/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bufferCopy.h" namespace android { namespace hardware { namespace automotive { namespace evs { namespace V1_1 { namespace implementation { // Round up to the nearest multiple of the given alignment value template int align(int value) { static_assert((alignment && !(alignment & (alignment - 1))), "alignment must be a power of 2"); unsigned mask = alignment - 1; return (value + mask) & ~mask; } // Limit the given value to the provided range. :) static inline float clamp(float v, float min, float max) { if (v < min) return min; if (v > max) return max; return v; } static uint32_t yuvToRgbx(const unsigned char Y, const unsigned char Uin, const unsigned char Vin) { // Don't use this if you want to see the best performance. :) // Better to do this in a pixel shader if we really have to, but on actual // embedded hardware we expect to be able to texture directly from the YUV data float U = Uin - 128.0f; float V = Vin - 128.0f; float Rf = Y + 1.140f*V; float Gf = Y - 0.395f*U - 0.581f*V; float Bf = Y + 2.032f*U; unsigned char R = (unsigned char)clamp(Rf, 0.0f, 255.0f); unsigned char G = (unsigned char)clamp(Gf, 0.0f, 255.0f); unsigned char B = (unsigned char)clamp(Bf, 0.0f, 255.0f); return ((R & 0xFF)) | ((G & 0xFF) << 8) | ((B & 0xFF) << 16) | 0xFF000000; // Fill the alpha channel with ones } void fillNV21FromNV21(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned) { // The NV21 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 interleave U/V array. // It assumes an even width and height for the overall image, and a horizontal stride that is // an even multiple of 16 bytes for both the Y and UV arrays. // Target and source image layout properties (They match since the formats match!) const AHardwareBuffer_Desc* pDesc = reinterpret_cast(&tgtBuff.buffer.description); const unsigned strideLum = align<16>(pDesc->width); const unsigned sizeY = strideLum * pDesc->height; const unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels const unsigned sizeColor = strideColor * pDesc->height/2; const unsigned totalBytes = sizeY + sizeColor; // Simply copy the data byte for byte memcpy(tgt, imgData, totalBytes); } void fillNV21FromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { // The YUYV format provides an interleaved array of pixel values with U and V subsampled in // the horizontal direction only. Also known as interleaved 422 format. A 4 byte // "macro pixel" provides the Y value for two adjacent pixels and the U and V values shared // between those two pixels. The width of the image must be an even number. // We need to down sample the UV values and collect them together after all the packed Y values // to construct the NV21 format. // NV21 requires even width and height, so we assume that is the case for the incomming image // as well. uint32_t *srcDataYUYV = (uint32_t*)imgData; struct YUYVpixel { uint8_t Y1; uint8_t U; uint8_t Y2; uint8_t V; }; // Target image layout properties const AHardwareBuffer_Desc* pDesc = reinterpret_cast(&tgtBuff.buffer.description); const unsigned strideLum = align<16>(pDesc->width); const unsigned sizeY = strideLum * pDesc->height; const unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels // Source image layout properties const unsigned srcRowPixels = imgStride/4; // imgStride is in units of bytes const unsigned srcRowDoubleStep = srcRowPixels * 2; uint32_t* topSrcRow = srcDataYUYV; uint32_t* botSrcRow = srcDataYUYV + srcRowPixels; // We're going to work on one 2x2 cell in the output image at at time for (unsigned cellRow = 0; cellRow < pDesc->height/2; cellRow++) { // Set up the output pointers uint8_t* yTopRow = tgt + (cellRow*2) * strideLum; uint8_t* yBotRow = yTopRow + strideLum; uint8_t* uvRow = (tgt + sizeY) + cellRow * strideColor; for (unsigned cellCol = 0; cellCol < pDesc->width/2; cellCol++) { // Collect the values from the YUYV interleaved data const YUYVpixel* pTopMacroPixel = (YUYVpixel*)&topSrcRow[cellCol]; const YUYVpixel* pBotMacroPixel = (YUYVpixel*)&botSrcRow[cellCol]; // Down sample the U/V values by linear average between rows const uint8_t uValue = (pTopMacroPixel->U + pBotMacroPixel->U) >> 1; const uint8_t vValue = (pTopMacroPixel->V + pBotMacroPixel->V) >> 1; // Store the values into the NV21 layout yTopRow[cellCol*2] = pTopMacroPixel->Y1; yTopRow[cellCol*2+1] = pTopMacroPixel->Y2; yBotRow[cellCol*2] = pBotMacroPixel->Y1; yBotRow[cellCol*2+1] = pBotMacroPixel->Y2; uvRow[cellCol*2] = uValue; uvRow[cellCol*2+1] = vValue; } // Skipping two rows to get to the next set of two source rows topSrcRow += srcRowDoubleStep; botSrcRow += srcRowDoubleStep; } } void fillRGBAFromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { const AHardwareBuffer_Desc* pDesc = reinterpret_cast(&tgtBuff.buffer.description); unsigned width = pDesc->width; unsigned height = pDesc->height; uint32_t* src = (uint32_t*)imgData; uint32_t* dst = (uint32_t*)tgt; unsigned srcStridePixels = imgStride / 2; unsigned dstStridePixels = pDesc->stride; const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word const int dstRowPadding32 = dstStridePixels - width; // 4 bytes per pixel, 4 bytes per word for (unsigned r=0; r> 8) & 0xFF; uint8_t Y2 = (srcPixel >> 16) & 0xFF; uint8_t V = (srcPixel >> 24) & 0xFF; // On the RGB output, we're writing one pixel at a time *(dst+0) = yuvToRgbx(Y1, U, V); *(dst+1) = yuvToRgbx(Y2, U, V); dst += 2; } // Skip over any extra data or end of row alignment padding src += srcRowPadding32; dst += dstRowPadding32; } } void fillYUYVFromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { const AHardwareBuffer_Desc* pDesc = reinterpret_cast(&tgtBuff.buffer.description); unsigned width = pDesc->width; unsigned height = pDesc->height; uint8_t* src = (uint8_t*)imgData; uint8_t* dst = (uint8_t*)tgt; unsigned srcStrideBytes = imgStride; unsigned dstStrideBytes = pDesc->stride * 2; for (unsigned r=0; r(&tgtBuff.buffer.description); unsigned width = pDesc->width; unsigned height = pDesc->height; uint32_t* src = (uint32_t*)imgData; uint32_t* dst = (uint32_t*)tgt; unsigned srcStridePixels = imgStride / 2; unsigned dstStridePixels = pDesc->stride; const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word const int dstRowPadding32 = dstStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word for (unsigned r=0; r> 8) & 0xFF; uint8_t Y2 = (srcPixel >> 16) & 0xFF; uint8_t V = (srcPixel >> 24) & 0xFF; // Now we write back the pair of pixels with the components swizzled *dst++ = (U) | (Y1 << 8) | (V << 16) | (Y2 << 24); } // Skip over any extra data or end of row alignment padding src += srcRowPadding32; dst += dstRowPadding32; } } } // namespace implementation } // namespace V1_1 } // namespace evs } // namespace automotive } // namespace hardware } // namespace android