/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #include "DisplayHardware/HWComposer.h" // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion" namespace android::compositionengine { OutputLayer::~OutputLayer() = default; namespace impl { namespace { FloatRect reduce(const FloatRect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } // Convert through Rect (by rounding) for lack of FloatRegion return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); } } // namespace std::unique_ptr createOutputLayer(const compositionengine::Output& output, const sp& layerFE) { return createOutputLayerTemplated(output, layerFE); } OutputLayer::~OutputLayer() = default; void OutputLayer::setHwcLayer(std::shared_ptr hwcLayer) { auto& state = editState(); if (hwcLayer) { state.hwc.emplace(std::move(hwcLayer)); } else { state.hwc.reset(); } } Rect OutputLayer::calculateInitialCrop() const { const auto& layerState = *getLayerFE().getCompositionState(); // apply the projection's clipping to the window crop in // layerstack space, and convert-back to layer space. // if there are no window scaling involved, this operation will map to full // pixels in the buffer. FloatRect activeCropFloat = reduce(layerState.geomLayerBounds, layerState.transparentRegionHint); const Rect& viewport = getOutput().getState().viewport; const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; // Transform to screen space. activeCropFloat = layerTransform.transform(activeCropFloat); activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); // Back to layer space to work with the content crop. activeCropFloat = inverseLayerTransform.transform(activeCropFloat); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. Rect activeCrop{activeCropFloat}; if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { activeCrop.clear(); } return activeCrop; } FloatRect OutputLayer::calculateOutputSourceCrop() const { const auto& layerState = *getLayerFE().getCompositionState(); const auto& outputState = getOutput().getState(); if (!layerState.geomUsesSourceCrop) { return {}; } // the content crop is the area of the content that gets scaled to the // layer's size. This is in buffer space. FloatRect crop = layerState.geomContentCrop.toFloatRect(); // In addition there is a WM-specified crop we pull from our drawing state. Rect activeCrop = calculateInitialCrop(); const Rect& bufferSize = layerState.geomBufferSize; int winWidth = bufferSize.getWidth(); int winHeight = bufferSize.getHeight(); // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) // if display frame hasn't been set and the parent is an unbounded layer. if (winWidth < 0 && winHeight < 0) { return crop; } // Transform the window crop to match the buffer coordinate system, // which means using the inverse of the current transform set on the // SurfaceFlingerConsumer. uint32_t invTransform = layerState.geomBufferTransform; if (layerState.geomBufferUsesDisplayInverseTransform) { /* * the code below applies the primary display's inverse transform to the * buffer */ uint32_t invTransformOrient = outputState.orientation; // calculate the inverse transform if (invTransformOrient & HAL_TRANSFORM_ROT_90) { invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } // and apply to the current transform invTransform = (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); } if (invTransform & HAL_TRANSFORM_ROT_90) { // If the activeCrop has been rotate the ends are rotated but not // the space itself so when transforming ends back we can't rely on // a modification of the axes of rotation. To account for this we // need to reorient the inverse rotation in terms of the current // axes of rotation. bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; if (isHFlipped == isVFlipped) { invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } std::swap(winWidth, winHeight); } const Rect winCrop = activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); // below, crop is intersected with winCrop expressed in crop's coordinate space const float xScale = crop.getWidth() / float(winWidth); const float yScale = crop.getHeight() / float(winHeight); const float insetLeft = winCrop.left * xScale; const float insetTop = winCrop.top * yScale; const float insetRight = (winWidth - winCrop.right) * xScale; const float insetBottom = (winHeight - winCrop.bottom) * yScale; crop.left += insetLeft; crop.top += insetTop; crop.right -= insetRight; crop.bottom -= insetBottom; return crop; } Rect OutputLayer::calculateOutputDisplayFrame() const { const auto& layerState = *getLayerFE().getCompositionState(); const auto& outputState = getOutput().getState(); // apply the layer's transform, followed by the display's global transform // here we're guaranteed that the layer's transform preserves rects Region activeTransparentRegion = layerState.transparentRegionHint; const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; const Rect& bufferSize = layerState.geomBufferSize; Rect activeCrop = layerState.geomCrop; if (!activeCrop.isEmpty() && bufferSize.isValid()) { activeCrop = layerTransform.transform(activeCrop); if (!activeCrop.intersect(outputState.viewport, &activeCrop)) { activeCrop.clear(); } activeCrop = inverseLayerTransform.transform(activeCrop, true); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. if (!activeCrop.intersect(bufferSize, &activeCrop)) { activeCrop.clear(); } // mark regions outside the crop as transparent activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); activeTransparentRegion.orSelf( Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); activeTransparentRegion.orSelf( Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); } // reduce uses a FloatRect to provide more accuracy during the // transformation. We then round upon constructing 'frame'. Rect frame{ layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))}; if (!frame.intersect(outputState.viewport, &frame)) { frame.clear(); } const ui::Transform displayTransform{outputState.transform}; return displayTransform.transform(frame); } uint32_t OutputLayer::calculateOutputRelativeBufferTransform( uint32_t internalDisplayRotationFlags) const { const auto& layerState = *getLayerFE().getCompositionState(); const auto& outputState = getOutput().getState(); /* * Transformations are applied in this order: * 1) buffer orientation/flip/mirror * 2) state transformation (window manager) * 3) layer orientation (screen orientation) * (NOTE: the matrices are multiplied in reverse order) */ const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform displayTransform{outputState.transform}; const ui::Transform bufferTransform{layerState.geomBufferTransform}; ui::Transform transform(displayTransform * layerTransform * bufferTransform); if (layerState.geomBufferUsesDisplayInverseTransform) { /* * We must apply the internal display's inverse transform to the buffer * transform, and not the one for the output this layer is on. */ uint32_t invTransform = internalDisplayRotationFlags; // calculate the inverse transform if (invTransform & HAL_TRANSFORM_ROT_90) { invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } /* * Here we cancel out the orientation component of the WM transform. * The scaling and translate components are already included in our bounds * computation so it's enough to just omit it in the composition. * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. */ transform = ui::Transform(invTransform) * displayTransform * bufferTransform; } // this gives us only the "orientation" component of the transform return transform.getOrientation(); } void OutputLayer::updateCompositionState( bool includeGeometry, bool forceClientComposition, ui::Transform::RotationFlags internalDisplayRotationFlags) { const auto* layerFEState = getLayerFE().getCompositionState(); if (!layerFEState) { return; } const auto& outputState = getOutput().getState(); const auto& profile = *getOutput().getDisplayColorProfile(); auto& state = editState(); if (includeGeometry) { // Clear the forceClientComposition flag before it is set for any // reason. Note that since it can be set by some checks below when // updating the geometry state, we only clear it when updating the // geometry since those conditions for forcing client composition won't // go away otherwise. state.forceClientComposition = false; state.displayFrame = calculateOutputDisplayFrame(); state.sourceCrop = calculateOutputSourceCrop(); state.bufferTransform = static_cast( calculateOutputRelativeBufferTransform(internalDisplayRotationFlags)); if ((layerFEState->isSecure && !outputState.isSecure) || (state.bufferTransform & ui::Transform::ROT_INVALID)) { state.forceClientComposition = true; } } // Determine the output dependent dataspace for this layer. If it is // colorspace agnostic, it just uses the dataspace chosen for the output to // avoid the need for color conversion. state.dataspace = layerFEState->isColorspaceAgnostic && outputState.targetDataspace != ui::Dataspace::UNKNOWN ? outputState.targetDataspace : layerFEState->dataspace; // These are evaluated every frame as they can potentially change at any // time. if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) || forceClientComposition) { state.forceClientComposition = true; } } void OutputLayer::writeStateToHWC(bool includeGeometry) { const auto& state = getState(); // Skip doing this if there is no HWC interface if (!state.hwc) { return; } auto& hwcLayer = (*state.hwc).hwcLayer; if (!hwcLayer) { ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", getLayerFE().getDebugName(), getOutput().getName().c_str()); return; } const auto* outputIndependentState = getLayerFE().getCompositionState(); if (!outputIndependentState) { return; } auto requestedCompositionType = outputIndependentState->compositionType; if (includeGeometry) { writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType); writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState); } writeOutputDependentPerFrameStateToHWC(hwcLayer.get()); writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState); writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType); // Always set the layer color after setting the composition type. writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState); } void OutputLayer::writeOutputDependentGeometryStateToHWC( HWC2::Layer* hwcLayer, hal::Composition requestedCompositionType) { const auto& outputDependentState = getState(); if (auto error = hwcLayer->setDisplayFrame(outputDependentState.displayFrame); error != hal::Error::NONE) { ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", getLayerFE().getDebugName(), outputDependentState.displayFrame.left, outputDependentState.displayFrame.top, outputDependentState.displayFrame.right, outputDependentState.displayFrame.bottom, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setSourceCrop(outputDependentState.sourceCrop); error != hal::Error::NONE) { ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " "%s (%d)", getLayerFE().getDebugName(), outputDependentState.sourceCrop.left, outputDependentState.sourceCrop.top, outputDependentState.sourceCrop.right, outputDependentState.sourceCrop.bottom, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setZOrder(outputDependentState.z); error != hal::Error::NONE) { ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), outputDependentState.z, to_string(error).c_str(), static_cast(error)); } // Solid-color layers should always use an identity transform. const auto bufferTransform = requestedCompositionType != hal::Composition::SOLID_COLOR ? outputDependentState.bufferTransform : static_cast(0); if (auto error = hwcLayer->setTransform(static_cast(bufferTransform)); error != hal::Error::NONE) { ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(), toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeOutputIndependentGeometryStateToHWC( HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { if (auto error = hwcLayer->setBlendMode(outputIndependentState.blendMode); error != hal::Error::NONE) { ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(), toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha); error != hal::Error::NONE) { ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), outputIndependentState.alpha, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setInfo(static_cast(outputIndependentState.type), static_cast(outputIndependentState.appId)); error != hal::Error::NONE) { ALOGE("[%s] Failed to set info %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } for (const auto& [name, entry] : outputIndependentState.metadata) { if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value); error != hal::Error::NONE) { ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(), name.c_str(), to_string(error).c_str(), static_cast(error)); } } } void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) { const auto& outputDependentState = getState(); // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry // state and should not change every frame. if (auto error = hwcLayer->setVisibleRegion(outputDependentState.outputSpaceVisibleRegion); error != hal::Error::NONE) { ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); outputDependentState.outputSpaceVisibleRegion.dump(LOG_TAG); } if (auto error = hwcLayer->setDataspace(outputDependentState.dataspace); error != hal::Error::NONE) { ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), outputDependentState.dataspace, to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeOutputIndependentPerFrameStateToHWC( HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) { case hal::Error::NONE: break; case hal::Error::UNSUPPORTED: editState().forceClientComposition = true; break; default: ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setSurfaceDamage(outputIndependentState.surfaceDamage); error != hal::Error::NONE) { ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); outputIndependentState.surfaceDamage.dump(LOG_TAG); } // Content-specific per-frame state switch (outputIndependentState.compositionType) { case hal::Composition::SOLID_COLOR: // For compatibility, should be written AFTER the composition type. break; case hal::Composition::SIDEBAND: writeSidebandStateToHWC(hwcLayer, outputIndependentState); break; case hal::Composition::CURSOR: case hal::Composition::DEVICE: writeBufferStateToHWC(hwcLayer, outputIndependentState); break; case hal::Composition::INVALID: case hal::Composition::CLIENT: // Ignored break; } } void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { if (outputIndependentState.compositionType != hal::Composition::SOLID_COLOR) { return; } hal::Color color = {static_cast(std::round(255.0f * outputIndependentState.color.r)), static_cast(std::round(255.0f * outputIndependentState.color.g)), static_cast(std::round(255.0f * outputIndependentState.color.b)), 255}; if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) { ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle()); error != hal::Error::NONE) { ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(), outputIndependentState.sidebandStream->handle(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { auto supportedPerFrameMetadata = getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata(); if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, outputIndependentState.hdrMetadata); error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) { ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } uint32_t hwcSlot = 0; sp hwcBuffer; // We need access to the output-dependent state for the buffer cache there, // though otherwise the buffer is not output-dependent. editState().hwc->hwcBufferCache.getHwcBuffer(outputIndependentState.bufferSlot, outputIndependentState.buffer, &hwcSlot, &hwcBuffer); if (auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, outputIndependentState.acquireFence); error != hal::Error::NONE) { ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(), outputIndependentState.buffer->handle, to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer, hal::Composition requestedCompositionType) { auto& outputDependentState = editState(); // If we are forcing client composition, we need to tell the HWC if (outputDependentState.forceClientComposition) { requestedCompositionType = hal::Composition::CLIENT; } // Set the requested composition type with the HWC whenever it changes if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType) { outputDependentState.hwc->hwcCompositionType = requestedCompositionType; if (auto error = hwcLayer->setCompositionType(requestedCompositionType); error != hal::Error::NONE) { ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(), toString(requestedCompositionType).c_str(), to_string(error).c_str(), static_cast(error)); } } } void OutputLayer::writeCursorPositionToHWC() const { // Skip doing this if there is no HWC interface auto hwcLayer = getHwcLayer(); if (!hwcLayer) { return; } const auto* layerFEState = getLayerFE().getCompositionState(); if (!layerFEState) { return; } const auto& outputState = getOutput().getState(); Rect frame = layerFEState->cursorFrame; frame.intersect(outputState.viewport, &frame); Rect position = outputState.transform.transform(frame); if (auto error = hwcLayer->setCursorPosition(position.left, position.top); error != hal::Error::NONE) { ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)", getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(), static_cast(error)); } } HWC2::Layer* OutputLayer::getHwcLayer() const { const auto& state = getState(); return state.hwc ? state.hwc->hwcLayer.get() : nullptr; } bool OutputLayer::requiresClientComposition() const { const auto& state = getState(); return !state.hwc || state.hwc->hwcCompositionType == hal::Composition::CLIENT; } bool OutputLayer::isHardwareCursor() const { const auto& state = getState(); return state.hwc && state.hwc->hwcCompositionType == hal::Composition::CURSOR; } void OutputLayer::detectDisallowedCompositionTypeChange(hal::Composition from, hal::Composition to) const { bool result = false; switch (from) { case hal::Composition::INVALID: case hal::Composition::CLIENT: result = false; break; case hal::Composition::DEVICE: case hal::Composition::SOLID_COLOR: result = (to == hal::Composition::CLIENT); break; case hal::Composition::CURSOR: case hal::Composition::SIDEBAND: result = (to == hal::Composition::CLIENT || to == hal::Composition::DEVICE); break; } if (!result) { ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)", getLayerFE().getDebugName(), toString(from).c_str(), static_cast(from), toString(to).c_str(), static_cast(to)); } } void OutputLayer::applyDeviceCompositionTypeChange(hal::Composition compositionType) { auto& state = editState(); LOG_FATAL_IF(!state.hwc); auto& hwcState = *state.hwc; detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType); hwcState.hwcCompositionType = compositionType; } void OutputLayer::prepareForDeviceLayerRequests() { auto& state = editState(); state.clearClientTarget = false; } void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) { auto& state = editState(); switch (request) { case hal::LayerRequest::CLEAR_CLIENT_TARGET: state.clearClientTarget = true; break; default: ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(), toString(request).c_str(), static_cast(request)); break; } } bool OutputLayer::needsFiltering() const { const auto& state = getState(); const auto& displayFrame = state.displayFrame; const auto& sourceCrop = state.sourceCrop; return sourceCrop.getHeight() != displayFrame.getHeight() || sourceCrop.getWidth() != displayFrame.getWidth(); } void OutputLayer::dump(std::string& out) const { using android::base::StringAppendF; StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName()); dumpState(out); } } // namespace impl } // namespace android::compositionengine