/* * Copyright 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // #define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "LayerInfoV2.h" #include #include #include #include #undef LOG_TAG #define LOG_TAG "LayerInfoV2" namespace android::scheduler { const RefreshRateConfigs* LayerInfoV2::sRefreshRateConfigs = nullptr; bool LayerInfoV2::sTraceEnabled = false; LayerInfoV2::LayerInfoV2(const std::string& name, nsecs_t highRefreshRatePeriod, LayerHistory::LayerVoteType defaultVote) : mName(name), mHighRefreshRatePeriod(highRefreshRatePeriod), mDefaultVote(defaultVote), mLayerVote({defaultVote, 0.0f}), mRefreshRateHistory(name) {} void LayerInfoV2::setLastPresentTime(nsecs_t lastPresentTime, nsecs_t now, LayerUpdateType updateType, bool pendingConfigChange) { lastPresentTime = std::max(lastPresentTime, static_cast(0)); mLastUpdatedTime = std::max(lastPresentTime, now); switch (updateType) { case LayerUpdateType::AnimationTX: mLastAnimationTime = std::max(lastPresentTime, now); break; case LayerUpdateType::SetFrameRate: case LayerUpdateType::Buffer: FrameTimeData frameTime = {.presetTime = lastPresentTime, .queueTime = mLastUpdatedTime, .pendingConfigChange = pendingConfigChange}; mFrameTimes.push_back(frameTime); if (mFrameTimes.size() > HISTORY_SIZE) { mFrameTimes.pop_front(); } break; } } bool LayerInfoV2::isFrameTimeValid(const FrameTimeData& frameTime) const { return frameTime.queueTime >= std::chrono::duration_cast( mFrameTimeValidSince.time_since_epoch()) .count(); } bool LayerInfoV2::isFrequent(nsecs_t now) const { // If we know nothing about this layer we consider it as frequent as it might be the start // of an animation. if (mFrameTimes.size() < FREQUENT_LAYER_WINDOW_SIZE) { return true; } // Find the first active frame auto it = mFrameTimes.begin(); for (; it != mFrameTimes.end(); ++it) { if (it->queueTime >= getActiveLayerThreshold(now)) { break; } } const auto numFrames = std::distance(it, mFrameTimes.end()); if (numFrames < FREQUENT_LAYER_WINDOW_SIZE) { return false; } // Layer is considered frequent if the average frame rate is higher than the threshold const auto totalTime = mFrameTimes.back().queueTime - it->queueTime; return (1e9f * (numFrames - 1)) / totalTime >= MIN_FPS_FOR_FREQUENT_LAYER; } bool LayerInfoV2::isAnimating(nsecs_t now) const { return mLastAnimationTime >= getActiveLayerThreshold(now); } bool LayerInfoV2::hasEnoughDataForHeuristic() const { // The layer had to publish at least HISTORY_SIZE or HISTORY_DURATION of updates if (mFrameTimes.size() < 2) { ALOGV("fewer than 2 frames recorded: %zu", mFrameTimes.size()); return false; } if (!isFrameTimeValid(mFrameTimes.front())) { ALOGV("stale frames still captured"); return false; } const auto totalDuration = mFrameTimes.back().queueTime - mFrameTimes.front().queueTime; if (mFrameTimes.size() < HISTORY_SIZE && totalDuration < HISTORY_DURATION.count()) { ALOGV("not enough frames captured: %zu | %.2f seconds", mFrameTimes.size(), totalDuration / 1e9f); return false; } return true; } std::optional LayerInfoV2::calculateAverageFrameTime() const { nsecs_t totalPresentTimeDeltas = 0; nsecs_t totalQueueTimeDeltas = 0; bool missingPresentTime = false; int numFrames = 0; for (auto it = mFrameTimes.begin(); it != mFrameTimes.end() - 1; ++it) { // Ignore frames captured during a config change if (it->pendingConfigChange || (it + 1)->pendingConfigChange) { return std::nullopt; } totalQueueTimeDeltas += std::max(((it + 1)->queueTime - it->queueTime), mHighRefreshRatePeriod); numFrames++; if (!missingPresentTime && (it->presetTime == 0 || (it + 1)->presetTime == 0)) { missingPresentTime = true; // If there are no presentation timestamps and we haven't calculated // one in the past then we can't calculate the refresh rate if (mLastRefreshRate.reported == 0) { return std::nullopt; } continue; } totalPresentTimeDeltas += std::max(((it + 1)->presetTime - it->presetTime), mHighRefreshRatePeriod); } // Calculate the average frame time based on presentation timestamps. If those // doesn't exist, we look at the time the buffer was queued only. We can do that only if // we calculated a refresh rate based on presentation timestamps in the past. The reason // we look at the queue time is to handle cases where hwui attaches presentation timestamps // when implementing render ahead for specific refresh rates. When hwui no longer provides // presentation timestamps we look at the queue time to see if the current refresh rate still // matches the content. const auto averageFrameTime = static_cast(missingPresentTime ? totalQueueTimeDeltas : totalPresentTimeDeltas) / numFrames; return static_cast(averageFrameTime); } std::optional LayerInfoV2::calculateRefreshRateIfPossible(nsecs_t now) { static constexpr float MARGIN = 1.0f; // 1Hz if (!hasEnoughDataForHeuristic()) { ALOGV("Not enough data"); return std::nullopt; } const auto averageFrameTime = calculateAverageFrameTime(); if (averageFrameTime.has_value()) { const auto refreshRate = 1e9f / *averageFrameTime; const bool refreshRateConsistent = mRefreshRateHistory.add(refreshRate, now); if (refreshRateConsistent) { const auto knownRefreshRate = sRefreshRateConfigs->findClosestKnownFrameRate(refreshRate); // To avoid oscillation, use the last calculated refresh rate if it is // close enough if (std::abs(mLastRefreshRate.calculated - refreshRate) > MARGIN && mLastRefreshRate.reported != knownRefreshRate) { mLastRefreshRate.calculated = refreshRate; mLastRefreshRate.reported = knownRefreshRate; } ALOGV("%s %.2fHz rounded to nearest known frame rate %.2fHz", mName.c_str(), refreshRate, mLastRefreshRate.reported); } else { ALOGV("%s Not stable (%.2fHz) returning last known frame rate %.2fHz", mName.c_str(), refreshRate, mLastRefreshRate.reported); } } return mLastRefreshRate.reported == 0 ? std::nullopt : std::make_optional(mLastRefreshRate.reported); } std::pair LayerInfoV2::getRefreshRate(nsecs_t now) { if (mLayerVote.type != LayerHistory::LayerVoteType::Heuristic) { ALOGV("%s voted %d ", mName.c_str(), static_cast(mLayerVote.type)); return {mLayerVote.type, mLayerVote.fps}; } if (isAnimating(now)) { ALOGV("%s is animating", mName.c_str()); mLastRefreshRate.animatingOrInfrequent = true; return {LayerHistory::LayerVoteType::Max, 0}; } if (!isFrequent(now)) { ALOGV("%s is infrequent", mName.c_str()); mLastRefreshRate.animatingOrInfrequent = true; return {LayerHistory::LayerVoteType::Min, 0}; } // If the layer was previously tagged as animating or infrequent, we clear // the history as it is likely the layer just changed its behavior // and we should not look at stale data if (mLastRefreshRate.animatingOrInfrequent) { clearHistory(now); } auto refreshRate = calculateRefreshRateIfPossible(now); if (refreshRate.has_value()) { ALOGV("%s calculated refresh rate: %.2f", mName.c_str(), refreshRate.value()); return {LayerHistory::LayerVoteType::Heuristic, refreshRate.value()}; } ALOGV("%s Max (can't resolve refresh rate)", mName.c_str()); return {LayerHistory::LayerVoteType::Max, 0}; } const char* LayerInfoV2::getTraceTag(android::scheduler::LayerHistory::LayerVoteType type) const { if (mTraceTags.count(type) == 0) { const auto tag = "LFPS " + mName + " " + RefreshRateConfigs::layerVoteTypeString(type); mTraceTags.emplace(type, tag); } return mTraceTags.at(type).c_str(); } LayerInfoV2::RefreshRateHistory::HeuristicTraceTagData LayerInfoV2::RefreshRateHistory::makeHeuristicTraceTagData() const { const std::string prefix = "LFPS "; const std::string suffix = "Heuristic "; return {.min = prefix + mName + suffix + "min", .max = prefix + mName + suffix + "max", .consistent = prefix + mName + suffix + "consistent", .average = prefix + mName + suffix + "average"}; } void LayerInfoV2::RefreshRateHistory::clear() { mRefreshRates.clear(); } bool LayerInfoV2::RefreshRateHistory::add(float refreshRate, nsecs_t now) { mRefreshRates.push_back({refreshRate, now}); while (mRefreshRates.size() >= HISTORY_SIZE || now - mRefreshRates.front().timestamp > HISTORY_DURATION.count()) { mRefreshRates.pop_front(); } if (CC_UNLIKELY(sTraceEnabled)) { if (!mHeuristicTraceTagData.has_value()) { mHeuristicTraceTagData = makeHeuristicTraceTagData(); } ATRACE_INT(mHeuristicTraceTagData->average.c_str(), static_cast(refreshRate)); } return isConsistent(); } bool LayerInfoV2::RefreshRateHistory::isConsistent() const { if (mRefreshRates.empty()) return true; const auto max = std::max_element(mRefreshRates.begin(), mRefreshRates.end()); const auto min = std::min_element(mRefreshRates.begin(), mRefreshRates.end()); const auto consistent = max->refreshRate - min->refreshRate <= MARGIN_FPS; if (CC_UNLIKELY(sTraceEnabled)) { if (!mHeuristicTraceTagData.has_value()) { mHeuristicTraceTagData = makeHeuristicTraceTagData(); } ATRACE_INT(mHeuristicTraceTagData->max.c_str(), static_cast(max->refreshRate)); ATRACE_INT(mHeuristicTraceTagData->min.c_str(), static_cast(min->refreshRate)); ATRACE_INT(mHeuristicTraceTagData->consistent.c_str(), consistent); } return consistent; } } // namespace android::scheduler