/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "BufferLayer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "BufferLayer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Colorizer.h" #include "DisplayDevice.h" #include "FrameTracer/FrameTracer.h" #include "LayerRejecter.h" #include "TimeStats/TimeStats.h" namespace android { static constexpr float defaultMaxMasteringLuminance = 1000.0; static constexpr float defaultMaxContentLuminance = 1000.0; BufferLayer::BufferLayer(const LayerCreationArgs& args) : Layer(args), mTextureName(args.textureName), mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} { ALOGV("Creating Layer %s", getDebugName()); mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; } BufferLayer::~BufferLayer() { if (!isClone()) { // The original layer and the clone layer share the same texture. Therefore, only one of // the layers, in this case the original layer, needs to handle the deletion. The original // layer and the clone should be removed at the same time so there shouldn't be any issue // with the clone layer trying to use the deleted texture. mFlinger->deleteTextureAsync(mTextureName); } const int32_t layerId = getSequence(); mFlinger->mTimeStats->onDestroy(layerId); mFlinger->mFrameTracer->onDestroy(layerId); } void BufferLayer::useSurfaceDamage() { if (mFlinger->mForceFullDamage) { surfaceDamageRegion = Region::INVALID_REGION; } else { surfaceDamageRegion = mBufferInfo.mSurfaceDamage; } } void BufferLayer::useEmptyDamage() { surfaceDamageRegion.clear(); } bool BufferLayer::isOpaque(const Layer::State& s) const { // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the // layer's opaque flag. if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) { return false; } // if the layer has the opaque flag, then we're always opaque, // otherwise we use the current buffer's format. return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); } bool BufferLayer::isVisible() const { return !isHiddenByPolicy() && getAlpha() > 0.0f && (mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr); } bool BufferLayer::isFixedSize() const { return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; } bool BufferLayer::usesSourceCrop() const { return true; } static constexpr mat4 inverseOrientation(uint32_t transform) { const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); mat4 tr; if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { tr = tr * rot90; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { tr = tr * flipH; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { tr = tr * flipV; } return inverse(tr); } std::optional BufferLayer::prepareClientComposition( compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) { ATRACE_CALL(); std::optional result = Layer::prepareClientComposition(targetSettings); if (!result) { return result; } if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) { // the texture has not been created yet, this Layer has // in fact never been drawn into. This happens frequently with // SurfaceView because the WindowManager can't know when the client // has drawn the first time. // If there is nothing under us, we paint the screen in black, otherwise // we just skip this update. // figure out if there is something below us Region under; bool finished = false; mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { if (finished || layer == static_cast(this)) { finished = true; return; } under.orSelf(layer->getScreenBounds()); }); // if not everything below us is covered, we plug the holes! Region holes(targetSettings.clip.subtract(under)); if (!holes.isEmpty()) { targetSettings.clearRegion.orSelf(holes); } return std::nullopt; } bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) || (isSecure() && !targetSettings.isSecure); compositionengine::LayerFE::LayerSettings& layer = *result; if (blackOutLayer) { prepareClearClientComposition(layer, true /* blackout */); return layer; } const State& s(getDrawingState()); layer.source.buffer.buffer = mBufferInfo.mBuffer; layer.source.buffer.isOpaque = isOpaque(s); layer.source.buffer.fence = mBufferInfo.mFence; layer.source.buffer.textureName = mTextureName; layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha(); layer.source.buffer.isY410BT2020 = isHdrY410(); bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086; bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3; layer.source.buffer.maxMasteringLuminance = hasSmpte2086 ? mBufferInfo.mHdrMetadata.smpte2086.maxLuminance : defaultMaxMasteringLuminance; layer.source.buffer.maxContentLuminance = hasCta861_3 ? mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel : defaultMaxContentLuminance; layer.frameNumber = mCurrentFrameNumber; layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0; // TODO: we could be more subtle with isFixedSize() const bool useFiltering = targetSettings.needsFiltering || mNeedsFiltering || isFixedSize(); // Query the texture matrix given our current filtering mode. float textureMatrix[16]; getDrawingTransformMatrix(useFiltering, textureMatrix); if (getTransformToDisplayInverse()) { /* * the code below applies the primary display's inverse transform to * the texture transform */ uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags(); mat4 tr = inverseOrientation(transform); /** * TODO(b/36727915): This is basically a hack. * * Ensure that regardless of the parent transformation, * this buffer is always transformed from native display * orientation to display orientation. For example, in the case * of a camera where the buffer remains in native orientation, * we want the pixels to always be upright. */ sp p = mDrawingParent.promote(); if (p != nullptr) { const auto parentTransform = p->getTransform(); tr = tr * inverseOrientation(parentTransform.getOrientation()); } // and finally apply it to the original texture matrix const mat4 texTransform(mat4(static_cast(textureMatrix)) * tr); memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); } const Rect win{getBounds()}; float bufferWidth = getBufferSize(s).getWidth(); float bufferHeight = getBufferSize(s).getHeight(); // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has // been set and there is no parent layer bounds. In that case, the scale is meaningless so // ignore them. if (!getBufferSize(s).isValid()) { bufferWidth = float(win.right) - float(win.left); bufferHeight = float(win.bottom) - float(win.top); } const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight; const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth; const float translateY = float(win.top) / bufferHeight; const float translateX = float(win.left) / bufferWidth; // Flip y-coordinates because GLConsumer expects OpenGL convention. mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) * mat4::translate(vec4(-.5, -.5, 0, 1)) * mat4::translate(vec4(translateX, translateY, 0, 1)) * mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0)); layer.source.buffer.useTextureFiltering = useFiltering; layer.source.buffer.textureTransform = mat4(static_cast(textureMatrix)) * tr; return layer; } bool BufferLayer::isHdrY410() const { // pixel format is HDR Y410 masquerading as RGBA_1010102 return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ && mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA && mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102); } sp BufferLayer::getCompositionEngineLayerFE() const { return asLayerFE(); } compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() { return mCompositionState.get(); } const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const { return mCompositionState.get(); } void BufferLayer::preparePerFrameCompositionState() { Layer::preparePerFrameCompositionState(); // Sideband layers auto* compositionState = editCompositionState(); if (compositionState->sidebandStream.get()) { compositionState->compositionType = Hwc2::IComposerClient::Composition::SIDEBAND; return; } else { // Normal buffer layers compositionState->hdrMetadata = mBufferInfo.mHdrMetadata; compositionState->compositionType = mPotentialCursor ? Hwc2::IComposerClient::Composition::CURSOR : Hwc2::IComposerClient::Composition::DEVICE; } compositionState->buffer = mBufferInfo.mBuffer; compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT) ? 0 : mBufferInfo.mBufferSlot; compositionState->acquireFence = mBufferInfo.mFence; } bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { if (mBufferInfo.mBuffer != nullptr) { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); } mRefreshPending = false; return hasReadyFrame(); } bool BufferLayer::onPostComposition(const DisplayDevice* display, const std::shared_ptr& glDoneFence, const std::shared_ptr& presentFence, const CompositorTiming& compositorTiming) { // mFrameLatencyNeeded is true when a new frame was latched for the // composition. if (!mBufferInfo.mFrameLatencyNeeded) return false; // Update mFrameEventHistory. { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, compositorTiming); finalizeFrameEventHistory(glDoneFence, compositorTiming); } // Update mFrameTracker. nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime; mFrameTracker.setDesiredPresentTime(desiredPresentTime); const int32_t layerId = getSequence(); mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime); const auto outputLayer = findOutputLayerForDisplay(display); if (outputLayer && outputLayer->requiresClientComposition()) { nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp; mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber, clientCompositionTimestamp, FrameTracer::FrameEvent::FALLBACK_COMPOSITION); } std::shared_ptr frameReadyFence = mBufferInfo.mFenceTime; if (frameReadyFence->isValid()) { mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); } else { // There was no fence for this frame, so assume that it was ready // to be presented at the desired present time. mFrameTracker.setFrameReadyTime(desiredPresentTime); } if (presentFence->isValid()) { mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence); mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber, presentFence, FrameTracer::FrameEvent::PRESENT_FENCE); mFrameTracker.setActualPresentFence(std::shared_ptr(presentFence)); } else if (!display) { // Do nothing. } else if (const auto displayId = display->getId(); displayId && mFlinger->getHwComposer().isConnected(*displayId)) { // The HWC doesn't support present fences, so use the refresh // timestamp instead. const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime); mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber, actualPresentTime, FrameTracer::FrameEvent::PRESENT_FENCE); mFrameTracker.setActualPresentTime(actualPresentTime); } mFrameTracker.advanceFrame(); mBufferInfo.mFrameLatencyNeeded = false; return true; } void BufferLayer::gatherBufferInfo() { mBufferInfo.mPixelFormat = !mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->format; mBufferInfo.mFrameLatencyNeeded = true; } bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime, nsecs_t expectedPresentTime) { ATRACE_CALL(); bool refreshRequired = latchSidebandStream(recomputeVisibleRegions); if (refreshRequired) { return refreshRequired; } if (!hasReadyFrame()) { return false; } // if we've already called updateTexImage() without going through // a composition step, we have to skip this layer at this point // because we cannot call updateTeximage() without a corresponding // compositionComplete() call. // we'll trigger an update in onPreComposition(). if (mRefreshPending) { return false; } // If the head buffer's acquire fence hasn't signaled yet, return and // try again later if (!fenceHasSignaled()) { ATRACE_NAME("!fenceHasSignaled()"); mFlinger->signalLayerUpdate(); return false; } // Capture the old state of the layer for comparisons later const State& s(getDrawingState()); const bool oldOpacity = isOpaque(s); BufferInfo oldBufferInfo = mBufferInfo; if (!allTransactionsSignaled(expectedPresentTime)) { mFlinger->setTransactionFlags(eTraversalNeeded); return false; } status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime); if (err != NO_ERROR) { return false; } err = updateActiveBuffer(); if (err != NO_ERROR) { return false; } err = updateFrameNumber(latchTime); if (err != NO_ERROR) { return false; } gatherBufferInfo(); mRefreshPending = true; if (oldBufferInfo.mBuffer == nullptr) { // the first time we receive a buffer, we need to trigger a // geometry invalidation. recomputeVisibleRegions = true; } if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) || (mBufferInfo.mTransform != oldBufferInfo.mTransform) || (mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) || (mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) { recomputeVisibleRegions = true; } if (oldBufferInfo.mBuffer != nullptr) { uint32_t bufWidth = mBufferInfo.mBuffer->getWidth(); uint32_t bufHeight = mBufferInfo.mBuffer->getHeight(); if (bufWidth != uint32_t(oldBufferInfo.mBuffer->width) || bufHeight != uint32_t(oldBufferInfo.mBuffer->height)) { recomputeVisibleRegions = true; } } if (oldOpacity != isOpaque(s)) { recomputeVisibleRegions = true; } // Remove any sync points corresponding to the buffer which was just // latched { Mutex::Autolock lock(mLocalSyncPointMutex); auto point = mLocalSyncPoints.begin(); while (point != mLocalSyncPoints.end()) { if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { // This sync point must have been added since we started // latching. Don't drop it yet. ++point; continue; } if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { std::stringstream ss; ss << "Dropping sync point " << (*point)->getFrameNumber(); ATRACE_NAME(ss.str().c_str()); point = mLocalSyncPoints.erase(point); } else { ++point; } } } return true; } // transaction void BufferLayer::notifyAvailableFrames(nsecs_t expectedPresentTime) { const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime); const bool headFenceSignaled = fenceHasSignaled(); const bool presentTimeIsCurrent = framePresentTimeIsCurrent(expectedPresentTime); Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled && presentTimeIsCurrent) { point->setFrameAvailable(); sp requestedSyncLayer = point->getRequestedSyncLayer(); if (requestedSyncLayer) { // Need to update the transaction flag to ensure the layer's pending transaction // gets applied. requestedSyncLayer->setTransactionFlags(eTransactionNeeded); } } } } bool BufferLayer::hasReadyFrame() const { return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); } uint32_t BufferLayer::getEffectiveScalingMode() const { if (mOverrideScalingMode >= 0) { return mOverrideScalingMode; } return mBufferInfo.mScaleMode; } bool BufferLayer::isProtected() const { const sp& buffer(mBufferInfo.mBuffer); return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); } bool BufferLayer::latchUnsignaledBuffers() { static bool propertyLoaded = false; static bool latch = false; static std::mutex mutex; std::lock_guard lock(mutex); if (!propertyLoaded) { char value[PROPERTY_VALUE_MAX] = {}; property_get("debug.sf.latch_unsignaled", value, "0"); latch = atoi(value); propertyLoaded = true; } return latch; } // h/w composer set-up bool BufferLayer::allTransactionsSignaled(nsecs_t expectedPresentTime) { const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime); bool matchingFramesFound = false; bool allTransactionsApplied = true; Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { if (point->getFrameNumber() > headFrameNumber) { break; } matchingFramesFound = true; if (!point->frameIsAvailable()) { // We haven't notified the remote layer that the frame for // this point is available yet. Notify it now, and then // abort this attempt to latch. point->setFrameAvailable(); allTransactionsApplied = false; break; } allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); } return !matchingFramesFound || allTransactionsApplied; } // As documented in libhardware header, formats in the range // 0x100 - 0x1FF are specific to the HAL implementation, and // are known to have no alpha channel // TODO: move definition for device-specific range into // hardware.h, instead of using hard-coded values here. #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) bool BufferLayer::getOpacityForFormat(uint32_t format) { if (HARDWARE_IS_DEVICE_FORMAT(format)) { return true; } switch (format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_RGBA_FP16: case HAL_PIXEL_FORMAT_RGBA_1010102: return false; } // in all other case, we have no blending (also for unknown formats) return true; } bool BufferLayer::needsFiltering(const DisplayDevice* display) const { const auto outputLayer = findOutputLayerForDisplay(display); if (outputLayer == nullptr) { return false; } // We need filtering if the sourceCrop rectangle size does not match the // displayframe rectangle size (not a 1:1 render) const auto& compositionState = outputLayer->getState(); const auto displayFrame = compositionState.displayFrame; const auto sourceCrop = compositionState.sourceCrop; return sourceCrop.getHeight() != displayFrame.getHeight() || sourceCrop.getWidth() != displayFrame.getWidth(); } bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display, const ui::Transform& inverseParentTransform) const { const auto outputLayer = findOutputLayerForDisplay(display); if (outputLayer == nullptr) { return false; } // We need filtering if the sourceCrop rectangle size does not match the // viewport rectangle size (not a 1:1 render) const auto& compositionState = outputLayer->getState(); const ui::Transform& displayTransform = display->getTransform(); const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse(); // Undo the transformation of the displayFrame so that we're back into // layer-stack space. const Rect frame = inverseTransform.transform(compositionState.displayFrame); const FloatRect sourceCrop = compositionState.sourceCrop; int32_t frameHeight = frame.getHeight(); int32_t frameWidth = frame.getWidth(); // If the display transform had a rotational component then undo the // rotation so that the orientation matches the source crop. if (displayTransform.getOrientation() & ui::Transform::ROT_90) { std::swap(frameHeight, frameWidth); } return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth; } uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const { if (hasFrameUpdate()) { return getFrameNumber(expectedPresentTime); } else { return mCurrentFrameNumber; } } Rect BufferLayer::getBufferSize(const State& s) const { // If we have a sideband stream, or we are scaling the buffer then return the layer size since // we cannot determine the buffer size. if ((s.sidebandStream != nullptr) || (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { return Rect(getActiveWidth(s), getActiveHeight(s)); } if (mBufferInfo.mBuffer == nullptr) { return Rect::INVALID_RECT; } uint32_t bufWidth = mBufferInfo.mBuffer->getWidth(); uint32_t bufHeight = mBufferInfo.mBuffer->getHeight(); // Undo any transformations on the buffer and return the result. if (mBufferInfo.mTransform & ui::Transform::ROT_90) { std::swap(bufWidth, bufHeight); } if (getTransformToDisplayInverse()) { uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags(); if (invTransform & ui::Transform::ROT_90) { std::swap(bufWidth, bufHeight); } } return Rect(bufWidth, bufHeight); } FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const { const State& s(getDrawingState()); // If we have a sideband stream, or we are scaling the buffer then return the layer size since // we cannot determine the buffer size. if ((s.sidebandStream != nullptr) || (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s)); } if (mBufferInfo.mBuffer == nullptr) { return parentBounds; } uint32_t bufWidth = mBufferInfo.mBuffer->getWidth(); uint32_t bufHeight = mBufferInfo.mBuffer->getHeight(); // Undo any transformations on the buffer and return the result. if (mBufferInfo.mTransform & ui::Transform::ROT_90) { std::swap(bufWidth, bufHeight); } if (getTransformToDisplayInverse()) { uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags(); if (invTransform & ui::Transform::ROT_90) { std::swap(bufWidth, bufHeight); } } return FloatRect(0, 0, bufWidth, bufHeight); } void BufferLayer::latchAndReleaseBuffer() { mRefreshPending = false; if (hasReadyFrame()) { bool ignored = false; latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */); } releasePendingBuffer(systemTime()); } PixelFormat BufferLayer::getPixelFormat() const { return mBufferInfo.mPixelFormat; } bool BufferLayer::getTransformToDisplayInverse() const { return mBufferInfo.mTransformToDisplayInverse; } Rect BufferLayer::getBufferCrop() const { // this is the crop rectangle that applies to the buffer // itself (as opposed to the window) if (!mBufferInfo.mCrop.isEmpty()) { // if the buffer crop is defined, we use that return mBufferInfo.mCrop; } else if (mBufferInfo.mBuffer != nullptr) { // otherwise we use the whole buffer return mBufferInfo.mBuffer->getBounds(); } else { // if we don't have a buffer yet, we use an empty/invalid crop return Rect(); } } uint32_t BufferLayer::getBufferTransform() const { return mBufferInfo.mTransform; } ui::Dataspace BufferLayer::getDataSpace() const { return mBufferInfo.mDataspace; } ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) { ui::Dataspace updatedDataspace = dataspace; // translate legacy dataspaces to modern dataspaces switch (dataspace) { case ui::Dataspace::SRGB: updatedDataspace = ui::Dataspace::V0_SRGB; break; case ui::Dataspace::SRGB_LINEAR: updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR; break; case ui::Dataspace::JFIF: updatedDataspace = ui::Dataspace::V0_JFIF; break; case ui::Dataspace::BT601_625: updatedDataspace = ui::Dataspace::V0_BT601_625; break; case ui::Dataspace::BT601_525: updatedDataspace = ui::Dataspace::V0_BT601_525; break; case ui::Dataspace::BT709: updatedDataspace = ui::Dataspace::V0_BT709; break; default: break; } return updatedDataspace; } sp BufferLayer::getBuffer() const { return mBufferInfo.mBuffer; } void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) { GLConsumer::computeTransformMatrix(outMatrix, mBufferInfo.mBuffer, mBufferInfo.mCrop, mBufferInfo.mTransform, filteringEnabled); } void BufferLayer::setInitialValuesForClone(const sp& clonedFrom) { Layer::setInitialValuesForClone(clonedFrom); sp bufferClonedFrom = static_cast(clonedFrom.get()); mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha; mPotentialCursor = bufferClonedFrom->mPotentialCursor; mProtectedByApp = bufferClonedFrom->mProtectedByApp; updateCloneBufferInfo(); } void BufferLayer::updateCloneBufferInfo() { if (!isClone() || !isClonedFromAlive()) { return; } sp clonedFrom = static_cast(getClonedFrom().get()); mBufferInfo = clonedFrom->mBufferInfo; mSidebandStream = clonedFrom->mSidebandStream; surfaceDamageRegion = clonedFrom->surfaceDamageRegion; mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load(); mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber; // After buffer info is updated, the drawingState from the real layer needs to be copied into // the cloned. This is because some properties of drawingState can change when latchBuffer is // called. However, copying the drawingState would also overwrite the cloned layer's relatives // and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in // the cloned drawingState again. wp tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf; SortedVector> tmpZOrderRelatives = mDrawingState.zOrderRelatives; wp tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop; InputWindowInfo tmpInputInfo = mDrawingState.inputInfo; mDrawingState = clonedFrom->mDrawingState; mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop; mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf; mDrawingState.zOrderRelatives = tmpZOrderRelatives; mDrawingState.inputInfo = tmpInputInfo; } void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) { mTransformHint = getFixedTransformHint(); if (mTransformHint == ui::Transform::ROT_INVALID) { mTransformHint = displayTransformHint; } } } // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion"