1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "nodes.h"
17
18 #include <cfloat>
19
20 #include "art_method-inl.h"
21 #include "base/bit_utils.h"
22 #include "base/bit_vector-inl.h"
23 #include "base/logging.h"
24 #include "base/stl_util.h"
25 #include "class_linker-inl.h"
26 #include "class_root.h"
27 #include "code_generator.h"
28 #include "common_dominator.h"
29 #include "intrinsics.h"
30 #include "mirror/class-inl.h"
31 #include "scoped_thread_state_change-inl.h"
32 #include "ssa_builder.h"
33
34 namespace art {
35
36 // Enable floating-point static evaluation during constant folding
37 // only if all floating-point operations and constants evaluate in the
38 // range and precision of the type used (i.e., 32-bit float, 64-bit
39 // double).
40 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
41
InitializeInexactObjectRTI(VariableSizedHandleScope * handles)42 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
43 ScopedObjectAccess soa(Thread::Current());
44 // Create the inexact Object reference type and store it in the HGraph.
45 inexact_object_rti_ = ReferenceTypeInfo::Create(
46 handles->NewHandle(GetClassRoot<mirror::Object>()),
47 /* is_exact= */ false);
48 }
49
AddBlock(HBasicBlock * block)50 void HGraph::AddBlock(HBasicBlock* block) {
51 block->SetBlockId(blocks_.size());
52 blocks_.push_back(block);
53 }
54
FindBackEdges(ArenaBitVector * visited)55 void HGraph::FindBackEdges(ArenaBitVector* visited) {
56 // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
57 DCHECK_EQ(visited->GetHighestBitSet(), -1);
58
59 // Allocate memory from local ScopedArenaAllocator.
60 ScopedArenaAllocator allocator(GetArenaStack());
61 // Nodes that we're currently visiting, indexed by block id.
62 ArenaBitVector visiting(
63 &allocator, blocks_.size(), /* expandable= */ false, kArenaAllocGraphBuilder);
64 visiting.ClearAllBits();
65 // Number of successors visited from a given node, indexed by block id.
66 ScopedArenaVector<size_t> successors_visited(blocks_.size(),
67 0u,
68 allocator.Adapter(kArenaAllocGraphBuilder));
69 // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
70 ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
71 constexpr size_t kDefaultWorklistSize = 8;
72 worklist.reserve(kDefaultWorklistSize);
73 visited->SetBit(entry_block_->GetBlockId());
74 visiting.SetBit(entry_block_->GetBlockId());
75 worklist.push_back(entry_block_);
76
77 while (!worklist.empty()) {
78 HBasicBlock* current = worklist.back();
79 uint32_t current_id = current->GetBlockId();
80 if (successors_visited[current_id] == current->GetSuccessors().size()) {
81 visiting.ClearBit(current_id);
82 worklist.pop_back();
83 } else {
84 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
85 uint32_t successor_id = successor->GetBlockId();
86 if (visiting.IsBitSet(successor_id)) {
87 DCHECK(ContainsElement(worklist, successor));
88 successor->AddBackEdge(current);
89 } else if (!visited->IsBitSet(successor_id)) {
90 visited->SetBit(successor_id);
91 visiting.SetBit(successor_id);
92 worklist.push_back(successor);
93 }
94 }
95 }
96 }
97
98 // Remove the environment use records of the instruction for users.
RemoveEnvironmentUses(HInstruction * instruction)99 void RemoveEnvironmentUses(HInstruction* instruction) {
100 for (HEnvironment* environment = instruction->GetEnvironment();
101 environment != nullptr;
102 environment = environment->GetParent()) {
103 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
104 if (environment->GetInstructionAt(i) != nullptr) {
105 environment->RemoveAsUserOfInput(i);
106 }
107 }
108 }
109 }
110
111 // Return whether the instruction has an environment and it's used by others.
HasEnvironmentUsedByOthers(HInstruction * instruction)112 bool HasEnvironmentUsedByOthers(HInstruction* instruction) {
113 for (HEnvironment* environment = instruction->GetEnvironment();
114 environment != nullptr;
115 environment = environment->GetParent()) {
116 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
117 HInstruction* user = environment->GetInstructionAt(i);
118 if (user != nullptr) {
119 return true;
120 }
121 }
122 }
123 return false;
124 }
125
126 // Reset environment records of the instruction itself.
ResetEnvironmentInputRecords(HInstruction * instruction)127 void ResetEnvironmentInputRecords(HInstruction* instruction) {
128 for (HEnvironment* environment = instruction->GetEnvironment();
129 environment != nullptr;
130 environment = environment->GetParent()) {
131 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
132 DCHECK(environment->GetHolder() == instruction);
133 if (environment->GetInstructionAt(i) != nullptr) {
134 environment->SetRawEnvAt(i, nullptr);
135 }
136 }
137 }
138 }
139
RemoveAsUser(HInstruction * instruction)140 static void RemoveAsUser(HInstruction* instruction) {
141 instruction->RemoveAsUserOfAllInputs();
142 RemoveEnvironmentUses(instruction);
143 }
144
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const145 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
146 for (size_t i = 0; i < blocks_.size(); ++i) {
147 if (!visited.IsBitSet(i)) {
148 HBasicBlock* block = blocks_[i];
149 if (block == nullptr) continue;
150 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
151 RemoveAsUser(it.Current());
152 }
153 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
154 RemoveAsUser(it.Current());
155 }
156 }
157 }
158 }
159
RemoveDeadBlocks(const ArenaBitVector & visited)160 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
161 for (size_t i = 0; i < blocks_.size(); ++i) {
162 if (!visited.IsBitSet(i)) {
163 HBasicBlock* block = blocks_[i];
164 if (block == nullptr) continue;
165 // We only need to update the successor, which might be live.
166 for (HBasicBlock* successor : block->GetSuccessors()) {
167 successor->RemovePredecessor(block);
168 }
169 // Remove the block from the list of blocks, so that further analyses
170 // never see it.
171 blocks_[i] = nullptr;
172 if (block->IsExitBlock()) {
173 SetExitBlock(nullptr);
174 }
175 // Mark the block as removed. This is used by the HGraphBuilder to discard
176 // the block as a branch target.
177 block->SetGraph(nullptr);
178 }
179 }
180 }
181
BuildDominatorTree()182 GraphAnalysisResult HGraph::BuildDominatorTree() {
183 // Allocate memory from local ScopedArenaAllocator.
184 ScopedArenaAllocator allocator(GetArenaStack());
185
186 ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder);
187 visited.ClearAllBits();
188
189 // (1) Find the back edges in the graph doing a DFS traversal.
190 FindBackEdges(&visited);
191
192 // (2) Remove instructions and phis from blocks not visited during
193 // the initial DFS as users from other instructions, so that
194 // users can be safely removed before uses later.
195 RemoveInstructionsAsUsersFromDeadBlocks(visited);
196
197 // (3) Remove blocks not visited during the initial DFS.
198 // Step (5) requires dead blocks to be removed from the
199 // predecessors list of live blocks.
200 RemoveDeadBlocks(visited);
201
202 // (4) Simplify the CFG now, so that we don't need to recompute
203 // dominators and the reverse post order.
204 SimplifyCFG();
205
206 // (5) Compute the dominance information and the reverse post order.
207 ComputeDominanceInformation();
208
209 // (6) Analyze loops discovered through back edge analysis, and
210 // set the loop information on each block.
211 GraphAnalysisResult result = AnalyzeLoops();
212 if (result != kAnalysisSuccess) {
213 return result;
214 }
215
216 // (7) Precompute per-block try membership before entering the SSA builder,
217 // which needs the information to build catch block phis from values of
218 // locals at throwing instructions inside try blocks.
219 ComputeTryBlockInformation();
220
221 return kAnalysisSuccess;
222 }
223
ClearDominanceInformation()224 void HGraph::ClearDominanceInformation() {
225 for (HBasicBlock* block : GetReversePostOrder()) {
226 block->ClearDominanceInformation();
227 }
228 reverse_post_order_.clear();
229 }
230
ClearLoopInformation()231 void HGraph::ClearLoopInformation() {
232 SetHasIrreducibleLoops(false);
233 for (HBasicBlock* block : GetReversePostOrder()) {
234 block->SetLoopInformation(nullptr);
235 }
236 }
237
ClearDominanceInformation()238 void HBasicBlock::ClearDominanceInformation() {
239 dominated_blocks_.clear();
240 dominator_ = nullptr;
241 }
242
GetFirstInstructionDisregardMoves() const243 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
244 HInstruction* instruction = GetFirstInstruction();
245 while (instruction->IsParallelMove()) {
246 instruction = instruction->GetNext();
247 }
248 return instruction;
249 }
250
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)251 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
252 DCHECK(ContainsElement(block->GetSuccessors(), successor));
253
254 HBasicBlock* old_dominator = successor->GetDominator();
255 HBasicBlock* new_dominator =
256 (old_dominator == nullptr) ? block
257 : CommonDominator::ForPair(old_dominator, block);
258
259 if (old_dominator == new_dominator) {
260 return false;
261 } else {
262 successor->SetDominator(new_dominator);
263 return true;
264 }
265 }
266
ComputeDominanceInformation()267 void HGraph::ComputeDominanceInformation() {
268 DCHECK(reverse_post_order_.empty());
269 reverse_post_order_.reserve(blocks_.size());
270 reverse_post_order_.push_back(entry_block_);
271
272 // Allocate memory from local ScopedArenaAllocator.
273 ScopedArenaAllocator allocator(GetArenaStack());
274 // Number of visits of a given node, indexed by block id.
275 ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder));
276 // Number of successors visited from a given node, indexed by block id.
277 ScopedArenaVector<size_t> successors_visited(blocks_.size(),
278 0u,
279 allocator.Adapter(kArenaAllocGraphBuilder));
280 // Nodes for which we need to visit successors.
281 ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
282 constexpr size_t kDefaultWorklistSize = 8;
283 worklist.reserve(kDefaultWorklistSize);
284 worklist.push_back(entry_block_);
285
286 while (!worklist.empty()) {
287 HBasicBlock* current = worklist.back();
288 uint32_t current_id = current->GetBlockId();
289 if (successors_visited[current_id] == current->GetSuccessors().size()) {
290 worklist.pop_back();
291 } else {
292 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
293 UpdateDominatorOfSuccessor(current, successor);
294
295 // Once all the forward edges have been visited, we know the immediate
296 // dominator of the block. We can then start visiting its successors.
297 if (++visits[successor->GetBlockId()] ==
298 successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
299 reverse_post_order_.push_back(successor);
300 worklist.push_back(successor);
301 }
302 }
303 }
304
305 // Check if the graph has back edges not dominated by their respective headers.
306 // If so, we need to update the dominators of those headers and recursively of
307 // their successors. We do that with a fix-point iteration over all blocks.
308 // The algorithm is guaranteed to terminate because it loops only if the sum
309 // of all dominator chains has decreased in the current iteration.
310 bool must_run_fix_point = false;
311 for (HBasicBlock* block : blocks_) {
312 if (block != nullptr &&
313 block->IsLoopHeader() &&
314 block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
315 must_run_fix_point = true;
316 break;
317 }
318 }
319 if (must_run_fix_point) {
320 bool update_occurred = true;
321 while (update_occurred) {
322 update_occurred = false;
323 for (HBasicBlock* block : GetReversePostOrder()) {
324 for (HBasicBlock* successor : block->GetSuccessors()) {
325 update_occurred |= UpdateDominatorOfSuccessor(block, successor);
326 }
327 }
328 }
329 }
330
331 // Make sure that there are no remaining blocks whose dominator information
332 // needs to be updated.
333 if (kIsDebugBuild) {
334 for (HBasicBlock* block : GetReversePostOrder()) {
335 for (HBasicBlock* successor : block->GetSuccessors()) {
336 DCHECK(!UpdateDominatorOfSuccessor(block, successor));
337 }
338 }
339 }
340
341 // Populate `dominated_blocks_` information after computing all dominators.
342 // The potential presence of irreducible loops requires to do it after.
343 for (HBasicBlock* block : GetReversePostOrder()) {
344 if (!block->IsEntryBlock()) {
345 block->GetDominator()->AddDominatedBlock(block);
346 }
347 }
348 }
349
SplitEdge(HBasicBlock * block,HBasicBlock * successor)350 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
351 HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc());
352 AddBlock(new_block);
353 // Use `InsertBetween` to ensure the predecessor index and successor index of
354 // `block` and `successor` are preserved.
355 new_block->InsertBetween(block, successor);
356 return new_block;
357 }
358
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)359 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
360 // Insert a new node between `block` and `successor` to split the
361 // critical edge.
362 HBasicBlock* new_block = SplitEdge(block, successor);
363 new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc()));
364 if (successor->IsLoopHeader()) {
365 // If we split at a back edge boundary, make the new block the back edge.
366 HLoopInformation* info = successor->GetLoopInformation();
367 if (info->IsBackEdge(*block)) {
368 info->RemoveBackEdge(block);
369 info->AddBackEdge(new_block);
370 }
371 }
372 }
373
374 // Reorder phi inputs to match reordering of the block's predecessors.
FixPhisAfterPredecessorsReodering(HBasicBlock * block,size_t first,size_t second)375 static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) {
376 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
377 HPhi* phi = it.Current()->AsPhi();
378 HInstruction* first_instr = phi->InputAt(first);
379 HInstruction* second_instr = phi->InputAt(second);
380 phi->ReplaceInput(first_instr, second);
381 phi->ReplaceInput(second_instr, first);
382 }
383 }
384
385 // Make sure that the first predecessor of a loop header is the incoming block.
OrderLoopHeaderPredecessors(HBasicBlock * header)386 void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) {
387 DCHECK(header->IsLoopHeader());
388 HLoopInformation* info = header->GetLoopInformation();
389 if (info->IsBackEdge(*header->GetPredecessors()[0])) {
390 HBasicBlock* to_swap = header->GetPredecessors()[0];
391 for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
392 HBasicBlock* predecessor = header->GetPredecessors()[pred];
393 if (!info->IsBackEdge(*predecessor)) {
394 header->predecessors_[pred] = to_swap;
395 header->predecessors_[0] = predecessor;
396 FixPhisAfterPredecessorsReodering(header, 0, pred);
397 break;
398 }
399 }
400 }
401 }
402
403 // Transform control flow of the loop to a single preheader format (don't touch the data flow).
404 // New_preheader can be already among the header predecessors - this situation will be correctly
405 // processed.
FixControlForNewSinglePreheader(HBasicBlock * header,HBasicBlock * new_preheader)406 static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) {
407 HLoopInformation* loop_info = header->GetLoopInformation();
408 for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
409 HBasicBlock* predecessor = header->GetPredecessors()[pred];
410 if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) {
411 predecessor->ReplaceSuccessor(header, new_preheader);
412 pred--;
413 }
414 }
415 }
416
417 // == Before == == After ==
418 // _________ _________ _________ _________
419 // | B0 | | B1 | (old preheaders) | B0 | | B1 |
420 // |=========| |=========| |=========| |=========|
421 // | i0 = .. | | i1 = .. | | i0 = .. | | i1 = .. |
422 // |_________| |_________| |_________| |_________|
423 // \ / \ /
424 // \ / ___v____________v___
425 // \ / (new preheader) | B20 <- B0, B1 |
426 // | | |====================|
427 // | | | i20 = phi(i0, i1) |
428 // | | |____________________|
429 // | | |
430 // /\ | | /\ /\ | /\
431 // / v_______v_________v_______v \ / v___________v_____________v \
432 // | | B10 <- B0, B1, B2, B3 | | | | B10 <- B20, B2, B3 | |
433 // | |===========================| | (header) | |===========================| |
434 // | | i10 = phi(i0, i1, i2, i3) | | | | i10 = phi(i20, i2, i3) | |
435 // | |___________________________| | | |___________________________| |
436 // | / \ | | / \ |
437 // | ... ... | | ... ... |
438 // | _________ _________ | | _________ _________ |
439 // | | B2 | | B3 | | | | B2 | | B3 | |
440 // | |=========| |=========| | (back edges) | |=========| |=========| |
441 // | | i2 = .. | | i3 = .. | | | | i2 = .. | | i3 = .. | |
442 // | |_________| |_________| | | |_________| |_________| |
443 // \ / \ / \ / \ /
444 // \___/ \___/ \___/ \___/
445 //
TransformLoopToSinglePreheaderFormat(HBasicBlock * header)446 void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) {
447 HLoopInformation* loop_info = header->GetLoopInformation();
448
449 HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc());
450 AddBlock(preheader);
451 preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc()));
452
453 // If the old header has no Phis then we only need to fix the control flow.
454 if (header->GetPhis().IsEmpty()) {
455 FixControlForNewSinglePreheader(header, preheader);
456 preheader->AddSuccessor(header);
457 return;
458 }
459
460 // Find the first non-back edge block in the header's predecessors list.
461 size_t first_nonbackedge_pred_pos = 0;
462 bool found = false;
463 for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
464 HBasicBlock* predecessor = header->GetPredecessors()[pred];
465 if (!loop_info->IsBackEdge(*predecessor)) {
466 first_nonbackedge_pred_pos = pred;
467 found = true;
468 break;
469 }
470 }
471
472 DCHECK(found);
473
474 // Fix the data-flow.
475 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
476 HPhi* header_phi = it.Current()->AsPhi();
477
478 HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(),
479 header_phi->GetRegNumber(),
480 0,
481 header_phi->GetType());
482 if (header_phi->GetType() == DataType::Type::kReference) {
483 preheader_phi->SetReferenceTypeInfo(header_phi->GetReferenceTypeInfo());
484 }
485 preheader->AddPhi(preheader_phi);
486
487 HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos);
488 header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos);
489 preheader_phi->AddInput(orig_input);
490
491 for (size_t input_pos = first_nonbackedge_pred_pos + 1;
492 input_pos < header_phi->InputCount();
493 input_pos++) {
494 HInstruction* input = header_phi->InputAt(input_pos);
495 HBasicBlock* pred_block = header->GetPredecessors()[input_pos];
496
497 if (loop_info->Contains(*pred_block)) {
498 DCHECK(loop_info->IsBackEdge(*pred_block));
499 } else {
500 preheader_phi->AddInput(input);
501 header_phi->RemoveInputAt(input_pos);
502 input_pos--;
503 }
504 }
505 }
506
507 // Fix the control-flow.
508 HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos];
509 preheader->InsertBetween(first_pred, header);
510
511 FixControlForNewSinglePreheader(header, preheader);
512 }
513
SimplifyLoop(HBasicBlock * header)514 void HGraph::SimplifyLoop(HBasicBlock* header) {
515 HLoopInformation* info = header->GetLoopInformation();
516
517 // Make sure the loop has only one pre header. This simplifies SSA building by having
518 // to just look at the pre header to know which locals are initialized at entry of the
519 // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
520 // this graph.
521 size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
522 if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
523 TransformLoopToSinglePreheaderFormat(header);
524 }
525
526 OrderLoopHeaderPredecessors(header);
527
528 HInstruction* first_instruction = header->GetFirstInstruction();
529 if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
530 // Called from DeadBlockElimination. Update SuspendCheck pointer.
531 info->SetSuspendCheck(first_instruction->AsSuspendCheck());
532 }
533 }
534
ComputeTryBlockInformation()535 void HGraph::ComputeTryBlockInformation() {
536 // Iterate in reverse post order to propagate try membership information from
537 // predecessors to their successors.
538 for (HBasicBlock* block : GetReversePostOrder()) {
539 if (block->IsEntryBlock() || block->IsCatchBlock()) {
540 // Catch blocks after simplification have only exceptional predecessors
541 // and hence are never in tries.
542 continue;
543 }
544
545 // Infer try membership from the first predecessor. Having simplified loops,
546 // the first predecessor can never be a back edge and therefore it must have
547 // been visited already and had its try membership set.
548 HBasicBlock* first_predecessor = block->GetPredecessors()[0];
549 DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
550 const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
551 if (try_entry != nullptr &&
552 (block->GetTryCatchInformation() == nullptr ||
553 try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
554 // We are either setting try block membership for the first time or it
555 // has changed.
556 block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry));
557 }
558 }
559 }
560
SimplifyCFG()561 void HGraph::SimplifyCFG() {
562 // Simplify the CFG for future analysis, and code generation:
563 // (1): Split critical edges.
564 // (2): Simplify loops by having only one preheader.
565 // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
566 // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
567 for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
568 HBasicBlock* block = blocks_[block_id];
569 if (block == nullptr) continue;
570 if (block->GetSuccessors().size() > 1) {
571 // Only split normal-flow edges. We cannot split exceptional edges as they
572 // are synthesized (approximate real control flow), and we do not need to
573 // anyway. Moves that would be inserted there are performed by the runtime.
574 ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
575 for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
576 HBasicBlock* successor = normal_successors[j];
577 DCHECK(!successor->IsCatchBlock());
578 if (successor == exit_block_) {
579 // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
580 // do not want to split because Goto->Exit is not allowed.
581 DCHECK(block->IsSingleTryBoundary());
582 } else if (successor->GetPredecessors().size() > 1) {
583 SplitCriticalEdge(block, successor);
584 // SplitCriticalEdge could have invalidated the `normal_successors`
585 // ArrayRef. We must re-acquire it.
586 normal_successors = block->GetNormalSuccessors();
587 DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
588 DCHECK_EQ(e, normal_successors.size());
589 }
590 }
591 }
592 if (block->IsLoopHeader()) {
593 SimplifyLoop(block);
594 } else if (!block->IsEntryBlock() &&
595 block->GetFirstInstruction() != nullptr &&
596 block->GetFirstInstruction()->IsSuspendCheck()) {
597 // We are being called by the dead code elimiation pass, and what used to be
598 // a loop got dismantled. Just remove the suspend check.
599 block->RemoveInstruction(block->GetFirstInstruction());
600 }
601 }
602 }
603
AnalyzeLoops() const604 GraphAnalysisResult HGraph::AnalyzeLoops() const {
605 // We iterate post order to ensure we visit inner loops before outer loops.
606 // `PopulateRecursive` needs this guarantee to know whether a natural loop
607 // contains an irreducible loop.
608 for (HBasicBlock* block : GetPostOrder()) {
609 if (block->IsLoopHeader()) {
610 if (block->IsCatchBlock()) {
611 // TODO: Dealing with exceptional back edges could be tricky because
612 // they only approximate the real control flow. Bail out for now.
613 VLOG(compiler) << "Not compiled: Exceptional back edges";
614 return kAnalysisFailThrowCatchLoop;
615 }
616 block->GetLoopInformation()->Populate();
617 }
618 }
619 return kAnalysisSuccess;
620 }
621
Dump(std::ostream & os)622 void HLoopInformation::Dump(std::ostream& os) {
623 os << "header: " << header_->GetBlockId() << std::endl;
624 os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
625 for (HBasicBlock* block : back_edges_) {
626 os << "back edge: " << block->GetBlockId() << std::endl;
627 }
628 for (HBasicBlock* block : header_->GetPredecessors()) {
629 os << "predecessor: " << block->GetBlockId() << std::endl;
630 }
631 for (uint32_t idx : blocks_.Indexes()) {
632 os << " in loop: " << idx << std::endl;
633 }
634 }
635
InsertConstant(HConstant * constant)636 void HGraph::InsertConstant(HConstant* constant) {
637 // New constants are inserted before the SuspendCheck at the bottom of the
638 // entry block. Note that this method can be called from the graph builder and
639 // the entry block therefore may not end with SuspendCheck->Goto yet.
640 HInstruction* insert_before = nullptr;
641
642 HInstruction* gota = entry_block_->GetLastInstruction();
643 if (gota != nullptr && gota->IsGoto()) {
644 HInstruction* suspend_check = gota->GetPrevious();
645 if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
646 insert_before = suspend_check;
647 } else {
648 insert_before = gota;
649 }
650 }
651
652 if (insert_before == nullptr) {
653 entry_block_->AddInstruction(constant);
654 } else {
655 entry_block_->InsertInstructionBefore(constant, insert_before);
656 }
657 }
658
GetNullConstant(uint32_t dex_pc)659 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
660 // For simplicity, don't bother reviving the cached null constant if it is
661 // not null and not in a block. Otherwise, we need to clear the instruction
662 // id and/or any invariants the graph is assuming when adding new instructions.
663 if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
664 cached_null_constant_ = new (allocator_) HNullConstant(dex_pc);
665 cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
666 InsertConstant(cached_null_constant_);
667 }
668 if (kIsDebugBuild) {
669 ScopedObjectAccess soa(Thread::Current());
670 DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
671 }
672 return cached_null_constant_;
673 }
674
GetCurrentMethod()675 HCurrentMethod* HGraph::GetCurrentMethod() {
676 // For simplicity, don't bother reviving the cached current method if it is
677 // not null and not in a block. Otherwise, we need to clear the instruction
678 // id and/or any invariants the graph is assuming when adding new instructions.
679 if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
680 cached_current_method_ = new (allocator_) HCurrentMethod(
681 Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32,
682 entry_block_->GetDexPc());
683 if (entry_block_->GetFirstInstruction() == nullptr) {
684 entry_block_->AddInstruction(cached_current_method_);
685 } else {
686 entry_block_->InsertInstructionBefore(
687 cached_current_method_, entry_block_->GetFirstInstruction());
688 }
689 }
690 return cached_current_method_;
691 }
692
GetMethodName() const693 const char* HGraph::GetMethodName() const {
694 const dex::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
695 return dex_file_.GetMethodName(method_id);
696 }
697
PrettyMethod(bool with_signature) const698 std::string HGraph::PrettyMethod(bool with_signature) const {
699 return dex_file_.PrettyMethod(method_idx_, with_signature);
700 }
701
GetConstant(DataType::Type type,int64_t value,uint32_t dex_pc)702 HConstant* HGraph::GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc) {
703 switch (type) {
704 case DataType::Type::kBool:
705 DCHECK(IsUint<1>(value));
706 FALLTHROUGH_INTENDED;
707 case DataType::Type::kUint8:
708 case DataType::Type::kInt8:
709 case DataType::Type::kUint16:
710 case DataType::Type::kInt16:
711 case DataType::Type::kInt32:
712 DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value));
713 return GetIntConstant(static_cast<int32_t>(value), dex_pc);
714
715 case DataType::Type::kInt64:
716 return GetLongConstant(value, dex_pc);
717
718 default:
719 LOG(FATAL) << "Unsupported constant type";
720 UNREACHABLE();
721 }
722 }
723
CacheFloatConstant(HFloatConstant * constant)724 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
725 int32_t value = bit_cast<int32_t, float>(constant->GetValue());
726 DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
727 cached_float_constants_.Overwrite(value, constant);
728 }
729
CacheDoubleConstant(HDoubleConstant * constant)730 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
731 int64_t value = bit_cast<int64_t, double>(constant->GetValue());
732 DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
733 cached_double_constants_.Overwrite(value, constant);
734 }
735
Add(HBasicBlock * block)736 void HLoopInformation::Add(HBasicBlock* block) {
737 blocks_.SetBit(block->GetBlockId());
738 }
739
Remove(HBasicBlock * block)740 void HLoopInformation::Remove(HBasicBlock* block) {
741 blocks_.ClearBit(block->GetBlockId());
742 }
743
PopulateRecursive(HBasicBlock * block)744 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
745 if (blocks_.IsBitSet(block->GetBlockId())) {
746 return;
747 }
748
749 blocks_.SetBit(block->GetBlockId());
750 block->SetInLoop(this);
751 if (block->IsLoopHeader()) {
752 // We're visiting loops in post-order, so inner loops must have been
753 // populated already.
754 DCHECK(block->GetLoopInformation()->IsPopulated());
755 if (block->GetLoopInformation()->IsIrreducible()) {
756 contains_irreducible_loop_ = true;
757 }
758 }
759 for (HBasicBlock* predecessor : block->GetPredecessors()) {
760 PopulateRecursive(predecessor);
761 }
762 }
763
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)764 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
765 size_t block_id = block->GetBlockId();
766
767 // If `block` is in `finalized`, we know its membership in the loop has been
768 // decided and it does not need to be revisited.
769 if (finalized->IsBitSet(block_id)) {
770 return;
771 }
772
773 bool is_finalized = false;
774 if (block->IsLoopHeader()) {
775 // If we hit a loop header in an irreducible loop, we first check if the
776 // pre header of that loop belongs to the currently analyzed loop. If it does,
777 // then we visit the back edges.
778 // Note that we cannot use GetPreHeader, as the loop may have not been populated
779 // yet.
780 HBasicBlock* pre_header = block->GetPredecessors()[0];
781 PopulateIrreducibleRecursive(pre_header, finalized);
782 if (blocks_.IsBitSet(pre_header->GetBlockId())) {
783 block->SetInLoop(this);
784 blocks_.SetBit(block_id);
785 finalized->SetBit(block_id);
786 is_finalized = true;
787
788 HLoopInformation* info = block->GetLoopInformation();
789 for (HBasicBlock* back_edge : info->GetBackEdges()) {
790 PopulateIrreducibleRecursive(back_edge, finalized);
791 }
792 }
793 } else {
794 // Visit all predecessors. If one predecessor is part of the loop, this
795 // block is also part of this loop.
796 for (HBasicBlock* predecessor : block->GetPredecessors()) {
797 PopulateIrreducibleRecursive(predecessor, finalized);
798 if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
799 block->SetInLoop(this);
800 blocks_.SetBit(block_id);
801 finalized->SetBit(block_id);
802 is_finalized = true;
803 }
804 }
805 }
806
807 // All predecessors have been recursively visited. Mark finalized if not marked yet.
808 if (!is_finalized) {
809 finalized->SetBit(block_id);
810 }
811 }
812
Populate()813 void HLoopInformation::Populate() {
814 DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
815 // Populate this loop: starting with the back edge, recursively add predecessors
816 // that are not already part of that loop. Set the header as part of the loop
817 // to end the recursion.
818 // This is a recursive implementation of the algorithm described in
819 // "Advanced Compiler Design & Implementation" (Muchnick) p192.
820 HGraph* graph = header_->GetGraph();
821 blocks_.SetBit(header_->GetBlockId());
822 header_->SetInLoop(this);
823
824 bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
825
826 if (is_irreducible_loop) {
827 // Allocate memory from local ScopedArenaAllocator.
828 ScopedArenaAllocator allocator(graph->GetArenaStack());
829 ArenaBitVector visited(&allocator,
830 graph->GetBlocks().size(),
831 /* expandable= */ false,
832 kArenaAllocGraphBuilder);
833 visited.ClearAllBits();
834 // Stop marking blocks at the loop header.
835 visited.SetBit(header_->GetBlockId());
836
837 for (HBasicBlock* back_edge : GetBackEdges()) {
838 PopulateIrreducibleRecursive(back_edge, &visited);
839 }
840 } else {
841 for (HBasicBlock* back_edge : GetBackEdges()) {
842 PopulateRecursive(back_edge);
843 }
844 }
845
846 if (!is_irreducible_loop && graph->IsCompilingOsr()) {
847 // When compiling in OSR mode, all loops in the compiled method may be entered
848 // from the interpreter. We treat this OSR entry point just like an extra entry
849 // to an irreducible loop, so we need to mark the method's loops as irreducible.
850 // This does not apply to inlined loops which do not act as OSR entry points.
851 if (suspend_check_ == nullptr) {
852 // Just building the graph in OSR mode, this loop is not inlined. We never build an
853 // inner graph in OSR mode as we can do OSR transition only from the outer method.
854 is_irreducible_loop = true;
855 } else {
856 // Look at the suspend check's environment to determine if the loop was inlined.
857 DCHECK(suspend_check_->HasEnvironment());
858 if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
859 is_irreducible_loop = true;
860 }
861 }
862 }
863 if (is_irreducible_loop) {
864 irreducible_ = true;
865 contains_irreducible_loop_ = true;
866 graph->SetHasIrreducibleLoops(true);
867 }
868 graph->SetHasLoops(true);
869 }
870
PopulateInnerLoopUpwards(HLoopInformation * inner_loop)871 void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) {
872 DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this);
873 blocks_.Union(&inner_loop->blocks_);
874 HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation();
875 if (outer_loop != nullptr) {
876 outer_loop->PopulateInnerLoopUpwards(this);
877 }
878 }
879
GetPreHeader() const880 HBasicBlock* HLoopInformation::GetPreHeader() const {
881 HBasicBlock* block = header_->GetPredecessors()[0];
882 DCHECK(irreducible_ || (block == header_->GetDominator()));
883 return block;
884 }
885
Contains(const HBasicBlock & block) const886 bool HLoopInformation::Contains(const HBasicBlock& block) const {
887 return blocks_.IsBitSet(block.GetBlockId());
888 }
889
IsIn(const HLoopInformation & other) const890 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
891 return other.blocks_.IsBitSet(header_->GetBlockId());
892 }
893
IsDefinedOutOfTheLoop(HInstruction * instruction) const894 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
895 return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
896 }
897
GetLifetimeEnd() const898 size_t HLoopInformation::GetLifetimeEnd() const {
899 size_t last_position = 0;
900 for (HBasicBlock* back_edge : GetBackEdges()) {
901 last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
902 }
903 return last_position;
904 }
905
HasBackEdgeNotDominatedByHeader() const906 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
907 for (HBasicBlock* back_edge : GetBackEdges()) {
908 DCHECK(back_edge->GetDominator() != nullptr);
909 if (!header_->Dominates(back_edge)) {
910 return true;
911 }
912 }
913 return false;
914 }
915
DominatesAllBackEdges(HBasicBlock * block)916 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
917 for (HBasicBlock* back_edge : GetBackEdges()) {
918 if (!block->Dominates(back_edge)) {
919 return false;
920 }
921 }
922 return true;
923 }
924
925
HasExitEdge() const926 bool HLoopInformation::HasExitEdge() const {
927 // Determine if this loop has at least one exit edge.
928 HBlocksInLoopReversePostOrderIterator it_loop(*this);
929 for (; !it_loop.Done(); it_loop.Advance()) {
930 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
931 if (!Contains(*successor)) {
932 return true;
933 }
934 }
935 }
936 return false;
937 }
938
Dominates(HBasicBlock * other) const939 bool HBasicBlock::Dominates(HBasicBlock* other) const {
940 // Walk up the dominator tree from `other`, to find out if `this`
941 // is an ancestor.
942 HBasicBlock* current = other;
943 while (current != nullptr) {
944 if (current == this) {
945 return true;
946 }
947 current = current->GetDominator();
948 }
949 return false;
950 }
951
UpdateInputsUsers(HInstruction * instruction)952 static void UpdateInputsUsers(HInstruction* instruction) {
953 HInputsRef inputs = instruction->GetInputs();
954 for (size_t i = 0; i < inputs.size(); ++i) {
955 inputs[i]->AddUseAt(instruction, i);
956 }
957 // Environment should be created later.
958 DCHECK(!instruction->HasEnvironment());
959 }
960
ReplaceAndRemovePhiWith(HPhi * initial,HPhi * replacement)961 void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) {
962 DCHECK(initial->GetBlock() == this);
963 InsertPhiAfter(replacement, initial);
964 initial->ReplaceWith(replacement);
965 RemovePhi(initial);
966 }
967
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)968 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
969 HInstruction* replacement) {
970 DCHECK(initial->GetBlock() == this);
971 if (initial->IsControlFlow()) {
972 // We can only replace a control flow instruction with another control flow instruction.
973 DCHECK(replacement->IsControlFlow());
974 DCHECK_EQ(replacement->GetId(), -1);
975 DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid);
976 DCHECK_EQ(initial->GetBlock(), this);
977 DCHECK_EQ(initial->GetType(), DataType::Type::kVoid);
978 DCHECK(initial->GetUses().empty());
979 DCHECK(initial->GetEnvUses().empty());
980 replacement->SetBlock(this);
981 replacement->SetId(GetGraph()->GetNextInstructionId());
982 instructions_.InsertInstructionBefore(replacement, initial);
983 UpdateInputsUsers(replacement);
984 } else {
985 InsertInstructionBefore(replacement, initial);
986 initial->ReplaceWith(replacement);
987 }
988 RemoveInstruction(initial);
989 }
990
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)991 static void Add(HInstructionList* instruction_list,
992 HBasicBlock* block,
993 HInstruction* instruction) {
994 DCHECK(instruction->GetBlock() == nullptr);
995 DCHECK_EQ(instruction->GetId(), -1);
996 instruction->SetBlock(block);
997 instruction->SetId(block->GetGraph()->GetNextInstructionId());
998 UpdateInputsUsers(instruction);
999 instruction_list->AddInstruction(instruction);
1000 }
1001
AddInstruction(HInstruction * instruction)1002 void HBasicBlock::AddInstruction(HInstruction* instruction) {
1003 Add(&instructions_, this, instruction);
1004 }
1005
AddPhi(HPhi * phi)1006 void HBasicBlock::AddPhi(HPhi* phi) {
1007 Add(&phis_, this, phi);
1008 }
1009
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1010 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1011 DCHECK(!cursor->IsPhi());
1012 DCHECK(!instruction->IsPhi());
1013 DCHECK_EQ(instruction->GetId(), -1);
1014 DCHECK_NE(cursor->GetId(), -1);
1015 DCHECK_EQ(cursor->GetBlock(), this);
1016 DCHECK(!instruction->IsControlFlow());
1017 instruction->SetBlock(this);
1018 instruction->SetId(GetGraph()->GetNextInstructionId());
1019 UpdateInputsUsers(instruction);
1020 instructions_.InsertInstructionBefore(instruction, cursor);
1021 }
1022
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1023 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1024 DCHECK(!cursor->IsPhi());
1025 DCHECK(!instruction->IsPhi());
1026 DCHECK_EQ(instruction->GetId(), -1);
1027 DCHECK_NE(cursor->GetId(), -1);
1028 DCHECK_EQ(cursor->GetBlock(), this);
1029 DCHECK(!instruction->IsControlFlow());
1030 DCHECK(!cursor->IsControlFlow());
1031 instruction->SetBlock(this);
1032 instruction->SetId(GetGraph()->GetNextInstructionId());
1033 UpdateInputsUsers(instruction);
1034 instructions_.InsertInstructionAfter(instruction, cursor);
1035 }
1036
InsertPhiAfter(HPhi * phi,HPhi * cursor)1037 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
1038 DCHECK_EQ(phi->GetId(), -1);
1039 DCHECK_NE(cursor->GetId(), -1);
1040 DCHECK_EQ(cursor->GetBlock(), this);
1041 phi->SetBlock(this);
1042 phi->SetId(GetGraph()->GetNextInstructionId());
1043 UpdateInputsUsers(phi);
1044 phis_.InsertInstructionAfter(phi, cursor);
1045 }
1046
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)1047 static void Remove(HInstructionList* instruction_list,
1048 HBasicBlock* block,
1049 HInstruction* instruction,
1050 bool ensure_safety) {
1051 DCHECK_EQ(block, instruction->GetBlock());
1052 instruction->SetBlock(nullptr);
1053 instruction_list->RemoveInstruction(instruction);
1054 if (ensure_safety) {
1055 DCHECK(instruction->GetUses().empty());
1056 DCHECK(instruction->GetEnvUses().empty());
1057 RemoveAsUser(instruction);
1058 }
1059 }
1060
RemoveInstruction(HInstruction * instruction,bool ensure_safety)1061 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
1062 DCHECK(!instruction->IsPhi());
1063 Remove(&instructions_, this, instruction, ensure_safety);
1064 }
1065
RemovePhi(HPhi * phi,bool ensure_safety)1066 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
1067 Remove(&phis_, this, phi, ensure_safety);
1068 }
1069
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)1070 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
1071 if (instruction->IsPhi()) {
1072 RemovePhi(instruction->AsPhi(), ensure_safety);
1073 } else {
1074 RemoveInstruction(instruction, ensure_safety);
1075 }
1076 }
1077
CopyFrom(ArrayRef<HInstruction * const> locals)1078 void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) {
1079 for (size_t i = 0; i < locals.size(); i++) {
1080 HInstruction* instruction = locals[i];
1081 SetRawEnvAt(i, instruction);
1082 if (instruction != nullptr) {
1083 instruction->AddEnvUseAt(this, i);
1084 }
1085 }
1086 }
1087
CopyFrom(HEnvironment * env)1088 void HEnvironment::CopyFrom(HEnvironment* env) {
1089 for (size_t i = 0; i < env->Size(); i++) {
1090 HInstruction* instruction = env->GetInstructionAt(i);
1091 SetRawEnvAt(i, instruction);
1092 if (instruction != nullptr) {
1093 instruction->AddEnvUseAt(this, i);
1094 }
1095 }
1096 }
1097
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)1098 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
1099 HBasicBlock* loop_header) {
1100 DCHECK(loop_header->IsLoopHeader());
1101 for (size_t i = 0; i < env->Size(); i++) {
1102 HInstruction* instruction = env->GetInstructionAt(i);
1103 SetRawEnvAt(i, instruction);
1104 if (instruction == nullptr) {
1105 continue;
1106 }
1107 if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
1108 // At the end of the loop pre-header, the corresponding value for instruction
1109 // is the first input of the phi.
1110 HInstruction* initial = instruction->AsPhi()->InputAt(0);
1111 SetRawEnvAt(i, initial);
1112 initial->AddEnvUseAt(this, i);
1113 } else {
1114 instruction->AddEnvUseAt(this, i);
1115 }
1116 }
1117 }
1118
RemoveAsUserOfInput(size_t index) const1119 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
1120 const HUserRecord<HEnvironment*>& env_use = vregs_[index];
1121 HInstruction* user = env_use.GetInstruction();
1122 auto before_env_use_node = env_use.GetBeforeUseNode();
1123 user->env_uses_.erase_after(before_env_use_node);
1124 user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
1125 }
1126
ReplaceInput(HInstruction * replacement,size_t index)1127 void HEnvironment::ReplaceInput(HInstruction* replacement, size_t index) {
1128 const HUserRecord<HEnvironment*>& env_use_record = vregs_[index];
1129 HInstruction* orig_instr = env_use_record.GetInstruction();
1130
1131 DCHECK(orig_instr != replacement);
1132
1133 HUseList<HEnvironment*>::iterator before_use_node = env_use_record.GetBeforeUseNode();
1134 // Note: fixup_end remains valid across splice_after().
1135 auto fixup_end = replacement->env_uses_.empty() ? replacement->env_uses_.begin()
1136 : ++replacement->env_uses_.begin();
1137 replacement->env_uses_.splice_after(replacement->env_uses_.before_begin(),
1138 env_use_record.GetInstruction()->env_uses_,
1139 before_use_node);
1140 replacement->FixUpUserRecordsAfterEnvUseInsertion(fixup_end);
1141 orig_instr->FixUpUserRecordsAfterEnvUseRemoval(before_use_node);
1142 }
1143
GetNextDisregardingMoves() const1144 HInstruction* HInstruction::GetNextDisregardingMoves() const {
1145 HInstruction* next = GetNext();
1146 while (next != nullptr && next->IsParallelMove()) {
1147 next = next->GetNext();
1148 }
1149 return next;
1150 }
1151
GetPreviousDisregardingMoves() const1152 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
1153 HInstruction* previous = GetPrevious();
1154 while (previous != nullptr && previous->IsParallelMove()) {
1155 previous = previous->GetPrevious();
1156 }
1157 return previous;
1158 }
1159
AddInstruction(HInstruction * instruction)1160 void HInstructionList::AddInstruction(HInstruction* instruction) {
1161 if (first_instruction_ == nullptr) {
1162 DCHECK(last_instruction_ == nullptr);
1163 first_instruction_ = last_instruction_ = instruction;
1164 } else {
1165 DCHECK(last_instruction_ != nullptr);
1166 last_instruction_->next_ = instruction;
1167 instruction->previous_ = last_instruction_;
1168 last_instruction_ = instruction;
1169 }
1170 }
1171
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1172 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1173 DCHECK(Contains(cursor));
1174 if (cursor == first_instruction_) {
1175 cursor->previous_ = instruction;
1176 instruction->next_ = cursor;
1177 first_instruction_ = instruction;
1178 } else {
1179 instruction->previous_ = cursor->previous_;
1180 instruction->next_ = cursor;
1181 cursor->previous_ = instruction;
1182 instruction->previous_->next_ = instruction;
1183 }
1184 }
1185
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1186 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1187 DCHECK(Contains(cursor));
1188 if (cursor == last_instruction_) {
1189 cursor->next_ = instruction;
1190 instruction->previous_ = cursor;
1191 last_instruction_ = instruction;
1192 } else {
1193 instruction->next_ = cursor->next_;
1194 instruction->previous_ = cursor;
1195 cursor->next_ = instruction;
1196 instruction->next_->previous_ = instruction;
1197 }
1198 }
1199
RemoveInstruction(HInstruction * instruction)1200 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1201 if (instruction->previous_ != nullptr) {
1202 instruction->previous_->next_ = instruction->next_;
1203 }
1204 if (instruction->next_ != nullptr) {
1205 instruction->next_->previous_ = instruction->previous_;
1206 }
1207 if (instruction == first_instruction_) {
1208 first_instruction_ = instruction->next_;
1209 }
1210 if (instruction == last_instruction_) {
1211 last_instruction_ = instruction->previous_;
1212 }
1213 }
1214
Contains(HInstruction * instruction) const1215 bool HInstructionList::Contains(HInstruction* instruction) const {
1216 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1217 if (it.Current() == instruction) {
1218 return true;
1219 }
1220 }
1221 return false;
1222 }
1223
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1224 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1225 const HInstruction* instruction2) const {
1226 DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1227 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1228 if (it.Current() == instruction1) {
1229 return true;
1230 }
1231 if (it.Current() == instruction2) {
1232 return false;
1233 }
1234 }
1235 LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1236 UNREACHABLE();
1237 }
1238
StrictlyDominates(HInstruction * other_instruction) const1239 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1240 if (other_instruction == this) {
1241 // An instruction does not strictly dominate itself.
1242 return false;
1243 }
1244 HBasicBlock* block = GetBlock();
1245 HBasicBlock* other_block = other_instruction->GetBlock();
1246 if (block != other_block) {
1247 return GetBlock()->Dominates(other_instruction->GetBlock());
1248 } else {
1249 // If both instructions are in the same block, ensure this
1250 // instruction comes before `other_instruction`.
1251 if (IsPhi()) {
1252 if (!other_instruction->IsPhi()) {
1253 // Phis appear before non phi-instructions so this instruction
1254 // dominates `other_instruction`.
1255 return true;
1256 } else {
1257 // There is no order among phis.
1258 LOG(FATAL) << "There is no dominance between phis of a same block.";
1259 UNREACHABLE();
1260 }
1261 } else {
1262 // `this` is not a phi.
1263 if (other_instruction->IsPhi()) {
1264 // Phis appear before non phi-instructions so this instruction
1265 // does not dominate `other_instruction`.
1266 return false;
1267 } else {
1268 // Check whether this instruction comes before
1269 // `other_instruction` in the instruction list.
1270 return block->GetInstructions().FoundBefore(this, other_instruction);
1271 }
1272 }
1273 }
1274 }
1275
RemoveEnvironment()1276 void HInstruction::RemoveEnvironment() {
1277 RemoveEnvironmentUses(this);
1278 environment_ = nullptr;
1279 }
1280
ReplaceWith(HInstruction * other)1281 void HInstruction::ReplaceWith(HInstruction* other) {
1282 DCHECK(other != nullptr);
1283 // Note: fixup_end remains valid across splice_after().
1284 auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1285 other->uses_.splice_after(other->uses_.before_begin(), uses_);
1286 other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1287
1288 // Note: env_fixup_end remains valid across splice_after().
1289 auto env_fixup_end =
1290 other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1291 other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1292 other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1293
1294 DCHECK(uses_.empty());
1295 DCHECK(env_uses_.empty());
1296 }
1297
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1298 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1299 const HUseList<HInstruction*>& uses = GetUses();
1300 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1301 HInstruction* user = it->GetUser();
1302 size_t index = it->GetIndex();
1303 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1304 ++it;
1305 if (dominator->StrictlyDominates(user)) {
1306 user->ReplaceInput(replacement, index);
1307 } else if (user->IsPhi() && !user->AsPhi()->IsCatchPhi()) {
1308 // If the input flows from a block dominated by `dominator`, we can replace it.
1309 // We do not perform this for catch phis as we don't have control flow support
1310 // for their inputs.
1311 const ArenaVector<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
1312 HBasicBlock* predecessor = predecessors[index];
1313 if (dominator->GetBlock()->Dominates(predecessor)) {
1314 user->ReplaceInput(replacement, index);
1315 }
1316 }
1317 }
1318 }
1319
ReplaceEnvUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1320 void HInstruction::ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1321 const HUseList<HEnvironment*>& uses = GetEnvUses();
1322 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1323 HEnvironment* user = it->GetUser();
1324 size_t index = it->GetIndex();
1325 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1326 ++it;
1327 if (dominator->StrictlyDominates(user->GetHolder())) {
1328 user->ReplaceInput(replacement, index);
1329 }
1330 }
1331 }
1332
ReplaceInput(HInstruction * replacement,size_t index)1333 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1334 HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1335 if (input_use.GetInstruction() == replacement) {
1336 // Nothing to do.
1337 return;
1338 }
1339 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1340 // Note: fixup_end remains valid across splice_after().
1341 auto fixup_end =
1342 replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1343 replacement->uses_.splice_after(replacement->uses_.before_begin(),
1344 input_use.GetInstruction()->uses_,
1345 before_use_node);
1346 replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1347 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1348 }
1349
EnvironmentSize() const1350 size_t HInstruction::EnvironmentSize() const {
1351 return HasEnvironment() ? environment_->Size() : 0;
1352 }
1353
AddInput(HInstruction * input)1354 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1355 DCHECK(input->GetBlock() != nullptr);
1356 inputs_.push_back(HUserRecord<HInstruction*>(input));
1357 input->AddUseAt(this, inputs_.size() - 1);
1358 }
1359
InsertInputAt(size_t index,HInstruction * input)1360 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1361 inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1362 input->AddUseAt(this, index);
1363 // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1364 for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1365 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1366 inputs_[i].GetUseNode()->SetIndex(i);
1367 }
1368 }
1369
RemoveInputAt(size_t index)1370 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1371 RemoveAsUserOfInput(index);
1372 inputs_.erase(inputs_.begin() + index);
1373 // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1374 for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1375 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1376 inputs_[i].GetUseNode()->SetIndex(i);
1377 }
1378 }
1379
RemoveAllInputs()1380 void HVariableInputSizeInstruction::RemoveAllInputs() {
1381 RemoveAsUserOfAllInputs();
1382 DCHECK(!HasNonEnvironmentUses());
1383
1384 inputs_.clear();
1385 DCHECK_EQ(0u, InputCount());
1386 }
1387
RemoveConstructorFences(HInstruction * instruction)1388 size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1389 DCHECK(instruction->GetBlock() != nullptr);
1390 // Removing constructor fences only makes sense for instructions with an object return type.
1391 DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
1392
1393 // Return how many instructions were removed for statistic purposes.
1394 size_t remove_count = 0;
1395
1396 // Efficient implementation that simultaneously (in one pass):
1397 // * Scans the uses list for all constructor fences.
1398 // * Deletes that constructor fence from the uses list of `instruction`.
1399 // * Deletes `instruction` from the constructor fence's inputs.
1400 // * Deletes the constructor fence if it now has 0 inputs.
1401
1402 const HUseList<HInstruction*>& uses = instruction->GetUses();
1403 // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1404 for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1405 const HUseListNode<HInstruction*>& use_node = *it;
1406 HInstruction* const use_instruction = use_node.GetUser();
1407
1408 // Advance the iterator immediately once we fetch the use_node.
1409 // Warning: If the input is removed, the current iterator becomes invalid.
1410 ++it;
1411
1412 if (use_instruction->IsConstructorFence()) {
1413 HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1414 size_t input_index = use_node.GetIndex();
1415
1416 // Process the candidate instruction for removal
1417 // from the graph.
1418
1419 // Constructor fence instructions are never
1420 // used by other instructions.
1421 //
1422 // If we wanted to make this more generic, it
1423 // could be a runtime if statement.
1424 DCHECK(!ctor_fence->HasUses());
1425
1426 // A constructor fence's return type is "kPrimVoid"
1427 // and therefore it can't have any environment uses.
1428 DCHECK(!ctor_fence->HasEnvironmentUses());
1429
1430 // Remove the inputs first, otherwise removing the instruction
1431 // will try to remove its uses while we are already removing uses
1432 // and this operation will fail.
1433 DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1434
1435 // Removing the input will also remove the `use_node`.
1436 // (Do not look at `use_node` after this, it will be a dangling reference).
1437 ctor_fence->RemoveInputAt(input_index);
1438
1439 // Once all inputs are removed, the fence is considered dead and
1440 // is removed.
1441 if (ctor_fence->InputCount() == 0u) {
1442 ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1443 ++remove_count;
1444 }
1445 }
1446 }
1447
1448 if (kIsDebugBuild) {
1449 // Post-condition checks:
1450 // * None of the uses of `instruction` are a constructor fence.
1451 // * The `instruction` itself did not get removed from a block.
1452 for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1453 CHECK(!use_node.GetUser()->IsConstructorFence());
1454 }
1455 CHECK(instruction->GetBlock() != nullptr);
1456 }
1457
1458 return remove_count;
1459 }
1460
Merge(HConstructorFence * other)1461 void HConstructorFence::Merge(HConstructorFence* other) {
1462 // Do not delete yourself from the graph.
1463 DCHECK(this != other);
1464 // Don't try to merge with an instruction not associated with a block.
1465 DCHECK(other->GetBlock() != nullptr);
1466 // A constructor fence's return type is "kPrimVoid"
1467 // and therefore it cannot have any environment uses.
1468 DCHECK(!other->HasEnvironmentUses());
1469
1470 auto has_input = [](HInstruction* haystack, HInstruction* needle) {
1471 // Check if `haystack` has `needle` as any of its inputs.
1472 for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) {
1473 if (haystack->InputAt(input_count) == needle) {
1474 return true;
1475 }
1476 }
1477 return false;
1478 };
1479
1480 // Add any inputs from `other` into `this` if it wasn't already an input.
1481 for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) {
1482 HInstruction* other_input = other->InputAt(input_count);
1483 if (!has_input(this, other_input)) {
1484 AddInput(other_input);
1485 }
1486 }
1487
1488 other->GetBlock()->RemoveInstruction(other);
1489 }
1490
GetAssociatedAllocation(bool ignore_inputs)1491 HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) {
1492 HInstruction* new_instance_inst = GetPrevious();
1493 // Check if the immediately preceding instruction is a new-instance/new-array.
1494 // Otherwise this fence is for protecting final fields.
1495 if (new_instance_inst != nullptr &&
1496 (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1497 if (ignore_inputs) {
1498 // If inputs are ignored, simply check if the predecessor is
1499 // *any* HNewInstance/HNewArray.
1500 //
1501 // Inputs are normally only ignored for prepare_for_register_allocation,
1502 // at which point *any* prior HNewInstance/Array can be considered
1503 // associated.
1504 return new_instance_inst;
1505 } else {
1506 // Normal case: There must be exactly 1 input and the previous instruction
1507 // must be that input.
1508 if (InputCount() == 1u && InputAt(0) == new_instance_inst) {
1509 return new_instance_inst;
1510 }
1511 }
1512 }
1513 return nullptr;
1514 }
1515
1516 #define DEFINE_ACCEPT(name, super) \
1517 void H##name::Accept(HGraphVisitor* visitor) { \
1518 visitor->Visit##name(this); \
1519 }
1520
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1521 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1522
1523 #undef DEFINE_ACCEPT
1524
1525 void HGraphVisitor::VisitInsertionOrder() {
1526 const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1527 for (HBasicBlock* block : blocks) {
1528 if (block != nullptr) {
1529 VisitBasicBlock(block);
1530 }
1531 }
1532 }
1533
VisitReversePostOrder()1534 void HGraphVisitor::VisitReversePostOrder() {
1535 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1536 VisitBasicBlock(block);
1537 }
1538 }
1539
VisitBasicBlock(HBasicBlock * block)1540 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1541 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1542 it.Current()->Accept(this);
1543 }
1544 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1545 it.Current()->Accept(this);
1546 }
1547 }
1548
TryStaticEvaluation() const1549 HConstant* HTypeConversion::TryStaticEvaluation() const {
1550 HGraph* graph = GetBlock()->GetGraph();
1551 if (GetInput()->IsIntConstant()) {
1552 int32_t value = GetInput()->AsIntConstant()->GetValue();
1553 switch (GetResultType()) {
1554 case DataType::Type::kInt8:
1555 return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1556 case DataType::Type::kUint8:
1557 return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1558 case DataType::Type::kInt16:
1559 return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1560 case DataType::Type::kUint16:
1561 return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1562 case DataType::Type::kInt64:
1563 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1564 case DataType::Type::kFloat32:
1565 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1566 case DataType::Type::kFloat64:
1567 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1568 default:
1569 return nullptr;
1570 }
1571 } else if (GetInput()->IsLongConstant()) {
1572 int64_t value = GetInput()->AsLongConstant()->GetValue();
1573 switch (GetResultType()) {
1574 case DataType::Type::kInt8:
1575 return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1576 case DataType::Type::kUint8:
1577 return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1578 case DataType::Type::kInt16:
1579 return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1580 case DataType::Type::kUint16:
1581 return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1582 case DataType::Type::kInt32:
1583 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1584 case DataType::Type::kFloat32:
1585 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1586 case DataType::Type::kFloat64:
1587 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1588 default:
1589 return nullptr;
1590 }
1591 } else if (GetInput()->IsFloatConstant()) {
1592 float value = GetInput()->AsFloatConstant()->GetValue();
1593 switch (GetResultType()) {
1594 case DataType::Type::kInt32:
1595 if (std::isnan(value))
1596 return graph->GetIntConstant(0, GetDexPc());
1597 if (value >= static_cast<float>(kPrimIntMax))
1598 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1599 if (value <= kPrimIntMin)
1600 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1601 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1602 case DataType::Type::kInt64:
1603 if (std::isnan(value))
1604 return graph->GetLongConstant(0, GetDexPc());
1605 if (value >= static_cast<float>(kPrimLongMax))
1606 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1607 if (value <= kPrimLongMin)
1608 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1609 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1610 case DataType::Type::kFloat64:
1611 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1612 default:
1613 return nullptr;
1614 }
1615 } else if (GetInput()->IsDoubleConstant()) {
1616 double value = GetInput()->AsDoubleConstant()->GetValue();
1617 switch (GetResultType()) {
1618 case DataType::Type::kInt32:
1619 if (std::isnan(value))
1620 return graph->GetIntConstant(0, GetDexPc());
1621 if (value >= kPrimIntMax)
1622 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1623 if (value <= kPrimLongMin)
1624 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1625 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1626 case DataType::Type::kInt64:
1627 if (std::isnan(value))
1628 return graph->GetLongConstant(0, GetDexPc());
1629 if (value >= static_cast<double>(kPrimLongMax))
1630 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1631 if (value <= kPrimLongMin)
1632 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1633 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1634 case DataType::Type::kFloat32:
1635 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1636 default:
1637 return nullptr;
1638 }
1639 }
1640 return nullptr;
1641 }
1642
TryStaticEvaluation() const1643 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1644 if (GetInput()->IsIntConstant()) {
1645 return Evaluate(GetInput()->AsIntConstant());
1646 } else if (GetInput()->IsLongConstant()) {
1647 return Evaluate(GetInput()->AsLongConstant());
1648 } else if (kEnableFloatingPointStaticEvaluation) {
1649 if (GetInput()->IsFloatConstant()) {
1650 return Evaluate(GetInput()->AsFloatConstant());
1651 } else if (GetInput()->IsDoubleConstant()) {
1652 return Evaluate(GetInput()->AsDoubleConstant());
1653 }
1654 }
1655 return nullptr;
1656 }
1657
TryStaticEvaluation() const1658 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1659 if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1660 return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1661 } else if (GetLeft()->IsLongConstant()) {
1662 if (GetRight()->IsIntConstant()) {
1663 // The binop(long, int) case is only valid for shifts and rotations.
1664 DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1665 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1666 } else if (GetRight()->IsLongConstant()) {
1667 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1668 }
1669 } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1670 // The binop(null, null) case is only valid for equal and not-equal conditions.
1671 DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1672 return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1673 } else if (kEnableFloatingPointStaticEvaluation) {
1674 if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1675 return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1676 } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1677 return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1678 }
1679 }
1680 return nullptr;
1681 }
1682
GetConstantRight() const1683 HConstant* HBinaryOperation::GetConstantRight() const {
1684 if (GetRight()->IsConstant()) {
1685 return GetRight()->AsConstant();
1686 } else if (IsCommutative() && GetLeft()->IsConstant()) {
1687 return GetLeft()->AsConstant();
1688 } else {
1689 return nullptr;
1690 }
1691 }
1692
1693 // If `GetConstantRight()` returns one of the input, this returns the other
1694 // one. Otherwise it returns null.
GetLeastConstantLeft() const1695 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1696 HInstruction* most_constant_right = GetConstantRight();
1697 if (most_constant_right == nullptr) {
1698 return nullptr;
1699 } else if (most_constant_right == GetLeft()) {
1700 return GetRight();
1701 } else {
1702 return GetLeft();
1703 }
1704 }
1705
operator <<(std::ostream & os,const ComparisonBias & rhs)1706 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1707 switch (rhs) {
1708 case ComparisonBias::kNoBias:
1709 return os << "no_bias";
1710 case ComparisonBias::kGtBias:
1711 return os << "gt_bias";
1712 case ComparisonBias::kLtBias:
1713 return os << "lt_bias";
1714 default:
1715 LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1716 UNREACHABLE();
1717 }
1718 }
1719
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1720 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1721 return this == instruction->GetPreviousDisregardingMoves();
1722 }
1723
Equals(const HInstruction * other) const1724 bool HInstruction::Equals(const HInstruction* other) const {
1725 if (GetKind() != other->GetKind()) return false;
1726 if (GetType() != other->GetType()) return false;
1727 if (!InstructionDataEquals(other)) return false;
1728 HConstInputsRef inputs = GetInputs();
1729 HConstInputsRef other_inputs = other->GetInputs();
1730 if (inputs.size() != other_inputs.size()) return false;
1731 for (size_t i = 0; i != inputs.size(); ++i) {
1732 if (inputs[i] != other_inputs[i]) return false;
1733 }
1734
1735 DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1736 return true;
1737 }
1738
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1739 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1740 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1741 switch (rhs) {
1742 FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_CASE)
1743 default:
1744 os << "Unknown instruction kind " << static_cast<int>(rhs);
1745 break;
1746 }
1747 #undef DECLARE_CASE
1748 return os;
1749 }
1750
MoveBefore(HInstruction * cursor,bool do_checks)1751 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1752 if (do_checks) {
1753 DCHECK(!IsPhi());
1754 DCHECK(!IsControlFlow());
1755 DCHECK(CanBeMoved() ||
1756 // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1757 IsShouldDeoptimizeFlag());
1758 DCHECK(!cursor->IsPhi());
1759 }
1760
1761 next_->previous_ = previous_;
1762 if (previous_ != nullptr) {
1763 previous_->next_ = next_;
1764 }
1765 if (block_->instructions_.first_instruction_ == this) {
1766 block_->instructions_.first_instruction_ = next_;
1767 }
1768 DCHECK_NE(block_->instructions_.last_instruction_, this);
1769
1770 previous_ = cursor->previous_;
1771 if (previous_ != nullptr) {
1772 previous_->next_ = this;
1773 }
1774 next_ = cursor;
1775 cursor->previous_ = this;
1776 block_ = cursor->block_;
1777
1778 if (block_->instructions_.first_instruction_ == cursor) {
1779 block_->instructions_.first_instruction_ = this;
1780 }
1781 }
1782
MoveBeforeFirstUserAndOutOfLoops()1783 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1784 DCHECK(!CanThrow());
1785 DCHECK(!HasSideEffects());
1786 DCHECK(!HasEnvironmentUses());
1787 DCHECK(HasNonEnvironmentUses());
1788 DCHECK(!IsPhi()); // Makes no sense for Phi.
1789 DCHECK_EQ(InputCount(), 0u);
1790
1791 // Find the target block.
1792 auto uses_it = GetUses().begin();
1793 auto uses_end = GetUses().end();
1794 HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1795 ++uses_it;
1796 while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1797 ++uses_it;
1798 }
1799 if (uses_it != uses_end) {
1800 // This instruction has uses in two or more blocks. Find the common dominator.
1801 CommonDominator finder(target_block);
1802 for (; uses_it != uses_end; ++uses_it) {
1803 finder.Update(uses_it->GetUser()->GetBlock());
1804 }
1805 target_block = finder.Get();
1806 DCHECK(target_block != nullptr);
1807 }
1808 // Move to the first dominator not in a loop.
1809 while (target_block->IsInLoop()) {
1810 target_block = target_block->GetDominator();
1811 DCHECK(target_block != nullptr);
1812 }
1813
1814 // Find insertion position.
1815 HInstruction* insert_pos = nullptr;
1816 for (const HUseListNode<HInstruction*>& use : GetUses()) {
1817 if (use.GetUser()->GetBlock() == target_block &&
1818 (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1819 insert_pos = use.GetUser();
1820 }
1821 }
1822 if (insert_pos == nullptr) {
1823 // No user in `target_block`, insert before the control flow instruction.
1824 insert_pos = target_block->GetLastInstruction();
1825 DCHECK(insert_pos->IsControlFlow());
1826 // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1827 if (insert_pos->IsIf()) {
1828 HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1829 if (if_input == insert_pos->GetPrevious()) {
1830 insert_pos = if_input;
1831 }
1832 }
1833 }
1834 MoveBefore(insert_pos);
1835 }
1836
SplitBefore(HInstruction * cursor)1837 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1838 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1839 DCHECK_EQ(cursor->GetBlock(), this);
1840
1841 HBasicBlock* new_block =
1842 new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
1843 new_block->instructions_.first_instruction_ = cursor;
1844 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1845 instructions_.last_instruction_ = cursor->previous_;
1846 if (cursor->previous_ == nullptr) {
1847 instructions_.first_instruction_ = nullptr;
1848 } else {
1849 cursor->previous_->next_ = nullptr;
1850 cursor->previous_ = nullptr;
1851 }
1852
1853 new_block->instructions_.SetBlockOfInstructions(new_block);
1854 AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc()));
1855
1856 for (HBasicBlock* successor : GetSuccessors()) {
1857 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1858 }
1859 new_block->successors_.swap(successors_);
1860 DCHECK(successors_.empty());
1861 AddSuccessor(new_block);
1862
1863 GetGraph()->AddBlock(new_block);
1864 return new_block;
1865 }
1866
CreateImmediateDominator()1867 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1868 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1869 DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1870
1871 HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
1872
1873 for (HBasicBlock* predecessor : GetPredecessors()) {
1874 predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1875 }
1876 new_block->predecessors_.swap(predecessors_);
1877 DCHECK(predecessors_.empty());
1878 AddPredecessor(new_block);
1879
1880 GetGraph()->AddBlock(new_block);
1881 return new_block;
1882 }
1883
SplitBeforeForInlining(HInstruction * cursor)1884 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1885 DCHECK_EQ(cursor->GetBlock(), this);
1886
1887 HBasicBlock* new_block =
1888 new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
1889 new_block->instructions_.first_instruction_ = cursor;
1890 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1891 instructions_.last_instruction_ = cursor->previous_;
1892 if (cursor->previous_ == nullptr) {
1893 instructions_.first_instruction_ = nullptr;
1894 } else {
1895 cursor->previous_->next_ = nullptr;
1896 cursor->previous_ = nullptr;
1897 }
1898
1899 new_block->instructions_.SetBlockOfInstructions(new_block);
1900
1901 for (HBasicBlock* successor : GetSuccessors()) {
1902 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1903 }
1904 new_block->successors_.swap(successors_);
1905 DCHECK(successors_.empty());
1906
1907 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1908 dominated->dominator_ = new_block;
1909 }
1910 new_block->dominated_blocks_.swap(dominated_blocks_);
1911 DCHECK(dominated_blocks_.empty());
1912 return new_block;
1913 }
1914
SplitAfterForInlining(HInstruction * cursor)1915 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1916 DCHECK(!cursor->IsControlFlow());
1917 DCHECK_NE(instructions_.last_instruction_, cursor);
1918 DCHECK_EQ(cursor->GetBlock(), this);
1919
1920 HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
1921 new_block->instructions_.first_instruction_ = cursor->GetNext();
1922 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1923 cursor->next_->previous_ = nullptr;
1924 cursor->next_ = nullptr;
1925 instructions_.last_instruction_ = cursor;
1926
1927 new_block->instructions_.SetBlockOfInstructions(new_block);
1928 for (HBasicBlock* successor : GetSuccessors()) {
1929 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1930 }
1931 new_block->successors_.swap(successors_);
1932 DCHECK(successors_.empty());
1933
1934 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1935 dominated->dominator_ = new_block;
1936 }
1937 new_block->dominated_blocks_.swap(dominated_blocks_);
1938 DCHECK(dominated_blocks_.empty());
1939 return new_block;
1940 }
1941
ComputeTryEntryOfSuccessors() const1942 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1943 if (EndsWithTryBoundary()) {
1944 HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1945 if (try_boundary->IsEntry()) {
1946 DCHECK(!IsTryBlock());
1947 return try_boundary;
1948 } else {
1949 DCHECK(IsTryBlock());
1950 DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1951 return nullptr;
1952 }
1953 } else if (IsTryBlock()) {
1954 return &try_catch_information_->GetTryEntry();
1955 } else {
1956 return nullptr;
1957 }
1958 }
1959
HasThrowingInstructions() const1960 bool HBasicBlock::HasThrowingInstructions() const {
1961 for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1962 if (it.Current()->CanThrow()) {
1963 return true;
1964 }
1965 }
1966 return false;
1967 }
1968
HasOnlyOneInstruction(const HBasicBlock & block)1969 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1970 return block.GetPhis().IsEmpty()
1971 && !block.GetInstructions().IsEmpty()
1972 && block.GetFirstInstruction() == block.GetLastInstruction();
1973 }
1974
IsSingleGoto() const1975 bool HBasicBlock::IsSingleGoto() const {
1976 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1977 }
1978
IsSingleReturn() const1979 bool HBasicBlock::IsSingleReturn() const {
1980 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn();
1981 }
1982
IsSingleReturnOrReturnVoidAllowingPhis() const1983 bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const {
1984 return (GetFirstInstruction() == GetLastInstruction()) &&
1985 (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
1986 }
1987
IsSingleTryBoundary() const1988 bool HBasicBlock::IsSingleTryBoundary() const {
1989 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1990 }
1991
EndsWithControlFlowInstruction() const1992 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1993 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1994 }
1995
EndsWithReturn() const1996 bool HBasicBlock::EndsWithReturn() const {
1997 return !GetInstructions().IsEmpty() &&
1998 (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
1999 }
2000
EndsWithIf() const2001 bool HBasicBlock::EndsWithIf() const {
2002 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
2003 }
2004
EndsWithTryBoundary() const2005 bool HBasicBlock::EndsWithTryBoundary() const {
2006 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
2007 }
2008
HasSinglePhi() const2009 bool HBasicBlock::HasSinglePhi() const {
2010 return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
2011 }
2012
GetNormalSuccessors() const2013 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
2014 if (EndsWithTryBoundary()) {
2015 // The normal-flow successor of HTryBoundary is always stored at index zero.
2016 DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
2017 return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
2018 } else {
2019 // All successors of blocks not ending with TryBoundary are normal.
2020 return ArrayRef<HBasicBlock* const>(successors_);
2021 }
2022 }
2023
GetExceptionalSuccessors() const2024 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
2025 if (EndsWithTryBoundary()) {
2026 return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
2027 } else {
2028 // Blocks not ending with TryBoundary do not have exceptional successors.
2029 return ArrayRef<HBasicBlock* const>();
2030 }
2031 }
2032
HasSameExceptionHandlersAs(const HTryBoundary & other) const2033 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
2034 ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
2035 ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
2036
2037 size_t length = handlers1.size();
2038 if (length != handlers2.size()) {
2039 return false;
2040 }
2041
2042 // Exception handlers need to be stored in the same order.
2043 for (size_t i = 0; i < length; ++i) {
2044 if (handlers1[i] != handlers2[i]) {
2045 return false;
2046 }
2047 }
2048 return true;
2049 }
2050
CountSize() const2051 size_t HInstructionList::CountSize() const {
2052 size_t size = 0;
2053 HInstruction* current = first_instruction_;
2054 for (; current != nullptr; current = current->GetNext()) {
2055 size++;
2056 }
2057 return size;
2058 }
2059
SetBlockOfInstructions(HBasicBlock * block) const2060 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
2061 for (HInstruction* current = first_instruction_;
2062 current != nullptr;
2063 current = current->GetNext()) {
2064 current->SetBlock(block);
2065 }
2066 }
2067
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)2068 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
2069 DCHECK(Contains(cursor));
2070 if (!instruction_list.IsEmpty()) {
2071 if (cursor == last_instruction_) {
2072 last_instruction_ = instruction_list.last_instruction_;
2073 } else {
2074 cursor->next_->previous_ = instruction_list.last_instruction_;
2075 }
2076 instruction_list.last_instruction_->next_ = cursor->next_;
2077 cursor->next_ = instruction_list.first_instruction_;
2078 instruction_list.first_instruction_->previous_ = cursor;
2079 }
2080 }
2081
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)2082 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
2083 DCHECK(Contains(cursor));
2084 if (!instruction_list.IsEmpty()) {
2085 if (cursor == first_instruction_) {
2086 first_instruction_ = instruction_list.first_instruction_;
2087 } else {
2088 cursor->previous_->next_ = instruction_list.first_instruction_;
2089 }
2090 instruction_list.last_instruction_->next_ = cursor;
2091 instruction_list.first_instruction_->previous_ = cursor->previous_;
2092 cursor->previous_ = instruction_list.last_instruction_;
2093 }
2094 }
2095
Add(const HInstructionList & instruction_list)2096 void HInstructionList::Add(const HInstructionList& instruction_list) {
2097 if (IsEmpty()) {
2098 first_instruction_ = instruction_list.first_instruction_;
2099 last_instruction_ = instruction_list.last_instruction_;
2100 } else {
2101 AddAfter(last_instruction_, instruction_list);
2102 }
2103 }
2104
2105 // Should be called on instructions in a dead block in post order. This method
2106 // assumes `insn` has been removed from all users with the exception of catch
2107 // phis because of missing exceptional edges in the graph. It removes the
2108 // instruction from catch phi uses, together with inputs of other catch phis in
2109 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)2110 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
2111 DCHECK(!insn->HasEnvironmentUses());
2112 while (insn->HasNonEnvironmentUses()) {
2113 const HUseListNode<HInstruction*>& use = insn->GetUses().front();
2114 size_t use_index = use.GetIndex();
2115 HBasicBlock* user_block = use.GetUser()->GetBlock();
2116 DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
2117 for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2118 phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
2119 }
2120 }
2121 }
2122
DisconnectAndDelete()2123 void HBasicBlock::DisconnectAndDelete() {
2124 // Dominators must be removed after all the blocks they dominate. This way
2125 // a loop header is removed last, a requirement for correct loop information
2126 // iteration.
2127 DCHECK(dominated_blocks_.empty());
2128
2129 // The following steps gradually remove the block from all its dependants in
2130 // post order (b/27683071).
2131
2132 // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
2133 // We need to do this before step (4) which destroys the predecessor list.
2134 HBasicBlock* loop_update_start = this;
2135 if (IsLoopHeader()) {
2136 HLoopInformation* loop_info = GetLoopInformation();
2137 // All other blocks in this loop should have been removed because the header
2138 // was their dominator.
2139 // Note that we do not remove `this` from `loop_info` as it is unreachable.
2140 DCHECK(!loop_info->IsIrreducible());
2141 DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
2142 DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
2143 loop_update_start = loop_info->GetPreHeader();
2144 }
2145
2146 // (2) Disconnect the block from its successors and update their phis.
2147 for (HBasicBlock* successor : successors_) {
2148 // Delete this block from the list of predecessors.
2149 size_t this_index = successor->GetPredecessorIndexOf(this);
2150 successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
2151
2152 // Check that `successor` has other predecessors, otherwise `this` is the
2153 // dominator of `successor` which violates the order DCHECKed at the top.
2154 DCHECK(!successor->predecessors_.empty());
2155
2156 // Remove this block's entries in the successor's phis. Skip exceptional
2157 // successors because catch phi inputs do not correspond to predecessor
2158 // blocks but throwing instructions. The inputs of the catch phis will be
2159 // updated in step (3).
2160 if (!successor->IsCatchBlock()) {
2161 if (successor->predecessors_.size() == 1u) {
2162 // The successor has just one predecessor left. Replace phis with the only
2163 // remaining input.
2164 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2165 HPhi* phi = phi_it.Current()->AsPhi();
2166 phi->ReplaceWith(phi->InputAt(1 - this_index));
2167 successor->RemovePhi(phi);
2168 }
2169 } else {
2170 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2171 phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
2172 }
2173 }
2174 }
2175 }
2176 successors_.clear();
2177
2178 // (3) Remove instructions and phis. Instructions should have no remaining uses
2179 // except in catch phis. If an instruction is used by a catch phi at `index`,
2180 // remove `index`-th input of all phis in the catch block since they are
2181 // guaranteed dead. Note that we may miss dead inputs this way but the
2182 // graph will always remain consistent.
2183 for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2184 HInstruction* insn = it.Current();
2185 RemoveUsesOfDeadInstruction(insn);
2186 RemoveInstruction(insn);
2187 }
2188 for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
2189 HPhi* insn = it.Current()->AsPhi();
2190 RemoveUsesOfDeadInstruction(insn);
2191 RemovePhi(insn);
2192 }
2193
2194 // (4) Disconnect the block from its predecessors and update their
2195 // control-flow instructions.
2196 for (HBasicBlock* predecessor : predecessors_) {
2197 // We should not see any back edges as they would have been removed by step (3).
2198 DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
2199
2200 HInstruction* last_instruction = predecessor->GetLastInstruction();
2201 if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
2202 // This block is the only normal-flow successor of the TryBoundary which
2203 // makes `predecessor` dead. Since DCE removes blocks in post order,
2204 // exception handlers of this TryBoundary were already visited and any
2205 // remaining handlers therefore must be live. We remove `predecessor` from
2206 // their list of predecessors.
2207 DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
2208 while (predecessor->GetSuccessors().size() > 1) {
2209 HBasicBlock* handler = predecessor->GetSuccessors()[1];
2210 DCHECK(handler->IsCatchBlock());
2211 predecessor->RemoveSuccessor(handler);
2212 handler->RemovePredecessor(predecessor);
2213 }
2214 }
2215
2216 predecessor->RemoveSuccessor(this);
2217 uint32_t num_pred_successors = predecessor->GetSuccessors().size();
2218 if (num_pred_successors == 1u) {
2219 // If we have one successor after removing one, then we must have
2220 // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
2221 // successor. Replace those with a HGoto.
2222 DCHECK(last_instruction->IsIf() ||
2223 last_instruction->IsPackedSwitch() ||
2224 (last_instruction->IsTryBoundary() && IsCatchBlock()));
2225 predecessor->RemoveInstruction(last_instruction);
2226 predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc()));
2227 } else if (num_pred_successors == 0u) {
2228 // The predecessor has no remaining successors and therefore must be dead.
2229 // We deliberately leave it without a control-flow instruction so that the
2230 // GraphChecker fails unless it is not removed during the pass too.
2231 predecessor->RemoveInstruction(last_instruction);
2232 } else {
2233 // There are multiple successors left. The removed block might be a successor
2234 // of a PackedSwitch which will be completely removed (perhaps replaced with
2235 // a Goto), or we are deleting a catch block from a TryBoundary. In either
2236 // case, leave `last_instruction` as is for now.
2237 DCHECK(last_instruction->IsPackedSwitch() ||
2238 (last_instruction->IsTryBoundary() && IsCatchBlock()));
2239 }
2240 }
2241 predecessors_.clear();
2242
2243 // (5) Remove the block from all loops it is included in. Skip the inner-most
2244 // loop if this is the loop header (see definition of `loop_update_start`)
2245 // because the loop header's predecessor list has been destroyed in step (4).
2246 for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
2247 HLoopInformation* loop_info = it.Current();
2248 loop_info->Remove(this);
2249 if (loop_info->IsBackEdge(*this)) {
2250 // If this was the last back edge of the loop, we deliberately leave the
2251 // loop in an inconsistent state and will fail GraphChecker unless the
2252 // entire loop is removed during the pass.
2253 loop_info->RemoveBackEdge(this);
2254 }
2255 }
2256
2257 // (6) Disconnect from the dominator.
2258 dominator_->RemoveDominatedBlock(this);
2259 SetDominator(nullptr);
2260
2261 // (7) Delete from the graph, update reverse post order.
2262 graph_->DeleteDeadEmptyBlock(this);
2263 SetGraph(nullptr);
2264 }
2265
MergeInstructionsWith(HBasicBlock * other)2266 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
2267 DCHECK(EndsWithControlFlowInstruction());
2268 RemoveInstruction(GetLastInstruction());
2269 instructions_.Add(other->GetInstructions());
2270 other->instructions_.SetBlockOfInstructions(this);
2271 other->instructions_.Clear();
2272 }
2273
MergeWith(HBasicBlock * other)2274 void HBasicBlock::MergeWith(HBasicBlock* other) {
2275 DCHECK_EQ(GetGraph(), other->GetGraph());
2276 DCHECK(ContainsElement(dominated_blocks_, other));
2277 DCHECK_EQ(GetSingleSuccessor(), other);
2278 DCHECK_EQ(other->GetSinglePredecessor(), this);
2279 DCHECK(other->GetPhis().IsEmpty());
2280
2281 // Move instructions from `other` to `this`.
2282 MergeInstructionsWith(other);
2283
2284 // Remove `other` from the loops it is included in.
2285 for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
2286 HLoopInformation* loop_info = it.Current();
2287 loop_info->Remove(other);
2288 if (loop_info->IsBackEdge(*other)) {
2289 loop_info->ReplaceBackEdge(other, this);
2290 }
2291 }
2292
2293 // Update links to the successors of `other`.
2294 successors_.clear();
2295 for (HBasicBlock* successor : other->GetSuccessors()) {
2296 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2297 }
2298 successors_.swap(other->successors_);
2299 DCHECK(other->successors_.empty());
2300
2301 // Update the dominator tree.
2302 RemoveDominatedBlock(other);
2303 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2304 dominated->SetDominator(this);
2305 }
2306 dominated_blocks_.insert(
2307 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2308 other->dominated_blocks_.clear();
2309 other->dominator_ = nullptr;
2310
2311 // Clear the list of predecessors of `other` in preparation of deleting it.
2312 other->predecessors_.clear();
2313
2314 // Delete `other` from the graph. The function updates reverse post order.
2315 graph_->DeleteDeadEmptyBlock(other);
2316 other->SetGraph(nullptr);
2317 }
2318
MergeWithInlined(HBasicBlock * other)2319 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2320 DCHECK_NE(GetGraph(), other->GetGraph());
2321 DCHECK(GetDominatedBlocks().empty());
2322 DCHECK(GetSuccessors().empty());
2323 DCHECK(!EndsWithControlFlowInstruction());
2324 DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2325 DCHECK(other->GetPhis().IsEmpty());
2326 DCHECK(!other->IsInLoop());
2327
2328 // Move instructions from `other` to `this`.
2329 instructions_.Add(other->GetInstructions());
2330 other->instructions_.SetBlockOfInstructions(this);
2331
2332 // Update links to the successors of `other`.
2333 successors_.clear();
2334 for (HBasicBlock* successor : other->GetSuccessors()) {
2335 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2336 }
2337 successors_.swap(other->successors_);
2338 DCHECK(other->successors_.empty());
2339
2340 // Update the dominator tree.
2341 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2342 dominated->SetDominator(this);
2343 }
2344 dominated_blocks_.insert(
2345 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2346 other->dominated_blocks_.clear();
2347 other->dominator_ = nullptr;
2348 other->graph_ = nullptr;
2349 }
2350
ReplaceWith(HBasicBlock * other)2351 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2352 while (!GetPredecessors().empty()) {
2353 HBasicBlock* predecessor = GetPredecessors()[0];
2354 predecessor->ReplaceSuccessor(this, other);
2355 }
2356 while (!GetSuccessors().empty()) {
2357 HBasicBlock* successor = GetSuccessors()[0];
2358 successor->ReplacePredecessor(this, other);
2359 }
2360 for (HBasicBlock* dominated : GetDominatedBlocks()) {
2361 other->AddDominatedBlock(dominated);
2362 }
2363 GetDominator()->ReplaceDominatedBlock(this, other);
2364 other->SetDominator(GetDominator());
2365 dominator_ = nullptr;
2366 graph_ = nullptr;
2367 }
2368
DeleteDeadEmptyBlock(HBasicBlock * block)2369 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2370 DCHECK_EQ(block->GetGraph(), this);
2371 DCHECK(block->GetSuccessors().empty());
2372 DCHECK(block->GetPredecessors().empty());
2373 DCHECK(block->GetDominatedBlocks().empty());
2374 DCHECK(block->GetDominator() == nullptr);
2375 DCHECK(block->GetInstructions().IsEmpty());
2376 DCHECK(block->GetPhis().IsEmpty());
2377
2378 if (block->IsExitBlock()) {
2379 SetExitBlock(nullptr);
2380 }
2381
2382 RemoveElement(reverse_post_order_, block);
2383 blocks_[block->GetBlockId()] = nullptr;
2384 block->SetGraph(nullptr);
2385 }
2386
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)2387 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2388 HBasicBlock* reference,
2389 bool replace_if_back_edge) {
2390 if (block->IsLoopHeader()) {
2391 // Clear the information of which blocks are contained in that loop. Since the
2392 // information is stored as a bit vector based on block ids, we have to update
2393 // it, as those block ids were specific to the callee graph and we are now adding
2394 // these blocks to the caller graph.
2395 block->GetLoopInformation()->ClearAllBlocks();
2396 }
2397
2398 // If not already in a loop, update the loop information.
2399 if (!block->IsInLoop()) {
2400 block->SetLoopInformation(reference->GetLoopInformation());
2401 }
2402
2403 // If the block is in a loop, update all its outward loops.
2404 HLoopInformation* loop_info = block->GetLoopInformation();
2405 if (loop_info != nullptr) {
2406 for (HLoopInformationOutwardIterator loop_it(*block);
2407 !loop_it.Done();
2408 loop_it.Advance()) {
2409 loop_it.Current()->Add(block);
2410 }
2411 if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2412 loop_info->ReplaceBackEdge(reference, block);
2413 }
2414 }
2415
2416 // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2417 TryCatchInformation* try_catch_info = reference->IsTryBlock()
2418 ? reference->GetTryCatchInformation()
2419 : nullptr;
2420 block->SetTryCatchInformation(try_catch_info);
2421 }
2422
InlineInto(HGraph * outer_graph,HInvoke * invoke)2423 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2424 DCHECK(HasExitBlock()) << "Unimplemented scenario";
2425 // Update the environments in this graph to have the invoke's environment
2426 // as parent.
2427 {
2428 // Skip the entry block, we do not need to update the entry's suspend check.
2429 for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2430 for (HInstructionIterator instr_it(block->GetInstructions());
2431 !instr_it.Done();
2432 instr_it.Advance()) {
2433 HInstruction* current = instr_it.Current();
2434 if (current->NeedsEnvironment()) {
2435 DCHECK(current->HasEnvironment());
2436 current->GetEnvironment()->SetAndCopyParentChain(
2437 outer_graph->GetAllocator(), invoke->GetEnvironment());
2438 }
2439 }
2440 }
2441 }
2442 outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2443
2444 if (HasBoundsChecks()) {
2445 outer_graph->SetHasBoundsChecks(true);
2446 }
2447 if (HasLoops()) {
2448 outer_graph->SetHasLoops(true);
2449 }
2450 if (HasIrreducibleLoops()) {
2451 outer_graph->SetHasIrreducibleLoops(true);
2452 }
2453 if (HasTryCatch()) {
2454 outer_graph->SetHasTryCatch(true);
2455 }
2456 if (HasSIMD()) {
2457 outer_graph->SetHasSIMD(true);
2458 }
2459
2460 HInstruction* return_value = nullptr;
2461 if (GetBlocks().size() == 3) {
2462 // Inliner already made sure we don't inline methods that always throw.
2463 DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2464 // Simple case of an entry block, a body block, and an exit block.
2465 // Put the body block's instruction into `invoke`'s block.
2466 HBasicBlock* body = GetBlocks()[1];
2467 DCHECK(GetBlocks()[0]->IsEntryBlock());
2468 DCHECK(GetBlocks()[2]->IsExitBlock());
2469 DCHECK(!body->IsExitBlock());
2470 DCHECK(!body->IsInLoop());
2471 HInstruction* last = body->GetLastInstruction();
2472
2473 // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2474 invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2475 body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2476
2477 // Replace the invoke with the return value of the inlined graph.
2478 if (last->IsReturn()) {
2479 return_value = last->InputAt(0);
2480 } else {
2481 DCHECK(last->IsReturnVoid());
2482 }
2483
2484 invoke->GetBlock()->RemoveInstruction(last);
2485 } else {
2486 // Need to inline multiple blocks. We split `invoke`'s block
2487 // into two blocks, merge the first block of the inlined graph into
2488 // the first half, and replace the exit block of the inlined graph
2489 // with the second half.
2490 ArenaAllocator* allocator = outer_graph->GetAllocator();
2491 HBasicBlock* at = invoke->GetBlock();
2492 // Note that we split before the invoke only to simplify polymorphic inlining.
2493 HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2494
2495 HBasicBlock* first = entry_block_->GetSuccessors()[0];
2496 DCHECK(!first->IsInLoop());
2497 at->MergeWithInlined(first);
2498 exit_block_->ReplaceWith(to);
2499
2500 // Update the meta information surrounding blocks:
2501 // (1) the graph they are now in,
2502 // (2) the reverse post order of that graph,
2503 // (3) their potential loop information, inner and outer,
2504 // (4) try block membership.
2505 // Note that we do not need to update catch phi inputs because they
2506 // correspond to the register file of the outer method which the inlinee
2507 // cannot modify.
2508
2509 // We don't add the entry block, the exit block, and the first block, which
2510 // has been merged with `at`.
2511 static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2512
2513 // We add the `to` block.
2514 static constexpr int kNumberOfNewBlocksInCaller = 1;
2515 size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2516 + kNumberOfNewBlocksInCaller;
2517
2518 // Find the location of `at` in the outer graph's reverse post order. The new
2519 // blocks will be added after it.
2520 size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2521 MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2522
2523 // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2524 // and (4) to the blocks that apply.
2525 for (HBasicBlock* current : GetReversePostOrder()) {
2526 if (current != exit_block_ && current != entry_block_ && current != first) {
2527 DCHECK(current->GetTryCatchInformation() == nullptr);
2528 DCHECK(current->GetGraph() == this);
2529 current->SetGraph(outer_graph);
2530 outer_graph->AddBlock(current);
2531 outer_graph->reverse_post_order_[++index_of_at] = current;
2532 UpdateLoopAndTryInformationOfNewBlock(current, at, /* replace_if_back_edge= */ false);
2533 }
2534 }
2535
2536 // Do (1), (2), (3) and (4) to `to`.
2537 to->SetGraph(outer_graph);
2538 outer_graph->AddBlock(to);
2539 outer_graph->reverse_post_order_[++index_of_at] = to;
2540 // Only `to` can become a back edge, as the inlined blocks
2541 // are predecessors of `to`.
2542 UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge= */ true);
2543
2544 // Update all predecessors of the exit block (now the `to` block)
2545 // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2546 // to now get the outer graph exit block as successor. Note that the inliner
2547 // currently doesn't support inlining methods with try/catch.
2548 HPhi* return_value_phi = nullptr;
2549 bool rerun_dominance = false;
2550 bool rerun_loop_analysis = false;
2551 for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2552 HBasicBlock* predecessor = to->GetPredecessors()[pred];
2553 HInstruction* last = predecessor->GetLastInstruction();
2554 if (last->IsThrow()) {
2555 DCHECK(!at->IsTryBlock());
2556 predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2557 --pred;
2558 // We need to re-run dominance information, as the exit block now has
2559 // a new dominator.
2560 rerun_dominance = true;
2561 if (predecessor->GetLoopInformation() != nullptr) {
2562 // The exit block and blocks post dominated by the exit block do not belong
2563 // to any loop. Because we do not compute the post dominators, we need to re-run
2564 // loop analysis to get the loop information correct.
2565 rerun_loop_analysis = true;
2566 }
2567 } else {
2568 if (last->IsReturnVoid()) {
2569 DCHECK(return_value == nullptr);
2570 DCHECK(return_value_phi == nullptr);
2571 } else {
2572 DCHECK(last->IsReturn());
2573 if (return_value_phi != nullptr) {
2574 return_value_phi->AddInput(last->InputAt(0));
2575 } else if (return_value == nullptr) {
2576 return_value = last->InputAt(0);
2577 } else {
2578 // There will be multiple returns.
2579 return_value_phi = new (allocator) HPhi(
2580 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2581 to->AddPhi(return_value_phi);
2582 return_value_phi->AddInput(return_value);
2583 return_value_phi->AddInput(last->InputAt(0));
2584 return_value = return_value_phi;
2585 }
2586 }
2587 predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2588 predecessor->RemoveInstruction(last);
2589 }
2590 }
2591 if (rerun_loop_analysis) {
2592 DCHECK(!outer_graph->HasIrreducibleLoops())
2593 << "Recomputing loop information in graphs with irreducible loops "
2594 << "is unsupported, as it could lead to loop header changes";
2595 outer_graph->ClearLoopInformation();
2596 outer_graph->ClearDominanceInformation();
2597 outer_graph->BuildDominatorTree();
2598 } else if (rerun_dominance) {
2599 outer_graph->ClearDominanceInformation();
2600 outer_graph->ComputeDominanceInformation();
2601 }
2602 }
2603
2604 // Walk over the entry block and:
2605 // - Move constants from the entry block to the outer_graph's entry block,
2606 // - Replace HParameterValue instructions with their real value.
2607 // - Remove suspend checks, that hold an environment.
2608 // We must do this after the other blocks have been inlined, otherwise ids of
2609 // constants could overlap with the inner graph.
2610 size_t parameter_index = 0;
2611 for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2612 HInstruction* current = it.Current();
2613 HInstruction* replacement = nullptr;
2614 if (current->IsNullConstant()) {
2615 replacement = outer_graph->GetNullConstant(current->GetDexPc());
2616 } else if (current->IsIntConstant()) {
2617 replacement = outer_graph->GetIntConstant(
2618 current->AsIntConstant()->GetValue(), current->GetDexPc());
2619 } else if (current->IsLongConstant()) {
2620 replacement = outer_graph->GetLongConstant(
2621 current->AsLongConstant()->GetValue(), current->GetDexPc());
2622 } else if (current->IsFloatConstant()) {
2623 replacement = outer_graph->GetFloatConstant(
2624 current->AsFloatConstant()->GetValue(), current->GetDexPc());
2625 } else if (current->IsDoubleConstant()) {
2626 replacement = outer_graph->GetDoubleConstant(
2627 current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2628 } else if (current->IsParameterValue()) {
2629 if (kIsDebugBuild
2630 && invoke->IsInvokeStaticOrDirect()
2631 && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2632 // Ensure we do not use the last input of `invoke`, as it
2633 // contains a clinit check which is not an actual argument.
2634 size_t last_input_index = invoke->InputCount() - 1;
2635 DCHECK(parameter_index != last_input_index);
2636 }
2637 replacement = invoke->InputAt(parameter_index++);
2638 } else if (current->IsCurrentMethod()) {
2639 replacement = outer_graph->GetCurrentMethod();
2640 } else {
2641 DCHECK(current->IsGoto() || current->IsSuspendCheck());
2642 entry_block_->RemoveInstruction(current);
2643 }
2644 if (replacement != nullptr) {
2645 current->ReplaceWith(replacement);
2646 // If the current is the return value then we need to update the latter.
2647 if (current == return_value) {
2648 DCHECK_EQ(entry_block_, return_value->GetBlock());
2649 return_value = replacement;
2650 }
2651 }
2652 }
2653
2654 return return_value;
2655 }
2656
2657 /*
2658 * Loop will be transformed to:
2659 * old_pre_header
2660 * |
2661 * if_block
2662 * / \
2663 * true_block false_block
2664 * \ /
2665 * new_pre_header
2666 * |
2667 * header
2668 */
TransformLoopHeaderForBCE(HBasicBlock * header)2669 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2670 DCHECK(header->IsLoopHeader());
2671 HBasicBlock* old_pre_header = header->GetDominator();
2672
2673 // Need extra block to avoid critical edge.
2674 HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2675 HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2676 HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2677 HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2678 AddBlock(if_block);
2679 AddBlock(true_block);
2680 AddBlock(false_block);
2681 AddBlock(new_pre_header);
2682
2683 header->ReplacePredecessor(old_pre_header, new_pre_header);
2684 old_pre_header->successors_.clear();
2685 old_pre_header->dominated_blocks_.clear();
2686
2687 old_pre_header->AddSuccessor(if_block);
2688 if_block->AddSuccessor(true_block); // True successor
2689 if_block->AddSuccessor(false_block); // False successor
2690 true_block->AddSuccessor(new_pre_header);
2691 false_block->AddSuccessor(new_pre_header);
2692
2693 old_pre_header->dominated_blocks_.push_back(if_block);
2694 if_block->SetDominator(old_pre_header);
2695 if_block->dominated_blocks_.push_back(true_block);
2696 true_block->SetDominator(if_block);
2697 if_block->dominated_blocks_.push_back(false_block);
2698 false_block->SetDominator(if_block);
2699 if_block->dominated_blocks_.push_back(new_pre_header);
2700 new_pre_header->SetDominator(if_block);
2701 new_pre_header->dominated_blocks_.push_back(header);
2702 header->SetDominator(new_pre_header);
2703
2704 // Fix reverse post order.
2705 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2706 MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2707 reverse_post_order_[index_of_header++] = if_block;
2708 reverse_post_order_[index_of_header++] = true_block;
2709 reverse_post_order_[index_of_header++] = false_block;
2710 reverse_post_order_[index_of_header++] = new_pre_header;
2711
2712 // The pre_header can never be a back edge of a loop.
2713 DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2714 !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2715 UpdateLoopAndTryInformationOfNewBlock(
2716 if_block, old_pre_header, /* replace_if_back_edge= */ false);
2717 UpdateLoopAndTryInformationOfNewBlock(
2718 true_block, old_pre_header, /* replace_if_back_edge= */ false);
2719 UpdateLoopAndTryInformationOfNewBlock(
2720 false_block, old_pre_header, /* replace_if_back_edge= */ false);
2721 UpdateLoopAndTryInformationOfNewBlock(
2722 new_pre_header, old_pre_header, /* replace_if_back_edge= */ false);
2723 }
2724
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)2725 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2726 HBasicBlock* body,
2727 HBasicBlock* exit) {
2728 DCHECK(header->IsLoopHeader());
2729 HLoopInformation* loop = header->GetLoopInformation();
2730
2731 // Add new loop blocks.
2732 HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2733 HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2734 HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc());
2735 AddBlock(new_pre_header);
2736 AddBlock(new_header);
2737 AddBlock(new_body);
2738
2739 // Set up control flow.
2740 header->ReplaceSuccessor(exit, new_pre_header);
2741 new_pre_header->AddSuccessor(new_header);
2742 new_header->AddSuccessor(exit);
2743 new_header->AddSuccessor(new_body);
2744 new_body->AddSuccessor(new_header);
2745
2746 // Set up dominators.
2747 header->ReplaceDominatedBlock(exit, new_pre_header);
2748 new_pre_header->SetDominator(header);
2749 new_pre_header->dominated_blocks_.push_back(new_header);
2750 new_header->SetDominator(new_pre_header);
2751 new_header->dominated_blocks_.push_back(new_body);
2752 new_body->SetDominator(new_header);
2753 new_header->dominated_blocks_.push_back(exit);
2754 exit->SetDominator(new_header);
2755
2756 // Fix reverse post order.
2757 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2758 MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2759 reverse_post_order_[++index_of_header] = new_pre_header;
2760 reverse_post_order_[++index_of_header] = new_header;
2761 size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2762 MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2763 reverse_post_order_[index_of_body] = new_body;
2764
2765 // Add gotos and suspend check (client must add conditional in header).
2766 new_pre_header->AddInstruction(new (allocator_) HGoto());
2767 HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc());
2768 new_header->AddInstruction(suspend_check);
2769 new_body->AddInstruction(new (allocator_) HGoto());
2770 suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2771 loop->GetSuspendCheck()->GetEnvironment(), header);
2772
2773 // Update loop information.
2774 new_header->AddBackEdge(new_body);
2775 new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2776 new_header->GetLoopInformation()->Populate();
2777 new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation()); // outward
2778 HLoopInformationOutwardIterator it(*new_header);
2779 for (it.Advance(); !it.Done(); it.Advance()) {
2780 it.Current()->Add(new_pre_header);
2781 it.Current()->Add(new_header);
2782 it.Current()->Add(new_body);
2783 }
2784 return new_pre_header;
2785 }
2786
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2787 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2788 REQUIRES_SHARED(Locks::mutator_lock_) {
2789 if (rti.IsValid()) {
2790 DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2791 << " upper_bound_rti: " << upper_bound_rti
2792 << " rti: " << rti;
2793 DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2794 << " upper_bound_rti: " << upper_bound_rti
2795 << " rti: " << rti;
2796 }
2797 }
2798
SetReferenceTypeInfo(ReferenceTypeInfo rti)2799 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2800 if (kIsDebugBuild) {
2801 DCHECK_EQ(GetType(), DataType::Type::kReference);
2802 ScopedObjectAccess soa(Thread::Current());
2803 DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2804 if (IsBoundType()) {
2805 // Having the test here spares us from making the method virtual just for
2806 // the sake of a DCHECK.
2807 CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2808 }
2809 }
2810 reference_type_handle_ = rti.GetTypeHandle();
2811 SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2812 }
2813
InstructionDataEquals(const HInstruction * other) const2814 bool HBoundType::InstructionDataEquals(const HInstruction* other) const {
2815 const HBoundType* other_bt = other->AsBoundType();
2816 ScopedObjectAccess soa(Thread::Current());
2817 return GetUpperBound().IsEqual(other_bt->GetUpperBound()) &&
2818 GetUpperCanBeNull() == other_bt->GetUpperCanBeNull() &&
2819 CanBeNull() == other_bt->CanBeNull();
2820 }
2821
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2822 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2823 if (kIsDebugBuild) {
2824 ScopedObjectAccess soa(Thread::Current());
2825 DCHECK(upper_bound.IsValid());
2826 DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2827 CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2828 }
2829 upper_bound_ = upper_bound;
2830 SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2831 }
2832
Create(TypeHandle type_handle,bool is_exact)2833 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2834 if (kIsDebugBuild) {
2835 ScopedObjectAccess soa(Thread::Current());
2836 DCHECK(IsValidHandle(type_handle));
2837 if (!is_exact) {
2838 DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2839 << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2840 }
2841 }
2842 return ReferenceTypeInfo(type_handle, is_exact);
2843 }
2844
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2845 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2846 ScopedObjectAccess soa(Thread::Current());
2847 os << "["
2848 << " is_valid=" << rhs.IsValid()
2849 << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2850 << " is_exact=" << rhs.IsExact()
2851 << " ]";
2852 return os;
2853 }
2854
HasAnyEnvironmentUseBefore(HInstruction * other)2855 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2856 // For now, assume that instructions in different blocks may use the
2857 // environment.
2858 // TODO: Use the control flow to decide if this is true.
2859 if (GetBlock() != other->GetBlock()) {
2860 return true;
2861 }
2862
2863 // We know that we are in the same block. Walk from 'this' to 'other',
2864 // checking to see if there is any instruction with an environment.
2865 HInstruction* current = this;
2866 for (; current != other && current != nullptr; current = current->GetNext()) {
2867 // This is a conservative check, as the instruction result may not be in
2868 // the referenced environment.
2869 if (current->HasEnvironment()) {
2870 return true;
2871 }
2872 }
2873
2874 // We should have been called with 'this' before 'other' in the block.
2875 // Just confirm this.
2876 DCHECK(current != nullptr);
2877 return false;
2878 }
2879
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2880 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2881 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2882 IntrinsicSideEffects side_effects,
2883 IntrinsicExceptions exceptions) {
2884 intrinsic_ = intrinsic;
2885 IntrinsicOptimizations opt(this);
2886
2887 // Adjust method's side effects from intrinsic table.
2888 switch (side_effects) {
2889 case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2890 case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2891 case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2892 case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2893 }
2894
2895 if (needs_env_or_cache == kNoEnvironmentOrCache) {
2896 opt.SetDoesNotNeedDexCache();
2897 opt.SetDoesNotNeedEnvironment();
2898 } else {
2899 // If we need an environment, that means there will be a call, which can trigger GC.
2900 SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2901 }
2902 // Adjust method's exception status from intrinsic table.
2903 SetCanThrow(exceptions == kCanThrow);
2904 }
2905
IsStringAlloc() const2906 bool HNewInstance::IsStringAlloc() const {
2907 return GetEntrypoint() == kQuickAllocStringObject;
2908 }
2909
NeedsEnvironment() const2910 bool HInvoke::NeedsEnvironment() const {
2911 if (!IsIntrinsic()) {
2912 return true;
2913 }
2914 IntrinsicOptimizations opt(*this);
2915 return !opt.GetDoesNotNeedEnvironment();
2916 }
2917
GetDexFileForPcRelativeDexCache() const2918 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2919 ArtMethod* caller = GetEnvironment()->GetMethod();
2920 ScopedObjectAccess soa(Thread::Current());
2921 // `caller` is null for a top-level graph representing a method whose declaring
2922 // class was not resolved.
2923 return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2924 }
2925
NeedsDexCacheOfDeclaringClass() const2926 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2927 if (GetMethodLoadKind() != MethodLoadKind::kRuntimeCall) {
2928 return false;
2929 }
2930 if (!IsIntrinsic()) {
2931 return true;
2932 }
2933 IntrinsicOptimizations opt(*this);
2934 return !opt.GetDoesNotNeedDexCache();
2935 }
2936
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2937 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2938 switch (rhs) {
2939 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2940 return os << "StringInit";
2941 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2942 return os << "Recursive";
2943 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
2944 return os << "BootImageLinkTimePcRelative";
2945 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo:
2946 return os << "BootImageRelRo";
2947 case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
2948 return os << "BssEntry";
2949 case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress:
2950 return os << "JitDirectAddress";
2951 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
2952 return os << "RuntimeCall";
2953 default:
2954 LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2955 UNREACHABLE();
2956 }
2957 }
2958
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2959 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2960 switch (rhs) {
2961 case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2962 return os << "explicit";
2963 case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2964 return os << "implicit";
2965 case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2966 return os << "none";
2967 default:
2968 LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2969 UNREACHABLE();
2970 }
2971 }
2972
InstructionDataEquals(const HInstruction * other) const2973 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2974 const HLoadClass* other_load_class = other->AsLoadClass();
2975 // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2976 // names rather than type indexes. However, we shall also have to re-think the hash code.
2977 if (type_index_ != other_load_class->type_index_ ||
2978 GetPackedFields() != other_load_class->GetPackedFields()) {
2979 return false;
2980 }
2981 switch (GetLoadKind()) {
2982 case LoadKind::kBootImageRelRo:
2983 case LoadKind::kJitBootImageAddress:
2984 case LoadKind::kJitTableAddress: {
2985 ScopedObjectAccess soa(Thread::Current());
2986 return GetClass().Get() == other_load_class->GetClass().Get();
2987 }
2988 default:
2989 DCHECK(HasTypeReference(GetLoadKind()));
2990 return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2991 }
2992 }
2993
operator <<(std::ostream & os,HLoadClass::LoadKind rhs)2994 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2995 switch (rhs) {
2996 case HLoadClass::LoadKind::kReferrersClass:
2997 return os << "ReferrersClass";
2998 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2999 return os << "BootImageLinkTimePcRelative";
3000 case HLoadClass::LoadKind::kBootImageRelRo:
3001 return os << "BootImageRelRo";
3002 case HLoadClass::LoadKind::kBssEntry:
3003 return os << "BssEntry";
3004 case HLoadClass::LoadKind::kJitBootImageAddress:
3005 return os << "JitBootImageAddress";
3006 case HLoadClass::LoadKind::kJitTableAddress:
3007 return os << "JitTableAddress";
3008 case HLoadClass::LoadKind::kRuntimeCall:
3009 return os << "RuntimeCall";
3010 default:
3011 LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
3012 UNREACHABLE();
3013 }
3014 }
3015
InstructionDataEquals(const HInstruction * other) const3016 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
3017 const HLoadString* other_load_string = other->AsLoadString();
3018 // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
3019 // rather than their indexes. However, we shall also have to re-think the hash code.
3020 if (string_index_ != other_load_string->string_index_ ||
3021 GetPackedFields() != other_load_string->GetPackedFields()) {
3022 return false;
3023 }
3024 switch (GetLoadKind()) {
3025 case LoadKind::kBootImageRelRo:
3026 case LoadKind::kJitBootImageAddress:
3027 case LoadKind::kJitTableAddress: {
3028 ScopedObjectAccess soa(Thread::Current());
3029 return GetString().Get() == other_load_string->GetString().Get();
3030 }
3031 default:
3032 return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
3033 }
3034 }
3035
operator <<(std::ostream & os,HLoadString::LoadKind rhs)3036 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
3037 switch (rhs) {
3038 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
3039 return os << "BootImageLinkTimePcRelative";
3040 case HLoadString::LoadKind::kBootImageRelRo:
3041 return os << "BootImageRelRo";
3042 case HLoadString::LoadKind::kBssEntry:
3043 return os << "BssEntry";
3044 case HLoadString::LoadKind::kJitBootImageAddress:
3045 return os << "JitBootImageAddress";
3046 case HLoadString::LoadKind::kJitTableAddress:
3047 return os << "JitTableAddress";
3048 case HLoadString::LoadKind::kRuntimeCall:
3049 return os << "RuntimeCall";
3050 default:
3051 LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
3052 UNREACHABLE();
3053 }
3054 }
3055
RemoveEnvironmentUsers()3056 void HInstruction::RemoveEnvironmentUsers() {
3057 for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
3058 HEnvironment* user = use.GetUser();
3059 user->SetRawEnvAt(use.GetIndex(), nullptr);
3060 }
3061 env_uses_.clear();
3062 }
3063
ReplaceInstrOrPhiByClone(HInstruction * instr)3064 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) {
3065 HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator());
3066 HBasicBlock* block = instr->GetBlock();
3067
3068 if (instr->IsPhi()) {
3069 HPhi* phi = instr->AsPhi();
3070 DCHECK(!phi->HasEnvironment());
3071 HPhi* phi_clone = clone->AsPhi();
3072 block->ReplaceAndRemovePhiWith(phi, phi_clone);
3073 } else {
3074 block->ReplaceAndRemoveInstructionWith(instr, clone);
3075 if (instr->HasEnvironment()) {
3076 clone->CopyEnvironmentFrom(instr->GetEnvironment());
3077 HLoopInformation* loop_info = block->GetLoopInformation();
3078 if (instr->IsSuspendCheck() && loop_info != nullptr) {
3079 loop_info->SetSuspendCheck(clone->AsSuspendCheck());
3080 }
3081 }
3082 }
3083 return clone;
3084 }
3085
3086 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)3087 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
3088 ArenaAllocator* allocator = GetAllocator();
3089
3090 if (cond->IsCondition() &&
3091 !DataType::IsFloatingPointType(cond->InputAt(0)->GetType())) {
3092 // Can't reverse floating point conditions. We have to use HBooleanNot in that case.
3093 HInstruction* lhs = cond->InputAt(0);
3094 HInstruction* rhs = cond->InputAt(1);
3095 HInstruction* replacement = nullptr;
3096 switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite*
3097 case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
3098 case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
3099 case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
3100 case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
3101 case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
3102 case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
3103 case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break;
3104 case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
3105 case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break;
3106 case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
3107 default:
3108 LOG(FATAL) << "Unexpected condition";
3109 UNREACHABLE();
3110 }
3111 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3112 return replacement;
3113 } else if (cond->IsIntConstant()) {
3114 HIntConstant* int_const = cond->AsIntConstant();
3115 if (int_const->IsFalse()) {
3116 return GetIntConstant(1);
3117 } else {
3118 DCHECK(int_const->IsTrue()) << int_const->GetValue();
3119 return GetIntConstant(0);
3120 }
3121 } else {
3122 HInstruction* replacement = new (allocator) HBooleanNot(cond);
3123 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3124 return replacement;
3125 }
3126 }
3127
operator <<(std::ostream & os,const MoveOperands & rhs)3128 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
3129 os << "["
3130 << " source=" << rhs.GetSource()
3131 << " destination=" << rhs.GetDestination()
3132 << " type=" << rhs.GetType()
3133 << " instruction=";
3134 if (rhs.GetInstruction() != nullptr) {
3135 os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
3136 } else {
3137 os << "null";
3138 }
3139 os << " ]";
3140 return os;
3141 }
3142
operator <<(std::ostream & os,TypeCheckKind rhs)3143 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
3144 switch (rhs) {
3145 case TypeCheckKind::kUnresolvedCheck:
3146 return os << "unresolved_check";
3147 case TypeCheckKind::kExactCheck:
3148 return os << "exact_check";
3149 case TypeCheckKind::kClassHierarchyCheck:
3150 return os << "class_hierarchy_check";
3151 case TypeCheckKind::kAbstractClassCheck:
3152 return os << "abstract_class_check";
3153 case TypeCheckKind::kInterfaceCheck:
3154 return os << "interface_check";
3155 case TypeCheckKind::kArrayObjectCheck:
3156 return os << "array_object_check";
3157 case TypeCheckKind::kArrayCheck:
3158 return os << "array_check";
3159 case TypeCheckKind::kBitstringCheck:
3160 return os << "bitstring_check";
3161 default:
3162 LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
3163 UNREACHABLE();
3164 }
3165 }
3166
operator <<(std::ostream & os,const MemBarrierKind & kind)3167 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
3168 switch (kind) {
3169 case MemBarrierKind::kAnyStore:
3170 return os << "AnyStore";
3171 case MemBarrierKind::kLoadAny:
3172 return os << "LoadAny";
3173 case MemBarrierKind::kStoreStore:
3174 return os << "StoreStore";
3175 case MemBarrierKind::kAnyAny:
3176 return os << "AnyAny";
3177 case MemBarrierKind::kNTStoreStore:
3178 return os << "NTStoreStore";
3179
3180 default:
3181 LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
3182 UNREACHABLE();
3183 }
3184 }
3185
3186 // Check that intrinsic enum values fit within space set aside in ArtMethod modifier flags.
3187 #define CHECK_INTRINSICS_ENUM_VALUES(Name, InvokeType, _, SideEffects, Exceptions, ...) \
3188 static_assert( \
3189 static_cast<uint32_t>(Intrinsics::k ## Name) <= (kAccIntrinsicBits >> CTZ(kAccIntrinsicBits)), \
3190 "Instrinsics enumeration space overflow.");
3191 #include "intrinsics_list.h"
INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)3192 INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)
3193 #undef INTRINSICS_LIST
3194 #undef CHECK_INTRINSICS_ENUM_VALUES
3195
3196 // Function that returns whether an intrinsic needs an environment or not.
3197 static inline IntrinsicNeedsEnvironmentOrCache NeedsEnvironmentOrCacheIntrinsic(Intrinsics i) {
3198 switch (i) {
3199 case Intrinsics::kNone:
3200 return kNeedsEnvironmentOrCache; // Non-sensical for intrinsic.
3201 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnvOrCache, SideEffects, Exceptions, ...) \
3202 case Intrinsics::k ## Name: \
3203 return NeedsEnvOrCache;
3204 #include "intrinsics_list.h"
3205 INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3206 #undef INTRINSICS_LIST
3207 #undef OPTIMIZING_INTRINSICS
3208 }
3209 return kNeedsEnvironmentOrCache;
3210 }
3211
3212 // Function that returns whether an intrinsic has side effects.
GetSideEffectsIntrinsic(Intrinsics i)3213 static inline IntrinsicSideEffects GetSideEffectsIntrinsic(Intrinsics i) {
3214 switch (i) {
3215 case Intrinsics::kNone:
3216 return kAllSideEffects;
3217 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnvOrCache, SideEffects, Exceptions, ...) \
3218 case Intrinsics::k ## Name: \
3219 return SideEffects;
3220 #include "intrinsics_list.h"
3221 INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3222 #undef INTRINSICS_LIST
3223 #undef OPTIMIZING_INTRINSICS
3224 }
3225 return kAllSideEffects;
3226 }
3227
3228 // Function that returns whether an intrinsic can throw exceptions.
GetExceptionsIntrinsic(Intrinsics i)3229 static inline IntrinsicExceptions GetExceptionsIntrinsic(Intrinsics i) {
3230 switch (i) {
3231 case Intrinsics::kNone:
3232 return kCanThrow;
3233 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnvOrCache, SideEffects, Exceptions, ...) \
3234 case Intrinsics::k ## Name: \
3235 return Exceptions;
3236 #include "intrinsics_list.h"
3237 INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3238 #undef INTRINSICS_LIST
3239 #undef OPTIMIZING_INTRINSICS
3240 }
3241 return kCanThrow;
3242 }
3243
SetResolvedMethod(ArtMethod * method)3244 void HInvoke::SetResolvedMethod(ArtMethod* method) {
3245 // TODO: b/65872996 The intent is that polymorphic signature methods should
3246 // be compiler intrinsics. At present, they are only interpreter intrinsics.
3247 if (method != nullptr &&
3248 method->IsIntrinsic() &&
3249 !method->IsPolymorphicSignature()) {
3250 Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
3251 SetIntrinsic(intrinsic,
3252 NeedsEnvironmentOrCacheIntrinsic(intrinsic),
3253 GetSideEffectsIntrinsic(intrinsic),
3254 GetExceptionsIntrinsic(intrinsic));
3255 }
3256 resolved_method_ = method;
3257 }
3258
3259 } // namespace art
3260