1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime.h"
18
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/syscall.h>
29
30 #if defined(__APPLE__)
31 #include <crt_externs.h> // for _NSGetEnviron
32 #endif
33
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <thread>
38 #include <unordered_set>
39 #include <vector>
40
41 #include "android-base/strings.h"
42
43 #include "aot_class_linker.h"
44 #include "arch/arm/registers_arm.h"
45 #include "arch/arm64/registers_arm64.h"
46 #include "arch/context.h"
47 #include "arch/instruction_set_features.h"
48 #include "arch/x86/registers_x86.h"
49 #include "arch/x86_64/registers_x86_64.h"
50 #include "art_field-inl.h"
51 #include "art_method-inl.h"
52 #include "asm_support.h"
53 #include "base/aborting.h"
54 #include "base/arena_allocator.h"
55 #include "base/atomic.h"
56 #include "base/dumpable.h"
57 #include "base/enums.h"
58 #include "base/file_utils.h"
59 #include "base/malloc_arena_pool.h"
60 #include "base/mem_map_arena_pool.h"
61 #include "base/memory_tool.h"
62 #include "base/mutex.h"
63 #include "base/os.h"
64 #include "base/quasi_atomic.h"
65 #include "base/sdk_version.h"
66 #include "base/stl_util.h"
67 #include "base/systrace.h"
68 #include "base/unix_file/fd_file.h"
69 #include "base/utils.h"
70 #include "class_linker-inl.h"
71 #include "class_root.h"
72 #include "compiler_callbacks.h"
73 #include "debugger.h"
74 #include "dex/art_dex_file_loader.h"
75 #include "dex/dex_file_loader.h"
76 #include "elf_file.h"
77 #include "entrypoints/runtime_asm_entrypoints.h"
78 #include "experimental_flags.h"
79 #include "fault_handler.h"
80 #include "gc/accounting/card_table-inl.h"
81 #include "gc/heap.h"
82 #include "gc/scoped_gc_critical_section.h"
83 #include "gc/space/image_space.h"
84 #include "gc/space/space-inl.h"
85 #include "gc/system_weak.h"
86 #include "gc/task_processor.h"
87 #include "handle_scope-inl.h"
88 #include "hidden_api.h"
89 #include "image-inl.h"
90 #include "instrumentation.h"
91 #include "intern_table-inl.h"
92 #include "interpreter/interpreter.h"
93 #include "jit/jit.h"
94 #include "jit/jit_code_cache.h"
95 #include "jit/profile_saver.h"
96 #include "jni/java_vm_ext.h"
97 #include "jni/jni_id_manager.h"
98 #include "jni_id_type.h"
99 #include "linear_alloc.h"
100 #include "memory_representation.h"
101 #include "mirror/array.h"
102 #include "mirror/class-alloc-inl.h"
103 #include "mirror/class-inl.h"
104 #include "mirror/class_ext.h"
105 #include "mirror/class_loader-inl.h"
106 #include "mirror/emulated_stack_frame.h"
107 #include "mirror/field.h"
108 #include "mirror/method.h"
109 #include "mirror/method_handle_impl.h"
110 #include "mirror/method_handles_lookup.h"
111 #include "mirror/method_type.h"
112 #include "mirror/stack_trace_element.h"
113 #include "mirror/throwable.h"
114 #include "mirror/var_handle.h"
115 #include "monitor.h"
116 #include "native/dalvik_system_DexFile.h"
117 #include "native/dalvik_system_BaseDexClassLoader.h"
118 #include "native/dalvik_system_VMDebug.h"
119 #include "native/dalvik_system_VMRuntime.h"
120 #include "native/dalvik_system_VMStack.h"
121 #include "native/dalvik_system_ZygoteHooks.h"
122 #include "native/java_lang_Class.h"
123 #include "native/java_lang_Object.h"
124 #include "native/java_lang_String.h"
125 #include "native/java_lang_StringFactory.h"
126 #include "native/java_lang_System.h"
127 #include "native/java_lang_Thread.h"
128 #include "native/java_lang_Throwable.h"
129 #include "native/java_lang_VMClassLoader.h"
130 #include "native/java_lang_invoke_MethodHandleImpl.h"
131 #include "native/java_lang_ref_FinalizerReference.h"
132 #include "native/java_lang_ref_Reference.h"
133 #include "native/java_lang_reflect_Array.h"
134 #include "native/java_lang_reflect_Constructor.h"
135 #include "native/java_lang_reflect_Executable.h"
136 #include "native/java_lang_reflect_Field.h"
137 #include "native/java_lang_reflect_Method.h"
138 #include "native/java_lang_reflect_Parameter.h"
139 #include "native/java_lang_reflect_Proxy.h"
140 #include "native/java_util_concurrent_atomic_AtomicLong.h"
141 #include "native/libcore_util_CharsetUtils.h"
142 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
143 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
144 #include "native/sun_misc_Unsafe.h"
145 #include "native_bridge_art_interface.h"
146 #include "native_stack_dump.h"
147 #include "nativehelper/scoped_local_ref.h"
148 #include "oat.h"
149 #include "oat_file.h"
150 #include "oat_file_manager.h"
151 #include "oat_quick_method_header.h"
152 #include "object_callbacks.h"
153 #include "parsed_options.h"
154 #include "quick/quick_method_frame_info.h"
155 #include "reflection.h"
156 #include "runtime_callbacks.h"
157 #include "runtime_common.h"
158 #include "runtime_intrinsics.h"
159 #include "runtime_options.h"
160 #include "scoped_thread_state_change-inl.h"
161 #include "sigchain.h"
162 #include "signal_catcher.h"
163 #include "signal_set.h"
164 #include "thread.h"
165 #include "thread_list.h"
166 #include "ti/agent.h"
167 #include "trace.h"
168 #include "transaction.h"
169 #include "vdex_file.h"
170 #include "verifier/class_verifier.h"
171 #include "well_known_classes.h"
172
173 #ifdef ART_TARGET_ANDROID
174 #include <android/set_abort_message.h>
175 #endif
176
177 // Static asserts to check the values of generated assembly-support macros.
178 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
179 #include "asm_defines.def"
180 #undef ASM_DEFINE
181
182 namespace art {
183
184 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
185 static constexpr bool kEnableJavaStackTraceHandler = false;
186 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
187 // linking.
188 static constexpr double kLowMemoryMinLoadFactor = 0.5;
189 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
190 static constexpr double kNormalMinLoadFactor = 0.4;
191 static constexpr double kNormalMaxLoadFactor = 0.7;
192
193 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
194 // barrier config.
195 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
196
197 Runtime* Runtime::instance_ = nullptr;
198
199 struct TraceConfig {
200 Trace::TraceMode trace_mode;
201 Trace::TraceOutputMode trace_output_mode;
202 std::string trace_file;
203 size_t trace_file_size;
204 };
205
206 namespace {
207
208 #ifdef __APPLE__
GetEnviron()209 inline char** GetEnviron() {
210 // When Google Test is built as a framework on MacOS X, the environ variable
211 // is unavailable. Apple's documentation (man environ) recommends using
212 // _NSGetEnviron() instead.
213 return *_NSGetEnviron();
214 }
215 #else
216 // Some POSIX platforms expect you to declare environ. extern "C" makes
217 // it reside in the global namespace.
218 extern "C" char** environ;
219 inline char** GetEnviron() { return environ; }
220 #endif
221
CheckConstants()222 void CheckConstants() {
223 CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
224 }
225
226 } // namespace
227
Runtime()228 Runtime::Runtime()
229 : resolution_method_(nullptr),
230 imt_conflict_method_(nullptr),
231 imt_unimplemented_method_(nullptr),
232 instruction_set_(InstructionSet::kNone),
233 compiler_callbacks_(nullptr),
234 is_zygote_(false),
235 is_primary_zygote_(false),
236 is_system_server_(false),
237 must_relocate_(false),
238 is_concurrent_gc_enabled_(true),
239 is_explicit_gc_disabled_(false),
240 image_dex2oat_enabled_(true),
241 default_stack_size_(0),
242 heap_(nullptr),
243 max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
244 monitor_list_(nullptr),
245 monitor_pool_(nullptr),
246 thread_list_(nullptr),
247 intern_table_(nullptr),
248 class_linker_(nullptr),
249 signal_catcher_(nullptr),
250 java_vm_(nullptr),
251 thread_pool_ref_count_(0u),
252 fault_message_(nullptr),
253 threads_being_born_(0),
254 shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
255 shutting_down_(false),
256 shutting_down_started_(false),
257 started_(false),
258 finished_starting_(false),
259 vfprintf_(nullptr),
260 exit_(nullptr),
261 abort_(nullptr),
262 stats_enabled_(false),
263 is_running_on_memory_tool_(kRunningOnMemoryTool),
264 instrumentation_(),
265 main_thread_group_(nullptr),
266 system_thread_group_(nullptr),
267 system_class_loader_(nullptr),
268 dump_gc_performance_on_shutdown_(false),
269 preinitialization_transactions_(),
270 verify_(verifier::VerifyMode::kNone),
271 allow_dex_file_fallback_(true),
272 target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
273 implicit_null_checks_(false),
274 implicit_so_checks_(false),
275 implicit_suspend_checks_(false),
276 no_sig_chain_(false),
277 force_native_bridge_(false),
278 is_native_bridge_loaded_(false),
279 is_native_debuggable_(false),
280 async_exceptions_thrown_(false),
281 non_standard_exits_enabled_(false),
282 is_java_debuggable_(false),
283 zygote_max_failed_boots_(0),
284 experimental_flags_(ExperimentalFlags::kNone),
285 oat_file_manager_(nullptr),
286 is_low_memory_mode_(false),
287 safe_mode_(false),
288 hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
289 core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
290 test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
291 dedupe_hidden_api_warnings_(true),
292 hidden_api_access_event_log_rate_(0),
293 dump_native_stack_on_sig_quit_(true),
294 pruned_dalvik_cache_(false),
295 // Initially assume we perceive jank in case the process state is never updated.
296 process_state_(kProcessStateJankPerceptible),
297 zygote_no_threads_(false),
298 verifier_logging_threshold_ms_(100),
299 verifier_missing_kthrow_fatal_(false),
300 perfetto_hprof_enabled_(false) {
301 static_assert(Runtime::kCalleeSaveSize ==
302 static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
303 CheckConstants();
304
305 std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
306 interpreter::CheckInterpreterAsmConstants();
307 callbacks_.reset(new RuntimeCallbacks());
308 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
309 deoptimization_counts_[i] = 0u;
310 }
311 }
312
~Runtime()313 Runtime::~Runtime() {
314 ScopedTrace trace("Runtime shutdown");
315 if (is_native_bridge_loaded_) {
316 UnloadNativeBridge();
317 }
318
319 Thread* self = Thread::Current();
320 const bool attach_shutdown_thread = self == nullptr;
321 if (attach_shutdown_thread) {
322 // We can only create a peer if the runtime is actually started. This is only not true during
323 // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
324 // In this case we will just try again without allocating a peer so that shutdown can continue.
325 // Very few things are actually capable of distinguishing between the peer & peerless states so
326 // this should be fine.
327 bool thread_attached = AttachCurrentThread("Shutdown thread",
328 /* as_daemon= */ false,
329 GetSystemThreadGroup(),
330 /* create_peer= */ IsStarted());
331 if (UNLIKELY(!thread_attached)) {
332 LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
333 CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
334 /* as_daemon= */ false,
335 /* thread_group=*/ nullptr,
336 /* create_peer= */ false));
337 }
338 self = Thread::Current();
339 } else {
340 LOG(WARNING) << "Current thread not detached in Runtime shutdown";
341 }
342
343 if (dump_gc_performance_on_shutdown_) {
344 heap_->CalculatePreGcWeightedAllocatedBytes();
345 uint64_t process_cpu_end_time = ProcessCpuNanoTime();
346 ScopedLogSeverity sls(LogSeverity::INFO);
347 // This can't be called from the Heap destructor below because it
348 // could call RosAlloc::InspectAll() which needs the thread_list
349 // to be still alive.
350 heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
351
352 uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
353 uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
354 float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
355 LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
356 << " out of process CPU time " << PrettyDuration(process_cpu_time)
357 << " (" << ratio << ")"
358 << "\n";
359 double pre_gc_weighted_allocated_bytes =
360 heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
361 // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
362 // GC. Both numerator and denominator take into account until the end of the last GC,
363 // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
364 double post_gc_weighted_allocated_bytes =
365 heap_->GetPostGcWeightedAllocatedBytes() /
366 (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
367
368 LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
369 << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
370 << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")";
371 LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
372 << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
373 << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")"
374 << "\n";
375 }
376
377 // Wait for the workers of thread pools to be created since there can't be any
378 // threads attaching during shutdown.
379 WaitForThreadPoolWorkersToStart();
380 if (jit_ != nullptr) {
381 jit_->WaitForWorkersToBeCreated();
382 // Stop the profile saver thread before marking the runtime as shutting down.
383 // The saver will try to dump the profiles before being sopped and that
384 // requires holding the mutator lock.
385 jit_->StopProfileSaver();
386 // Delete thread pool before the thread list since we don't want to wait forever on the
387 // JIT compiler threads. Also this should be run before marking the runtime
388 // as shutting down as some tasks may require mutator access.
389 jit_->DeleteThreadPool();
390 }
391 if (oat_file_manager_ != nullptr) {
392 oat_file_manager_->WaitForWorkersToBeCreated();
393 }
394
395 {
396 ScopedTrace trace2("Wait for shutdown cond");
397 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
398 shutting_down_started_ = true;
399 while (threads_being_born_ > 0) {
400 shutdown_cond_->Wait(self);
401 }
402 shutting_down_ = true;
403 }
404 // Shutdown and wait for the daemons.
405 CHECK(self != nullptr);
406 if (IsFinishedStarting()) {
407 ScopedTrace trace2("Waiting for Daemons");
408 self->ClearException();
409 self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
410 WellKnownClasses::java_lang_Daemons_stop);
411 }
412
413 // Shutdown any trace running.
414 Trace::Shutdown();
415
416 // Report death. Clients may require a working thread, still, so do it before GC completes and
417 // all non-daemon threads are done.
418 {
419 ScopedObjectAccess soa(self);
420 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
421 }
422
423 if (attach_shutdown_thread) {
424 DetachCurrentThread();
425 self = nullptr;
426 }
427
428 // Make sure to let the GC complete if it is running.
429 heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
430 heap_->DeleteThreadPool();
431 if (oat_file_manager_ != nullptr) {
432 oat_file_manager_->DeleteThreadPool();
433 }
434 DeleteThreadPool();
435 CHECK(thread_pool_ == nullptr);
436
437 // Make sure our internal threads are dead before we start tearing down things they're using.
438 GetRuntimeCallbacks()->StopDebugger();
439 // Deletion ordering is tricky. Null out everything we've deleted.
440 delete signal_catcher_;
441 signal_catcher_ = nullptr;
442
443 // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
444 // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
445 // no longer access monitor and thread list data structures. We leak user daemon threads
446 // themselves, since we have no mechanism for shutting them down.
447 {
448 ScopedTrace trace2("Delete thread list");
449 thread_list_->ShutDown();
450 }
451
452 // TODO Maybe do some locking.
453 for (auto& agent : agents_) {
454 agent->Unload();
455 }
456
457 // TODO Maybe do some locking
458 for (auto& plugin : plugins_) {
459 plugin.Unload();
460 }
461
462 // Finally delete the thread list.
463 // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
464 // We assume that by this point, we've waited long enough for things to quiesce.
465 delete thread_list_;
466 thread_list_ = nullptr;
467
468 // Delete the JIT after thread list to ensure that there is no remaining threads which could be
469 // accessing the instrumentation when we delete it.
470 if (jit_ != nullptr) {
471 VLOG(jit) << "Deleting jit";
472 jit_.reset(nullptr);
473 jit_code_cache_.reset(nullptr);
474 }
475
476 // Shutdown the fault manager if it was initialized.
477 fault_manager.Shutdown();
478
479 ScopedTrace trace2("Delete state");
480 delete monitor_list_;
481 monitor_list_ = nullptr;
482 delete monitor_pool_;
483 monitor_pool_ = nullptr;
484 delete class_linker_;
485 class_linker_ = nullptr;
486 delete heap_;
487 heap_ = nullptr;
488 delete intern_table_;
489 intern_table_ = nullptr;
490 delete oat_file_manager_;
491 oat_file_manager_ = nullptr;
492 Thread::Shutdown();
493 QuasiAtomic::Shutdown();
494 verifier::ClassVerifier::Shutdown();
495
496 // Destroy allocators before shutting down the MemMap because they may use it.
497 java_vm_.reset();
498 linear_alloc_.reset();
499 low_4gb_arena_pool_.reset();
500 arena_pool_.reset();
501 jit_arena_pool_.reset();
502 protected_fault_page_.Reset();
503 MemMap::Shutdown();
504
505 // TODO: acquire a static mutex on Runtime to avoid racing.
506 CHECK(instance_ == nullptr || instance_ == this);
507 instance_ = nullptr;
508
509 // Well-known classes must be deleted or it is impossible to successfully start another Runtime
510 // instance. We rely on a small initialization order issue in Runtime::Start() that requires
511 // elements of WellKnownClasses to be null, see b/65500943.
512 WellKnownClasses::Clear();
513 }
514
515 struct AbortState {
Dumpart::AbortState516 void Dump(std::ostream& os) const {
517 if (gAborting > 1) {
518 os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
519 DumpRecursiveAbort(os);
520 return;
521 }
522 gAborting++;
523 os << "Runtime aborting...\n";
524 if (Runtime::Current() == nullptr) {
525 os << "(Runtime does not yet exist!)\n";
526 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
527 return;
528 }
529 Thread* self = Thread::Current();
530
531 // Dump all threads first and then the aborting thread. While this is counter the logical flow,
532 // it improves the chance of relevant data surviving in the Android logs.
533
534 DumpAllThreads(os, self);
535
536 if (self == nullptr) {
537 os << "(Aborting thread was not attached to runtime!)\n";
538 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
539 } else {
540 os << "Aborting thread:\n";
541 if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
542 DumpThread(os, self);
543 } else {
544 if (Locks::mutator_lock_->SharedTryLock(self)) {
545 DumpThread(os, self);
546 Locks::mutator_lock_->SharedUnlock(self);
547 }
548 }
549 }
550 }
551
552 // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState553 void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
554 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
555 self->Dump(os);
556 if (self->IsExceptionPending()) {
557 mirror::Throwable* exception = self->GetException();
558 os << "Pending exception " << exception->Dump();
559 }
560 }
561
DumpAllThreadsart::AbortState562 void DumpAllThreads(std::ostream& os, Thread* self) const {
563 Runtime* runtime = Runtime::Current();
564 if (runtime != nullptr) {
565 ThreadList* thread_list = runtime->GetThreadList();
566 if (thread_list != nullptr) {
567 // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
568 // grabbed).
569 // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
570 // acquiring the locks.
571 bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
572 bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
573 if (tll_already_held || tscl_already_held) {
574 os << "Skipping all-threads dump as locks are held:"
575 << (tll_already_held ? "" : " thread_list_lock")
576 << (tscl_already_held ? "" : " thread_suspend_count_lock")
577 << "\n";
578 return;
579 }
580 bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
581 if (ml_already_exlusively_held) {
582 os << "Skipping all-threads dump as mutator lock is exclusively held.";
583 return;
584 }
585 bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
586 if (!ml_already_held) {
587 os << "Dumping all threads without mutator lock held\n";
588 }
589 os << "All threads:\n";
590 thread_list->Dump(os);
591 }
592 }
593 }
594
595 // For recursive aborts.
DumpRecursiveAbortart::AbortState596 void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
597 // The only thing we'll attempt is dumping the native stack of the current thread. We will only
598 // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
599 // die.
600 // Note: as we're using a global counter for the recursive abort detection, there is a potential
601 // race here and it is not OK to just print when the counter is "2" (one from
602 // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
603 static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
604 if (gAborting < kOnlyPrintWhenRecursionLessThan) {
605 gAborting++;
606 DumpNativeStack(os, GetTid());
607 }
608 }
609 };
610
Abort(const char * msg)611 void Runtime::Abort(const char* msg) {
612 auto old_value = gAborting.fetch_add(1); // set before taking any locks
613
614 // Only set the first abort message.
615 if (old_value == 0) {
616 #ifdef ART_TARGET_ANDROID
617 android_set_abort_message(msg);
618 #else
619 // Set the runtime fault message in case our unexpected-signal code will run.
620 Runtime* current = Runtime::Current();
621 if (current != nullptr) {
622 current->SetFaultMessage(msg);
623 }
624 #endif
625 }
626
627 // May be coming from an unattached thread.
628 if (Thread::Current() == nullptr) {
629 Runtime* current = Runtime::Current();
630 if (current != nullptr && current->IsStarted() && !current->IsShuttingDown(nullptr)) {
631 // We do not flag this to the unexpected-signal handler so that that may dump the stack.
632 abort();
633 UNREACHABLE();
634 }
635 }
636
637 {
638 // Ensure that we don't have multiple threads trying to abort at once,
639 // which would result in significantly worse diagnostics.
640 ScopedThreadStateChange tsc(Thread::Current(), kNativeForAbort);
641 Locks::abort_lock_->ExclusiveLock(Thread::Current());
642 }
643
644 // Get any pending output out of the way.
645 fflush(nullptr);
646
647 // Many people have difficulty distinguish aborts from crashes,
648 // so be explicit.
649 // Note: use cerr on the host to print log lines immediately, so we get at least some output
650 // in case of recursive aborts. We lose annotation with the source file and line number
651 // here, which is a minor issue. The same is significantly more complicated on device,
652 // which is why we ignore the issue there.
653 AbortState state;
654 if (kIsTargetBuild) {
655 LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
656 } else {
657 std::cerr << Dumpable<AbortState>(state);
658 }
659
660 // Sometimes we dump long messages, and the Android abort message only retains the first line.
661 // In those cases, just log the message again, to avoid logcat limits.
662 if (msg != nullptr && strchr(msg, '\n') != nullptr) {
663 LOG(FATAL_WITHOUT_ABORT) << msg;
664 }
665
666 FlagRuntimeAbort();
667
668 // Call the abort hook if we have one.
669 if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
670 LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
671 Runtime::Current()->abort_();
672 // notreached
673 LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
674 }
675
676 abort();
677 // notreached
678 }
679
PreZygoteFork()680 void Runtime::PreZygoteFork() {
681 if (GetJit() != nullptr) {
682 GetJit()->PreZygoteFork();
683 }
684 heap_->PreZygoteFork();
685 PreZygoteForkNativeBridge();
686 }
687
PostZygoteFork()688 void Runtime::PostZygoteFork() {
689 if (GetJit() != nullptr) {
690 GetJit()->PostZygoteFork();
691 }
692 // Reset all stats.
693 ResetStats(0xFFFFFFFF);
694 }
695
CallExitHook(jint status)696 void Runtime::CallExitHook(jint status) {
697 if (exit_ != nullptr) {
698 ScopedThreadStateChange tsc(Thread::Current(), kNative);
699 exit_(status);
700 LOG(WARNING) << "Exit hook returned instead of exiting!";
701 }
702 }
703
SweepSystemWeaks(IsMarkedVisitor * visitor)704 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
705 GetInternTable()->SweepInternTableWeaks(visitor);
706 GetMonitorList()->SweepMonitorList(visitor);
707 GetJavaVM()->SweepJniWeakGlobals(visitor);
708 GetHeap()->SweepAllocationRecords(visitor);
709 if (GetJit() != nullptr) {
710 // Visit JIT literal tables. Objects in these tables are classes and strings
711 // and only classes can be affected by class unloading. The strings always
712 // stay alive as they are strongly interned.
713 // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
714 // from mutators. See b/32167580.
715 GetJit()->GetCodeCache()->SweepRootTables(visitor);
716 }
717 thread_list_->SweepInterpreterCaches(visitor);
718
719 // All other generic system-weak holders.
720 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
721 holder->Sweep(visitor);
722 }
723 }
724
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)725 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
726 bool ignore_unrecognized,
727 RuntimeArgumentMap* runtime_options) {
728 Locks::Init();
729 InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect.
730 bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
731 if (!parsed) {
732 LOG(ERROR) << "Failed to parse options";
733 return false;
734 }
735 return true;
736 }
737
738 // Callback to check whether it is safe to call Abort (e.g., to use a call to
739 // LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
740 // properly initialized, and has not shut down.
IsSafeToCallAbort()741 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
742 Runtime* runtime = Runtime::Current();
743 return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
744 }
745
Create(RuntimeArgumentMap && runtime_options)746 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
747 // TODO: acquire a static mutex on Runtime to avoid racing.
748 if (Runtime::instance_ != nullptr) {
749 return false;
750 }
751 instance_ = new Runtime;
752 Locks::SetClientCallback(IsSafeToCallAbort);
753 if (!instance_->Init(std::move(runtime_options))) {
754 // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
755 // leak memory, instead. Fix the destructor. b/19100793.
756 // delete instance_;
757 instance_ = nullptr;
758 return false;
759 }
760 return true;
761 }
762
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)763 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
764 RuntimeArgumentMap runtime_options;
765 return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
766 Create(std::move(runtime_options));
767 }
768
CreateSystemClassLoader(Runtime * runtime)769 static jobject CreateSystemClassLoader(Runtime* runtime) {
770 if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
771 return nullptr;
772 }
773
774 ScopedObjectAccess soa(Thread::Current());
775 ClassLinker* cl = Runtime::Current()->GetClassLinker();
776 auto pointer_size = cl->GetImagePointerSize();
777
778 StackHandleScope<2> hs(soa.Self());
779 Handle<mirror::Class> class_loader_class(
780 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
781 CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
782
783 ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
784 "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
785 CHECK(getSystemClassLoader != nullptr);
786 CHECK(getSystemClassLoader->IsStatic());
787
788 JValue result = InvokeWithJValues(soa,
789 nullptr,
790 getSystemClassLoader,
791 nullptr);
792 JNIEnv* env = soa.Self()->GetJniEnv();
793 ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
794 CHECK(system_class_loader.get() != nullptr);
795
796 soa.Self()->SetClassLoaderOverride(system_class_loader.get());
797
798 Handle<mirror::Class> thread_class(
799 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
800 CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
801
802 ArtField* contextClassLoader =
803 thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
804 CHECK(contextClassLoader != nullptr);
805
806 // We can't run in a transaction yet.
807 contextClassLoader->SetObject<false>(
808 soa.Self()->GetPeer(),
809 soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
810
811 return env->NewGlobalRef(system_class_loader.get());
812 }
813
GetCompilerExecutable() const814 std::string Runtime::GetCompilerExecutable() const {
815 if (!compiler_executable_.empty()) {
816 return compiler_executable_;
817 }
818 std::string compiler_executable = GetArtBinDir() + "/dex2oat";
819 if (kIsDebugBuild) {
820 compiler_executable += 'd';
821 }
822 if (kIsTargetBuild) {
823 compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
824 }
825 return compiler_executable;
826 }
827
RunRootClinits(Thread * self)828 void Runtime::RunRootClinits(Thread* self) {
829 class_linker_->RunRootClinits(self);
830
831 GcRoot<mirror::Throwable>* exceptions[] = {
832 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
833 // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above.
834 // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above.
835 &pre_allocated_NoClassDefFoundError_,
836 };
837 for (GcRoot<mirror::Throwable>* exception : exceptions) {
838 StackHandleScope<1> hs(self);
839 Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
840 class_linker_->EnsureInitialized(self, klass, true, true);
841 self->AssertNoPendingException();
842 }
843 }
844
Start()845 bool Runtime::Start() {
846 VLOG(startup) << "Runtime::Start entering";
847
848 CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
849
850 // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
851 // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
852 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
853 if (kIsDebugBuild) {
854 if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
855 PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
856 }
857 }
858 #endif
859
860 // Restore main thread state to kNative as expected by native code.
861 Thread* self = Thread::Current();
862
863 self->TransitionFromRunnableToSuspended(kNative);
864
865 DoAndMaybeSwitchInterpreter([=](){ started_ = true; });
866
867 if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
868 ScopedObjectAccess soa(self);
869 StackHandleScope<3> hs(soa.Self());
870
871 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
872 auto class_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Class>(class_roots)));
873 auto string_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::String>(class_roots)));
874 auto field_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Field>(class_roots)));
875
876 class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
877 class_linker_->EnsureInitialized(soa.Self(), string_class, true, true);
878 self->AssertNoPendingException();
879 // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
880 class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
881 self->AssertNoPendingException();
882 }
883
884 // InitNativeMethods needs to be after started_ so that the classes
885 // it touches will have methods linked to the oat file if necessary.
886 {
887 ScopedTrace trace2("InitNativeMethods");
888 InitNativeMethods();
889 }
890
891 // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
892 // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
893 // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
894 InitializeIntrinsics();
895
896 // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
897 // initializtion in InitNativeMethods().
898 art::hiddenapi::InitializeCorePlatformApiPrivateFields();
899
900 // Initialize well known thread group values that may be accessed threads while attaching.
901 InitThreadGroups(self);
902
903 Thread::FinishStartup();
904
905 // Create the JIT either if we have to use JIT compilation or save profiling info. This is
906 // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
907 // ThreadGroup to exist.
908 //
909 // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
910 // recoding profiles. Maybe we should consider changing the name to be more clear it's
911 // not only about compiling. b/28295073.
912 if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
913 // Try to load compiler pre zygote to reduce PSS. b/27744947
914 std::string error_msg;
915 if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
916 LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
917 }
918 CreateJitCodeCache(/*rwx_memory_allowed=*/true);
919 CreateJit();
920 }
921
922 // Send the start phase event. We have to wait till here as this is when the main thread peer
923 // has just been generated, important root clinits have been run and JNI is completely functional.
924 {
925 ScopedObjectAccess soa(self);
926 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
927 }
928
929 system_class_loader_ = CreateSystemClassLoader(this);
930
931 if (!is_zygote_) {
932 if (is_native_bridge_loaded_) {
933 PreInitializeNativeBridge(".");
934 }
935 NativeBridgeAction action = force_native_bridge_
936 ? NativeBridgeAction::kInitialize
937 : NativeBridgeAction::kUnload;
938 InitNonZygoteOrPostFork(self->GetJniEnv(),
939 /* is_system_server= */ false,
940 /* is_child_zygote= */ false,
941 action,
942 GetInstructionSetString(kRuntimeISA));
943 }
944
945 StartDaemonThreads();
946
947 // Make sure the environment is still clean (no lingering local refs from starting daemon
948 // threads).
949 {
950 ScopedObjectAccess soa(self);
951 self->GetJniEnv()->AssertLocalsEmpty();
952 }
953
954 // Send the initialized phase event. Send it after starting the Daemon threads so that agents
955 // cannot delay the daemon threads from starting forever.
956 {
957 ScopedObjectAccess soa(self);
958 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
959 }
960
961 {
962 ScopedObjectAccess soa(self);
963 self->GetJniEnv()->AssertLocalsEmpty();
964 }
965
966 VLOG(startup) << "Runtime::Start exiting";
967 finished_starting_ = true;
968
969 if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
970 ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
971 Trace::Start(trace_config_->trace_file.c_str(),
972 static_cast<int>(trace_config_->trace_file_size),
973 0,
974 trace_config_->trace_output_mode,
975 trace_config_->trace_mode,
976 0);
977 }
978
979 // In case we have a profile path passed as a command line argument,
980 // register the current class path for profiling now. Note that we cannot do
981 // this before we create the JIT and having it here is the most convenient way.
982 // This is used when testing profiles with dalvikvm command as there is no
983 // framework to register the dex files for profiling.
984 if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
985 !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
986 std::vector<std::string> dex_filenames;
987 Split(class_path_string_, ':', &dex_filenames);
988 RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
989 }
990
991 return true;
992 }
993
EndThreadBirth()994 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
995 DCHECK_GT(threads_being_born_, 0U);
996 threads_being_born_--;
997 if (shutting_down_started_ && threads_being_born_ == 0) {
998 shutdown_cond_->Broadcast(Thread::Current());
999 }
1000 }
1001
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1002 void Runtime::InitNonZygoteOrPostFork(
1003 JNIEnv* env,
1004 bool is_system_server,
1005 // This is true when we are initializing a child-zygote. It requires
1006 // native bridge initialization to be able to run guest native code in
1007 // doPreload().
1008 bool is_child_zygote,
1009 NativeBridgeAction action,
1010 const char* isa,
1011 bool profile_system_server) {
1012 if (is_native_bridge_loaded_) {
1013 switch (action) {
1014 case NativeBridgeAction::kUnload:
1015 UnloadNativeBridge();
1016 is_native_bridge_loaded_ = false;
1017 break;
1018 case NativeBridgeAction::kInitialize:
1019 InitializeNativeBridge(env, isa);
1020 break;
1021 }
1022 }
1023
1024 if (is_child_zygote) {
1025 // If creating a child-zygote we only initialize native bridge. The rest of
1026 // runtime post-fork logic would spin up threads for Binder and JDWP.
1027 // Instead, the Java side of the child process will call a static main in a
1028 // class specified by the parent.
1029 return;
1030 }
1031
1032 DCHECK(!IsZygote());
1033
1034 if (is_system_server && profile_system_server) {
1035 // Set the system server package name to "android".
1036 // This is used to tell the difference between samples provided by system server
1037 // and samples generated by other apps when processing boot image profiles.
1038 SetProcessPackageName("android");
1039 jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1040 VLOG(profiler) << "Enabling system server profiles";
1041 }
1042
1043 // Create the thread pools.
1044 heap_->CreateThreadPool();
1045 // Avoid creating the runtime thread pool for system server since it will not be used and would
1046 // waste memory.
1047 if (!is_system_server) {
1048 ScopedTrace timing("CreateThreadPool");
1049 constexpr size_t kStackSize = 64 * KB;
1050 constexpr size_t kMaxRuntimeWorkers = 4u;
1051 const size_t num_workers =
1052 std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1053 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1054 CHECK(thread_pool_ == nullptr);
1055 thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1056 thread_pool_->StartWorkers(Thread::Current());
1057 }
1058
1059 // Reset the gc performance data at zygote fork so that the GCs
1060 // before fork aren't attributed to an app.
1061 heap_->ResetGcPerformanceInfo();
1062
1063 StartSignalCatcher();
1064
1065 ScopedObjectAccess soa(Thread::Current());
1066 if (IsPerfettoHprofEnabled() &&
1067 (Dbg::IsJdwpAllowed() || IsProfileableFromShell() || IsJavaDebuggable() ||
1068 Runtime::Current()->IsSystemServer())) {
1069 std::string err;
1070 ScopedTrace tr("perfetto_hprof init.");
1071 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1072 if (!EnsurePerfettoPlugin(&err)) {
1073 LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1074 }
1075 }
1076 if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1077 if (IsJavaDebuggable()) {
1078 SetJniIdType(JniIdType::kIndices);
1079 } else {
1080 SetJniIdType(JniIdType::kPointer);
1081 }
1082 }
1083 // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1084 // this will pause the runtime (in the internal debugger implementation), so we probably want
1085 // this to come last.
1086 GetRuntimeCallbacks()->StartDebugger();
1087 }
1088
StartSignalCatcher()1089 void Runtime::StartSignalCatcher() {
1090 if (!is_zygote_) {
1091 signal_catcher_ = new SignalCatcher();
1092 }
1093 }
1094
IsShuttingDown(Thread * self)1095 bool Runtime::IsShuttingDown(Thread* self) {
1096 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1097 return IsShuttingDownLocked();
1098 }
1099
StartDaemonThreads()1100 void Runtime::StartDaemonThreads() {
1101 ScopedTrace trace(__FUNCTION__);
1102 VLOG(startup) << "Runtime::StartDaemonThreads entering";
1103
1104 Thread* self = Thread::Current();
1105
1106 // Must be in the kNative state for calling native methods.
1107 CHECK_EQ(self->GetState(), kNative);
1108
1109 JNIEnv* env = self->GetJniEnv();
1110 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
1111 WellKnownClasses::java_lang_Daemons_start);
1112 if (env->ExceptionCheck()) {
1113 env->ExceptionDescribe();
1114 LOG(FATAL) << "Error starting java.lang.Daemons";
1115 }
1116
1117 VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1118 }
1119
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,std::vector<std::unique_ptr<const DexFile>> * dex_files)1120 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1121 ArrayRef<const std::string> dex_locations,
1122 std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1123 DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1124 size_t failure_count = 0;
1125 const ArtDexFileLoader dex_file_loader;
1126 for (size_t i = 0; i < dex_filenames.size(); i++) {
1127 const char* dex_filename = dex_filenames[i].c_str();
1128 const char* dex_location = dex_locations[i].c_str();
1129 static constexpr bool kVerifyChecksum = true;
1130 std::string error_msg;
1131 if (!OS::FileExists(dex_filename)) {
1132 LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1133 continue;
1134 }
1135 bool verify = Runtime::Current()->IsVerificationEnabled();
1136 if (!dex_file_loader.Open(dex_filename,
1137 dex_location,
1138 verify,
1139 kVerifyChecksum,
1140 &error_msg,
1141 dex_files)) {
1142 LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
1143 ++failure_count;
1144 }
1145 }
1146 return failure_count;
1147 }
1148
SetSentinel(ObjPtr<mirror::Object> sentinel)1149 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1150 CHECK(sentinel_.Read() == nullptr);
1151 CHECK(sentinel != nullptr);
1152 CHECK(!heap_->IsMovableObject(sentinel));
1153 sentinel_ = GcRoot<mirror::Object>(sentinel);
1154 }
1155
GetSentinel()1156 GcRoot<mirror::Object> Runtime::GetSentinel() {
1157 return sentinel_;
1158 }
1159
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1160 static inline void CreatePreAllocatedException(Thread* self,
1161 Runtime* runtime,
1162 GcRoot<mirror::Throwable>* exception,
1163 const char* exception_class_descriptor,
1164 const char* msg)
1165 REQUIRES_SHARED(Locks::mutator_lock_) {
1166 DCHECK_EQ(self, Thread::Current());
1167 ClassLinker* class_linker = runtime->GetClassLinker();
1168 // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1169 ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1170 CHECK(klass != nullptr);
1171 gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1172 ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1173 klass->Alloc(self, allocator_type));
1174 CHECK(exception_object != nullptr);
1175 *exception = GcRoot<mirror::Throwable>(exception_object);
1176 // Initialize the "detailMessage" field.
1177 ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1178 CHECK(message != nullptr);
1179 ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1180 ArtField* detailMessageField =
1181 throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1182 CHECK(detailMessageField != nullptr);
1183 detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1184 }
1185
Init(RuntimeArgumentMap && runtime_options_in)1186 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1187 // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1188 // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1189 env_snapshot_.TakeSnapshot();
1190
1191 using Opt = RuntimeArgumentMap;
1192 Opt runtime_options(std::move(runtime_options_in));
1193 ScopedTrace trace(__FUNCTION__);
1194 CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1195
1196 // Early override for logging output.
1197 if (runtime_options.Exists(Opt::UseStderrLogger)) {
1198 android::base::SetLogger(android::base::StderrLogger);
1199 }
1200
1201 MemMap::Init();
1202
1203 verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1204 perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1205
1206 // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1207 // If we cannot reserve it, log a warning.
1208 // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1209 // is out-of-the-way enough that it should not collide with boot image mapping.
1210 // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1211 // leading to logspam.
1212 {
1213 constexpr uintptr_t kSentinelAddr =
1214 RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1215 protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1216 reinterpret_cast<uint8_t*>(kSentinelAddr),
1217 kPageSize,
1218 PROT_NONE,
1219 /*low_4gb=*/ true,
1220 /*reuse=*/ false,
1221 /*reservation=*/ nullptr,
1222 /*error_msg=*/ nullptr);
1223 if (!protected_fault_page_.IsValid()) {
1224 LOG(WARNING) << "Could not reserve sentinel fault page";
1225 } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) {
1226 LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1227 protected_fault_page_.Reset();
1228 }
1229 }
1230
1231 VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1232
1233 QuasiAtomic::Startup();
1234
1235 oat_file_manager_ = new OatFileManager;
1236
1237 jni_id_manager_.reset(new jni::JniIdManager);
1238
1239 Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1240 Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1241 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1242
1243 image_location_ = runtime_options.GetOrDefault(Opt::Image);
1244
1245 SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1246 boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1247 boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1248 DCHECK(boot_class_path_locations_.empty() ||
1249 boot_class_path_locations_.size() == boot_class_path_.size());
1250 if (boot_class_path_.empty()) {
1251 // Try to extract the boot class path from the system boot image.
1252 if (image_location_.empty()) {
1253 LOG(ERROR) << "Empty boot class path, cannot continue without image.";
1254 return false;
1255 }
1256 std::string system_oat_filename = ImageHeader::GetOatLocationFromImageLocation(
1257 GetSystemImageFilename(image_location_.c_str(), instruction_set_));
1258 std::string system_oat_location = ImageHeader::GetOatLocationFromImageLocation(image_location_);
1259 std::string error_msg;
1260 std::unique_ptr<OatFile> oat_file(OatFile::Open(/*zip_fd=*/ -1,
1261 system_oat_filename,
1262 system_oat_location,
1263 /*executable=*/ false,
1264 /*low_4gb=*/ false,
1265 &error_msg));
1266 if (oat_file == nullptr) {
1267 LOG(ERROR) << "Could not open boot oat file for extracting boot class path: " << error_msg;
1268 return false;
1269 }
1270 const OatHeader& oat_header = oat_file->GetOatHeader();
1271 const char* oat_boot_class_path = oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1272 if (oat_boot_class_path != nullptr) {
1273 Split(oat_boot_class_path, ':', &boot_class_path_);
1274 }
1275 if (boot_class_path_.empty()) {
1276 LOG(ERROR) << "Boot class path missing from boot image oat file " << oat_file->GetLocation();
1277 return false;
1278 }
1279 }
1280
1281 class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1282 properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1283
1284 compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1285 must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1286 is_zygote_ = runtime_options.Exists(Opt::Zygote);
1287 is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1288 is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1289 image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1290 dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1291
1292 vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1293 exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1294 abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1295
1296 default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1297
1298 compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1299 compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1300 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1301 if (option == "--debuggable") {
1302 SetJavaDebuggable(true);
1303 break;
1304 }
1305 }
1306 image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1307
1308 finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1309 max_spins_before_thin_lock_inflation_ =
1310 runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1311
1312 monitor_list_ = new MonitorList;
1313 monitor_pool_ = MonitorPool::Create();
1314 thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1315 intern_table_ = new InternTable;
1316
1317 verify_ = runtime_options.GetOrDefault(Opt::Verify);
1318 allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
1319
1320 target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1321
1322 // Set hidden API enforcement policy. The checks are disabled by default and
1323 // we only enable them if:
1324 // (a) runtime was started with a command line flag that enables the checks, or
1325 // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1326 hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1327 DCHECK(!is_zygote_ || hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1328
1329 // Set core platform API enforcement policy. The checks are disabled by default and
1330 // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1331 // a system property is set.
1332 core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1333 if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1334 LOG(INFO) << "Core platform API reporting enabled, enforcing="
1335 << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1336 }
1337
1338 no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1339 force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1340
1341 Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1342
1343 fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1344
1345 if (runtime_options.GetOrDefault(Opt::Interpret)) {
1346 GetInstrumentation()->ForceInterpretOnly();
1347 }
1348
1349 zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1350 experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1351 is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1352 madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1353
1354 jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1355 automatically_set_jni_ids_indirection_ =
1356 runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1357
1358 plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1359 agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1360 // TODO Add back in -agentlib
1361 // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1362 // agents_.push_back(lib);
1363 // }
1364
1365 float foreground_heap_growth_multiplier;
1366 if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1367 // If low memory mode, use 1.0 as the multiplier by default.
1368 foreground_heap_growth_multiplier = 1.0f;
1369 } else {
1370 foreground_heap_growth_multiplier =
1371 runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1372 kExtraDefaultHeapGrowthMultiplier;
1373 }
1374 XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1375
1376 // Generational CC collection is currently only compatible with Baker read barriers.
1377 bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
1378
1379 image_space_loading_order_ = runtime_options.GetOrDefault(Opt::ImageSpaceLoadingOrder);
1380
1381 heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1382 runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1383 runtime_options.GetOrDefault(Opt::HeapMinFree),
1384 runtime_options.GetOrDefault(Opt::HeapMaxFree),
1385 runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1386 foreground_heap_growth_multiplier,
1387 runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1388 runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1389 runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1390 GetBootClassPath(),
1391 GetBootClassPathLocations(),
1392 image_location_,
1393 instruction_set_,
1394 // Override the collector type to CC if the read barrier config.
1395 kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1396 kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1397 : runtime_options.GetOrDefault(Opt::BackgroundGc),
1398 runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1399 runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1400 runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1401 runtime_options.GetOrDefault(Opt::ConcGCThreads),
1402 runtime_options.Exists(Opt::LowMemoryMode),
1403 runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1404 runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1405 runtime_options.Exists(Opt::IgnoreMaxFootprint),
1406 runtime_options.GetOrDefault(Opt::UseTLAB),
1407 xgc_option.verify_pre_gc_heap_,
1408 xgc_option.verify_pre_sweeping_heap_,
1409 xgc_option.verify_post_gc_heap_,
1410 xgc_option.verify_pre_gc_rosalloc_,
1411 xgc_option.verify_pre_sweeping_rosalloc_,
1412 xgc_option.verify_post_gc_rosalloc_,
1413 xgc_option.gcstress_,
1414 xgc_option.measure_,
1415 runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1416 use_generational_cc,
1417 runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1418 runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1419 runtime_options.Exists(Opt::DumpRegionInfoAfterGC),
1420 image_space_loading_order_);
1421
1422 if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
1423 LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
1424 return false;
1425 }
1426
1427 dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1428
1429 jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1430 jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1431 IsJavaDebuggable());
1432 switch (jdwp_provider_) {
1433 case JdwpProvider::kNone: {
1434 VLOG(jdwp) << "Disabling all JDWP support.";
1435 if (!jdwp_options_.empty()) {
1436 bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1437 std::string adb_connection_args =
1438 std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1439 LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1440 << "jdwp with one of:" << std::endl
1441 << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1442 << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1443 << (has_transport ? "" : adb_connection_args);
1444 }
1445 break;
1446 }
1447 case JdwpProvider::kAdbConnection: {
1448 constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1449 : "libadbconnection.so";
1450 plugins_.push_back(Plugin::Create(plugin_name));
1451 break;
1452 }
1453 case JdwpProvider::kUnset: {
1454 LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1455 }
1456 }
1457 callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1458
1459 jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1460 if (IsAotCompiler()) {
1461 // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1462 // this case.
1463 // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1464 // null and we don't create the jit.
1465 jit_options_->SetUseJitCompilation(false);
1466 jit_options_->SetSaveProfilingInfo(false);
1467 }
1468
1469 // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1470 // can't be trimmed as easily.
1471 const bool use_malloc = IsAotCompiler();
1472 if (use_malloc) {
1473 arena_pool_.reset(new MallocArenaPool());
1474 jit_arena_pool_.reset(new MallocArenaPool());
1475 } else {
1476 arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1477 jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1478 }
1479
1480 if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1481 // 4gb, no malloc. Explanation in header.
1482 low_4gb_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ true));
1483 }
1484 linear_alloc_.reset(CreateLinearAlloc());
1485
1486 BlockSignals();
1487 InitPlatformSignalHandlers();
1488
1489 // Change the implicit checks flags based on runtime architecture.
1490 switch (kRuntimeISA) {
1491 case InstructionSet::kArm:
1492 case InstructionSet::kThumb2:
1493 case InstructionSet::kX86:
1494 case InstructionSet::kArm64:
1495 case InstructionSet::kX86_64:
1496 implicit_null_checks_ = true;
1497 // Historical note: Installing stack protection was not playing well with Valgrind.
1498 implicit_so_checks_ = true;
1499 break;
1500 default:
1501 // Keep the defaults.
1502 break;
1503 }
1504
1505 if (!no_sig_chain_) {
1506 // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1507 if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1508 fault_manager.Init();
1509
1510 // These need to be in a specific order. The null point check handler must be
1511 // after the suspend check and stack overflow check handlers.
1512 //
1513 // Note: the instances attach themselves to the fault manager and are handled by it. The
1514 // manager will delete the instance on Shutdown().
1515 if (implicit_suspend_checks_) {
1516 new SuspensionHandler(&fault_manager);
1517 }
1518
1519 if (implicit_so_checks_) {
1520 new StackOverflowHandler(&fault_manager);
1521 }
1522
1523 if (implicit_null_checks_) {
1524 new NullPointerHandler(&fault_manager);
1525 }
1526
1527 if (kEnableJavaStackTraceHandler) {
1528 new JavaStackTraceHandler(&fault_manager);
1529 }
1530 }
1531 }
1532
1533 verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1534
1535 std::string error_msg;
1536 java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1537 if (java_vm_.get() == nullptr) {
1538 LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1539 return false;
1540 }
1541
1542 // Add the JniEnv handler.
1543 // TODO Refactor this stuff.
1544 java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1545
1546 Thread::Startup();
1547
1548 // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1549 // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1550 // thread, we do not get a java peer.
1551 Thread* self = Thread::Attach("main", false, nullptr, false);
1552 CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1553 CHECK(self != nullptr);
1554
1555 self->SetIsRuntimeThread(IsAotCompiler());
1556
1557 // Set us to runnable so tools using a runtime can allocate and GC by default
1558 self->TransitionFromSuspendedToRunnable();
1559
1560 // Now we're attached, we can take the heap locks and validate the heap.
1561 GetHeap()->EnableObjectValidation();
1562
1563 CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1564
1565 if (UNLIKELY(IsAotCompiler())) {
1566 class_linker_ = new AotClassLinker(intern_table_);
1567 } else {
1568 class_linker_ = new ClassLinker(
1569 intern_table_,
1570 runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
1571 }
1572 if (GetHeap()->HasBootImageSpace()) {
1573 bool result = class_linker_->InitFromBootImage(&error_msg);
1574 if (!result) {
1575 LOG(ERROR) << "Could not initialize from image: " << error_msg;
1576 return false;
1577 }
1578 if (kIsDebugBuild) {
1579 for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1580 image_space->VerifyImageAllocations();
1581 }
1582 }
1583 {
1584 ScopedTrace trace2("AddImageStringsToTable");
1585 for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
1586 GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
1587 }
1588 }
1589 if (heap_->GetBootImageSpaces().size() != GetBootClassPath().size()) {
1590 // The boot image did not contain all boot class path components. Load the rest.
1591 DCHECK_LT(heap_->GetBootImageSpaces().size(), GetBootClassPath().size());
1592 size_t start = heap_->GetBootImageSpaces().size();
1593 DCHECK_LT(start, GetBootClassPath().size());
1594 std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
1595 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1596 extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1597 } else {
1598 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
1599 ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
1600 &extra_boot_class_path);
1601 }
1602 class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
1603 }
1604 if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
1605 // Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable.
1606 // Also deoptimize if we are profiling the boot class path.
1607 ScopedThreadSuspension sts(self, ThreadState::kNative);
1608 ScopedSuspendAll ssa(__FUNCTION__);
1609 DeoptimizeBootImage();
1610 }
1611 } else {
1612 std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1613 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1614 boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1615 } else {
1616 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
1617 ArrayRef<const std::string>(GetBootClassPathLocations()),
1618 &boot_class_path);
1619 }
1620 if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1621 LOG(ERROR) << "Could not initialize without image: " << error_msg;
1622 return false;
1623 }
1624
1625 // TODO: Should we move the following to InitWithoutImage?
1626 SetInstructionSet(instruction_set_);
1627 for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1628 CalleeSaveType type = CalleeSaveType(i);
1629 if (!HasCalleeSaveMethod(type)) {
1630 SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1631 }
1632 }
1633 }
1634
1635 CHECK(class_linker_ != nullptr);
1636
1637 verifier::ClassVerifier::Init(class_linker_);
1638
1639 if (runtime_options.Exists(Opt::MethodTrace)) {
1640 trace_config_.reset(new TraceConfig());
1641 trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1642 trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1643 trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1644 trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1645 Trace::TraceOutputMode::kStreaming :
1646 Trace::TraceOutputMode::kFile;
1647 }
1648
1649 // TODO: move this to just be an Trace::Start argument
1650 Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1651
1652 if (GetHeap()->HasBootImageSpace()) {
1653 const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
1654 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1655 ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
1656 image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
1657 pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
1658 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
1659 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
1660 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1661 pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
1662 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
1663 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
1664 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1665 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
1666 boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
1667 DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
1668 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1669 pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
1670 boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
1671 DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
1672 ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
1673 } else {
1674 // Pre-allocate an OutOfMemoryError for the case when we fail to
1675 // allocate the exception to be thrown.
1676 CreatePreAllocatedException(self,
1677 this,
1678 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1679 "Ljava/lang/OutOfMemoryError;",
1680 "OutOfMemoryError thrown while trying to throw an exception; "
1681 "no stack trace available");
1682 // Pre-allocate an OutOfMemoryError for the double-OOME case.
1683 CreatePreAllocatedException(self,
1684 this,
1685 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
1686 "Ljava/lang/OutOfMemoryError;",
1687 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1688 "no stack trace available");
1689 // Pre-allocate an OutOfMemoryError for the case when we fail to
1690 // allocate while handling a stack overflow.
1691 CreatePreAllocatedException(self,
1692 this,
1693 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
1694 "Ljava/lang/OutOfMemoryError;",
1695 "OutOfMemoryError thrown while trying to handle a stack overflow; "
1696 "no stack trace available");
1697
1698 // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1699 // ahead of checking the application's class loader.
1700 CreatePreAllocatedException(self,
1701 this,
1702 &pre_allocated_NoClassDefFoundError_,
1703 "Ljava/lang/NoClassDefFoundError;",
1704 "Class not found using the boot class loader; "
1705 "no stack trace available");
1706 }
1707
1708 // Class-roots are setup, we can now finish initializing the JniIdManager.
1709 GetJniIdManager()->Init(self);
1710
1711 // Runtime initialization is largely done now.
1712 // We load plugins first since that can modify the runtime state slightly.
1713 // Load all plugins
1714 {
1715 // The init method of plugins expect the state of the thread to be non runnable.
1716 ScopedThreadSuspension sts(self, ThreadState::kNative);
1717 for (auto& plugin : plugins_) {
1718 std::string err;
1719 if (!plugin.Load(&err)) {
1720 LOG(FATAL) << plugin << " failed to load: " << err;
1721 }
1722 }
1723 }
1724
1725 // Look for a native bridge.
1726 //
1727 // The intended flow here is, in the case of a running system:
1728 //
1729 // Runtime::Init() (zygote):
1730 // LoadNativeBridge -> dlopen from cmd line parameter.
1731 // |
1732 // V
1733 // Runtime::Start() (zygote):
1734 // No-op wrt native bridge.
1735 // |
1736 // | start app
1737 // V
1738 // DidForkFromZygote(action)
1739 // action = kUnload -> dlclose native bridge.
1740 // action = kInitialize -> initialize library
1741 //
1742 //
1743 // The intended flow here is, in the case of a simple dalvikvm call:
1744 //
1745 // Runtime::Init():
1746 // LoadNativeBridge -> dlopen from cmd line parameter.
1747 // |
1748 // V
1749 // Runtime::Start():
1750 // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1751 // No-op wrt native bridge.
1752 {
1753 std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1754 is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1755 }
1756
1757 // Startup agents
1758 // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1759 for (auto& agent_spec : agent_specs_) {
1760 // TODO Check err
1761 int res = 0;
1762 std::string err = "";
1763 ti::LoadError error;
1764 std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
1765
1766 if (agent != nullptr) {
1767 agents_.push_back(std::move(agent));
1768 continue;
1769 }
1770
1771 switch (error) {
1772 case ti::LoadError::kInitializationError:
1773 LOG(FATAL) << "Unable to initialize agent!";
1774 UNREACHABLE();
1775
1776 case ti::LoadError::kLoadingError:
1777 LOG(ERROR) << "Unable to load an agent: " << err;
1778 continue;
1779
1780 case ti::LoadError::kNoError:
1781 break;
1782 }
1783 LOG(FATAL) << "Unreachable";
1784 UNREACHABLE();
1785 }
1786 {
1787 ScopedObjectAccess soa(self);
1788 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1789 }
1790
1791 if (IsZygote() && IsPerfettoHprofEnabled()) {
1792 constexpr const char* plugin_name = kIsDebugBuild ?
1793 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
1794 // Load eagerly in Zygote to improve app startup times. This will make
1795 // subsequent dlopens for the library no-ops.
1796 dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
1797 }
1798
1799 VLOG(startup) << "Runtime::Init exiting";
1800
1801 // Set OnlyUseSystemOatFiles only after boot classpath has been set up.
1802 if (runtime_options.Exists(Opt::OnlyUseSystemOatFiles)) {
1803 oat_file_manager_->SetOnlyUseSystemOatFiles();
1804 }
1805
1806 return true;
1807 }
1808
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)1809 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
1810 // Is the plugin already loaded?
1811 for (const Plugin& p : plugins_) {
1812 if (p.GetLibrary() == plugin_name) {
1813 return true;
1814 }
1815 }
1816 Plugin new_plugin = Plugin::Create(plugin_name);
1817
1818 if (!new_plugin.Load(error_msg)) {
1819 return false;
1820 }
1821 plugins_.push_back(std::move(new_plugin));
1822 return true;
1823 }
1824
EnsurePerfettoPlugin(std::string * error_msg)1825 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
1826 constexpr const char* plugin_name = kIsDebugBuild ?
1827 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
1828 return EnsurePluginLoaded(plugin_name, error_msg);
1829 }
1830
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)1831 static bool EnsureJvmtiPlugin(Runtime* runtime,
1832 std::string* error_msg) {
1833 // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
1834 DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
1835 << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
1836 // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
1837 // specifically allowed.
1838 if (!Dbg::IsJdwpAllowed()) {
1839 *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
1840 return false;
1841 }
1842
1843 constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1844 return runtime->EnsurePluginLoaded(plugin_name, error_msg);
1845 }
1846
1847 // Attach a new agent and add it to the list of runtime agents
1848 //
1849 // TODO: once we decide on the threading model for agents,
1850 // revisit this and make sure we're doing this on the right thread
1851 // (and we synchronize access to any shared data structures like "agents_")
1852 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)1853 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
1854 std::string error_msg;
1855 if (!EnsureJvmtiPlugin(this, &error_msg)) {
1856 LOG(WARNING) << "Could not load plugin: " << error_msg;
1857 ScopedObjectAccess soa(Thread::Current());
1858 ThrowIOException("%s", error_msg.c_str());
1859 return;
1860 }
1861
1862 ti::AgentSpec agent_spec(agent_arg);
1863
1864 int res = 0;
1865 ti::LoadError error;
1866 std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
1867
1868 if (agent != nullptr) {
1869 agents_.push_back(std::move(agent));
1870 } else {
1871 LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
1872 ScopedObjectAccess soa(Thread::Current());
1873 ThrowIOException("%s", error_msg.c_str());
1874 }
1875 }
1876
InitNativeMethods()1877 void Runtime::InitNativeMethods() {
1878 VLOG(startup) << "Runtime::InitNativeMethods entering";
1879 Thread* self = Thread::Current();
1880 JNIEnv* env = self->GetJniEnv();
1881
1882 // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1883 CHECK_EQ(self->GetState(), kNative);
1884
1885 // Set up the native methods provided by the runtime itself.
1886 RegisterRuntimeNativeMethods(env);
1887
1888 // Initialize classes used in JNI. The initialization requires runtime native
1889 // methods to be loaded first.
1890 WellKnownClasses::Init(env);
1891
1892 // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
1893 // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
1894 // just use System.loadLibrary, but libcore can't because it's the library
1895 // that implements System.loadLibrary!
1896
1897 // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
1898 // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
1899 {
1900 std::string error_msg;
1901 if (!java_vm_->LoadNativeLibrary(
1902 env, "libicu_jni.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
1903 LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
1904 }
1905 }
1906 {
1907 std::string error_msg;
1908 if (!java_vm_->LoadNativeLibrary(
1909 env, "libjavacore.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
1910 LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1911 }
1912 }
1913 {
1914 constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1915 ? "libopenjdkd.so"
1916 : "libopenjdk.so";
1917 std::string error_msg;
1918 if (!java_vm_->LoadNativeLibrary(
1919 env, kOpenJdkLibrary, nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
1920 LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1921 }
1922 }
1923
1924 // Initialize well known classes that may invoke runtime native methods.
1925 WellKnownClasses::LateInit(env);
1926
1927 VLOG(startup) << "Runtime::InitNativeMethods exiting";
1928 }
1929
ReclaimArenaPoolMemory()1930 void Runtime::ReclaimArenaPoolMemory() {
1931 arena_pool_->LockReclaimMemory();
1932 }
1933
InitThreadGroups(Thread * self)1934 void Runtime::InitThreadGroups(Thread* self) {
1935 JNIEnvExt* env = self->GetJniEnv();
1936 ScopedJniEnvLocalRefState env_state(env);
1937 main_thread_group_ =
1938 env->NewGlobalRef(env->GetStaticObjectField(
1939 WellKnownClasses::java_lang_ThreadGroup,
1940 WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1941 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1942 system_thread_group_ =
1943 env->NewGlobalRef(env->GetStaticObjectField(
1944 WellKnownClasses::java_lang_ThreadGroup,
1945 WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1946 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1947 }
1948
GetMainThreadGroup() const1949 jobject Runtime::GetMainThreadGroup() const {
1950 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1951 return main_thread_group_;
1952 }
1953
GetSystemThreadGroup() const1954 jobject Runtime::GetSystemThreadGroup() const {
1955 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1956 return system_thread_group_;
1957 }
1958
GetSystemClassLoader() const1959 jobject Runtime::GetSystemClassLoader() const {
1960 CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1961 return system_class_loader_;
1962 }
1963
RegisterRuntimeNativeMethods(JNIEnv * env)1964 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1965 register_dalvik_system_DexFile(env);
1966 register_dalvik_system_BaseDexClassLoader(env);
1967 register_dalvik_system_VMDebug(env);
1968 register_dalvik_system_VMRuntime(env);
1969 register_dalvik_system_VMStack(env);
1970 register_dalvik_system_ZygoteHooks(env);
1971 register_java_lang_Class(env);
1972 register_java_lang_Object(env);
1973 register_java_lang_invoke_MethodHandleImpl(env);
1974 register_java_lang_ref_FinalizerReference(env);
1975 register_java_lang_reflect_Array(env);
1976 register_java_lang_reflect_Constructor(env);
1977 register_java_lang_reflect_Executable(env);
1978 register_java_lang_reflect_Field(env);
1979 register_java_lang_reflect_Method(env);
1980 register_java_lang_reflect_Parameter(env);
1981 register_java_lang_reflect_Proxy(env);
1982 register_java_lang_ref_Reference(env);
1983 register_java_lang_String(env);
1984 register_java_lang_StringFactory(env);
1985 register_java_lang_System(env);
1986 register_java_lang_Thread(env);
1987 register_java_lang_Throwable(env);
1988 register_java_lang_VMClassLoader(env);
1989 register_java_util_concurrent_atomic_AtomicLong(env);
1990 register_libcore_util_CharsetUtils(env);
1991 register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1992 register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1993 register_sun_misc_Unsafe(env);
1994 }
1995
operator <<(std::ostream & os,const DeoptimizationKind & kind)1996 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1997 os << GetDeoptimizationKindName(kind);
1998 return os;
1999 }
2000
DumpDeoptimizations(std::ostream & os)2001 void Runtime::DumpDeoptimizations(std::ostream& os) {
2002 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
2003 if (deoptimization_counts_[i] != 0) {
2004 os << "Number of "
2005 << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2006 << " deoptimizations: "
2007 << deoptimization_counts_[i]
2008 << "\n";
2009 }
2010 }
2011 }
2012
DumpForSigQuit(std::ostream & os)2013 void Runtime::DumpForSigQuit(std::ostream& os) {
2014 GetClassLinker()->DumpForSigQuit(os);
2015 GetInternTable()->DumpForSigQuit(os);
2016 GetJavaVM()->DumpForSigQuit(os);
2017 GetHeap()->DumpForSigQuit(os);
2018 oat_file_manager_->DumpForSigQuit(os);
2019 if (GetJit() != nullptr) {
2020 GetJit()->DumpForSigQuit(os);
2021 } else {
2022 os << "Running non JIT\n";
2023 }
2024 DumpDeoptimizations(os);
2025 TrackedAllocators::Dump(os);
2026 os << "\n";
2027
2028 thread_list_->DumpForSigQuit(os);
2029 BaseMutex::DumpAll(os);
2030
2031 // Inform anyone else who is interested in SigQuit.
2032 {
2033 ScopedObjectAccess soa(Thread::Current());
2034 callbacks_->SigQuit();
2035 }
2036 }
2037
DumpLockHolders(std::ostream & os)2038 void Runtime::DumpLockHolders(std::ostream& os) {
2039 uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2040 pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2041 pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2042 pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2043 if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2044 os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2045 << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2046 << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2047 << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2048 }
2049 }
2050
SetStatsEnabled(bool new_state)2051 void Runtime::SetStatsEnabled(bool new_state) {
2052 Thread* self = Thread::Current();
2053 MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2054 if (new_state == true) {
2055 GetStats()->Clear(~0);
2056 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2057 self->GetStats()->Clear(~0);
2058 if (stats_enabled_ != new_state) {
2059 GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2060 }
2061 } else if (stats_enabled_ != new_state) {
2062 GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2063 }
2064 stats_enabled_ = new_state;
2065 }
2066
ResetStats(int kinds)2067 void Runtime::ResetStats(int kinds) {
2068 GetStats()->Clear(kinds & 0xffff);
2069 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2070 Thread::Current()->GetStats()->Clear(kinds >> 16);
2071 }
2072
GetStat(int kind)2073 uint64_t Runtime::GetStat(int kind) {
2074 RuntimeStats* stats;
2075 if (kind < (1<<16)) {
2076 stats = GetStats();
2077 } else {
2078 stats = Thread::Current()->GetStats();
2079 kind >>= 16;
2080 }
2081 switch (kind) {
2082 case KIND_ALLOCATED_OBJECTS:
2083 return stats->allocated_objects;
2084 case KIND_ALLOCATED_BYTES:
2085 return stats->allocated_bytes;
2086 case KIND_FREED_OBJECTS:
2087 return stats->freed_objects;
2088 case KIND_FREED_BYTES:
2089 return stats->freed_bytes;
2090 case KIND_GC_INVOCATIONS:
2091 return stats->gc_for_alloc_count;
2092 case KIND_CLASS_INIT_COUNT:
2093 return stats->class_init_count;
2094 case KIND_CLASS_INIT_TIME:
2095 return stats->class_init_time_ns;
2096 case KIND_EXT_ALLOCATED_OBJECTS:
2097 case KIND_EXT_ALLOCATED_BYTES:
2098 case KIND_EXT_FREED_OBJECTS:
2099 case KIND_EXT_FREED_BYTES:
2100 return 0; // backward compatibility
2101 default:
2102 LOG(FATAL) << "Unknown statistic " << kind;
2103 UNREACHABLE();
2104 }
2105 }
2106
BlockSignals()2107 void Runtime::BlockSignals() {
2108 SignalSet signals;
2109 signals.Add(SIGPIPE);
2110 // SIGQUIT is used to dump the runtime's state (including stack traces).
2111 signals.Add(SIGQUIT);
2112 // SIGUSR1 is used to initiate a GC.
2113 signals.Add(SIGUSR1);
2114 signals.Block();
2115 }
2116
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)2117 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2118 bool create_peer) {
2119 ScopedTrace trace(__FUNCTION__);
2120 Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
2121 // Run ThreadGroup.add to notify the group that this thread is now started.
2122 if (self != nullptr && create_peer && !IsAotCompiler()) {
2123 ScopedObjectAccess soa(self);
2124 self->NotifyThreadGroup(soa, thread_group);
2125 }
2126 return self != nullptr;
2127 }
2128
DetachCurrentThread()2129 void Runtime::DetachCurrentThread() {
2130 ScopedTrace trace(__FUNCTION__);
2131 Thread* self = Thread::Current();
2132 if (self == nullptr) {
2133 LOG(FATAL) << "attempting to detach thread that is not attached";
2134 }
2135 if (self->HasManagedStack()) {
2136 LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2137 }
2138 thread_list_->Unregister(self);
2139 }
2140
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2141 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2142 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2143 if (oome == nullptr) {
2144 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2145 }
2146 return oome;
2147 }
2148
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2149 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2150 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2151 if (oome == nullptr) {
2152 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2153 }
2154 return oome;
2155 }
2156
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2157 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2158 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2159 if (oome == nullptr) {
2160 LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2161 }
2162 return oome;
2163 }
2164
GetPreAllocatedNoClassDefFoundError()2165 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2166 mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2167 if (ncdfe == nullptr) {
2168 LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2169 }
2170 return ncdfe;
2171 }
2172
VisitConstantRoots(RootVisitor * visitor)2173 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2174 // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2175 // null.
2176 BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2177 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2178 if (HasResolutionMethod()) {
2179 resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2180 }
2181 if (HasImtConflictMethod()) {
2182 imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2183 }
2184 if (imt_unimplemented_method_ != nullptr) {
2185 imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2186 }
2187 for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2188 auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2189 if (m != nullptr) {
2190 m->VisitRoots(buffered_visitor, pointer_size);
2191 }
2192 }
2193 }
2194
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2195 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2196 intern_table_->VisitRoots(visitor, flags);
2197 class_linker_->VisitRoots(visitor, flags);
2198 jni_id_manager_->VisitRoots(visitor);
2199 heap_->VisitAllocationRecords(visitor);
2200 if ((flags & kVisitRootFlagNewRoots) == 0) {
2201 // Guaranteed to have no new roots in the constant roots.
2202 VisitConstantRoots(visitor);
2203 }
2204 }
2205
VisitTransactionRoots(RootVisitor * visitor)2206 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2207 for (auto& transaction : preinitialization_transactions_) {
2208 transaction->VisitRoots(visitor);
2209 }
2210 }
2211
VisitNonThreadRoots(RootVisitor * visitor)2212 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2213 java_vm_->VisitRoots(visitor);
2214 sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2215 pre_allocated_OutOfMemoryError_when_throwing_exception_
2216 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2217 pre_allocated_OutOfMemoryError_when_throwing_oome_
2218 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2219 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2220 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2221 pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2222 VisitImageRoots(visitor);
2223 verifier::ClassVerifier::VisitStaticRoots(visitor);
2224 VisitTransactionRoots(visitor);
2225 }
2226
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2227 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2228 VisitThreadRoots(visitor, flags);
2229 VisitNonThreadRoots(visitor);
2230 }
2231
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2232 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2233 thread_list_->VisitRoots(visitor, flags);
2234 }
2235
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2236 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2237 VisitNonConcurrentRoots(visitor, flags);
2238 VisitConcurrentRoots(visitor, flags);
2239 }
2240
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2241 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2242 thread_list_->VisitReflectiveTargets(visitor);
2243 heap_->VisitReflectiveTargets(visitor);
2244 jni_id_manager_->VisitReflectiveTargets(visitor);
2245 callbacks_->VisitReflectiveTargets(visitor);
2246 }
2247
VisitImageRoots(RootVisitor * visitor)2248 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2249 for (auto* space : GetHeap()->GetContinuousSpaces()) {
2250 if (space->IsImageSpace()) {
2251 auto* image_space = space->AsImageSpace();
2252 const auto& image_header = image_space->GetImageHeader();
2253 for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2254 mirror::Object* obj =
2255 image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2256 if (obj != nullptr) {
2257 mirror::Object* after_obj = obj;
2258 visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2259 CHECK_EQ(after_obj, obj);
2260 }
2261 }
2262 }
2263 }
2264 }
2265
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2266 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2267 REQUIRES_SHARED(Locks::mutator_lock_) {
2268 const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2269 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2270 const size_t method_size = ArtMethod::Size(image_pointer_size);
2271 LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2272 Thread::Current(),
2273 linear_alloc,
2274 1);
2275 ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2276 CHECK(method != nullptr);
2277 method->SetDexMethodIndex(dex::kDexNoIndex);
2278 CHECK(method->IsRuntimeMethod());
2279 return method;
2280 }
2281
CreateImtConflictMethod(LinearAlloc * linear_alloc)2282 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2283 ClassLinker* const class_linker = GetClassLinker();
2284 ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2285 // When compiling, the code pointer will get set later when the image is loaded.
2286 const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2287 if (IsAotCompiler()) {
2288 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2289 } else {
2290 method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2291 }
2292 // Create empty conflict table.
2293 method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2294 pointer_size);
2295 return method;
2296 }
2297
SetImtConflictMethod(ArtMethod * method)2298 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2299 CHECK(method != nullptr);
2300 CHECK(method->IsRuntimeMethod());
2301 imt_conflict_method_ = method;
2302 }
2303
CreateResolutionMethod()2304 ArtMethod* Runtime::CreateResolutionMethod() {
2305 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2306 // When compiling, the code pointer will get set later when the image is loaded.
2307 if (IsAotCompiler()) {
2308 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2309 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2310 } else {
2311 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2312 }
2313 return method;
2314 }
2315
CreateCalleeSaveMethod()2316 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2317 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2318 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2319 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2320 DCHECK_NE(instruction_set_, InstructionSet::kNone);
2321 DCHECK(method->IsRuntimeMethod());
2322 return method;
2323 }
2324
DisallowNewSystemWeaks()2325 void Runtime::DisallowNewSystemWeaks() {
2326 CHECK(!kUseReadBarrier);
2327 monitor_list_->DisallowNewMonitors();
2328 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2329 java_vm_->DisallowNewWeakGlobals();
2330 heap_->DisallowNewAllocationRecords();
2331 if (GetJit() != nullptr) {
2332 GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2333 }
2334
2335 // All other generic system-weak holders.
2336 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2337 holder->Disallow();
2338 }
2339 }
2340
AllowNewSystemWeaks()2341 void Runtime::AllowNewSystemWeaks() {
2342 CHECK(!kUseReadBarrier);
2343 monitor_list_->AllowNewMonitors();
2344 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
2345 java_vm_->AllowNewWeakGlobals();
2346 heap_->AllowNewAllocationRecords();
2347 if (GetJit() != nullptr) {
2348 GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2349 }
2350
2351 // All other generic system-weak holders.
2352 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2353 holder->Allow();
2354 }
2355 }
2356
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2357 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2358 // This is used for the read barrier case that uses the thread-local
2359 // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2360 // (see ThreadList::RunCheckpoint).
2361 monitor_list_->BroadcastForNewMonitors();
2362 intern_table_->BroadcastForNewInterns();
2363 java_vm_->BroadcastForNewWeakGlobals();
2364 heap_->BroadcastForNewAllocationRecords();
2365 if (GetJit() != nullptr) {
2366 GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2367 }
2368
2369 // All other generic system-weak holders.
2370 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2371 holder->Broadcast(broadcast_for_checkpoint);
2372 }
2373 }
2374
SetInstructionSet(InstructionSet instruction_set)2375 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2376 instruction_set_ = instruction_set;
2377 switch (instruction_set) {
2378 case InstructionSet::kThumb2:
2379 // kThumb2 is the same as kArm, use the canonical value.
2380 instruction_set_ = InstructionSet::kArm;
2381 break;
2382 case InstructionSet::kArm:
2383 case InstructionSet::kArm64:
2384 case InstructionSet::kX86:
2385 case InstructionSet::kX86_64:
2386 break;
2387 default:
2388 UNIMPLEMENTED(FATAL) << instruction_set_;
2389 UNREACHABLE();
2390 }
2391 }
2392
ClearInstructionSet()2393 void Runtime::ClearInstructionSet() {
2394 instruction_set_ = InstructionSet::kNone;
2395 }
2396
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2397 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2398 DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2399 CHECK(method != nullptr);
2400 callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2401 }
2402
ClearCalleeSaveMethods()2403 void Runtime::ClearCalleeSaveMethods() {
2404 for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2405 callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2406 }
2407 }
2408
RegisterAppInfo(const std::vector<std::string> & code_paths,const std::string & profile_output_filename)2409 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
2410 const std::string& profile_output_filename) {
2411 if (jit_.get() == nullptr) {
2412 // We are not JITing. Nothing to do.
2413 return;
2414 }
2415
2416 VLOG(profiler) << "Register app with " << profile_output_filename
2417 << " " << android::base::Join(code_paths, ':');
2418
2419 if (profile_output_filename.empty()) {
2420 LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2421 return;
2422 }
2423 if (!OS::FileExists(profile_output_filename.c_str(), /*check_file_type=*/ false)) {
2424 LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exist.";
2425 return;
2426 }
2427 if (code_paths.empty()) {
2428 LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2429 return;
2430 }
2431
2432 jit_->StartProfileSaver(profile_output_filename, code_paths);
2433 }
2434
2435 // Transaction support.
IsActiveTransaction() const2436 bool Runtime::IsActiveTransaction() const {
2437 return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2438 }
2439
EnterTransactionMode(bool strict,mirror::Class * root)2440 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2441 DCHECK(IsAotCompiler());
2442 if (preinitialization_transactions_.empty()) { // Top-level transaction?
2443 // Make initialized classes visibly initialized now. If that happened during the transaction
2444 // and then the transaction was aborted, we would roll back the status update but not the
2445 // ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
2446 GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
2447 }
2448 preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
2449 }
2450
ExitTransactionMode()2451 void Runtime::ExitTransactionMode() {
2452 DCHECK(IsAotCompiler());
2453 DCHECK(IsActiveTransaction());
2454 preinitialization_transactions_.pop_back();
2455 }
2456
RollbackAndExitTransactionMode()2457 void Runtime::RollbackAndExitTransactionMode() {
2458 DCHECK(IsAotCompiler());
2459 DCHECK(IsActiveTransaction());
2460 preinitialization_transactions_.back()->Rollback();
2461 preinitialization_transactions_.pop_back();
2462 }
2463
IsTransactionAborted() const2464 bool Runtime::IsTransactionAborted() const {
2465 if (!IsActiveTransaction()) {
2466 return false;
2467 } else {
2468 DCHECK(IsAotCompiler());
2469 return GetTransaction()->IsAborted();
2470 }
2471 }
2472
RollbackAllTransactions()2473 void Runtime::RollbackAllTransactions() {
2474 // If transaction is aborted, all transactions will be kept in the list.
2475 // Rollback and exit all of them.
2476 while (IsActiveTransaction()) {
2477 RollbackAndExitTransactionMode();
2478 }
2479 }
2480
IsActiveStrictTransactionMode() const2481 bool Runtime::IsActiveStrictTransactionMode() const {
2482 return IsActiveTransaction() && GetTransaction()->IsStrict();
2483 }
2484
GetTransaction() const2485 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
2486 DCHECK(!preinitialization_transactions_.empty());
2487 return preinitialization_transactions_.back();
2488 }
2489
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2490 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2491 DCHECK(IsAotCompiler());
2492 DCHECK(IsActiveTransaction());
2493 // Throwing an exception may cause its class initialization. If we mark the transaction
2494 // aborted before that, we may warn with a false alarm. Throwing the exception before
2495 // marking the transaction aborted avoids that.
2496 // But now the transaction can be nested, and abort the transaction will relax the constraints
2497 // for constructing stack trace.
2498 GetTransaction()->Abort(abort_message);
2499 GetTransaction()->ThrowAbortError(self, &abort_message);
2500 }
2501
ThrowTransactionAbortError(Thread * self)2502 void Runtime::ThrowTransactionAbortError(Thread* self) {
2503 DCHECK(IsAotCompiler());
2504 DCHECK(IsActiveTransaction());
2505 // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2506 GetTransaction()->ThrowAbortError(self, nullptr);
2507 }
2508
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2509 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2510 uint8_t value, bool is_volatile) const {
2511 DCHECK(IsAotCompiler());
2512 DCHECK(IsActiveTransaction());
2513 GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2514 }
2515
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2516 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2517 int8_t value, bool is_volatile) const {
2518 DCHECK(IsAotCompiler());
2519 DCHECK(IsActiveTransaction());
2520 GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2521 }
2522
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2523 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2524 uint16_t value, bool is_volatile) const {
2525 DCHECK(IsAotCompiler());
2526 DCHECK(IsActiveTransaction());
2527 GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2528 }
2529
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2530 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2531 int16_t value, bool is_volatile) const {
2532 DCHECK(IsAotCompiler());
2533 DCHECK(IsActiveTransaction());
2534 GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2535 }
2536
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2537 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2538 uint32_t value, bool is_volatile) const {
2539 DCHECK(IsAotCompiler());
2540 DCHECK(IsActiveTransaction());
2541 GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2542 }
2543
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2544 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2545 uint64_t value, bool is_volatile) const {
2546 DCHECK(IsAotCompiler());
2547 DCHECK(IsActiveTransaction());
2548 GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2549 }
2550
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2551 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2552 MemberOffset field_offset,
2553 ObjPtr<mirror::Object> value,
2554 bool is_volatile) const {
2555 DCHECK(IsAotCompiler());
2556 DCHECK(IsActiveTransaction());
2557 GetTransaction()->RecordWriteFieldReference(obj,
2558 field_offset,
2559 value.Ptr(),
2560 is_volatile);
2561 }
2562
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2563 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2564 DCHECK(IsAotCompiler());
2565 DCHECK(IsActiveTransaction());
2566 GetTransaction()->RecordWriteArray(array, index, value);
2567 }
2568
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2569 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2570 DCHECK(IsAotCompiler());
2571 DCHECK(IsActiveTransaction());
2572 GetTransaction()->RecordStrongStringInsertion(s);
2573 }
2574
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2575 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2576 DCHECK(IsAotCompiler());
2577 DCHECK(IsActiveTransaction());
2578 GetTransaction()->RecordWeakStringInsertion(s);
2579 }
2580
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2581 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2582 DCHECK(IsAotCompiler());
2583 DCHECK(IsActiveTransaction());
2584 GetTransaction()->RecordStrongStringRemoval(s);
2585 }
2586
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2587 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2588 DCHECK(IsAotCompiler());
2589 DCHECK(IsActiveTransaction());
2590 GetTransaction()->RecordWeakStringRemoval(s);
2591 }
2592
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2593 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2594 dex::StringIndex string_idx) const {
2595 DCHECK(IsAotCompiler());
2596 DCHECK(IsActiveTransaction());
2597 GetTransaction()->RecordResolveString(dex_cache, string_idx);
2598 }
2599
SetFaultMessage(const std::string & message)2600 void Runtime::SetFaultMessage(const std::string& message) {
2601 std::string* new_msg = new std::string(message);
2602 std::string* cur_msg = fault_message_.exchange(new_msg);
2603 delete cur_msg;
2604 }
2605
GetFaultMessage()2606 std::string Runtime::GetFaultMessage() {
2607 // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
2608 // the string in parallel.
2609 std::string* cur_msg = fault_message_.exchange(nullptr);
2610
2611 // Make a copy of the string.
2612 std::string ret = cur_msg == nullptr ? "" : *cur_msg;
2613
2614 // Put the message back if it hasn't been updated.
2615 std::string* null_str = nullptr;
2616 if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
2617 // Already replaced.
2618 delete cur_msg;
2619 }
2620
2621 return ret;
2622 }
2623
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2624 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2625 const {
2626 if (GetInstrumentation()->InterpretOnly()) {
2627 argv->push_back("--compiler-filter=quicken");
2628 }
2629
2630 // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2631 // architecture support, dex2oat may be compiled as a different instruction-set than that
2632 // currently being executed.
2633 std::string instruction_set("--instruction-set=");
2634 instruction_set += GetInstructionSetString(kRuntimeISA);
2635 argv->push_back(instruction_set);
2636
2637 if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
2638 argv->push_back("--instruction-set-features=runtime");
2639 } else {
2640 std::unique_ptr<const InstructionSetFeatures> features(
2641 InstructionSetFeatures::FromCppDefines());
2642 std::string feature_string("--instruction-set-features=");
2643 feature_string += features->GetFeatureString();
2644 argv->push_back(feature_string);
2645 }
2646 }
2647
CreateJitCodeCache(bool rwx_memory_allowed)2648 void Runtime::CreateJitCodeCache(bool rwx_memory_allowed) {
2649 if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2650 DCHECK(!jit_options_->UseJitCompilation());
2651 }
2652
2653 if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
2654 return;
2655 }
2656
2657 std::string error_msg;
2658 bool profiling_only = !jit_options_->UseJitCompilation();
2659 jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
2660 rwx_memory_allowed,
2661 IsZygote(),
2662 &error_msg));
2663 if (jit_code_cache_.get() == nullptr) {
2664 LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
2665 }
2666 }
2667
CreateJit()2668 void Runtime::CreateJit() {
2669 DCHECK(jit_ == nullptr);
2670 if (jit_code_cache_.get() == nullptr) {
2671 if (!IsSafeMode()) {
2672 LOG(WARNING) << "Missing code cache, cannot create JIT.";
2673 }
2674 return;
2675 }
2676 if (IsSafeMode()) {
2677 LOG(INFO) << "Not creating JIT because of SafeMode.";
2678 jit_code_cache_.reset();
2679 return;
2680 }
2681
2682 jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
2683 DoAndMaybeSwitchInterpreter([=](){ jit_.reset(jit); });
2684 if (jit == nullptr) {
2685 LOG(WARNING) << "Failed to allocate JIT";
2686 // Release JIT code cache resources (several MB of memory).
2687 jit_code_cache_.reset();
2688 } else {
2689 jit->CreateThreadPool();
2690 }
2691 }
2692
CanRelocate() const2693 bool Runtime::CanRelocate() const {
2694 return !IsAotCompiler();
2695 }
2696
IsCompilingBootImage() const2697 bool Runtime::IsCompilingBootImage() const {
2698 return IsCompiler() && compiler_callbacks_->IsBootImage();
2699 }
2700
SetResolutionMethod(ArtMethod * method)2701 void Runtime::SetResolutionMethod(ArtMethod* method) {
2702 CHECK(method != nullptr);
2703 CHECK(method->IsRuntimeMethod()) << method;
2704 resolution_method_ = method;
2705 }
2706
SetImtUnimplementedMethod(ArtMethod * method)2707 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2708 CHECK(method != nullptr);
2709 CHECK(method->IsRuntimeMethod());
2710 imt_unimplemented_method_ = method;
2711 }
2712
FixupConflictTables()2713 void Runtime::FixupConflictTables() {
2714 // We can only do this after the class linker is created.
2715 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2716 if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2717 imt_unimplemented_method_->SetImtConflictTable(
2718 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
2719 pointer_size);
2720 }
2721 if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2722 imt_conflict_method_->SetImtConflictTable(
2723 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
2724 pointer_size);
2725 }
2726 }
2727
DisableVerifier()2728 void Runtime::DisableVerifier() {
2729 verify_ = verifier::VerifyMode::kNone;
2730 }
2731
IsVerificationEnabled() const2732 bool Runtime::IsVerificationEnabled() const {
2733 return verify_ == verifier::VerifyMode::kEnable ||
2734 verify_ == verifier::VerifyMode::kSoftFail;
2735 }
2736
IsVerificationSoftFail() const2737 bool Runtime::IsVerificationSoftFail() const {
2738 return verify_ == verifier::VerifyMode::kSoftFail;
2739 }
2740
IsAsyncDeoptimizeable(uintptr_t code) const2741 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2742 if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
2743 if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
2744 return true;
2745 }
2746 }
2747 // We only support async deopt (ie the compiled code is not explicitly asking for
2748 // deopt, but something else like the debugger) in debuggable JIT code.
2749 // We could look at the oat file where `code` is being defined,
2750 // and check whether it's been compiled debuggable, but we decided to
2751 // only rely on the JIT for debuggable apps.
2752 // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
2753 // region as well.
2754 return IsJavaDebuggable() && GetJit() != nullptr &&
2755 GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code));
2756 }
2757
CreateLinearAlloc()2758 LinearAlloc* Runtime::CreateLinearAlloc() {
2759 // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2760 // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2761 // when we have 64 bit ArtMethod pointers.
2762 return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2763 ? new LinearAlloc(low_4gb_arena_pool_.get())
2764 : new LinearAlloc(arena_pool_.get());
2765 }
2766
GetHashTableMinLoadFactor() const2767 double Runtime::GetHashTableMinLoadFactor() const {
2768 return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2769 }
2770
GetHashTableMaxLoadFactor() const2771 double Runtime::GetHashTableMaxLoadFactor() const {
2772 return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2773 }
2774
UpdateProcessState(ProcessState process_state)2775 void Runtime::UpdateProcessState(ProcessState process_state) {
2776 ProcessState old_process_state = process_state_;
2777 process_state_ = process_state;
2778 GetHeap()->UpdateProcessState(old_process_state, process_state);
2779 }
2780
RegisterSensitiveThread() const2781 void Runtime::RegisterSensitiveThread() const {
2782 Thread::SetJitSensitiveThread();
2783 }
2784
2785 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const2786 bool Runtime::UseJitCompilation() const {
2787 return (jit_ != nullptr) && jit_->UseJitCompilation();
2788 }
2789
TakeSnapshot()2790 void Runtime::EnvSnapshot::TakeSnapshot() {
2791 char** env = GetEnviron();
2792 for (size_t i = 0; env[i] != nullptr; ++i) {
2793 name_value_pairs_.emplace_back(new std::string(env[i]));
2794 }
2795 // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2796 // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
2797 c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2798 for (size_t i = 0; env[i] != nullptr; ++i) {
2799 c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2800 }
2801 c_env_vector_[name_value_pairs_.size()] = nullptr;
2802 }
2803
GetSnapshot() const2804 char** Runtime::EnvSnapshot::GetSnapshot() const {
2805 return c_env_vector_.get();
2806 }
2807
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2808 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2809 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2810 gc::kGcCauseAddRemoveSystemWeakHolder,
2811 gc::kCollectorTypeAddRemoveSystemWeakHolder);
2812 // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2813 // a critical section.
2814 system_weak_holders_.push_back(holder);
2815 }
2816
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2817 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2818 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2819 gc::kGcCauseAddRemoveSystemWeakHolder,
2820 gc::kCollectorTypeAddRemoveSystemWeakHolder);
2821 auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2822 if (it != system_weak_holders_.end()) {
2823 system_weak_holders_.erase(it);
2824 }
2825 }
2826
GetRuntimeCallbacks()2827 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2828 return callbacks_.get();
2829 }
2830
2831 // Used to patch boot image method entry point to interpreter bridge.
2832 class UpdateEntryPointsClassVisitor : public ClassVisitor {
2833 public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)2834 explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2835 : instrumentation_(instrumentation) {}
2836
operator ()(ObjPtr<mirror::Class> klass)2837 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
2838 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
2839 auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2840 for (auto& m : klass->GetMethods(pointer_size)) {
2841 const void* code = m.GetEntryPointFromQuickCompiledCode();
2842 if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2843 !m.IsNative() &&
2844 !m.IsProxyMethod()) {
2845 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2846 }
2847
2848 if (Runtime::Current()->GetJit() != nullptr &&
2849 Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
2850 !m.IsNative()) {
2851 DCHECK(!m.IsProxyMethod());
2852 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2853 }
2854
2855 if (m.IsPreCompiled()) {
2856 // Precompilation is incompatible with debuggable, so clear the flag
2857 // and update the entrypoint in case it has been compiled.
2858 m.ClearPreCompiled();
2859 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2860 }
2861 }
2862 return true;
2863 }
2864
2865 private:
2866 instrumentation::Instrumentation* const instrumentation_;
2867 };
2868
SetJavaDebuggable(bool value)2869 void Runtime::SetJavaDebuggable(bool value) {
2870 is_java_debuggable_ = value;
2871 // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2872 }
2873
DeoptimizeBootImage()2874 void Runtime::DeoptimizeBootImage() {
2875 // If we've already started and we are setting this runtime to debuggable,
2876 // we patch entry points of methods in boot image to interpreter bridge, as
2877 // boot image code may be AOT compiled as not debuggable.
2878 if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2879 UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2880 GetClassLinker()->VisitClasses(&visitor);
2881 jit::Jit* jit = GetJit();
2882 if (jit != nullptr) {
2883 // Code previously compiled may not be compiled debuggable.
2884 jit->GetCodeCache()->TransitionToDebuggable();
2885 }
2886 }
2887 // Also de-quicken all -quick opcodes. We do this for both BCP and non-bcp so if we are swapping
2888 // debuggable during startup by a plugin (eg JVMTI) even non-BCP code has its vdex files deopted.
2889 std::unordered_set<const VdexFile*> vdexs;
2890 GetClassLinker()->VisitKnownDexFiles(Thread::Current(), [&](const art::DexFile* df) {
2891 const OatDexFile* odf = df->GetOatDexFile();
2892 if (odf == nullptr) {
2893 return;
2894 }
2895 const OatFile* of = odf->GetOatFile();
2896 if (of == nullptr || of->IsDebuggable()) {
2897 // no Oat or already debuggable so no -quick.
2898 return;
2899 }
2900 vdexs.insert(of->GetVdexFile());
2901 });
2902 LOG(INFO) << "Unquickening " << vdexs.size() << " vdex files!";
2903 for (const VdexFile* vf : vdexs) {
2904 vf->AllowWriting(true);
2905 vf->UnquickenInPlace(/*decompile_return_instruction=*/true);
2906 vf->AllowWriting(false);
2907 }
2908 }
2909
ScopedThreadPoolUsage()2910 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
2911 : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
2912
~ScopedThreadPoolUsage()2913 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
2914 Runtime::Current()->ReleaseThreadPool();
2915 }
2916
DeleteThreadPool()2917 bool Runtime::DeleteThreadPool() {
2918 // Make sure workers are started to prevent thread shutdown errors.
2919 WaitForThreadPoolWorkersToStart();
2920 std::unique_ptr<ThreadPool> thread_pool;
2921 {
2922 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
2923 if (thread_pool_ref_count_ == 0) {
2924 thread_pool = std::move(thread_pool_);
2925 }
2926 }
2927 return thread_pool != nullptr;
2928 }
2929
AcquireThreadPool()2930 ThreadPool* Runtime::AcquireThreadPool() {
2931 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
2932 ++thread_pool_ref_count_;
2933 return thread_pool_.get();
2934 }
2935
ReleaseThreadPool()2936 void Runtime::ReleaseThreadPool() {
2937 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
2938 CHECK_GT(thread_pool_ref_count_, 0u);
2939 --thread_pool_ref_count_;
2940 }
2941
WaitForThreadPoolWorkersToStart()2942 void Runtime::WaitForThreadPoolWorkersToStart() {
2943 // Need to make sure workers are created before deleting the pool.
2944 ScopedThreadPoolUsage stpu;
2945 if (stpu.GetThreadPool() != nullptr) {
2946 stpu.GetThreadPool()->WaitForWorkersToBeCreated();
2947 }
2948 }
2949
ResetStartupCompleted()2950 void Runtime::ResetStartupCompleted() {
2951 startup_completed_.store(false, std::memory_order_seq_cst);
2952 }
2953
2954 class Runtime::NotifyStartupCompletedTask : public gc::HeapTask {
2955 public:
NotifyStartupCompletedTask()2956 NotifyStartupCompletedTask() : gc::HeapTask(/*target_run_time=*/ NanoTime()) {}
2957
Run(Thread * self)2958 void Run(Thread* self) override {
2959 VLOG(startup) << "NotifyStartupCompletedTask running";
2960 Runtime* const runtime = Runtime::Current();
2961 {
2962 ScopedTrace trace("Releasing app image spaces metadata");
2963 ScopedObjectAccess soa(Thread::Current());
2964 for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
2965 if (space->IsImageSpace()) {
2966 gc::space::ImageSpace* image_space = space->AsImageSpace();
2967 if (image_space->GetImageHeader().IsAppImage()) {
2968 image_space->DisablePreResolvedStrings();
2969 }
2970 }
2971 }
2972 // Request empty checkpoints to make sure no threads are accessing the image space metadata
2973 // section when we madvise it. Use GC exclusion to prevent deadlocks that may happen if
2974 // multiple threads are attempting to run empty checkpoints at the same time.
2975 {
2976 // Avoid using ScopedGCCriticalSection since that does not allow thread suspension. This is
2977 // not allowed to prevent allocations, but it's still safe to suspend temporarily for the
2978 // checkpoint.
2979 gc::ScopedInterruptibleGCCriticalSection sigcs(self,
2980 gc::kGcCauseRunEmptyCheckpoint,
2981 gc::kCollectorTypeCriticalSection);
2982 runtime->GetThreadList()->RunEmptyCheckpoint();
2983 }
2984 for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
2985 if (space->IsImageSpace()) {
2986 gc::space::ImageSpace* image_space = space->AsImageSpace();
2987 if (image_space->GetImageHeader().IsAppImage()) {
2988 image_space->ReleaseMetadata();
2989 }
2990 }
2991 }
2992 }
2993
2994 {
2995 // Delete the thread pool used for app image loading since startup is assumed to be completed.
2996 ScopedTrace trace2("Delete thread pool");
2997 runtime->DeleteThreadPool();
2998 }
2999 }
3000 };
3001
NotifyStartupCompleted()3002 void Runtime::NotifyStartupCompleted() {
3003 bool expected = false;
3004 if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3005 // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3006 // once externally. For this reason there are no asserts.
3007 return;
3008 }
3009
3010 VLOG(startup) << "Adding NotifyStartupCompleted task";
3011 // Use the heap task processor since we want to be exclusive with the GC and we don't want to
3012 // block the caller if the GC is running.
3013 if (!GetHeap()->AddHeapTask(new NotifyStartupCompletedTask)) {
3014 VLOG(startup) << "Failed to add NotifyStartupCompletedTask";
3015 }
3016
3017 // Notify the profiler saver that startup is now completed.
3018 ProfileSaver::NotifyStartupCompleted();
3019 }
3020
GetStartupCompleted() const3021 bool Runtime::GetStartupCompleted() const {
3022 return startup_completed_.load(std::memory_order_seq_cst);
3023 }
3024
SetSignalHookDebuggable(bool value)3025 void Runtime::SetSignalHookDebuggable(bool value) {
3026 SkipAddSignalHandler(value);
3027 }
3028
SetJniIdType(JniIdType t)3029 void Runtime::SetJniIdType(JniIdType t) {
3030 CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3031 if (t == GetJniIdType()) {
3032 return;
3033 }
3034 jni_ids_indirection_ = t;
3035 JNIEnvExt::ResetFunctionTable();
3036 WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3037 }
3038
GetOatFilesExecutable() const3039 bool Runtime::GetOatFilesExecutable() const {
3040 return !IsAotCompiler() && !(IsSystemServer() && jit_options_->GetSaveProfilingInfo());
3041 }
3042
ProcessWeakClass(GcRoot<mirror::Class> * root_ptr,IsMarkedVisitor * visitor,mirror::Class * update)3043 void Runtime::ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
3044 IsMarkedVisitor* visitor,
3045 mirror::Class* update) {
3046 // This does not need a read barrier because this is called by GC.
3047 mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
3048 if (cls != nullptr && cls != GetWeakClassSentinel()) {
3049 DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
3050 // Look at the classloader of the class to know if it has been unloaded.
3051 // This does not need a read barrier because this is called by GC.
3052 ObjPtr<mirror::Object> class_loader =
3053 cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
3054 if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
3055 // The class loader is live, update the entry if the class has moved.
3056 mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
3057 // Note that new_object can be null for CMS and newly allocated objects.
3058 if (new_cls != nullptr && new_cls != cls) {
3059 *root_ptr = GcRoot<mirror::Class>(new_cls);
3060 }
3061 } else {
3062 // The class loader is not live, clear the entry.
3063 *root_ptr = GcRoot<mirror::Class>(update);
3064 }
3065 }
3066 }
3067
3068 } // namespace art
3069