/* * Copyright 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SURROUND_VIEW_SERVICE_IMPL_MATH_HELP_H_ #define SURROUND_VIEW_SERVICE_IMPL_MATH_HELP_H_ #include "Matrix4x4.h" #include "core_lib.h" #include namespace android { namespace hardware { namespace automotive { namespace sv { namespace V1_0 { namespace implementation { using android_auto::surround_view::Mat4x4; const int gMat4Size = 4 * 4 * sizeof(float); const Mat4x4 gMat4Identity = {1, 0, 0, /*tx=*/0.0, 0, 1, 0, /*ty=*/0, 0, 0, 1, /*tz=*/0.0, 0, 0, 0, 1}; inline float degToRad(float angleInDegrees) { return 1.0f * angleInDegrees / 180 * M_PI; } typedef std::array VectorT; typedef std::array HomVectorT; typedef Matrix4x4 HomMatrixT; // Create a Translation matrix. inline HomMatrixT translationMatrix(const VectorT& v) { HomMatrixT m = HomMatrixT::identity(); m.setRow(3, HomVectorT{v[0], v[1], v[2], 1}); return m; } // Create a Rotation matrix. inline HomMatrixT rotationMatrix(const VectorT& v, float angle, int orientation) { const float c = cos(angle); const float s = orientation * sin(angle); const float t = 1 - c; const float tx = t * v[0]; const float ty = t * v[1]; const float tz = t * v[2]; return HomMatrixT(tx * v[0] + c, tx * v[1] + s * v[2], tx * v[2] - s * v[1], 0, tx * v[1] - s * v[2], ty * v[1] + c, ty * v[2] + s * v[0], 0, tx * v[2] + s * v[1], ty * v[2] - s * v[0], tz * v[2] + c, 0, 0, 0, 0, 1); } inline Mat4x4 toMat4x4(const Matrix4x4F& matrix4x4F) { Mat4x4 mat4x4; memcpy(&mat4x4[0], matrix4x4F.transpose().data(), gMat4Size); return mat4x4; } inline Matrix4x4F toMatrix4x4F(const Mat4x4& mat4x4) { Matrix4x4F matrix4x4F; memcpy(matrix4x4F.data(), &mat4x4[0], gMat4Size); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (matrix4x4F(i, j) != mat4x4[i * 4 + j]) { LOG(ERROR) << "Matrix error"; } } } return matrix4x4F.transpose(); } // Create a Rotation Matrix, around a unit vector by a ccw angle. inline Mat4x4 rotationMatrix(float angleInDegrees, const VectorT& axis) { return toMat4x4(rotationMatrix(axis, degToRad(angleInDegrees), 1)); } inline Mat4x4 appendRotation(float angleInDegrees, const VectorT& axis, const Mat4x4& mat4) { return toMat4x4(toMatrix4x4F(mat4) * rotationMatrix(axis, degToRad(angleInDegrees), 1)); } // Append mat_l * mat_r; inline Mat4x4 appendMat(const Mat4x4& matL, const Mat4x4& matR) { return toMat4x4(toMatrix4x4F(matL) * toMatrix4x4F(matR)); } // Rotate about a point about a unit vector. inline Mat4x4 rotationAboutPoint(float angleInDegrees, const VectorT& point, const VectorT& axis) { VectorT pointInv = point; pointInv[0] *= -1; pointInv[1] *= -1; pointInv[2] *= -1; return toMat4x4(translationMatrix(pointInv) * rotationMatrix(axis, degToRad(angleInDegrees), 1) * translationMatrix(point)); } inline Mat4x4 translationMatrixToMat4x4(const VectorT& translation) { return toMat4x4(translationMatrix(translation)); } inline Mat4x4 appendTranslation(const VectorT& translation, const Mat4x4& mat4) { return toMat4x4(toMatrix4x4F(mat4) * translationMatrix(translation)); } inline Mat4x4 appendMatrix(const Mat4x4& deltaMatrix, const Mat4x4& currentMatrix) { return toMat4x4(toMatrix4x4F(deltaMatrix) * toMatrix4x4F(currentMatrix)); } } // namespace implementation } // namespace V1_0 } // namespace sv } // namespace automotive } // namespace hardware } // namespace android #endif // SURROUND_VIEW_SERVICE_IMPL_MATH_HELP_H_