidDevice = createUinputDevice(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged()); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled()); ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size()); invalidDevice.reset(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged()); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled()); ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size()); } TEST_F(InputReaderIntegrationTest, AddNewDevice) { const size_t initialNumDevices = mFakePolicy->getInputDevices().size(); std::unique_ptr keyboard = createUinputDevice(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); ASSERT_EQ(initialNumDevices + 1, mFakePolicy->getInputDevices().size()); // Find the test device by its name. std::vector inputDevices; mReader->getInputDevices(inputDevices); InputDeviceInfo* keyboardInfo = nullptr; const char* keyboardName = keyboard->getName(); for (unsigned int i = 0; i < initialNumDevices + 1; i++) { if (!strcmp(inputDevices[i].getIdentifier().name.c_str(), keyboardName)) { keyboardInfo = &inputDevices[i]; break; } } ASSERT_NE(keyboardInfo, nullptr); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, keyboardInfo->getKeyboardType()); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyboardInfo->getSources()); ASSERT_EQ(0U, keyboardInfo->getMotionRanges().size()); keyboard.reset(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); ASSERT_EQ(initialNumDevices, mFakePolicy->getInputDevices().size()); } TEST_F(InputReaderIntegrationTest, SendsEventsToInputListener) { std::unique_ptr keyboard = createUinputDevice(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); NotifyConfigurationChangedArgs configChangedArgs; ASSERT_NO_FATAL_FAILURE( mTestListener->assertNotifyConfigurationChangedWasCalled(&configChangedArgs)); int32_t prevId = configChangedArgs.id; nsecs_t prevTimestamp = configChangedArgs.eventTime; NotifyKeyArgs keyArgs; keyboard->pressAndReleaseHomeKey(); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_NE(prevId, keyArgs.id); prevId = keyArgs.id; ASSERT_LE(prevTimestamp, keyArgs.eventTime); prevTimestamp = keyArgs.eventTime; ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_NE(prevId, keyArgs.id); ASSERT_LE(prevTimestamp, keyArgs.eventTime); } /** * The Steam controller sends BTN_GEAR_DOWN and BTN_GEAR_UP for the two "paddle" buttons * on the back. In this test, we make sure that BTN_GEAR_DOWN / BTN_WHEEL and BTN_GEAR_UP * are passed to the listener. */ static_assert(BTN_GEAR_DOWN == BTN_WHEEL); TEST_F(InputReaderIntegrationTest, SendsGearDownAndUpToInputListener) { std::unique_ptr controller = createUinputDevice(); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); NotifyKeyArgs keyArgs; controller->pressAndReleaseKey(BTN_GEAR_DOWN); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP ASSERT_EQ(BTN_GEAR_DOWN, keyArgs.scanCode); controller->pressAndReleaseKey(BTN_GEAR_UP); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP ASSERT_EQ(BTN_GEAR_UP, keyArgs.scanCode); } // --- TouchProcessTest --- class TouchIntegrationTest : public InputReaderIntegrationTest { protected: static const int32_t FIRST_SLOT = 0; static const int32_t SECOND_SLOT = 1; static const int32_t FIRST_TRACKING_ID = 0; static const int32_t SECOND_TRACKING_ID = 1; const std::string UNIQUE_ID = "local:0"; virtual void SetUp() override { InputReaderIntegrationTest::SetUp(); // At least add an internal display. setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, UNIQUE_ID, NO_PORT, ViewportType::VIEWPORT_INTERNAL); mDevice = createUinputDevice(Rect(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT)); ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); } void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height, int32_t orientation, const std::string& uniqueId, std::optional physicalPort, ViewportType viewportType) { mFakePolicy->addDisplayViewport(displayId, width, height, orientation, uniqueId, physicalPort, viewportType); mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_DISPLAY_INFO); } std::unique_ptr mDevice; }; TEST_F(TouchIntegrationTest, InputEvent_ProcessSingleTouch) { NotifyMotionArgs args; const Point centerPoint = mDevice->getCenterPoint(); // ACTION_DOWN mDevice->sendDown(centerPoint); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); // ACTION_MOVE mDevice->sendMove(centerPoint + Point(1, 1)); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); // ACTION_UP mDevice->sendUp(); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); } TEST_F(TouchIntegrationTest, InputEvent_ProcessMultiTouch) { NotifyMotionArgs args; const Point centerPoint = mDevice->getCenterPoint(); // ACTION_DOWN mDevice->sendDown(centerPoint); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); // ACTION_POINTER_DOWN (Second slot) const Point secondPoint = centerPoint + Point(100, 100); mDevice->sendSlot(SECOND_SLOT); mDevice->sendTrackingId(SECOND_TRACKING_ID); mDevice->sendDown(secondPoint + Point(1, 1)); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), args.action); // ACTION_MOVE (Second slot) mDevice->sendMove(secondPoint); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); // ACTION_POINTER_UP (Second slot) mDevice->sendUp(); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), args.action); // ACTION_UP mDevice->sendSlot(FIRST_SLOT); mDevice->sendUp(); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); } TEST_F(TouchIntegrationTest, InputEvent_ProcessPalm) { NotifyMotionArgs args; const Point centerPoint = mDevice->getCenterPoint(); // ACTION_DOWN mDevice->sendDown(centerPoint); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); // ACTION_POINTER_DOWN (Second slot) const Point secondPoint = centerPoint + Point(100, 100); mDevice->sendSlot(SECOND_SLOT); mDevice->sendTrackingId(SECOND_TRACKING_ID); mDevice->sendDown(secondPoint); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), args.action); // ACTION_MOVE (Second slot) mDevice->sendMove(secondPoint + Point(1, 1)); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); // Send MT_TOOL_PALM, which indicates that the touch IC has determined this to be a grip event. // Expect to receive ACTION_CANCEL, to abort the entire gesture. mDevice->sendToolType(MT_TOOL_PALM); ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, args.action); // ACTION_POINTER_UP (Second slot) mDevice->sendUp(); // ACTION_UP mDevice->sendSlot(FIRST_SLOT); mDevice->sendUp(); // Expect no event received after abort the entire gesture. ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); } // --- InputDeviceTest --- class InputDeviceTest : public testing::Test { protected: static const char* DEVICE_NAME; static const char* DEVICE_LOCATION; static const int32_t DEVICE_ID; static const int32_t DEVICE_GENERATION; static const int32_t DEVICE_CONTROLLER_NUMBER; static const uint32_t DEVICE_CLASSES; static const int32_t EVENTHUB_ID; std::shared_ptr mFakeEventHub; sp mFakePolicy; sp mFakeListener; FakeInputReaderContext* mFakeContext; std::shared_ptr mDevice; virtual void SetUp() override { mFakeEventHub = std::make_unique(); mFakePolicy = new FakeInputReaderPolicy(); mFakeListener = new TestInputListener(); mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeListener); mFakeEventHub->addDevice(EVENTHUB_ID, DEVICE_NAME, 0); InputDeviceIdentifier identifier; identifier.name = DEVICE_NAME; identifier.location = DEVICE_LOCATION; mDevice = std::make_shared(mFakeContext, DEVICE_ID, DEVICE_GENERATION, identifier); } virtual void TearDown() override { mDevice = nullptr; delete mFakeContext; mFakeListener.clear(); mFakePolicy.clear(); } }; const char* InputDeviceTest::DEVICE_NAME = "device"; const char* InputDeviceTest::DEVICE_LOCATION = "USB1"; const int32_t InputDeviceTest::DEVICE_ID = END_RESERVED_ID + 1000; const int32_t InputDeviceTest::DEVICE_GENERATION = 2; const int32_t InputDeviceTest::DEVICE_CONTROLLER_NUMBER = 0; const uint32_t InputDeviceTest::DEVICE_CLASSES = INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_JOYSTICK; const int32_t InputDeviceTest::EVENTHUB_ID = 1; TEST_F(InputDeviceTest, ImmutableProperties) { ASSERT_EQ(DEVICE_ID, mDevice->getId()); ASSERT_STREQ(DEVICE_NAME, mDevice->getName().c_str()); ASSERT_EQ(0U, mDevice->getClasses()); } TEST_F(InputDeviceTest, WhenDeviceCreated_EnabledIsFalse) { ASSERT_EQ(mDevice->isEnabled(), false); } TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) { // Configuration. InputReaderConfiguration config; mDevice->configure(ARBITRARY_TIME, &config, 0); // Reset. mDevice->reset(ARBITRARY_TIME); NotifyDeviceResetArgs resetArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime); ASSERT_EQ(DEVICE_ID, resetArgs.deviceId); // Metadata. ASSERT_TRUE(mDevice->isIgnored()); ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources()); InputDeviceInfo info; mDevice->getDeviceInfo(&info); ASSERT_EQ(DEVICE_ID, info.getId()); ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType()); ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources()); // State queries. ASSERT_EQ(0, mDevice->getMetaState()); ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0)) << "Ignored device should return unknown key code state."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0)) << "Ignored device should return unknown scan code state."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0)) << "Ignored device should return unknown switch state."; const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B }; uint8_t flags[2] = { 0, 1 }; ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 2, keyCodes, flags)) << "Ignored device should never mark any key codes."; ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged."; ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged."; } TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) { // Configuration. mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, String8("key"), String8("value")); FakeInputMapper& mapper1 = mDevice->addMapper(EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD); mapper1.setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC); mapper1.setMetaState(AMETA_ALT_ON); mapper1.addSupportedKeyCode(AKEYCODE_A); mapper1.addSupportedKeyCode(AKEYCODE_B); mapper1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); mapper1.setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP); mapper1.setScanCodeState(2, AKEY_STATE_DOWN); mapper1.setScanCodeState(3, AKEY_STATE_UP); mapper1.setSwitchState(4, AKEY_STATE_DOWN); FakeInputMapper& mapper2 = mDevice->addMapper(EVENTHUB_ID, AINPUT_SOURCE_TOUCHSCREEN); mapper2.setMetaState(AMETA_SHIFT_ON); InputReaderConfiguration config; mDevice->configure(ARBITRARY_TIME, &config, 0); String8 propertyValue; ASSERT_TRUE(mDevice->getConfiguration().tryGetProperty(String8("key"), propertyValue)) << "Device should have read configuration during configuration phase."; ASSERT_STREQ("value", propertyValue.string()); ASSERT_NO_FATAL_FAILURE(mapper1.assertConfigureWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper2.assertConfigureWasCalled()); // Reset mDevice->reset(ARBITRARY_TIME); ASSERT_NO_FATAL_FAILURE(mapper1.assertResetWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper2.assertResetWasCalled()); NotifyDeviceResetArgs resetArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime); ASSERT_EQ(DEVICE_ID, resetArgs.deviceId); // Metadata. ASSERT_FALSE(mDevice->isIgnored()); ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources()); InputDeviceInfo info; mDevice->getDeviceInfo(&info); ASSERT_EQ(DEVICE_ID, info.getId()); ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str()); ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType()); ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources()); // State queries. ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState()) << "Should query mappers and combine meta states."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown key code state when source not supported."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown scan code state when source not supported."; ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) << "Should return unknown switch state when source not supported."; ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A)) << "Should query mapper when source is supported."; ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3)) << "Should query mapper when source is supported."; ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4)) << "Should query mapper when source is supported."; const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 }; uint8_t flags[4] = { 0, 0, 0, 1 }; ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags)) << "Should do nothing when source is unsupported."; ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported."; ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported."; ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported."; ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported."; ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 4, keyCodes, flags)) << "Should query mapper when source is supported."; ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set."; ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set."; ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged."; ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged."; // Event handling. RawEvent event; event.deviceId = EVENTHUB_ID; mDevice->process(&event, 1); ASSERT_NO_FATAL_FAILURE(mapper1.assertProcessWasCalled()); ASSERT_NO_FATAL_FAILURE(mapper2.assertProcessWasCalled()); } // A single input device is associated with a specific display. Check that: // 1. Device is disabled if the viewport corresponding to the associated display is not found // 2. Device is disabled when setEnabled API is called TEST_F(InputDeviceTest, Configure_AssignsDisplayPort) { mDevice->addMapper(EVENTHUB_ID, AINPUT_SOURCE_TOUCHSCREEN); // First Configuration. mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0); // Device should be enabled by default. ASSERT_TRUE(mDevice->isEnabled()); // Prepare associated info. constexpr uint8_t hdmi = 1; const std::string UNIQUE_ID = "local:1"; mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi); mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_DISPLAY_INFO); // Device should be disabled because it is associated with a specific display via // input port <-> display port association, but the corresponding display is not found ASSERT_FALSE(mDevice->isEnabled()); // Prepare displays. mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, UNIQUE_ID, hdmi, ViewportType::VIEWPORT_INTERNAL); mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_DISPLAY_INFO); ASSERT_TRUE(mDevice->isEnabled()); // Device should be disabled after set disable. mFakePolicy->addDisabledDevice(mDevice->getId()); mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_ENABLED_STATE); ASSERT_FALSE(mDevice->isEnabled()); // Device should still be disabled even found the associated display. mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_DISPLAY_INFO); ASSERT_FALSE(mDevice->isEnabled()); } // --- InputMapperTest --- class InputMapperTest : public testing::Test { protected: static const char* DEVICE_NAME; static const char* DEVICE_LOCATION; static const int32_t DEVICE_ID; static const int32_t DEVICE_GENERATION; static const int32_t DEVICE_CONTROLLER_NUMBER; static const uint32_t DEVICE_CLASSES; static const int32_t EVENTHUB_ID; std::shared_ptr mFakeEventHub; sp mFakePolicy; sp mFakeListener; FakeInputReaderContext* mFakeContext; InputDevice* mDevice; virtual void SetUp(uint32_t classes) { mFakeEventHub = std::make_unique(); mFakePolicy = new FakeInputReaderPolicy(); mFakeListener = new TestInputListener(); mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeListener); InputDeviceIdentifier identifier; identifier.name = DEVICE_NAME; identifier.location = DEVICE_LOCATION; mDevice = new InputDevice(mFakeContext, DEVICE_ID, DEVICE_GENERATION, identifier); mFakeEventHub->addDevice(EVENTHUB_ID, DEVICE_NAME, classes); } virtual void SetUp() override { SetUp(DEVICE_CLASSES); } virtual void TearDown() override { delete mDevice; delete mFakeContext; mFakeListener.clear(); mFakePolicy.clear(); } void addConfigurationProperty(const char* key, const char* value) { mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, String8(key), String8(value)); } void configureDevice(uint32_t changes) { if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { mFakeContext->updatePointerDisplay(); } mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), changes); } template T& addMapperAndConfigure(Args... args) { T& mapper = mDevice->addMapper(EVENTHUB_ID, args...); configureDevice(0); mDevice->reset(ARBITRARY_TIME); return mapper; } void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height, int32_t orientation, const std::string& uniqueId, std::optional physicalPort, ViewportType viewportType) { mFakePolicy->addDisplayViewport( displayId, width, height, orientation, uniqueId, physicalPort, viewportType); configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO); } void clearViewports() { mFakePolicy->clearViewports(); } static void process(InputMapper& mapper, nsecs_t when, int32_t type, int32_t code, int32_t value) { RawEvent event; event.when = when; event.deviceId = mapper.getDeviceContext().getEventHubId(); event.type = type; event.code = code; event.value = value; mapper.process(&event); } static void assertMotionRange(const InputDeviceInfo& info, int32_t axis, uint32_t source, float min, float max, float flat, float fuzz) { const InputDeviceInfo::MotionRange* range = info.getMotionRange(axis, source); ASSERT_TRUE(range != nullptr) << "Axis: " << axis << " Source: " << source; ASSERT_EQ(axis, range->axis) << "Axis: " << axis << " Source: " << source; ASSERT_EQ(source, range->source) << "Axis: " << axis << " Source: " << source; ASSERT_NEAR(min, range->min, EPSILON) << "Axis: " << axis << " Source: " << source; ASSERT_NEAR(max, range->max, EPSILON) << "Axis: " << axis << " Source: " << source; ASSERT_NEAR(flat, range->flat, EPSILON) << "Axis: " << axis << " Source: " << source; ASSERT_NEAR(fuzz, range->fuzz, EPSILON) << "Axis: " << axis << " Source: " << source; } static void assertPointerCoords(const PointerCoords& coords, float x, float y, float pressure, float size, float touchMajor, float touchMinor, float toolMajor, float toolMinor, float orientation, float distance) { ASSERT_NEAR(x, coords.getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(y, coords.getAxisValue(AMOTION_EVENT_AXIS_Y), 1); ASSERT_NEAR(pressure, coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), EPSILON); ASSERT_NEAR(size, coords.getAxisValue(AMOTION_EVENT_AXIS_SIZE), EPSILON); ASSERT_NEAR(touchMajor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), 1); ASSERT_NEAR(touchMinor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), 1); ASSERT_NEAR(toolMajor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), 1); ASSERT_NEAR(toolMinor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), 1); ASSERT_NEAR(orientation, coords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), EPSILON); ASSERT_NEAR(distance, coords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), EPSILON); } static void assertPosition(const sp& controller, float x, float y) { float actualX, actualY; controller->getPosition(&actualX, &actualY); ASSERT_NEAR(x, actualX, 1); ASSERT_NEAR(y, actualY, 1); } }; const char* InputMapperTest::DEVICE_NAME = "device"; const char* InputMapperTest::DEVICE_LOCATION = "USB1"; const int32_t InputMapperTest::DEVICE_ID = END_RESERVED_ID + 1000; const int32_t InputMapperTest::DEVICE_GENERATION = 2; const int32_t InputMapperTest::DEVICE_CONTROLLER_NUMBER = 0; const uint32_t InputMapperTest::DEVICE_CLASSES = 0; // not needed for current tests const int32_t InputMapperTest::EVENTHUB_ID = 1; // --- SwitchInputMapperTest --- class SwitchInputMapperTest : public InputMapperTest { protected: }; TEST_F(SwitchInputMapperTest, GetSources) { SwitchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(uint32_t(AINPUT_SOURCE_SWITCH), mapper.getSources()); } TEST_F(SwitchInputMapperTest, GetSwitchState) { SwitchInputMapper& mapper = addMapperAndConfigure(); mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 1); ASSERT_EQ(1, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID)); mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 0); ASSERT_EQ(0, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID)); } TEST_F(SwitchInputMapperTest, Process) { SwitchInputMapper& mapper = addMapperAndConfigure(); process(mapper, ARBITRARY_TIME, EV_SW, SW_LID, 1); process(mapper, ARBITRARY_TIME, EV_SW, SW_JACK_PHYSICAL_INSERT, 1); process(mapper, ARBITRARY_TIME, EV_SW, SW_HEADPHONE_INSERT, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); NotifySwitchArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySwitchWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT), args.switchValues); ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT) | (1 << SW_HEADPHONE_INSERT), args.switchMask); ASSERT_EQ(uint32_t(0), args.policyFlags); } // --- KeyboardInputMapperTest --- class KeyboardInputMapperTest : public InputMapperTest { protected: const std::string UNIQUE_ID = "local:0"; void prepareDisplay(int32_t orientation); void testDPadKeyRotation(KeyboardInputMapper& mapper, int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode, int32_t displayId = ADISPLAY_ID_NONE); }; /* Similar to setDisplayInfoAndReconfigure, but pre-populates all parameters except for the * orientation. */ void KeyboardInputMapperTest::prepareDisplay(int32_t orientation) { setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID, NO_PORT, ViewportType::VIEWPORT_INTERNAL); } void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper& mapper, int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode, int32_t displayId) { NotifyKeyArgs args; process(mapper, ARBITRARY_TIME, EV_KEY, originalScanCode, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(originalScanCode, args.scanCode); ASSERT_EQ(rotatedKeyCode, args.keyCode); ASSERT_EQ(displayId, args.displayId); process(mapper, ARBITRARY_TIME, EV_KEY, originalScanCode, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(originalScanCode, args.scanCode); ASSERT_EQ(rotatedKeyCode, args.keyCode); ASSERT_EQ(displayId, args.displayId); } TEST_F(KeyboardInputMapperTest, GetSources) { KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper.getSources()); } TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) { const int32_t USAGE_A = 0x070004; const int32_t USAGE_UNKNOWN = 0x07ffff; mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); // Key down by scan code. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_HOME, 1); NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Key up by scan code. process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_HOME, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Key down by usage code. process(mapper, ARBITRARY_TIME, EV_MSC, MSC_SCAN, USAGE_A); process(mapper, ARBITRARY_TIME, EV_KEY, 0, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(AKEYCODE_A, args.keyCode); ASSERT_EQ(0, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Key up by usage code. process(mapper, ARBITRARY_TIME, EV_MSC, MSC_SCAN, USAGE_A); process(mapper, ARBITRARY_TIME + 1, EV_KEY, 0, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEYCODE_A, args.keyCode); ASSERT_EQ(0, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Key down with unknown scan code or usage code. process(mapper, ARBITRARY_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UNKNOWN, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(0, args.keyCode); ASSERT_EQ(KEY_UNKNOWN, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(0U, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Key up with unknown scan code or usage code. process(mapper, ARBITRARY_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_UNKNOWN, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(0, args.keyCode); ASSERT_EQ(KEY_UNKNOWN, args.scanCode); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); ASSERT_EQ(0U, args.policyFlags); ASSERT_EQ(ARBITRARY_TIME, args.downTime); } TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) { mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFTSHIFT, 0, AKEYCODE_SHIFT_LEFT, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); // Initial metastate. ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); // Metakey down. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_LEFTSHIFT, 1); NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState()); ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled()); // Key down. process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_A, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState()); // Key up. process(mapper, ARBITRARY_TIME + 2, EV_KEY, KEY_A, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState()); // Metakey up. process(mapper, ARBITRARY_TIME + 3, EV_KEY, KEY_LEFTSHIFT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AMETA_NONE, args.metaState); ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled()); } TEST_F(KeyboardInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateDPad) { mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); prepareDisplay(DISPLAY_ORIENTATION_90); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT)); } TEST_F(KeyboardInputMapperTest, Process_WhenOrientationAware_ShouldRotateDPad) { mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); addConfigurationProperty("keyboard.orientationAware", "1"); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); prepareDisplay(DISPLAY_ORIENTATION_0); ASSERT_NO_FATAL_FAILURE( testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT, DISPLAY_ID)); clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_90); ASSERT_NO_FATAL_FAILURE( testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, DISPLAY_ID)); clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_180); ASSERT_NO_FATAL_FAILURE( testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_LEFT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_UP, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_270); ASSERT_NO_FATAL_FAILURE( testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_DOWN, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_LEFT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_UP, DISPLAY_ID)); // Special case: if orientation changes while key is down, we still emit the same keycode // in the key up as we did in the key down. NotifyKeyArgs args; clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_270); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(KEY_UP, args.scanCode); ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode); clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_180); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(KEY_UP, args.scanCode); ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode); } TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_NotOrientationAware) { // If the keyboard is not orientation aware, // key events should not be associated with a specific display id mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); NotifyKeyArgs args; // Display id should be ADISPLAY_ID_NONE without any display configuration. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId); prepareDisplay(DISPLAY_ORIENTATION_0); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId); } TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_OrientationAware) { // If the keyboard is orientation aware, // key events should be associated with the internal viewport mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); addConfigurationProperty("keyboard.orientationAware", "1"); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); NotifyKeyArgs args; // Display id should be ADISPLAY_ID_NONE without any display configuration. // ^--- already checked by the previous test setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, UNIQUE_ID, NO_PORT, ViewportType::VIEWPORT_INTERNAL); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(DISPLAY_ID, args.displayId); constexpr int32_t newDisplayId = 2; clearViewports(); setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, UNIQUE_ID, NO_PORT, ViewportType::VIEWPORT_INTERNAL); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_UP, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(newDisplayId, args.displayId); } TEST_F(KeyboardInputMapperTest, GetKeyCodeState) { KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 1); ASSERT_EQ(1, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 0); ASSERT_EQ(0, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); } TEST_F(KeyboardInputMapperTest, GetScanCodeState) { KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 1); ASSERT_EQ(1, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 0); ASSERT_EQ(0, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); } TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) { KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0); const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B }; uint8_t flags[2] = { 0, 0 }; ASSERT_TRUE(mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, 1, keyCodes, flags)); ASSERT_TRUE(flags[0]); ASSERT_FALSE(flags[1]); } TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) { mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/); mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/); mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/); mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); // Initialization should have turned all of the lights off. ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); // Toggle caps lock on. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_CAPSLOCK, 1); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_CAPSLOCK, 0); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState()); // Toggle num lock on. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_NUMLOCK, 1); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_NUMLOCK, 0); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState()); // Toggle caps lock off. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_CAPSLOCK, 1); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_CAPSLOCK, 0); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper.getMetaState()); // Toggle scroll lock on. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_SCROLLLOCK, 1); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_SCROLLLOCK, 0); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState()); // Toggle num lock off. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_NUMLOCK, 1); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_NUMLOCK, 0); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper.getMetaState()); // Toggle scroll lock off. process(mapper, ARBITRARY_TIME, EV_KEY, KEY_SCROLLLOCK, 1); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_SCROLLLOCK, 0); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); } TEST_F(KeyboardInputMapperTest, Configure_AssignsDisplayPort) { // keyboard 1. mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); // keyboard 2. const std::string USB2 = "USB2"; constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1; constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1; InputDeviceIdentifier identifier; identifier.name = "KEYBOARD2"; identifier.location = USB2; std::unique_ptr device2 = std::make_unique(mFakeContext, SECOND_DEVICE_ID, DEVICE_GENERATION, identifier); mFakeEventHub->addDevice(SECOND_EVENTHUB_ID, DEVICE_NAME, 0 /*classes*/); mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); KeyboardInputMapper& mapper2 = device2->addMapper(SECOND_EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0 /*changes*/); device2->reset(ARBITRARY_TIME); // Prepared displays and associated info. constexpr uint8_t hdmi1 = 0; constexpr uint8_t hdmi2 = 1; const std::string SECONDARY_UNIQUE_ID = "local:1"; mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); mFakePolicy->addInputPortAssociation(USB2, hdmi2); // No associated display viewport found, should disable the device. device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_DISPLAY_INFO); ASSERT_FALSE(device2->isEnabled()); // Prepare second display. constexpr int32_t newDisplayId = 2; setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, UNIQUE_ID, hdmi1, ViewportType::VIEWPORT_INTERNAL); setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, SECONDARY_UNIQUE_ID, hdmi2, ViewportType::VIEWPORT_EXTERNAL); // Default device will reconfigure above, need additional reconfiguration for another device. device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_DISPLAY_INFO); // Device should be enabled after the associated display is found. ASSERT_TRUE(mDevice->isEnabled()); ASSERT_TRUE(device2->isEnabled()); // Test pad key events ASSERT_NO_FATAL_FAILURE( testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT, DISPLAY_ID)); ASSERT_NO_FATAL_FAILURE( testDPadKeyRotation(mapper2, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, newDisplayId)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT, newDisplayId)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN, newDisplayId)); ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT, newDisplayId)); } // --- KeyboardInputMapperTest_ExternalDevice --- class KeyboardInputMapperTest_ExternalDevice : public InputMapperTest { protected: virtual void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | INPUT_DEVICE_CLASS_EXTERNAL); } }; TEST_F(KeyboardInputMapperTest_ExternalDevice, WakeBehavior) { // For external devices, non-media keys will trigger wake on key down. Media keys need to be // marked as WAKE in the keylayout file to trigger wake. mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAYPAUSE, 0, AKEYCODE_MEDIA_PLAY_PAUSE, POLICY_FLAG_WAKE); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_HOME, 1); NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_HOME, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(uint32_t(0), args.policyFlags); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_PLAY, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(uint32_t(0), args.policyFlags); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_PLAY, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(uint32_t(0), args.policyFlags); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_PLAYPAUSE, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_PLAYPAUSE, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); } TEST_F(KeyboardInputMapperTest_ExternalDevice, DoNotWakeByDefaultBehavior) { // Tv Remote key's wake behavior is prescribed by the keylayout file. mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, POLICY_FLAG_WAKE); addConfigurationProperty("keyboard.doNotWakeByDefault", "1"); KeyboardInputMapper& mapper = addMapperAndConfigure(AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_HOME, 1); NotifyKeyArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_HOME, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_DOWN, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(uint32_t(0), args.policyFlags); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_DOWN, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(uint32_t(0), args.policyFlags); process(mapper, ARBITRARY_TIME, EV_KEY, KEY_PLAY, 1); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); process(mapper, ARBITRARY_TIME + 1, EV_KEY, KEY_PLAY, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); } // --- CursorInputMapperTest --- class CursorInputMapperTest : public InputMapperTest { protected: static const int32_t TRACKBALL_MOVEMENT_THRESHOLD; sp mFakePointerController; virtual void SetUp() override { InputMapperTest::SetUp(); mFakePointerController = new FakePointerController(); mFakePolicy->setPointerController(mDevice->getId(), mFakePointerController); } void testMotionRotation(CursorInputMapper& mapper, int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY); void prepareDisplay(int32_t orientation) { const std::string uniqueId = "local:0"; const ViewportType viewportType = ViewportType::VIEWPORT_INTERNAL; setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, uniqueId, NO_PORT, viewportType); } }; const int32_t CursorInputMapperTest::TRACKBALL_MOVEMENT_THRESHOLD = 6; void CursorInputMapperTest::testMotionRotation(CursorInputMapper& mapper, int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY) { NotifyMotionArgs args; process(mapper, ARBITRARY_TIME, EV_REL, REL_X, originalX); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, originalY); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], float(rotatedX) / TRACKBALL_MOVEMENT_THRESHOLD, float(rotatedY) / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(CursorInputMapperTest, WhenModeIsPointer_GetSources_ReturnsMouse) { addConfigurationProperty("cursor.mode", "pointer"); CursorInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); } TEST_F(CursorInputMapperTest, WhenModeIsNavigation_GetSources_ReturnsTrackball) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, mapper.getSources()); } TEST_F(CursorInputMapperTest, WhenModeIsPointer_PopulateDeviceInfo_ReturnsRangeFromPointerController) { addConfigurationProperty("cursor.mode", "pointer"); CursorInputMapper& mapper = addMapperAndConfigure(); InputDeviceInfo info; mapper.populateDeviceInfo(&info); // Initially there may not be a valid motion range. ASSERT_EQ(nullptr, info.getMotionRange(AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_MOUSE)); ASSERT_EQ(nullptr, info.getMotionRange(AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_MOUSE)); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_MOUSE, 0.0f, 1.0f, 0.0f, 0.0f)); // When the bounds are set, then there should be a valid motion range. mFakePointerController->setBounds(1, 2, 800 - 1, 480 - 1); InputDeviceInfo info2; mapper.populateDeviceInfo(&info2); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2, AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_MOUSE, 1, 800 - 1, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2, AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_MOUSE, 2, 480 - 1, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2, AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_MOUSE, 0.0f, 1.0f, 0.0f, 0.0f)); } TEST_F(CursorInputMapperTest, WhenModeIsNavigation_PopulateDeviceInfo_ReturnsScaledRange) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); InputDeviceInfo info; mapper.populateDeviceInfo(&info); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_TRACKBALL, -1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD)); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_TRACKBALL, -1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD)); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TRACKBALL, 0.0f, 1.0f, 0.0f, 0.0f)); } TEST_F(CursorInputMapperTest, Process_ShouldSetAllFieldsAndIncludeGlobalMetaState) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs args; // Button press. // Mostly testing non x/y behavior here so we don't need to check again elsewhere. process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MOUSE, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(0, args.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, args.buttonState); ASSERT_EQ(0, args.edgeFlags); ASSERT_EQ(uint32_t(1), args.pointerCount); ASSERT_EQ(0, args.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision); ASSERT_EQ(ARBITRARY_TIME, args.downTime); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action); ASSERT_EQ(0, args.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, args.buttonState); ASSERT_EQ(0, args.edgeFlags); ASSERT_EQ(uint32_t(1), args.pointerCount); ASSERT_EQ(0, args.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Button release. Should have same down time. process(mapper, ARBITRARY_TIME + 1, EV_KEY, BTN_MOUSE, 0); process(mapper, ARBITRARY_TIME + 1, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action); ASSERT_EQ(0, args.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(0, args.buttonState); ASSERT_EQ(0, args.edgeFlags); ASSERT_EQ(uint32_t(1), args.pointerCount); ASSERT_EQ(0, args.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision); ASSERT_EQ(ARBITRARY_TIME, args.downTime); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source); ASSERT_EQ(uint32_t(0), args.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_EQ(0, args.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(0, args.buttonState); ASSERT_EQ(0, args.edgeFlags); ASSERT_EQ(uint32_t(1), args.pointerCount); ASSERT_EQ(0, args.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision); ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision); ASSERT_EQ(ARBITRARY_TIME, args.downTime); } TEST_F(CursorInputMapperTest, Process_ShouldHandleIndependentXYUpdates) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs args; // Motion in X but not Y. process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Motion in Y but not X. process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, -2); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(CursorInputMapperTest, Process_ShouldHandleIndependentButtonUpdates) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs args; // Button press. process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MOUSE, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Button release. process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MOUSE, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(CursorInputMapperTest, Process_ShouldHandleCombinedXYAndButtonUpdates) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs args; // Combined X, Y and Button. process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 1); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, -2); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MOUSE, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Move X, Y a bit while pressed. process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 2); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Release Button. process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MOUSE, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); } TEST_F(CursorInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateMotions) { addConfigurationProperty("cursor.mode", "navigation"); CursorInputMapper& mapper = addMapperAndConfigure(); prepareDisplay(DISPLAY_ORIENTATION_90); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1)); } TEST_F(CursorInputMapperTest, Process_WhenOrientationAware_ShouldRotateMotions) { addConfigurationProperty("cursor.mode", "navigation"); addConfigurationProperty("cursor.orientationAware", "1"); CursorInputMapper& mapper = addMapperAndConfigure(); prepareDisplay(DISPLAY_ORIENTATION_0); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1)); prepareDisplay(DISPLAY_ORIENTATION_90); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, 1)); prepareDisplay(DISPLAY_ORIENTATION_180); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, -1)); prepareDisplay(DISPLAY_ORIENTATION_270); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, -1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, 1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 1, 0)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, -1)); ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, -1)); } TEST_F(CursorInputMapperTest, Process_ShouldHandleAllButtons) { addConfigurationProperty("cursor.mode", "pointer"); CursorInputMapper& mapper = addMapperAndConfigure(); mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1); mFakePointerController->setPosition(100, 200); mFakePointerController->setButtonState(0); NotifyMotionArgs motionArgs; NotifyKeyArgs keyArgs; // press BTN_LEFT, release BTN_LEFT process(mapper, ARBITRARY_TIME, EV_KEY, BTN_LEFT, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_LEFT, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE process(mapper, ARBITRARY_TIME, EV_KEY, BTN_RIGHT, 1); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MIDDLE, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_RIGHT, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MIDDLE, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MIDDLE, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // press BTN_BACK, release BTN_BACK process(mapper, ARBITRARY_TIME, EV_KEY, BTN_BACK, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_BACK, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); // press BTN_SIDE, release BTN_SIDE process(mapper, ARBITRARY_TIME, EV_KEY, BTN_SIDE, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_SIDE, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); // press BTN_FORWARD, release BTN_FORWARD process(mapper, ARBITRARY_TIME, EV_KEY, BTN_FORWARD, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_FORWARD, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); // press BTN_EXTRA, release BTN_EXTRA process(mapper, ARBITRARY_TIME, EV_KEY, BTN_EXTRA, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); process(mapper, ARBITRARY_TIME, EV_KEY, BTN_EXTRA, 0); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, mFakePointerController->getButtonState()); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); } TEST_F(CursorInputMapperTest, Process_WhenModeIsPointer_ShouldMoveThePointerAround) { addConfigurationProperty("cursor.mode", "pointer"); CursorInputMapper& mapper = addMapperAndConfigure(); mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1); mFakePointerController->setPosition(100, 200); mFakePointerController->setButtonState(0); NotifyMotionArgs args; process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 10); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, 20); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 110.0f, 220.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertPosition(mFakePointerController, 110.0f, 220.0f)); } TEST_F(CursorInputMapperTest, Process_PointerCapture) { addConfigurationProperty("cursor.mode", "pointer"); mFakePolicy->setPointerCapture(true); CursorInputMapper& mapper = addMapperAndConfigure(); NotifyDeviceResetArgs resetArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime); ASSERT_EQ(DEVICE_ID, resetArgs.deviceId); mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1); mFakePointerController->setPosition(100, 200); mFakePointerController->setButtonState(0); NotifyMotionArgs args; // Move. process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 10); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, 20); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 10.0f, 20.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertPosition(mFakePointerController, 100.0f, 200.0f)); // Button press. process(mapper, ARBITRARY_TIME, EV_KEY, BTN_MOUSE, 1); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Button release. process(mapper, ARBITRARY_TIME + 2, EV_KEY, BTN_MOUSE, 0); process(mapper, ARBITRARY_TIME + 2, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Another move. process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 30); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, 40); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 30.0f, 40.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertPosition(mFakePointerController, 100.0f, 200.0f)); // Disable pointer capture and check that the device generation got bumped // and events are generated the usual way. const uint32_t generation = mFakeContext->getGeneration(); mFakePolicy->setPointerCapture(false); configureDevice(InputReaderConfiguration::CHANGE_POINTER_CAPTURE); ASSERT_TRUE(mFakeContext->getGeneration() != generation); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime); ASSERT_EQ(DEVICE_ID, resetArgs.deviceId); process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 10); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, 20); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 110.0f, 220.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertPosition(mFakePointerController, 110.0f, 220.0f)); } TEST_F(CursorInputMapperTest, Process_ShouldHandleDisplayId) { CursorInputMapper& mapper = addMapperAndConfigure(); // Setup for second display. constexpr int32_t SECOND_DISPLAY_ID = 1; const std::string SECOND_DISPLAY_UNIQUE_ID = "local:1"; mFakePolicy->addDisplayViewport(SECOND_DISPLAY_ID, 800, 480, DISPLAY_ORIENTATION_0, SECOND_DISPLAY_UNIQUE_ID, NO_PORT, ViewportType::VIEWPORT_EXTERNAL); mFakePolicy->setDefaultPointerDisplayId(SECOND_DISPLAY_ID); configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO); mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1); mFakePointerController->setPosition(100, 200); mFakePointerController->setButtonState(0); NotifyMotionArgs args; process(mapper, ARBITRARY_TIME, EV_REL, REL_X, 10); process(mapper, ARBITRARY_TIME, EV_REL, REL_Y, 20); process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 110.0f, 220.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); ASSERT_NO_FATAL_FAILURE(assertPosition(mFakePointerController, 110.0f, 220.0f)); ASSERT_EQ(SECOND_DISPLAY_ID, args.displayId); } // --- TouchInputMapperTest --- class TouchInputMapperTest : public InputMapperTest { protected: static const int32_t RAW_X_MIN; static const int32_t RAW_X_MAX; static const int32_t RAW_Y_MIN; static const int32_t RAW_Y_MAX; static const int32_t RAW_TOUCH_MIN; static const int32_t RAW_TOUCH_MAX; static const int32_t RAW_TOOL_MIN; static const int32_t RAW_TOOL_MAX; static const int32_t RAW_PRESSURE_MIN; static const int32_t RAW_PRESSURE_MAX; static const int32_t RAW_ORIENTATION_MIN; static const int32_t RAW_ORIENTATION_MAX; static const int32_t RAW_DISTANCE_MIN; static const int32_t RAW_DISTANCE_MAX; static const int32_t RAW_TILT_MIN; static const int32_t RAW_TILT_MAX; static const int32_t RAW_ID_MIN; static const int32_t RAW_ID_MAX; static const int32_t RAW_SLOT_MIN; static const int32_t RAW_SLOT_MAX; static const float X_PRECISION; static const float Y_PRECISION; static const float X_PRECISION_VIRTUAL; static const float Y_PRECISION_VIRTUAL; static const float GEOMETRIC_SCALE; static const TouchAffineTransformation AFFINE_TRANSFORM; static const VirtualKeyDefinition VIRTUAL_KEYS[2]; const std::string UNIQUE_ID = "local:0"; const std::string SECONDARY_UNIQUE_ID = "local:1"; enum Axes { POSITION = 1 << 0, TOUCH = 1 << 1, TOOL = 1 << 2, PRESSURE = 1 << 3, ORIENTATION = 1 << 4, MINOR = 1 << 5, ID = 1 << 6, DISTANCE = 1 << 7, TILT = 1 << 8, SLOT = 1 << 9, TOOL_TYPE = 1 << 10, }; void prepareDisplay(int32_t orientation, std::optional port = NO_PORT); void prepareSecondaryDisplay(ViewportType type, std::optional port = NO_PORT); void prepareVirtualDisplay(int32_t orientation); void prepareVirtualKeys(); void prepareLocationCalibration(); int32_t toRawX(float displayX); int32_t toRawY(float displayY); float toCookedX(float rawX, float rawY); float toCookedY(float rawX, float rawY); float toDisplayX(int32_t rawX); float toDisplayX(int32_t rawX, int32_t displayWidth); float toDisplayY(int32_t rawY); float toDisplayY(int32_t rawY, int32_t displayHeight); }; const int32_t TouchInputMapperTest::RAW_X_MIN = 25; const int32_t TouchInputMapperTest::RAW_X_MAX = 1019; const int32_t TouchInputMapperTest::RAW_Y_MIN = 30; const int32_t TouchInputMapperTest::RAW_Y_MAX = 1009; const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0; const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31; const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0; const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15; const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = 0; const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = 255; const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7; const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7; const int32_t TouchInputMapperTest::RAW_DISTANCE_MIN = 0; const int32_t TouchInputMapperTest::RAW_DISTANCE_MAX = 7; const int32_t TouchInputMapperTest::RAW_TILT_MIN = 0; const int32_t TouchInputMapperTest::RAW_TILT_MAX = 150; const int32_t TouchInputMapperTest::RAW_ID_MIN = 0; const int32_t TouchInputMapperTest::RAW_ID_MAX = 9; const int32_t TouchInputMapperTest::RAW_SLOT_MIN = 0; const int32_t TouchInputMapperTest::RAW_SLOT_MAX = 9; const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH; const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT; const float TouchInputMapperTest::X_PRECISION_VIRTUAL = float(RAW_X_MAX - RAW_X_MIN + 1) / VIRTUAL_DISPLAY_WIDTH; const float TouchInputMapperTest::Y_PRECISION_VIRTUAL = float(RAW_Y_MAX - RAW_Y_MIN + 1) / VIRTUAL_DISPLAY_HEIGHT; const TouchAffineTransformation TouchInputMapperTest::AFFINE_TRANSFORM = TouchAffineTransformation(1, -2, 3, -4, 5, -6); const float TouchInputMapperTest::GEOMETRIC_SCALE = avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN + 1), float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN + 1)); const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = { { KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 }, { KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 }, }; void TouchInputMapperTest::prepareDisplay(int32_t orientation, std::optional port) { setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID, port, ViewportType::VIEWPORT_INTERNAL); } void TouchInputMapperTest::prepareSecondaryDisplay(ViewportType type, std::optional port) { setDisplayInfoAndReconfigure(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0, SECONDARY_UNIQUE_ID, port, type); } void TouchInputMapperTest::prepareVirtualDisplay(int32_t orientation) { setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH, VIRTUAL_DISPLAY_HEIGHT, orientation, VIRTUAL_DISPLAY_UNIQUE_ID, NO_PORT, ViewportType::VIEWPORT_VIRTUAL); } void TouchInputMapperTest::prepareVirtualKeys() { mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[0]); mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[1]); mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); mFakeEventHub->addKey(EVENTHUB_ID, KEY_MENU, 0, AKEYCODE_MENU, POLICY_FLAG_WAKE); } void TouchInputMapperTest::prepareLocationCalibration() { mFakePolicy->setTouchAffineTransformation(AFFINE_TRANSFORM); } int32_t TouchInputMapperTest::toRawX(float displayX) { return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH + RAW_X_MIN); } int32_t TouchInputMapperTest::toRawY(float displayY) { return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT + RAW_Y_MIN); } float TouchInputMapperTest::toCookedX(float rawX, float rawY) { AFFINE_TRANSFORM.applyTo(rawX, rawY); return rawX; } float TouchInputMapperTest::toCookedY(float rawX, float rawY) { AFFINE_TRANSFORM.applyTo(rawX, rawY); return rawY; } float TouchInputMapperTest::toDisplayX(int32_t rawX) { return toDisplayX(rawX, DISPLAY_WIDTH); } float TouchInputMapperTest::toDisplayX(int32_t rawX, int32_t displayWidth) { return float(rawX - RAW_X_MIN) * displayWidth / (RAW_X_MAX - RAW_X_MIN + 1); } float TouchInputMapperTest::toDisplayY(int32_t rawY) { return toDisplayY(rawY, DISPLAY_HEIGHT); } float TouchInputMapperTest::toDisplayY(int32_t rawY, int32_t displayHeight) { return float(rawY - RAW_Y_MIN) * displayHeight / (RAW_Y_MAX - RAW_Y_MIN + 1); } // --- SingleTouchInputMapperTest --- class SingleTouchInputMapperTest : public TouchInputMapperTest { protected: void prepareButtons(); void prepareAxes(int axes); void processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y); void processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y); void processUp(SingleTouchInputMapper& mappery); void processPressure(SingleTouchInputMapper& mapper, int32_t pressure); void processToolMajor(SingleTouchInputMapper& mapper, int32_t toolMajor); void processDistance(SingleTouchInputMapper& mapper, int32_t distance); void processTilt(SingleTouchInputMapper& mapper, int32_t tiltX, int32_t tiltY); void processKey(SingleTouchInputMapper& mapper, int32_t code, int32_t value); void processSync(SingleTouchInputMapper& mapper); }; void SingleTouchInputMapperTest::prepareButtons() { mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0); } void SingleTouchInputMapperTest::prepareAxes(int axes) { if (axes & POSITION) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0); mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); } if (axes & PRESSURE) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0); } if (axes & TOOL) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0); } if (axes & DISTANCE) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_DISTANCE, RAW_DISTANCE_MIN, RAW_DISTANCE_MAX, 0, 0); } if (axes & TILT) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_X, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0); mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_Y, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0); } } void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y) { process(mapper, ARBITRARY_TIME, EV_KEY, BTN_TOUCH, 1); process(mapper, ARBITRARY_TIME, EV_ABS, ABS_X, x); process(mapper, ARBITRARY_TIME, EV_ABS, ABS_Y, y); } void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_X, x); process(mapper, ARBITRARY_TIME, EV_ABS, ABS_Y, y); } void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper& mapper) { process(mapper, ARBITRARY_TIME, EV_KEY, BTN_TOUCH, 0); } void SingleTouchInputMapperTest::processPressure(SingleTouchInputMapper& mapper, int32_t pressure) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_PRESSURE, pressure); } void SingleTouchInputMapperTest::processToolMajor(SingleTouchInputMapper& mapper, int32_t toolMajor) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_TOOL_WIDTH, toolMajor); } void SingleTouchInputMapperTest::processDistance(SingleTouchInputMapper& mapper, int32_t distance) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_DISTANCE, distance); } void SingleTouchInputMapperTest::processTilt(SingleTouchInputMapper& mapper, int32_t tiltX, int32_t tiltY) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_TILT_X, tiltX); process(mapper, ARBITRARY_TIME, EV_ABS, ABS_TILT_Y, tiltY); } void SingleTouchInputMapperTest::processKey(SingleTouchInputMapper& mapper, int32_t code, int32_t value) { process(mapper, ARBITRARY_TIME, EV_KEY, code, value); } void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper& mapper) { process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); } TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndNotACursor_ReturnsPointer) { prepareButtons(); prepareAxes(POSITION); SingleTouchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); } TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndIsACursor_ReturnsTouchPad) { mFakeEventHub->addRelativeAxis(EVENTHUB_ID, REL_X); mFakeEventHub->addRelativeAxis(EVENTHUB_ID, REL_Y); prepareButtons(); prepareAxes(POSITION); SingleTouchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources()); } TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchPad_ReturnsTouchPad) { prepareButtons(); prepareAxes(POSITION); addConfigurationProperty("touch.deviceType", "touchPad"); SingleTouchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources()); } TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchScreen_ReturnsTouchScreen) { prepareButtons(); prepareAxes(POSITION); addConfigurationProperty("touch.deviceType", "touchScreen"); SingleTouchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources()); } TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); // Unknown key. ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); // Virtual key is down. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME)); // Virtual key is up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_UP, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME)); } TEST_F(SingleTouchInputMapperTest, GetScanCodeState) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); // Unknown key. ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); // Virtual key is down. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME)); // Virtual key is up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); ASSERT_EQ(AKEY_STATE_UP, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME)); } TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); const int32_t keys[2] = { AKEYCODE_HOME, AKEYCODE_A }; uint8_t flags[2] = { 0, 0 }; ASSERT_TRUE(mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, 2, keys, flags)); ASSERT_TRUE(flags[0]); ASSERT_FALSE(flags[1]); } TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyKeyArgs args; // Press virtual key. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Release virtual key. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); ASSERT_EQ(ARBITRARY_TIME, args.eventTime); ASSERT_EQ(DEVICE_ID, args.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); ASSERT_EQ(AKEYCODE_HOME, args.keyCode); ASSERT_EQ(KEY_HOME, args.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); ASSERT_EQ(ARBITRARY_TIME, args.downTime); // Should not have sent any motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyKeyArgs keyArgs; // Press virtual key. int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime); ASSERT_EQ(DEVICE_ID, keyArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags); ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode); ASSERT_EQ(KEY_HOME, keyArgs.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState); ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime); // Move out of bounds. This should generate a cancel and a pointer down since we moved // into the display area. y -= 100; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime); ASSERT_EQ(DEVICE_ID, keyArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source); ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | AKEY_EVENT_FLAG_CANCELED, keyArgs.flags); ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode); ASSERT_EQ(KEY_HOME, keyArgs.scanCode); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState); ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime); NotifyMotionArgs motionArgs; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Keep moving out of bounds. Should generate a pointer move. y -= 50; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Release out of bounds. Should generate a pointer up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs motionArgs; // Initially go down out of bounds. int32_t x = -10; int32_t y = -10; processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // Move into the display area. Should generate a pointer down. x = 50; y = 75; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Release. Should generate a pointer up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture_VirtualDisplay) { addConfigurationProperty("touch.deviceType", "touchScreen"); addConfigurationProperty("touch.displayId", VIRTUAL_DISPLAY_UNIQUE_ID); prepareVirtualDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs motionArgs; // Down. int32_t x = 100; int32_t y = 125; processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x += 50; y += 75; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); prepareVirtualKeys(); SingleTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs motionArgs; // Down. int32_t x = 100; int32_t y = 125; processDown(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x += 50; y += 75; processMove(mapper, x, y); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Up. processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenNotOrientationAware_DoesNotRotateMotions) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareButtons(); prepareAxes(POSITION); addConfigurationProperty("touch.orientationAware", "0"); SingleTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs args; // Rotation 90. prepareDisplay(DISPLAY_ORIENTATION_90); processDown(mapper, toRawX(50), toRawY(75)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); } TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationAware_RotatesMotions) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareButtons(); prepareAxes(POSITION); SingleTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs args; // Rotation 0. clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_0); processDown(mapper, toRawX(50), toRawY(75)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); // Rotation 90. clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_90); processDown(mapper, RAW_X_MAX - toRawX(75) + RAW_X_MIN, toRawY(50)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); // Rotation 180. clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_180); processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); // Rotation 270. clearViewports(); prepareDisplay(DISPLAY_ORIENTATION_270); processDown(mapper, toRawX(75), RAW_Y_MAX - toRawY(50) + RAW_Y_MIN); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); } TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION | PRESSURE | TOOL | DISTANCE | TILT); SingleTouchInputMapper& mapper = addMapperAndConfigure(); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawPressure = 10; int32_t rawToolMajor = 12; int32_t rawDistance = 2; int32_t rawTiltX = 30; int32_t rawTiltY = 110; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawPressure) / RAW_PRESSURE_MAX; float size = float(rawToolMajor) / RAW_TOOL_MAX; float tool = float(rawToolMajor) * GEOMETRIC_SCALE; float distance = float(rawDistance); float tiltCenter = (RAW_TILT_MAX + RAW_TILT_MIN) * 0.5f; float tiltScale = M_PI / 180; float tiltXAngle = (rawTiltX - tiltCenter) * tiltScale; float tiltYAngle = (rawTiltY - tiltCenter) * tiltScale; float orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); float tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); processDown(mapper, rawX, rawY); processPressure(mapper, rawPressure); processToolMajor(mapper, rawToolMajor); processDistance(mapper, rawDistance); processTilt(mapper, rawTiltX, rawTiltY); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, tool, tool, tool, tool, orientation, distance)); ASSERT_EQ(tilt, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_TILT)); } TEST_F(SingleTouchInputMapperTest, Process_XYAxes_AffineCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareLocationCalibration(); prepareButtons(); prepareAxes(POSITION); SingleTouchInputMapper& mapper = addMapperAndConfigure(); int32_t rawX = 100; int32_t rawY = 200; float x = toDisplayX(toCookedX(rawX, rawY)); float y = toDisplayY(toCookedY(rawX, rawY)); processDown(mapper, rawX, rawY); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, 1, 0, 0, 0, 0, 0, 0, 0)); } TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllButtons) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); SingleTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; NotifyKeyArgs keyArgs; processDown(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_LEFT, release BTN_LEFT processKey(mapper, BTN_LEFT, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); processKey(mapper, BTN_LEFT, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE processKey(mapper, BTN_RIGHT, 1); processKey(mapper, BTN_MIDDLE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); processKey(mapper, BTN_RIGHT, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); processKey(mapper, BTN_MIDDLE, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_BACK, release BTN_BACK processKey(mapper, BTN_BACK, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); processKey(mapper, BTN_BACK, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); // press BTN_SIDE, release BTN_SIDE processKey(mapper, BTN_SIDE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); processKey(mapper, BTN_SIDE, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); // press BTN_FORWARD, release BTN_FORWARD processKey(mapper, BTN_FORWARD, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); processKey(mapper, BTN_FORWARD, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); // press BTN_EXTRA, release BTN_EXTRA processKey(mapper, BTN_EXTRA, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); processKey(mapper, BTN_EXTRA, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); // press BTN_STYLUS, release BTN_STYLUS processKey(mapper, BTN_STYLUS, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); processKey(mapper, BTN_STYLUS, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_STYLUS2, release BTN_STYLUS2 processKey(mapper, BTN_STYLUS2, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); processKey(mapper, BTN_STYLUS2, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // release touch processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); } TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllToolTypes) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); SingleTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // default tool type is finger processDown(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // eraser processKey(mapper, BTN_TOOL_RUBBER, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType); // stylus processKey(mapper, BTN_TOOL_RUBBER, 0); processKey(mapper, BTN_TOOL_PEN, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // brush processKey(mapper, BTN_TOOL_PEN, 0); processKey(mapper, BTN_TOOL_BRUSH, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // pencil processKey(mapper, BTN_TOOL_BRUSH, 0); processKey(mapper, BTN_TOOL_PENCIL, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // air-brush processKey(mapper, BTN_TOOL_PENCIL, 0); processKey(mapper, BTN_TOOL_AIRBRUSH, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // mouse processKey(mapper, BTN_TOOL_AIRBRUSH, 0); processKey(mapper, BTN_TOOL_MOUSE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType); // lens processKey(mapper, BTN_TOOL_MOUSE, 0); processKey(mapper, BTN_TOOL_LENS, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType); // double-tap processKey(mapper, BTN_TOOL_LENS, 0); processKey(mapper, BTN_TOOL_DOUBLETAP, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // triple-tap processKey(mapper, BTN_TOOL_DOUBLETAP, 0); processKey(mapper, BTN_TOOL_TRIPLETAP, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // quad-tap processKey(mapper, BTN_TOOL_TRIPLETAP, 0); processKey(mapper, BTN_TOOL_QUADTAP, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // finger processKey(mapper, BTN_TOOL_QUADTAP, 0); processKey(mapper, BTN_TOOL_FINGER, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // stylus trumps finger processKey(mapper, BTN_TOOL_PEN, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // eraser trumps stylus processKey(mapper, BTN_TOOL_RUBBER, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType); // mouse trumps eraser processKey(mapper, BTN_TOOL_MOUSE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType); // back to default tool type processKey(mapper, BTN_TOOL_MOUSE, 0); processKey(mapper, BTN_TOOL_RUBBER, 0); processKey(mapper, BTN_TOOL_PEN, 0); processKey(mapper, BTN_TOOL_FINGER, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); } TEST_F(SingleTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION); mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_FINGER, 0, AKEYCODE_UNKNOWN, 0); SingleTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0 processKey(mapper, BTN_TOOL_FINGER, 1); processMove(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); // move a little processMove(mapper, 150, 250); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // down when BTN_TOUCH is pressed, pressure defaults to 1 processKey(mapper, BTN_TOUCH, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); // up when BTN_TOUCH is released, hover restored processKey(mapper, BTN_TOUCH, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // exit hover when pointer goes away processKey(mapper, BTN_TOOL_FINGER, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); } TEST_F(SingleTouchInputMapperTest, Process_WhenAbsPressureIsPresent_HoversIfItsValueIsZero) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareButtons(); prepareAxes(POSITION | PRESSURE); SingleTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // initially hovering because pressure is 0 processDown(mapper, 100, 200); processPressure(mapper, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); // move a little processMove(mapper, 150, 250); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // down when pressure is non-zero processPressure(mapper, RAW_PRESSURE_MAX); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); // up when pressure becomes 0, hover restored processPressure(mapper, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // exit hover when pointer goes away processUp(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); } // --- MultiTouchInputMapperTest --- class MultiTouchInputMapperTest : public TouchInputMapperTest { protected: void prepareAxes(int axes); void processPosition(MultiTouchInputMapper& mapper, int32_t x, int32_t y); void processTouchMajor(MultiTouchInputMapper& mapper, int32_t touchMajor); void processTouchMinor(MultiTouchInputMapper& mapper, int32_t touchMinor); void processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor); void processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor); void processOrientation(MultiTouchInputMapper& mapper, int32_t orientation); void processPressure(MultiTouchInputMapper& mapper, int32_t pressure); void processDistance(MultiTouchInputMapper& mapper, int32_t distance); void processId(MultiTouchInputMapper& mapper, int32_t id); void processSlot(MultiTouchInputMapper& mapper, int32_t slot); void processToolType(MultiTouchInputMapper& mapper, int32_t toolType); void processKey(MultiTouchInputMapper& mapper, int32_t code, int32_t value); void processMTSync(MultiTouchInputMapper& mapper); void processSync(MultiTouchInputMapper& mapper); }; void MultiTouchInputMapperTest::prepareAxes(int axes) { if (axes & POSITION) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0); mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); } if (axes & TOUCH) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0); if (axes & MINOR) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0); } } if (axes & TOOL) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0); if (axes & MINOR) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MAX, RAW_TOOL_MAX, 0, 0); } } if (axes & ORIENTATION) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_ORIENTATION, RAW_ORIENTATION_MIN, RAW_ORIENTATION_MAX, 0, 0); } if (axes & PRESSURE) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_PRESSURE, RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0); } if (axes & DISTANCE) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_DISTANCE, RAW_DISTANCE_MIN, RAW_DISTANCE_MAX, 0, 0); } if (axes & ID) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, 0, 0); } if (axes & SLOT) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX, 0, 0); mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_MT_SLOT, 0); } if (axes & TOOL_TYPE) { mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOOL_TYPE, 0, MT_TOOL_MAX, 0, 0); } } void MultiTouchInputMapperTest::processPosition(MultiTouchInputMapper& mapper, int32_t x, int32_t y) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_POSITION_X, x); process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_POSITION_Y, y); } void MultiTouchInputMapperTest::processTouchMajor(MultiTouchInputMapper& mapper, int32_t touchMajor) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_TOUCH_MAJOR, touchMajor); } void MultiTouchInputMapperTest::processTouchMinor(MultiTouchInputMapper& mapper, int32_t touchMinor) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_TOUCH_MINOR, touchMinor); } void MultiTouchInputMapperTest::processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_WIDTH_MAJOR, toolMajor); } void MultiTouchInputMapperTest::processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_WIDTH_MINOR, toolMinor); } void MultiTouchInputMapperTest::processOrientation(MultiTouchInputMapper& mapper, int32_t orientation) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_ORIENTATION, orientation); } void MultiTouchInputMapperTest::processPressure(MultiTouchInputMapper& mapper, int32_t pressure) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_PRESSURE, pressure); } void MultiTouchInputMapperTest::processDistance(MultiTouchInputMapper& mapper, int32_t distance) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_DISTANCE, distance); } void MultiTouchInputMapperTest::processId(MultiTouchInputMapper& mapper, int32_t id) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_TRACKING_ID, id); } void MultiTouchInputMapperTest::processSlot(MultiTouchInputMapper& mapper, int32_t slot) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_SLOT, slot); } void MultiTouchInputMapperTest::processToolType(MultiTouchInputMapper& mapper, int32_t toolType) { process(mapper, ARBITRARY_TIME, EV_ABS, ABS_MT_TOOL_TYPE, toolType); } void MultiTouchInputMapperTest::processKey(MultiTouchInputMapper& mapper, int32_t code, int32_t value) { process(mapper, ARBITRARY_TIME, EV_KEY, code, value); } void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper& mapper) { process(mapper, ARBITRARY_TIME, EV_SYN, SYN_MT_REPORT, 0); } void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper& mapper) { process(mapper, ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); } TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION); prepareVirtualKeys(); MultiTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs motionArgs; // Two fingers down at once. int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; processPosition(mapper, x1, y1); processMTSync(mapper); processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x1 += 10; y1 += 15; x2 += 5; y2 -= 10; processPosition(mapper, x1, y1); processMTSync(mapper); processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // First finger up. x2 += 15; y2 -= 20; processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Move. x2 += 20; y2 -= 25; processPosition(mapper, x2, y2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // New finger down. int32_t x3 = 700, y3 = 300; processPosition(mapper, x2, y2); processMTSync(mapper); processPosition(mapper, x3, y3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Second finger up. x3 += 30; y3 -= 20; processPosition(mapper, x3, y3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Last finger up. processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.flags); ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_EQ(0, motionArgs.edgeFlags); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID); prepareVirtualKeys(); MultiTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs motionArgs; // Two fingers down at once. int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; processPosition(mapper, x1, y1); processId(mapper, 1); processMTSync(mapper); processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // Move. x1 += 10; y1 += 15; x2 += 5; y2 -= 10; processPosition(mapper, x1, y1); processId(mapper, 1); processMTSync(mapper); processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // First finger up. x2 += 15; y2 -= 20; processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // Move. x2 += 20; y2 -= 25; processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // New finger down. int32_t x3 = 700, y3 = 300; processPosition(mapper, x2, y2); processId(mapper, 2); processMTSync(mapper); processPosition(mapper, x3, y3); processId(mapper, 3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // Second finger up. x3 += 30; y3 -= 20; processPosition(mapper, x3, y3); processId(mapper, 3); processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); // Last finger up. processMTSync(mapper); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithSlots) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT); prepareVirtualKeys(); MultiTouchInputMapper& mapper = addMapperAndConfigure(); mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); NotifyMotionArgs motionArgs; // Two fingers down at once. int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; processPosition(mapper, x1, y1); processId(mapper, 1); processSlot(mapper, 1); processPosition(mapper, x2, y2); processId(mapper, 2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // Move. x1 += 10; y1 += 15; x2 += 5; y2 -= 10; processSlot(mapper, 0); processPosition(mapper, x1, y1); processSlot(mapper, 1); processPosition(mapper, x2, y2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // First finger up. x2 += 15; y2 -= 20; processSlot(mapper, 0); processId(mapper, -1); processSlot(mapper, 1); processPosition(mapper, x2, y2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // Move. x2 += 20; y2 -= 25; processPosition(mapper, x2, y2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(1, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // New finger down. int32_t x3 = 700, y3 = 300; processPosition(mapper, x2, y2); processSlot(mapper, 0); processId(mapper, 3); processPosition(mapper, x3, y3); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); // Second finger up. x3 += 30; y3 -= 20; processSlot(mapper, 1); processId(mapper, -1); processSlot(mapper, 0); processPosition(mapper, x3, y3); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(size_t(2), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_EQ(1, motionArgs.pointerProperties[1].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); // Last finger up. processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(size_t(1), motionArgs.pointerCount); ASSERT_EQ(0, motionArgs.pointerProperties[0].id); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); // Should not have sent any more keys or motions. ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); } TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR | DISTANCE); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawTouchMajor = 7; int32_t rawTouchMinor = 6; int32_t rawToolMajor = 9; int32_t rawToolMinor = 8; int32_t rawPressure = 11; int32_t rawDistance = 0; int32_t rawOrientation = 3; int32_t id = 5; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawPressure) / RAW_PRESSURE_MAX; float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX; float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE; float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE; float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE; float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE; float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2; float distance = float(rawDistance); processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processTouchMinor(mapper, rawTouchMinor); processToolMajor(mapper, rawToolMajor); processToolMinor(mapper, rawToolMinor); processPressure(mapper, rawPressure); processOrientation(mapper, rawOrientation); processDistance(mapper, rawDistance); processId(mapper, id); processMTSync(mapper); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(0, args.pointerProperties[0].id); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, orientation, distance)); } TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | TOUCH | TOOL | MINOR); addConfigurationProperty("touch.size.calibration", "geometric"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawTouchMajor = 140; int32_t rawTouchMinor = 120; int32_t rawToolMajor = 180; int32_t rawToolMinor = 160; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX; float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE; float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE; float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE; float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE; processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processTouchMinor(mapper, rawTouchMinor); processToolMajor(mapper, rawToolMajor); processToolMinor(mapper, rawToolMinor); processMTSync(mapper); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, 1.0f, size, touchMajor, touchMinor, toolMajor, toolMinor, 0, 0)); } TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_SummedLinearCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | TOUCH | TOOL); addConfigurationProperty("touch.size.calibration", "diameter"); addConfigurationProperty("touch.size.scale", "10"); addConfigurationProperty("touch.size.bias", "160"); addConfigurationProperty("touch.size.isSummed", "1"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // These calculations are based on the input device calibration documentation. // Note: We only provide a single common touch/tool value because the device is assumed // not to emit separate values for each pointer (isSummed = 1). int32_t rawX = 100; int32_t rawY = 200; int32_t rawX2 = 150; int32_t rawY2 = 250; int32_t rawTouchMajor = 5; int32_t rawToolMajor = 8; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float x2 = toDisplayX(rawX2); float y2 = toDisplayY(rawY2); float size = float(rawTouchMajor) / 2 / RAW_TOUCH_MAX; float touch = float(rawTouchMajor) / 2 * 10.0f + 160.0f; float tool = float(rawToolMajor) / 2 * 10.0f + 160.0f; processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processToolMajor(mapper, rawToolMajor); processMTSync(mapper); processPosition(mapper, rawX2, rawY2); processTouchMajor(mapper, rawTouchMajor); processToolMajor(mapper, rawToolMajor); processMTSync(mapper); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), args.action); ASSERT_EQ(size_t(2), args.pointerCount); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, 1.0f, size, touch, touch, tool, tool, 0, 0)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1], x2, y2, 1.0f, size, touch, touch, tool, tool, 0, 0)); } TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_AreaCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | TOUCH | TOOL); addConfigurationProperty("touch.size.calibration", "area"); addConfigurationProperty("touch.size.scale", "43"); addConfigurationProperty("touch.size.bias", "3"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawTouchMajor = 5; int32_t rawToolMajor = 8; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float size = float(rawTouchMajor) / RAW_TOUCH_MAX; float touch = sqrtf(rawTouchMajor) * 43.0f + 3.0f; float tool = sqrtf(rawToolMajor) * 43.0f + 3.0f; processPosition(mapper, rawX, rawY); processTouchMajor(mapper, rawTouchMajor); processToolMajor(mapper, rawToolMajor); processMTSync(mapper); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, 1.0f, size, touch, touch, tool, tool, 0, 0)); } TEST_F(MultiTouchInputMapperTest, Process_PressureAxis_AmplitudeCalibration) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | PRESSURE); addConfigurationProperty("touch.pressure.calibration", "amplitude"); addConfigurationProperty("touch.pressure.scale", "0.01"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); InputDeviceInfo info; mapper.populateDeviceInfo(&info); ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TOUCHSCREEN, 0.0f, RAW_PRESSURE_MAX * 0.01, 0.0f, 0.0f)); // These calculations are based on the input device calibration documentation. int32_t rawX = 100; int32_t rawY = 200; int32_t rawPressure = 60; float x = toDisplayX(rawX); float y = toDisplayY(rawY); float pressure = float(rawPressure) * 0.01f; processPosition(mapper, rawX, rawY); processPressure(mapper, rawPressure); processMTSync(mapper); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, pressure, 0, 0, 0, 0, 0, 0, 0)); } TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllButtons) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; NotifyKeyArgs keyArgs; processId(mapper, 1); processPosition(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_LEFT, release BTN_LEFT processKey(mapper, BTN_LEFT, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); processKey(mapper, BTN_LEFT, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE processKey(mapper, BTN_RIGHT, 1); processKey(mapper, BTN_MIDDLE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); processKey(mapper, BTN_RIGHT, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); processKey(mapper, BTN_MIDDLE, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_BACK, release BTN_BACK processKey(mapper, BTN_BACK, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); processKey(mapper, BTN_BACK, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); // press BTN_SIDE, release BTN_SIDE processKey(mapper, BTN_SIDE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); processKey(mapper, BTN_SIDE, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); // press BTN_FORWARD, release BTN_FORWARD processKey(mapper, BTN_FORWARD, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); processKey(mapper, BTN_FORWARD, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); // press BTN_EXTRA, release BTN_EXTRA processKey(mapper, BTN_EXTRA, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); processKey(mapper, BTN_EXTRA, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); // press BTN_STYLUS, release BTN_STYLUS processKey(mapper, BTN_STYLUS, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); processKey(mapper, BTN_STYLUS, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // press BTN_STYLUS2, release BTN_STYLUS2 processKey(mapper, BTN_STYLUS2, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); processKey(mapper, BTN_STYLUS2, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); // release touch processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(0, motionArgs.buttonState); } TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllToolTypes) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // default tool type is finger processId(mapper, 1); processPosition(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // eraser processKey(mapper, BTN_TOOL_RUBBER, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType); // stylus processKey(mapper, BTN_TOOL_RUBBER, 0); processKey(mapper, BTN_TOOL_PEN, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // brush processKey(mapper, BTN_TOOL_PEN, 0); processKey(mapper, BTN_TOOL_BRUSH, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // pencil processKey(mapper, BTN_TOOL_BRUSH, 0); processKey(mapper, BTN_TOOL_PENCIL, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // air-brush processKey(mapper, BTN_TOOL_PENCIL, 0); processKey(mapper, BTN_TOOL_AIRBRUSH, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // mouse processKey(mapper, BTN_TOOL_AIRBRUSH, 0); processKey(mapper, BTN_TOOL_MOUSE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType); // lens processKey(mapper, BTN_TOOL_MOUSE, 0); processKey(mapper, BTN_TOOL_LENS, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType); // double-tap processKey(mapper, BTN_TOOL_LENS, 0); processKey(mapper, BTN_TOOL_DOUBLETAP, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // triple-tap processKey(mapper, BTN_TOOL_DOUBLETAP, 0); processKey(mapper, BTN_TOOL_TRIPLETAP, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // quad-tap processKey(mapper, BTN_TOOL_TRIPLETAP, 0); processKey(mapper, BTN_TOOL_QUADTAP, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // finger processKey(mapper, BTN_TOOL_QUADTAP, 0); processKey(mapper, BTN_TOOL_FINGER, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // stylus trumps finger processKey(mapper, BTN_TOOL_PEN, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // eraser trumps stylus processKey(mapper, BTN_TOOL_RUBBER, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType); // mouse trumps eraser processKey(mapper, BTN_TOOL_MOUSE, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType); // MT tool type trumps BTN tool types: MT_TOOL_FINGER processToolType(mapper, MT_TOOL_FINGER); // this is the first time we send MT_TOOL_TYPE processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // MT tool type trumps BTN tool types: MT_TOOL_PEN processToolType(mapper, MT_TOOL_PEN); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType); // back to default tool type processToolType(mapper, -1); // use a deliberately undefined tool type, for testing processKey(mapper, BTN_TOOL_MOUSE, 0); processKey(mapper, BTN_TOOL_RUBBER, 0); processKey(mapper, BTN_TOOL_PEN, 0); processKey(mapper, BTN_TOOL_FINGER, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); } TEST_F(MultiTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT); mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0 processId(mapper, 1); processPosition(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); // move a little processPosition(mapper, 150, 250); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // down when BTN_TOUCH is pressed, pressure defaults to 1 processKey(mapper, BTN_TOUCH, 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); // up when BTN_TOUCH is released, hover restored processKey(mapper, BTN_TOUCH, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // exit hover when pointer goes away processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); } TEST_F(MultiTouchInputMapperTest, Process_WhenAbsMTPressureIsPresent_HoversIfItsValueIsZero) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT | PRESSURE); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // initially hovering because pressure is 0 processId(mapper, 1); processPosition(mapper, 100, 200); processPressure(mapper, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); // move a little processPosition(mapper, 150, 250); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // down when pressure becomes non-zero processPressure(mapper, RAW_PRESSURE_MAX); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); // up when pressure becomes 0, hover restored processPressure(mapper, 0); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); // exit hover when pointer goes away processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); } /** * Set the input device port <--> display port associations, and check that the * events are routed to the display that matches the display port. * This can be checked by looking at the displayId of the resulting NotifyMotionArgs. */ TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayPort) { const std::string usb2 = "USB2"; const uint8_t hdmi1 = 0; const uint8_t hdmi2 = 1; const std::string secondaryUniqueId = "uniqueId2"; constexpr ViewportType type = ViewportType::VIEWPORT_EXTERNAL; addConfigurationProperty("touch.deviceType", "touchScreen"); prepareAxes(POSITION); MultiTouchInputMapper& mapper = addMapperAndConfigure(); mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); mFakePolicy->addInputPortAssociation(usb2, hdmi2); // We are intentionally not adding the viewport for display 1 yet. Since the port association // for this input device is specified, and the matching viewport is not present, // the input device should be disabled (at the mapper level). // Add viewport for display 2 on hdmi2 prepareSecondaryDisplay(type, hdmi2); // Send a touch event processPosition(mapper, 100, 100); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // Add viewport for display 1 on hdmi1 prepareDisplay(DISPLAY_ORIENTATION_0, hdmi1); // Send a touch event again processPosition(mapper, 100, 100); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(DISPLAY_ID, args.displayId); } TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShouldHandleDisplayId) { // Setup for second display. sp fakePointerController = new FakePointerController(); fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1); fakePointerController->setPosition(100, 200); fakePointerController->setButtonState(0); mFakePolicy->setPointerController(mDevice->getId(), fakePointerController); mFakePolicy->setDefaultPointerDisplayId(SECONDARY_DISPLAY_ID); prepareSecondaryDisplay(ViewportType::VIEWPORT_EXTERNAL); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Check source is mouse that would obtain the PointerController. ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); NotifyMotionArgs motionArgs; processPosition(mapper, 100, 100); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId); } TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShowTouches) { // Setup the first touch screen device. prepareAxes(POSITION | ID | SLOT); addConfigurationProperty("touch.deviceType", "touchScreen"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Create the second touch screen device, and enable multi fingers. const std::string USB2 = "USB2"; constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1; constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1; InputDeviceIdentifier identifier; identifier.name = "TOUCHSCREEN2"; identifier.location = USB2; std::unique_ptr device2 = std::make_unique(mFakeContext, SECOND_DEVICE_ID, DEVICE_GENERATION, identifier); mFakeEventHub->addDevice(SECOND_EVENTHUB_ID, DEVICE_NAME, 0 /*classes*/); mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0 /*flat*/, 0 /*fuzz*/); mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0 /*flat*/, 0 /*fuzz*/); mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, 0 /*flat*/, 0 /*fuzz*/); mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX, 0 /*flat*/, 0 /*fuzz*/); mFakeEventHub->setAbsoluteAxisValue(SECOND_EVENTHUB_ID, ABS_MT_SLOT, 0 /*value*/); mFakeEventHub->addConfigurationProperty(SECOND_EVENTHUB_ID, String8("touch.deviceType"), String8("touchScreen")); // Setup the second touch screen device. MultiTouchInputMapper& mapper2 = device2->addMapper(SECOND_EVENTHUB_ID); device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0 /*changes*/); device2->reset(ARBITRARY_TIME); // Setup PointerController. sp fakePointerController = new FakePointerController(); mFakePolicy->setPointerController(mDevice->getId(), fakePointerController); mFakePolicy->setPointerController(SECOND_DEVICE_ID, fakePointerController); // Setup policy for associated displays and show touches. const uint8_t hdmi1 = 0; const uint8_t hdmi2 = 1; mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); mFakePolicy->addInputPortAssociation(USB2, hdmi2); mFakePolicy->setShowTouches(true); // Create displays. prepareDisplay(DISPLAY_ORIENTATION_0, hdmi1); prepareSecondaryDisplay(ViewportType::VIEWPORT_EXTERNAL, hdmi2); // Default device will reconfigure above, need additional reconfiguration for another device. device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), InputReaderConfiguration::CHANGE_DISPLAY_INFO); // Two fingers down at default display. int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; processPosition(mapper, x1, y1); processId(mapper, 1); processSlot(mapper, 1); processPosition(mapper, x2, y2); processId(mapper, 2); processSync(mapper); std::map>::const_iterator iter = fakePointerController->getSpots().find(DISPLAY_ID); ASSERT_TRUE(iter != fakePointerController->getSpots().end()); ASSERT_EQ(size_t(2), iter->second.size()); // Two fingers down at second display. processPosition(mapper2, x1, y1); processId(mapper2, 1); processSlot(mapper2, 1); processPosition(mapper2, x2, y2); processId(mapper2, 2); processSync(mapper2); iter = fakePointerController->getSpots().find(SECONDARY_DISPLAY_ID); ASSERT_TRUE(iter != fakePointerController->getSpots().end()); ASSERT_EQ(size_t(2), iter->second.size()); } TEST_F(MultiTouchInputMapperTest, VideoFrames_ReceivedByListener) { prepareAxes(POSITION); addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // Unrotated video frame TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); std::vector frames{frame}; mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); processPosition(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(frames, motionArgs.videoFrames); // Subsequent touch events should not have any videoframes // This is implemented separately in FakeEventHub, // but that should match the behaviour of TouchVideoDevice. processPosition(mapper, 200, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(std::vector(), motionArgs.videoFrames); } TEST_F(MultiTouchInputMapperTest, VideoFrames_AreRotated) { prepareAxes(POSITION); addConfigurationProperty("touch.deviceType", "touchScreen"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Unrotated video frame TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); NotifyMotionArgs motionArgs; // Test all 4 orientations for (int32_t orientation : {DISPLAY_ORIENTATION_0, DISPLAY_ORIENTATION_90, DISPLAY_ORIENTATION_180, DISPLAY_ORIENTATION_270}) { SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation)); clearViewports(); prepareDisplay(orientation); std::vector frames{frame}; mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); processPosition(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); frames[0].rotate(orientation); ASSERT_EQ(frames, motionArgs.videoFrames); } } TEST_F(MultiTouchInputMapperTest, VideoFrames_MultipleFramesAreRotated) { prepareAxes(POSITION); addConfigurationProperty("touch.deviceType", "touchScreen"); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Unrotated video frames. There's no rule that they must all have the same dimensions, // so mix these. TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3}); TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4}); std::vector frames{frame1, frame2, frame3}; NotifyMotionArgs motionArgs; prepareDisplay(DISPLAY_ORIENTATION_90); mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); processPosition(mapper, 100, 200); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); std::for_each(frames.begin(), frames.end(), [](TouchVideoFrame& frame) { frame.rotate(DISPLAY_ORIENTATION_90); }); ASSERT_EQ(frames, motionArgs.videoFrames); } /** * If we had defined port associations, but the viewport is not ready, the touch device would be * expected to be disabled, and it should be enabled after the viewport has found. */ TEST_F(MultiTouchInputMapperTest, Configure_EnabledForAssociatedDisplay) { constexpr uint8_t hdmi2 = 1; const std::string secondaryUniqueId = "uniqueId2"; constexpr ViewportType type = ViewportType::VIEWPORT_EXTERNAL; mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi2); addConfigurationProperty("touch.deviceType", "touchScreen"); prepareAxes(POSITION); MultiTouchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(mDevice->isEnabled(), false); // Add display on hdmi2, the device should be enabled and can receive touch event. prepareSecondaryDisplay(type, hdmi2); ASSERT_EQ(mDevice->isEnabled(), true); // Send a touch event. processPosition(mapper, 100, 100); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_EQ(SECONDARY_DISPLAY_ID, args.displayId); } TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleSingleTouch) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240; // finger down processId(mapper, 1); processPosition(mapper, x1, y1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // finger move processId(mapper, 1); processPosition(mapper, x2, y2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // finger up. processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // new finger down processId(mapper, 1); processPosition(mapper, x3, y3); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); } /** * Test touch should be canceled when received the MT_TOOL_PALM event, and the following MOVE and * UP events should be ignored. */ TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // default tool type is finger constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240; processId(mapper, 1); processPosition(mapper, x1, y1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // Tool changed to MT_TOOL_PALM expect sending the cancel event. processToolType(mapper, MT_TOOL_PALM); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); // Ignore the following MOVE and UP events if had detect a palm event. processId(mapper, 1); processPosition(mapper, x2, y2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // finger up. processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // new finger down processToolType(mapper, MT_TOOL_FINGER); processId(mapper, 1); processPosition(mapper, x3, y3); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); } /** * Test multi-touch should be canceled when received the MT_TOOL_PALM event from some finger, * and could be allowed again after all non-MT_TOOL_PALM is release and the new point is * MT_TOOL_FINGER. */ TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType2) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); MultiTouchInputMapper& mapper = addMapperAndConfigure(); NotifyMotionArgs motionArgs; // default tool type is finger constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240; processId(mapper, 1); processPosition(mapper, x1, y1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // Second finger down. processSlot(mapper, 1); processPosition(mapper, x2, y2); processId(mapper, 2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); // If the tool type of the first pointer changes to MT_TOOL_PALM, // the entire gesture should be aborted, so we expect to receive ACTION_CANCEL. processSlot(mapper, 0); processId(mapper, 1); processToolType(mapper, MT_TOOL_PALM); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); // Ignore the following MOVE and UP events if had detect a palm event. processSlot(mapper, 1); processId(mapper, 2); processPosition(mapper, x3, y3); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // second finger up. processId(mapper, -1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // first finger move, but still in palm processSlot(mapper, 0); processId(mapper, 1); processPosition(mapper, x1 - 1, y1 - 1); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // second finger down, expect as new finger down. processSlot(mapper, 1); processId(mapper, 2); processPosition(mapper, x2, y2); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType); } // --- MultiTouchInputMapperTest_ExternalDevice --- class MultiTouchInputMapperTest_ExternalDevice : public MultiTouchInputMapperTest { protected: virtual void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | INPUT_DEVICE_CLASS_EXTERNAL); } }; /** * Expect fallback to internal viewport if device is external and external viewport is not present. */ TEST_F(MultiTouchInputMapperTest_ExternalDevice, Viewports_Fallback) { prepareAxes(POSITION); addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); MultiTouchInputMapper& mapper = addMapperAndConfigure(); ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources()); NotifyMotionArgs motionArgs; // Expect the event to be sent to the internal viewport, // because an external viewport is not present. processPosition(mapper, 100, 100); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(ADISPLAY_ID_DEFAULT, motionArgs.displayId); // Expect the event to be sent to the external viewport if it is present. prepareSecondaryDisplay(ViewportType::VIEWPORT_EXTERNAL); processPosition(mapper, 100, 100); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId); } /** * Test touch should not work if outside of surface. */ class MultiTouchInputMapperTest_SurfaceRange : public MultiTouchInputMapperTest { protected: void halfDisplayToCenterHorizontal(int32_t orientation) { std::optional internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::VIEWPORT_INTERNAL); // Half display to (width/4, 0, width * 3/4, height) to make display has offset. internalViewport->orientation = orientation; if (orientation == DISPLAY_ORIENTATION_90 || orientation == DISPLAY_ORIENTATION_270) { internalViewport->logicalLeft = 0; internalViewport->logicalTop = 0; internalViewport->logicalRight = DISPLAY_HEIGHT; internalViewport->logicalBottom = DISPLAY_WIDTH / 2; internalViewport->physicalLeft = 0; internalViewport->physicalTop = DISPLAY_WIDTH / 4; internalViewport->physicalRight = DISPLAY_HEIGHT; internalViewport->physicalBottom = DISPLAY_WIDTH * 3 / 4; internalViewport->deviceWidth = DISPLAY_HEIGHT; internalViewport->deviceHeight = DISPLAY_WIDTH; } else { internalViewport->logicalLeft = 0; internalViewport->logicalTop = 0; internalViewport->logicalRight = DISPLAY_WIDTH / 2; internalViewport->logicalBottom = DISPLAY_HEIGHT; internalViewport->physicalLeft = DISPLAY_WIDTH / 4; internalViewport->physicalTop = 0; internalViewport->physicalRight = DISPLAY_WIDTH * 3 / 4; internalViewport->physicalBottom = DISPLAY_HEIGHT; internalViewport->deviceWidth = DISPLAY_WIDTH; internalViewport->deviceHeight = DISPLAY_HEIGHT; } mFakePolicy->updateViewport(internalViewport.value()); configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO); } void processPositionAndVerify(MultiTouchInputMapper& mapper, int32_t xInside, int32_t yInside, int32_t xOutside, int32_t yOutside, int32_t xExpected, int32_t yExpected) { // touch on outside area should not work. processPosition(mapper, toRawX(xOutside), toRawY(yOutside)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); // touch on inside area should receive the event. NotifyMotionArgs args; processPosition(mapper, toRawX(xInside), toRawY(yInside)); processSync(mapper); ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NEAR(xExpected, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); ASSERT_NEAR(yExpected, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); // Reset. mapper.reset(ARBITRARY_TIME); } }; TEST_F(MultiTouchInputMapperTest_SurfaceRange, Viewports_SurfaceRange) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Touch on center of normal display should work. const int32_t x = DISPLAY_WIDTH / 4; const int32_t y = DISPLAY_HEIGHT / 2; processPosition(mapper, toRawX(x), toRawY(y)); processSync(mapper); NotifyMotionArgs args; ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], x, y, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f)); // Reset. mapper.reset(ARBITRARY_TIME); // Let physical display be different to device, and make surface and physical could be 1:1. halfDisplayToCenterHorizontal(DISPLAY_ORIENTATION_0); const int32_t xExpected = (x + 1) - (DISPLAY_WIDTH / 4); const int32_t yExpected = y; processPositionAndVerify(mapper, x - 1, y, x + 1, y, xExpected, yExpected); } TEST_F(MultiTouchInputMapperTest_SurfaceRange, Viewports_SurfaceRange_90) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Half display to (width/4, 0, width * 3/4, height) and rotate 90-degrees. halfDisplayToCenterHorizontal(DISPLAY_ORIENTATION_90); const int32_t x = DISPLAY_WIDTH / 4; const int32_t y = DISPLAY_HEIGHT / 2; // expect x/y = swap x/y then reverse y. const int32_t xExpected = y; const int32_t yExpected = (DISPLAY_WIDTH * 3 / 4) - (x + 1); processPositionAndVerify(mapper, x - 1, y, x + 1, y, xExpected, yExpected); } TEST_F(MultiTouchInputMapperTest_SurfaceRange, Viewports_SurfaceRange_270) { addConfigurationProperty("touch.deviceType", "touchScreen"); prepareDisplay(DISPLAY_ORIENTATION_0); prepareAxes(POSITION); MultiTouchInputMapper& mapper = addMapperAndConfigure(); // Half display to (width/4, 0, width * 3/4, height) and rotate 270-degrees. halfDisplayToCenterHorizontal(DISPLAY_ORIENTATION_270); const int32_t x = DISPLAY_WIDTH / 4; const int32_t y = DISPLAY_HEIGHT / 2; // expect x/y = swap x/y then reverse x. constexpr int32_t xExpected = DISPLAY_HEIGHT - y; constexpr int32_t yExpected = (x + 1) - DISPLAY_WIDTH / 4; processPositionAndVerify(mapper, x - 1, y, x + 1, y, xExpected, yExpected); } } // namespace android