1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm64.h"
18
19 #include "arch/arm64/asm_support_arm64.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "art_method-inl.h"
22 #include "base/bit_utils.h"
23 #include "base/bit_utils_iterator.h"
24 #include "class_table.h"
25 #include "code_generator_utils.h"
26 #include "compiled_method.h"
27 #include "entrypoints/quick/quick_entrypoints.h"
28 #include "entrypoints/quick/quick_entrypoints_enum.h"
29 #include "gc/accounting/card_table.h"
30 #include "gc/space/image_space.h"
31 #include "heap_poisoning.h"
32 #include "intrinsics.h"
33 #include "intrinsics_arm64.h"
34 #include "linker/linker_patch.h"
35 #include "lock_word.h"
36 #include "mirror/array-inl.h"
37 #include "mirror/class-inl.h"
38 #include "offsets.h"
39 #include "thread.h"
40 #include "utils/arm64/assembler_arm64.h"
41 #include "utils/assembler.h"
42 #include "utils/stack_checks.h"
43
44 using namespace vixl::aarch64; // NOLINT(build/namespaces)
45 using vixl::ExactAssemblyScope;
46 using vixl::CodeBufferCheckScope;
47 using vixl::EmissionCheckScope;
48
49 #ifdef __
50 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
51 #endif
52
53 namespace art {
54
55 template<class MirrorType>
56 class GcRoot;
57
58 namespace arm64 {
59
60 using helpers::ARM64EncodableConstantOrRegister;
61 using helpers::ArtVixlRegCodeCoherentForRegSet;
62 using helpers::CPURegisterFrom;
63 using helpers::DRegisterFrom;
64 using helpers::FPRegisterFrom;
65 using helpers::HeapOperand;
66 using helpers::HeapOperandFrom;
67 using helpers::InputCPURegisterOrZeroRegAt;
68 using helpers::InputFPRegisterAt;
69 using helpers::InputOperandAt;
70 using helpers::InputRegisterAt;
71 using helpers::Int64FromLocation;
72 using helpers::IsConstantZeroBitPattern;
73 using helpers::LocationFrom;
74 using helpers::OperandFromMemOperand;
75 using helpers::OutputCPURegister;
76 using helpers::OutputFPRegister;
77 using helpers::OutputRegister;
78 using helpers::QRegisterFrom;
79 using helpers::RegisterFrom;
80 using helpers::StackOperandFrom;
81 using helpers::VIXLRegCodeFromART;
82 using helpers::WRegisterFrom;
83 using helpers::XRegisterFrom;
84
85 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
86 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
87 // generates less code/data with a small num_entries.
88 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
89
90 // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle
91 // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions.
92 // For the Baker read barrier implementation using link-time generated thunks we need to split
93 // the offset explicitly.
94 constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB;
95
ARM64Condition(IfCondition cond)96 inline Condition ARM64Condition(IfCondition cond) {
97 switch (cond) {
98 case kCondEQ: return eq;
99 case kCondNE: return ne;
100 case kCondLT: return lt;
101 case kCondLE: return le;
102 case kCondGT: return gt;
103 case kCondGE: return ge;
104 case kCondB: return lo;
105 case kCondBE: return ls;
106 case kCondA: return hi;
107 case kCondAE: return hs;
108 }
109 LOG(FATAL) << "Unreachable";
110 UNREACHABLE();
111 }
112
ARM64FPCondition(IfCondition cond,bool gt_bias)113 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
114 // The ARM64 condition codes can express all the necessary branches, see the
115 // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
116 // There is no dex instruction or HIR that would need the missing conditions
117 // "equal or unordered" or "not equal".
118 switch (cond) {
119 case kCondEQ: return eq;
120 case kCondNE: return ne /* unordered */;
121 case kCondLT: return gt_bias ? cc : lt /* unordered */;
122 case kCondLE: return gt_bias ? ls : le /* unordered */;
123 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
124 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
125 default:
126 LOG(FATAL) << "UNREACHABLE";
127 UNREACHABLE();
128 }
129 }
130
ARM64ReturnLocation(DataType::Type return_type)131 Location ARM64ReturnLocation(DataType::Type return_type) {
132 // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
133 // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
134 // but we use the exact registers for clarity.
135 if (return_type == DataType::Type::kFloat32) {
136 return LocationFrom(s0);
137 } else if (return_type == DataType::Type::kFloat64) {
138 return LocationFrom(d0);
139 } else if (return_type == DataType::Type::kInt64) {
140 return LocationFrom(x0);
141 } else if (return_type == DataType::Type::kVoid) {
142 return Location::NoLocation();
143 } else {
144 return LocationFrom(w0);
145 }
146 }
147
GetReturnLocation(DataType::Type return_type)148 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
149 return ARM64ReturnLocation(return_type);
150 }
151
OneRegInReferenceOutSaveEverythingCallerSaves()152 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
153 InvokeRuntimeCallingConvention calling_convention;
154 RegisterSet caller_saves = RegisterSet::Empty();
155 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
156 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
157 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
158 DataType::Type::kReference).GetCode());
159 return caller_saves;
160 }
161
162 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
163 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
164 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
165
166 // Calculate memory accessing operand for save/restore live registers.
SaveRestoreLiveRegistersHelper(CodeGenerator * codegen,LocationSummary * locations,int64_t spill_offset,bool is_save)167 static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
168 LocationSummary* locations,
169 int64_t spill_offset,
170 bool is_save) {
171 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
172 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
173 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spills,
174 codegen->GetNumberOfCoreRegisters(),
175 fp_spills,
176 codegen->GetNumberOfFloatingPointRegisters()));
177
178 CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize, core_spills);
179 unsigned v_reg_size = codegen->GetGraph()->HasSIMD() ? kQRegSize : kDRegSize;
180 CPURegList fp_list = CPURegList(CPURegister::kVRegister, v_reg_size, fp_spills);
181
182 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
183 UseScratchRegisterScope temps(masm);
184
185 Register base = masm->StackPointer();
186 int64_t core_spill_size = core_list.GetTotalSizeInBytes();
187 int64_t fp_spill_size = fp_list.GetTotalSizeInBytes();
188 int64_t reg_size = kXRegSizeInBytes;
189 int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
190 uint32_t ls_access_size = WhichPowerOf2(reg_size);
191 if (((core_list.GetCount() > 1) || (fp_list.GetCount() > 1)) &&
192 !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
193 // If the offset does not fit in the instruction's immediate field, use an alternate register
194 // to compute the base address(float point registers spill base address).
195 Register new_base = temps.AcquireSameSizeAs(base);
196 __ Add(new_base, base, Operand(spill_offset + core_spill_size));
197 base = new_base;
198 spill_offset = -core_spill_size;
199 int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
200 DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
201 DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
202 }
203
204 if (is_save) {
205 __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
206 __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
207 } else {
208 __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
209 __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
210 }
211 }
212
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)213 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
214 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
215 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
216 for (uint32_t i : LowToHighBits(core_spills)) {
217 // If the register holds an object, update the stack mask.
218 if (locations->RegisterContainsObject(i)) {
219 locations->SetStackBit(stack_offset / kVRegSize);
220 }
221 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
222 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
223 saved_core_stack_offsets_[i] = stack_offset;
224 stack_offset += kXRegSizeInBytes;
225 }
226
227 const size_t fp_reg_size = codegen->GetGraph()->HasSIMD() ? kQRegSizeInBytes : kDRegSizeInBytes;
228 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
229 for (uint32_t i : LowToHighBits(fp_spills)) {
230 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
231 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
232 saved_fpu_stack_offsets_[i] = stack_offset;
233 stack_offset += fp_reg_size;
234 }
235
236 SaveRestoreLiveRegistersHelper(codegen,
237 locations,
238 codegen->GetFirstRegisterSlotInSlowPath(), /* is_save= */ true);
239 }
240
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)241 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
242 SaveRestoreLiveRegistersHelper(codegen,
243 locations,
244 codegen->GetFirstRegisterSlotInSlowPath(), /* is_save= */ false);
245 }
246
247 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
248 public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)249 explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
250
EmitNativeCode(CodeGenerator * codegen)251 void EmitNativeCode(CodeGenerator* codegen) override {
252 LocationSummary* locations = instruction_->GetLocations();
253 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
254
255 __ Bind(GetEntryLabel());
256 if (instruction_->CanThrowIntoCatchBlock()) {
257 // Live registers will be restored in the catch block if caught.
258 SaveLiveRegisters(codegen, instruction_->GetLocations());
259 }
260 // We're moving two locations to locations that could overlap, so we need a parallel
261 // move resolver.
262 InvokeRuntimeCallingConvention calling_convention;
263 codegen->EmitParallelMoves(locations->InAt(0),
264 LocationFrom(calling_convention.GetRegisterAt(0)),
265 DataType::Type::kInt32,
266 locations->InAt(1),
267 LocationFrom(calling_convention.GetRegisterAt(1)),
268 DataType::Type::kInt32);
269 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
270 ? kQuickThrowStringBounds
271 : kQuickThrowArrayBounds;
272 arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
273 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
274 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
275 }
276
IsFatal() const277 bool IsFatal() const override { return true; }
278
GetDescription() const279 const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
280
281 private:
282 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
283 };
284
285 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
286 public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)287 explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
288
EmitNativeCode(CodeGenerator * codegen)289 void EmitNativeCode(CodeGenerator* codegen) override {
290 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
291 __ Bind(GetEntryLabel());
292 arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
293 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
294 }
295
IsFatal() const296 bool IsFatal() const override { return true; }
297
GetDescription() const298 const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
299
300 private:
301 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
302 };
303
304 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
305 public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at)306 LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
307 : SlowPathCodeARM64(at), cls_(cls) {
308 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
309 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
310 }
311
EmitNativeCode(CodeGenerator * codegen)312 void EmitNativeCode(CodeGenerator* codegen) override {
313 LocationSummary* locations = instruction_->GetLocations();
314 Location out = locations->Out();
315 const uint32_t dex_pc = instruction_->GetDexPc();
316 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
317 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
318
319 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
320 __ Bind(GetEntryLabel());
321 SaveLiveRegisters(codegen, locations);
322
323 InvokeRuntimeCallingConvention calling_convention;
324 if (must_resolve_type) {
325 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()));
326 dex::TypeIndex type_index = cls_->GetTypeIndex();
327 __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
328 arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
329 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
330 // If we also must_do_clinit, the resolved type is now in the correct register.
331 } else {
332 DCHECK(must_do_clinit);
333 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
334 arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
335 source,
336 cls_->GetType());
337 }
338 if (must_do_clinit) {
339 arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
340 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
341 }
342
343 // Move the class to the desired location.
344 if (out.IsValid()) {
345 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
346 DataType::Type type = instruction_->GetType();
347 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
348 }
349 RestoreLiveRegisters(codegen, locations);
350 __ B(GetExitLabel());
351 }
352
GetDescription() const353 const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
354
355 private:
356 // The class this slow path will load.
357 HLoadClass* const cls_;
358
359 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
360 };
361
362 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
363 public:
LoadStringSlowPathARM64(HLoadString * instruction)364 explicit LoadStringSlowPathARM64(HLoadString* instruction)
365 : SlowPathCodeARM64(instruction) {}
366
EmitNativeCode(CodeGenerator * codegen)367 void EmitNativeCode(CodeGenerator* codegen) override {
368 LocationSummary* locations = instruction_->GetLocations();
369 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
370 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
371
372 __ Bind(GetEntryLabel());
373 SaveLiveRegisters(codegen, locations);
374
375 InvokeRuntimeCallingConvention calling_convention;
376 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
377 __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
378 arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
379 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
380 DataType::Type type = instruction_->GetType();
381 arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
382
383 RestoreLiveRegisters(codegen, locations);
384
385 __ B(GetExitLabel());
386 }
387
GetDescription() const388 const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
389
390 private:
391 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
392 };
393
394 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
395 public:
NullCheckSlowPathARM64(HNullCheck * instr)396 explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
397
EmitNativeCode(CodeGenerator * codegen)398 void EmitNativeCode(CodeGenerator* codegen) override {
399 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
400 __ Bind(GetEntryLabel());
401 if (instruction_->CanThrowIntoCatchBlock()) {
402 // Live registers will be restored in the catch block if caught.
403 SaveLiveRegisters(codegen, instruction_->GetLocations());
404 }
405 arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
406 instruction_,
407 instruction_->GetDexPc(),
408 this);
409 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
410 }
411
IsFatal() const412 bool IsFatal() const override { return true; }
413
GetDescription() const414 const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
415
416 private:
417 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
418 };
419
420 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
421 public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)422 SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
423 : SlowPathCodeARM64(instruction), successor_(successor) {}
424
EmitNativeCode(CodeGenerator * codegen)425 void EmitNativeCode(CodeGenerator* codegen) override {
426 LocationSummary* locations = instruction_->GetLocations();
427 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
428 __ Bind(GetEntryLabel());
429 SaveLiveRegisters(codegen, locations); // Only saves live 128-bit regs for SIMD.
430 arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
431 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
432 RestoreLiveRegisters(codegen, locations); // Only restores live 128-bit regs for SIMD.
433 if (successor_ == nullptr) {
434 __ B(GetReturnLabel());
435 } else {
436 __ B(arm64_codegen->GetLabelOf(successor_));
437 }
438 }
439
GetReturnLabel()440 vixl::aarch64::Label* GetReturnLabel() {
441 DCHECK(successor_ == nullptr);
442 return &return_label_;
443 }
444
GetSuccessor() const445 HBasicBlock* GetSuccessor() const {
446 return successor_;
447 }
448
GetDescription() const449 const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
450
451 private:
452 // If not null, the block to branch to after the suspend check.
453 HBasicBlock* const successor_;
454
455 // If `successor_` is null, the label to branch to after the suspend check.
456 vixl::aarch64::Label return_label_;
457
458 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
459 };
460
461 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
462 public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)463 TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
464 : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
465
EmitNativeCode(CodeGenerator * codegen)466 void EmitNativeCode(CodeGenerator* codegen) override {
467 LocationSummary* locations = instruction_->GetLocations();
468
469 DCHECK(instruction_->IsCheckCast()
470 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
471 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
472 uint32_t dex_pc = instruction_->GetDexPc();
473
474 __ Bind(GetEntryLabel());
475
476 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
477 SaveLiveRegisters(codegen, locations);
478 }
479
480 // We're moving two locations to locations that could overlap, so we need a parallel
481 // move resolver.
482 InvokeRuntimeCallingConvention calling_convention;
483 codegen->EmitParallelMoves(locations->InAt(0),
484 LocationFrom(calling_convention.GetRegisterAt(0)),
485 DataType::Type::kReference,
486 locations->InAt(1),
487 LocationFrom(calling_convention.GetRegisterAt(1)),
488 DataType::Type::kReference);
489 if (instruction_->IsInstanceOf()) {
490 arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
491 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
492 DataType::Type ret_type = instruction_->GetType();
493 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
494 arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
495 } else {
496 DCHECK(instruction_->IsCheckCast());
497 arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
498 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
499 }
500
501 if (!is_fatal_) {
502 RestoreLiveRegisters(codegen, locations);
503 __ B(GetExitLabel());
504 }
505 }
506
GetDescription() const507 const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
IsFatal() const508 bool IsFatal() const override { return is_fatal_; }
509
510 private:
511 const bool is_fatal_;
512
513 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
514 };
515
516 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
517 public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)518 explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
519 : SlowPathCodeARM64(instruction) {}
520
EmitNativeCode(CodeGenerator * codegen)521 void EmitNativeCode(CodeGenerator* codegen) override {
522 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
523 __ Bind(GetEntryLabel());
524 LocationSummary* locations = instruction_->GetLocations();
525 SaveLiveRegisters(codegen, locations);
526 InvokeRuntimeCallingConvention calling_convention;
527 __ Mov(calling_convention.GetRegisterAt(0),
528 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
529 arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
530 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
531 }
532
GetDescription() const533 const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
534
535 private:
536 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
537 };
538
539 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
540 public:
ArraySetSlowPathARM64(HInstruction * instruction)541 explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
542
EmitNativeCode(CodeGenerator * codegen)543 void EmitNativeCode(CodeGenerator* codegen) override {
544 LocationSummary* locations = instruction_->GetLocations();
545 __ Bind(GetEntryLabel());
546 SaveLiveRegisters(codegen, locations);
547
548 InvokeRuntimeCallingConvention calling_convention;
549 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
550 parallel_move.AddMove(
551 locations->InAt(0),
552 LocationFrom(calling_convention.GetRegisterAt(0)),
553 DataType::Type::kReference,
554 nullptr);
555 parallel_move.AddMove(
556 locations->InAt(1),
557 LocationFrom(calling_convention.GetRegisterAt(1)),
558 DataType::Type::kInt32,
559 nullptr);
560 parallel_move.AddMove(
561 locations->InAt(2),
562 LocationFrom(calling_convention.GetRegisterAt(2)),
563 DataType::Type::kReference,
564 nullptr);
565 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
566
567 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
568 arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
569 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
570 RestoreLiveRegisters(codegen, locations);
571 __ B(GetExitLabel());
572 }
573
GetDescription() const574 const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
575
576 private:
577 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
578 };
579
EmitTable(CodeGeneratorARM64 * codegen)580 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
581 uint32_t num_entries = switch_instr_->GetNumEntries();
582 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
583
584 // We are about to use the assembler to place literals directly. Make sure we have enough
585 // underlying code buffer and we have generated the jump table with right size.
586 EmissionCheckScope scope(codegen->GetVIXLAssembler(),
587 num_entries * sizeof(int32_t),
588 CodeBufferCheckScope::kExactSize);
589
590 __ Bind(&table_start_);
591 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
592 for (uint32_t i = 0; i < num_entries; i++) {
593 vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
594 DCHECK(target_label->IsBound());
595 ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
596 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
597 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
598 Literal<int32_t> literal(jump_offset);
599 __ place(&literal);
600 }
601 }
602
603 // Slow path generating a read barrier for a heap reference.
604 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
605 public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)606 ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
607 Location out,
608 Location ref,
609 Location obj,
610 uint32_t offset,
611 Location index)
612 : SlowPathCodeARM64(instruction),
613 out_(out),
614 ref_(ref),
615 obj_(obj),
616 offset_(offset),
617 index_(index) {
618 DCHECK(kEmitCompilerReadBarrier);
619 // If `obj` is equal to `out` or `ref`, it means the initial object
620 // has been overwritten by (or after) the heap object reference load
621 // to be instrumented, e.g.:
622 //
623 // __ Ldr(out, HeapOperand(out, class_offset);
624 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
625 //
626 // In that case, we have lost the information about the original
627 // object, and the emitted read barrier cannot work properly.
628 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
629 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
630 }
631
EmitNativeCode(CodeGenerator * codegen)632 void EmitNativeCode(CodeGenerator* codegen) override {
633 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
634 LocationSummary* locations = instruction_->GetLocations();
635 DataType::Type type = DataType::Type::kReference;
636 DCHECK(locations->CanCall());
637 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
638 DCHECK(instruction_->IsInstanceFieldGet() ||
639 instruction_->IsStaticFieldGet() ||
640 instruction_->IsArrayGet() ||
641 instruction_->IsInstanceOf() ||
642 instruction_->IsCheckCast() ||
643 (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
644 << "Unexpected instruction in read barrier for heap reference slow path: "
645 << instruction_->DebugName();
646 // The read barrier instrumentation of object ArrayGet
647 // instructions does not support the HIntermediateAddress
648 // instruction.
649 DCHECK(!(instruction_->IsArrayGet() &&
650 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
651
652 __ Bind(GetEntryLabel());
653
654 SaveLiveRegisters(codegen, locations);
655
656 // We may have to change the index's value, but as `index_` is a
657 // constant member (like other "inputs" of this slow path),
658 // introduce a copy of it, `index`.
659 Location index = index_;
660 if (index_.IsValid()) {
661 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
662 if (instruction_->IsArrayGet()) {
663 // Compute the actual memory offset and store it in `index`.
664 Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
665 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
666 if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
667 // We are about to change the value of `index_reg` (see the
668 // calls to vixl::MacroAssembler::Lsl and
669 // vixl::MacroAssembler::Mov below), but it has
670 // not been saved by the previous call to
671 // art::SlowPathCode::SaveLiveRegisters, as it is a
672 // callee-save register --
673 // art::SlowPathCode::SaveLiveRegisters does not consider
674 // callee-save registers, as it has been designed with the
675 // assumption that callee-save registers are supposed to be
676 // handled by the called function. So, as a callee-save
677 // register, `index_reg` _would_ eventually be saved onto
678 // the stack, but it would be too late: we would have
679 // changed its value earlier. Therefore, we manually save
680 // it here into another freely available register,
681 // `free_reg`, chosen of course among the caller-save
682 // registers (as a callee-save `free_reg` register would
683 // exhibit the same problem).
684 //
685 // Note we could have requested a temporary register from
686 // the register allocator instead; but we prefer not to, as
687 // this is a slow path, and we know we can find a
688 // caller-save register that is available.
689 Register free_reg = FindAvailableCallerSaveRegister(codegen);
690 __ Mov(free_reg.W(), index_reg);
691 index_reg = free_reg;
692 index = LocationFrom(index_reg);
693 } else {
694 // The initial register stored in `index_` has already been
695 // saved in the call to art::SlowPathCode::SaveLiveRegisters
696 // (as it is not a callee-save register), so we can freely
697 // use it.
698 }
699 // Shifting the index value contained in `index_reg` by the scale
700 // factor (2) cannot overflow in practice, as the runtime is
701 // unable to allocate object arrays with a size larger than
702 // 2^26 - 1 (that is, 2^28 - 4 bytes).
703 __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
704 static_assert(
705 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
706 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
707 __ Add(index_reg, index_reg, Operand(offset_));
708 } else {
709 // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
710 // intrinsics, `index_` is not shifted by a scale factor of 2
711 // (as in the case of ArrayGet), as it is actually an offset
712 // to an object field within an object.
713 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
714 DCHECK(instruction_->GetLocations()->Intrinsified());
715 DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
716 (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
717 << instruction_->AsInvoke()->GetIntrinsic();
718 DCHECK_EQ(offset_, 0u);
719 DCHECK(index_.IsRegister());
720 }
721 }
722
723 // We're moving two or three locations to locations that could
724 // overlap, so we need a parallel move resolver.
725 InvokeRuntimeCallingConvention calling_convention;
726 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
727 parallel_move.AddMove(ref_,
728 LocationFrom(calling_convention.GetRegisterAt(0)),
729 type,
730 nullptr);
731 parallel_move.AddMove(obj_,
732 LocationFrom(calling_convention.GetRegisterAt(1)),
733 type,
734 nullptr);
735 if (index.IsValid()) {
736 parallel_move.AddMove(index,
737 LocationFrom(calling_convention.GetRegisterAt(2)),
738 DataType::Type::kInt32,
739 nullptr);
740 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
741 } else {
742 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
743 arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
744 }
745 arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
746 instruction_,
747 instruction_->GetDexPc(),
748 this);
749 CheckEntrypointTypes<
750 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
751 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
752
753 RestoreLiveRegisters(codegen, locations);
754
755 __ B(GetExitLabel());
756 }
757
GetDescription() const758 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
759
760 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)761 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
762 size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
763 size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
764 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
765 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
766 return Register(VIXLRegCodeFromART(i), kXRegSize);
767 }
768 }
769 // We shall never fail to find a free caller-save register, as
770 // there are more than two core caller-save registers on ARM64
771 // (meaning it is possible to find one which is different from
772 // `ref` and `obj`).
773 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
774 LOG(FATAL) << "Could not find a free register";
775 UNREACHABLE();
776 }
777
778 const Location out_;
779 const Location ref_;
780 const Location obj_;
781 const uint32_t offset_;
782 // An additional location containing an index to an array.
783 // Only used for HArrayGet and the UnsafeGetObject &
784 // UnsafeGetObjectVolatile intrinsics.
785 const Location index_;
786
787 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
788 };
789
790 // Slow path generating a read barrier for a GC root.
791 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
792 public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)793 ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
794 : SlowPathCodeARM64(instruction), out_(out), root_(root) {
795 DCHECK(kEmitCompilerReadBarrier);
796 }
797
EmitNativeCode(CodeGenerator * codegen)798 void EmitNativeCode(CodeGenerator* codegen) override {
799 LocationSummary* locations = instruction_->GetLocations();
800 DataType::Type type = DataType::Type::kReference;
801 DCHECK(locations->CanCall());
802 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
803 DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
804 << "Unexpected instruction in read barrier for GC root slow path: "
805 << instruction_->DebugName();
806
807 __ Bind(GetEntryLabel());
808 SaveLiveRegisters(codegen, locations);
809
810 InvokeRuntimeCallingConvention calling_convention;
811 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
812 // The argument of the ReadBarrierForRootSlow is not a managed
813 // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
814 // thus we need a 64-bit move here, and we cannot use
815 //
816 // arm64_codegen->MoveLocation(
817 // LocationFrom(calling_convention.GetRegisterAt(0)),
818 // root_,
819 // type);
820 //
821 // which would emit a 32-bit move, as `type` is a (32-bit wide)
822 // reference type (`DataType::Type::kReference`).
823 __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
824 arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
825 instruction_,
826 instruction_->GetDexPc(),
827 this);
828 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
829 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
830
831 RestoreLiveRegisters(codegen, locations);
832 __ B(GetExitLabel());
833 }
834
GetDescription() const835 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
836
837 private:
838 const Location out_;
839 const Location root_;
840
841 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
842 };
843
844 #undef __
845
GetNextLocation(DataType::Type type)846 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
847 Location next_location;
848 if (type == DataType::Type::kVoid) {
849 LOG(FATAL) << "Unreachable type " << type;
850 }
851
852 if (DataType::IsFloatingPointType(type) &&
853 (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
854 next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
855 } else if (!DataType::IsFloatingPointType(type) &&
856 (gp_index_ < calling_convention.GetNumberOfRegisters())) {
857 next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
858 } else {
859 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
860 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
861 : Location::StackSlot(stack_offset);
862 }
863
864 // Space on the stack is reserved for all arguments.
865 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
866 return next_location;
867 }
868
GetMethodLocation() const869 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
870 return LocationFrom(kArtMethodRegister);
871 }
872
CodeGeneratorARM64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)873 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
874 const CompilerOptions& compiler_options,
875 OptimizingCompilerStats* stats)
876 : CodeGenerator(graph,
877 kNumberOfAllocatableRegisters,
878 kNumberOfAllocatableFPRegisters,
879 kNumberOfAllocatableRegisterPairs,
880 callee_saved_core_registers.GetList(),
881 callee_saved_fp_registers.GetList(),
882 compiler_options,
883 stats),
884 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
885 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
886 location_builder_(graph, this),
887 instruction_visitor_(graph, this),
888 move_resolver_(graph->GetAllocator(), this),
889 assembler_(graph->GetAllocator(),
890 compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
891 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
892 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
893 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
894 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
895 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
896 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
897 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
898 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
899 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
900 uint32_literals_(std::less<uint32_t>(),
901 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
902 uint64_literals_(std::less<uint64_t>(),
903 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
904 jit_string_patches_(StringReferenceValueComparator(),
905 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
906 jit_class_patches_(TypeReferenceValueComparator(),
907 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
908 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
909 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
910 // Save the link register (containing the return address) to mimic Quick.
911 AddAllocatedRegister(LocationFrom(lr));
912 }
913
914 #define __ GetVIXLAssembler()->
915
EmitJumpTables()916 void CodeGeneratorARM64::EmitJumpTables() {
917 for (auto&& jump_table : jump_tables_) {
918 jump_table->EmitTable(this);
919 }
920 }
921
Finalize(CodeAllocator * allocator)922 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
923 EmitJumpTables();
924
925 // Emit JIT baker read barrier slow paths.
926 DCHECK(Runtime::Current()->UseJitCompilation() || jit_baker_read_barrier_slow_paths_.empty());
927 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
928 uint32_t encoded_data = entry.first;
929 vixl::aarch64::Label* slow_path_entry = &entry.second.label;
930 __ Bind(slow_path_entry);
931 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
932 }
933
934 // Ensure we emit the literal pool.
935 __ FinalizeCode();
936
937 CodeGenerator::Finalize(allocator);
938
939 // Verify Baker read barrier linker patches.
940 if (kIsDebugBuild) {
941 ArrayRef<const uint8_t> code = allocator->GetMemory();
942 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
943 DCHECK(info.label.IsBound());
944 uint32_t literal_offset = info.label.GetLocation();
945 DCHECK_ALIGNED(literal_offset, 4u);
946
947 auto GetInsn = [&code](uint32_t offset) {
948 DCHECK_ALIGNED(offset, 4u);
949 return
950 (static_cast<uint32_t>(code[offset + 0]) << 0) +
951 (static_cast<uint32_t>(code[offset + 1]) << 8) +
952 (static_cast<uint32_t>(code[offset + 2]) << 16)+
953 (static_cast<uint32_t>(code[offset + 3]) << 24);
954 };
955
956 const uint32_t encoded_data = info.custom_data;
957 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
958 // Check that the next instruction matches the expected LDR.
959 switch (kind) {
960 case BakerReadBarrierKind::kField:
961 case BakerReadBarrierKind::kAcquire: {
962 DCHECK_GE(code.size() - literal_offset, 8u);
963 uint32_t next_insn = GetInsn(literal_offset + 4u);
964 CheckValidReg(next_insn & 0x1fu); // Check destination register.
965 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
966 if (kind == BakerReadBarrierKind::kField) {
967 // LDR (immediate) with correct base_reg.
968 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
969 } else {
970 DCHECK(kind == BakerReadBarrierKind::kAcquire);
971 // LDAR with correct base_reg.
972 CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
973 }
974 break;
975 }
976 case BakerReadBarrierKind::kArray: {
977 DCHECK_GE(code.size() - literal_offset, 8u);
978 uint32_t next_insn = GetInsn(literal_offset + 4u);
979 // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
980 // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
981 CheckValidReg(next_insn & 0x1fu); // Check destination register.
982 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
983 CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
984 CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
985 break;
986 }
987 case BakerReadBarrierKind::kGcRoot: {
988 DCHECK_GE(literal_offset, 4u);
989 uint32_t prev_insn = GetInsn(literal_offset - 4u);
990 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
991 // Usually LDR (immediate) with correct root_reg but
992 // we may have a "MOV marked, old_value" for UnsafeCASObject.
993 if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
994 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
995 }
996 break;
997 }
998 default:
999 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
1000 UNREACHABLE();
1001 }
1002 }
1003 }
1004 }
1005
PrepareForEmitNativeCode()1006 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
1007 // Note: There are 6 kinds of moves:
1008 // 1. constant -> GPR/FPR (non-cycle)
1009 // 2. constant -> stack (non-cycle)
1010 // 3. GPR/FPR -> GPR/FPR
1011 // 4. GPR/FPR -> stack
1012 // 5. stack -> GPR/FPR
1013 // 6. stack -> stack (non-cycle)
1014 // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
1015 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
1016 // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
1017 // dependency.
1018 vixl_temps_.Open(GetVIXLAssembler());
1019 }
1020
FinishEmitNativeCode()1021 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
1022 vixl_temps_.Close();
1023 }
1024
AllocateScratchLocationFor(Location::Kind kind)1025 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
1026 DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
1027 || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
1028 || kind == Location::kSIMDStackSlot);
1029 kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
1030 ? Location::kFpuRegister
1031 : Location::kRegister;
1032 Location scratch = GetScratchLocation(kind);
1033 if (!scratch.Equals(Location::NoLocation())) {
1034 return scratch;
1035 }
1036 // Allocate from VIXL temp registers.
1037 if (kind == Location::kRegister) {
1038 scratch = LocationFrom(vixl_temps_.AcquireX());
1039 } else {
1040 DCHECK_EQ(kind, Location::kFpuRegister);
1041 scratch = LocationFrom(codegen_->GetGraph()->HasSIMD()
1042 ? vixl_temps_.AcquireVRegisterOfSize(kQRegSize)
1043 : vixl_temps_.AcquireD());
1044 }
1045 AddScratchLocation(scratch);
1046 return scratch;
1047 }
1048
FreeScratchLocation(Location loc)1049 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
1050 if (loc.IsRegister()) {
1051 vixl_temps_.Release(XRegisterFrom(loc));
1052 } else {
1053 DCHECK(loc.IsFpuRegister());
1054 vixl_temps_.Release(codegen_->GetGraph()->HasSIMD() ? QRegisterFrom(loc) : DRegisterFrom(loc));
1055 }
1056 RemoveScratchLocation(loc);
1057 }
1058
EmitMove(size_t index)1059 void ParallelMoveResolverARM64::EmitMove(size_t index) {
1060 MoveOperands* move = moves_[index];
1061 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
1062 }
1063
MaybeIncrementHotness(bool is_frame_entry)1064 void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) {
1065 MacroAssembler* masm = GetVIXLAssembler();
1066 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1067 UseScratchRegisterScope temps(masm);
1068 Register counter = temps.AcquireX();
1069 Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
1070 if (!is_frame_entry) {
1071 __ Ldr(method, MemOperand(sp, 0));
1072 }
1073 __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1074 __ Add(counter, counter, 1);
1075 // Subtract one if the counter would overflow.
1076 __ Sub(counter, counter, Operand(counter, LSR, 16));
1077 __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1078 }
1079
1080 if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
1081 ScopedObjectAccess soa(Thread::Current());
1082 ProfilingInfo* info = GetGraph()->GetArtMethod()->GetProfilingInfo(kRuntimePointerSize);
1083 if (info != nullptr) {
1084 uint64_t address = reinterpret_cast64<uint64_t>(info);
1085 vixl::aarch64::Label done;
1086 UseScratchRegisterScope temps(masm);
1087 Register temp = temps.AcquireX();
1088 Register counter = temps.AcquireW();
1089 __ Mov(temp, address);
1090 __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1091 __ Add(counter, counter, 1);
1092 __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1093 __ Tst(counter, 0xffff);
1094 __ B(ne, &done);
1095 if (is_frame_entry) {
1096 if (HasEmptyFrame()) {
1097 // The entyrpoint expects the method at the bottom of the stack. We
1098 // claim stack space necessary for alignment.
1099 __ Claim(kStackAlignment);
1100 __ Stp(kArtMethodRegister, lr, MemOperand(sp, 0));
1101 } else if (!RequiresCurrentMethod()) {
1102 __ Str(kArtMethodRegister, MemOperand(sp, 0));
1103 }
1104 } else {
1105 CHECK(RequiresCurrentMethod());
1106 }
1107 uint32_t entrypoint_offset =
1108 GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
1109 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
1110 // Note: we don't record the call here (and therefore don't generate a stack
1111 // map), as the entrypoint should never be suspended.
1112 __ Blr(lr);
1113 if (HasEmptyFrame()) {
1114 CHECK(is_frame_entry);
1115 __ Ldr(lr, MemOperand(sp, 8));
1116 __ Drop(kStackAlignment);
1117 }
1118 __ Bind(&done);
1119 }
1120 }
1121 }
1122
GenerateFrameEntry()1123 void CodeGeneratorARM64::GenerateFrameEntry() {
1124 MacroAssembler* masm = GetVIXLAssembler();
1125 __ Bind(&frame_entry_label_);
1126
1127 bool do_overflow_check =
1128 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
1129 if (do_overflow_check) {
1130 UseScratchRegisterScope temps(masm);
1131 Register temp = temps.AcquireX();
1132 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1133 __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
1134 {
1135 // Ensure that between load and RecordPcInfo there are no pools emitted.
1136 ExactAssemblyScope eas(GetVIXLAssembler(),
1137 kInstructionSize,
1138 CodeBufferCheckScope::kExactSize);
1139 __ ldr(wzr, MemOperand(temp, 0));
1140 RecordPcInfo(nullptr, 0);
1141 }
1142 }
1143
1144 if (!HasEmptyFrame()) {
1145 // Stack layout:
1146 // sp[frame_size - 8] : lr.
1147 // ... : other preserved core registers.
1148 // ... : other preserved fp registers.
1149 // ... : reserved frame space.
1150 // sp[0] : current method.
1151 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1152 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1153 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1154 DCHECK(!preserved_core_registers.IsEmpty());
1155 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1156 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1157
1158 // Save the current method if we need it, or if using STP reduces code
1159 // size. Note that we do not do this in HCurrentMethod, as the
1160 // instruction might have been removed in the SSA graph.
1161 CPURegister lowest_spill;
1162 if (core_spills_offset == kXRegSizeInBytes) {
1163 // If there is no gap between the method and the lowest core spill, use
1164 // aligned STP pre-index to store both. Max difference is 512. We do
1165 // that to reduce code size even if we do not have to save the method.
1166 DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
1167 lowest_spill = preserved_core_registers.PopLowestIndex();
1168 __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
1169 } else if (RequiresCurrentMethod()) {
1170 __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1171 } else {
1172 __ Claim(frame_size);
1173 }
1174 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1175 if (lowest_spill.IsValid()) {
1176 GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
1177 core_spills_offset += kXRegSizeInBytes;
1178 }
1179 GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
1180 GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
1181
1182 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1183 // Initialize should_deoptimize flag to 0.
1184 Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
1185 __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
1186 }
1187 }
1188 MaybeIncrementHotness(/* is_frame_entry= */ true);
1189 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
1190 }
1191
GenerateFrameExit()1192 void CodeGeneratorARM64::GenerateFrameExit() {
1193 GetAssembler()->cfi().RememberState();
1194 if (!HasEmptyFrame()) {
1195 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1196 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1197 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1198 DCHECK(!preserved_core_registers.IsEmpty());
1199 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1200 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1201
1202 CPURegister lowest_spill;
1203 if (core_spills_offset == kXRegSizeInBytes) {
1204 // If there is no gap between the method and the lowest core spill, use
1205 // aligned LDP pre-index to pop both. Max difference is 504. We do
1206 // that to reduce code size even though the loaded method is unused.
1207 DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
1208 lowest_spill = preserved_core_registers.PopLowestIndex();
1209 core_spills_offset += kXRegSizeInBytes;
1210 }
1211 GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
1212 GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset);
1213 if (lowest_spill.IsValid()) {
1214 __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
1215 GetAssembler()->cfi().Restore(DWARFReg(lowest_spill));
1216 } else {
1217 __ Drop(frame_size);
1218 }
1219 GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1220 }
1221 __ Ret();
1222 GetAssembler()->cfi().RestoreState();
1223 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1224 }
1225
GetFramePreservedCoreRegisters() const1226 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1227 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1228 return CPURegList(CPURegister::kRegister, kXRegSize,
1229 core_spill_mask_);
1230 }
1231
GetFramePreservedFPRegisters() const1232 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1233 DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1234 GetNumberOfFloatingPointRegisters()));
1235 return CPURegList(CPURegister::kVRegister, kDRegSize,
1236 fpu_spill_mask_);
1237 }
1238
Bind(HBasicBlock * block)1239 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1240 __ Bind(GetLabelOf(block));
1241 }
1242
MoveConstant(Location location,int32_t value)1243 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1244 DCHECK(location.IsRegister());
1245 __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
1246 }
1247
AddLocationAsTemp(Location location,LocationSummary * locations)1248 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1249 if (location.IsRegister()) {
1250 locations->AddTemp(location);
1251 } else {
1252 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1253 }
1254 }
1255
MarkGCCard(Register object,Register value,bool value_can_be_null)1256 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
1257 UseScratchRegisterScope temps(GetVIXLAssembler());
1258 Register card = temps.AcquireX();
1259 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1260 vixl::aarch64::Label done;
1261 if (value_can_be_null) {
1262 __ Cbz(value, &done);
1263 }
1264 // Load the address of the card table into `card`.
1265 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1266 // Calculate the offset (in the card table) of the card corresponding to
1267 // `object`.
1268 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1269 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1270 // `object`'s card.
1271 //
1272 // Register `card` contains the address of the card table. Note that the card
1273 // table's base is biased during its creation so that it always starts at an
1274 // address whose least-significant byte is equal to `kCardDirty` (see
1275 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
1276 // below writes the `kCardDirty` (byte) value into the `object`'s card
1277 // (located at `card + object >> kCardShift`).
1278 //
1279 // This dual use of the value in register `card` (1. to calculate the location
1280 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1281 // (no need to explicitly load `kCardDirty` as an immediate value).
1282 __ Strb(card, MemOperand(card, temp.X()));
1283 if (value_can_be_null) {
1284 __ Bind(&done);
1285 }
1286 }
1287
SetupBlockedRegisters() const1288 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1289 // Blocked core registers:
1290 // lr : Runtime reserved.
1291 // tr : Runtime reserved.
1292 // mr : Runtime reserved.
1293 // ip1 : VIXL core temp.
1294 // ip0 : VIXL core temp.
1295 // x18 : Platform register.
1296 //
1297 // Blocked fp registers:
1298 // d31 : VIXL fp temp.
1299 CPURegList reserved_core_registers = vixl_reserved_core_registers;
1300 reserved_core_registers.Combine(runtime_reserved_core_registers);
1301 while (!reserved_core_registers.IsEmpty()) {
1302 blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
1303 }
1304 blocked_core_registers_[X18] = true;
1305
1306 CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1307 while (!reserved_fp_registers.IsEmpty()) {
1308 blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
1309 }
1310
1311 if (GetGraph()->IsDebuggable()) {
1312 // Stubs do not save callee-save floating point registers. If the graph
1313 // is debuggable, we need to deal with these registers differently. For
1314 // now, just block them.
1315 CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1316 while (!reserved_fp_registers_debuggable.IsEmpty()) {
1317 blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
1318 }
1319 }
1320 }
1321
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1322 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1323 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1324 __ Str(reg, MemOperand(sp, stack_index));
1325 return kArm64WordSize;
1326 }
1327
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1328 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1329 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1330 __ Ldr(reg, MemOperand(sp, stack_index));
1331 return kArm64WordSize;
1332 }
1333
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1334 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1335 uint32_t reg_id ATTRIBUTE_UNUSED) {
1336 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1337 << "use SaveRestoreLiveRegistersHelper";
1338 UNREACHABLE();
1339 }
1340
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1341 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1342 uint32_t reg_id ATTRIBUTE_UNUSED) {
1343 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1344 << "use SaveRestoreLiveRegistersHelper";
1345 UNREACHABLE();
1346 }
1347
DumpCoreRegister(std::ostream & stream,int reg) const1348 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1349 stream << XRegister(reg);
1350 }
1351
DumpFloatingPointRegister(std::ostream & stream,int reg) const1352 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1353 stream << DRegister(reg);
1354 }
1355
GetInstructionSetFeatures() const1356 const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
1357 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
1358 }
1359
MoveConstant(CPURegister destination,HConstant * constant)1360 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1361 if (constant->IsIntConstant()) {
1362 __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1363 } else if (constant->IsLongConstant()) {
1364 __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1365 } else if (constant->IsNullConstant()) {
1366 __ Mov(Register(destination), 0);
1367 } else if (constant->IsFloatConstant()) {
1368 __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
1369 } else {
1370 DCHECK(constant->IsDoubleConstant());
1371 __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
1372 }
1373 }
1374
1375
CoherentConstantAndType(Location constant,DataType::Type type)1376 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
1377 DCHECK(constant.IsConstant());
1378 HConstant* cst = constant.GetConstant();
1379 return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
1380 // Null is mapped to a core W register, which we associate with kPrimInt.
1381 (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
1382 (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
1383 (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
1384 (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
1385 }
1386
1387 // Allocate a scratch register from the VIXL pool, querying first
1388 // the floating-point register pool, and then the core register
1389 // pool. This is essentially a reimplementation of
1390 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
1391 // using a different allocation strategy.
AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler * masm,vixl::aarch64::UseScratchRegisterScope * temps,int size_in_bits)1392 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
1393 vixl::aarch64::UseScratchRegisterScope* temps,
1394 int size_in_bits) {
1395 return masm->GetScratchVRegisterList()->IsEmpty()
1396 ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
1397 : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
1398 }
1399
MoveLocation(Location destination,Location source,DataType::Type dst_type)1400 void CodeGeneratorARM64::MoveLocation(Location destination,
1401 Location source,
1402 DataType::Type dst_type) {
1403 if (source.Equals(destination)) {
1404 return;
1405 }
1406
1407 // A valid move can always be inferred from the destination and source
1408 // locations. When moving from and to a register, the argument type can be
1409 // used to generate 32bit instead of 64bit moves. In debug mode we also
1410 // checks the coherency of the locations and the type.
1411 bool unspecified_type = (dst_type == DataType::Type::kVoid);
1412
1413 if (destination.IsRegister() || destination.IsFpuRegister()) {
1414 if (unspecified_type) {
1415 HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1416 if (source.IsStackSlot() ||
1417 (src_cst != nullptr && (src_cst->IsIntConstant()
1418 || src_cst->IsFloatConstant()
1419 || src_cst->IsNullConstant()))) {
1420 // For stack slots and 32bit constants, a 64bit type is appropriate.
1421 dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
1422 } else {
1423 // If the source is a double stack slot or a 64bit constant, a 64bit
1424 // type is appropriate. Else the source is a register, and since the
1425 // type has not been specified, we chose a 64bit type to force a 64bit
1426 // move.
1427 dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
1428 }
1429 }
1430 DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
1431 (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
1432 CPURegister dst = CPURegisterFrom(destination, dst_type);
1433 if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1434 DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1435 __ Ldr(dst, StackOperandFrom(source));
1436 } else if (source.IsSIMDStackSlot()) {
1437 __ Ldr(QRegisterFrom(destination), StackOperandFrom(source));
1438 } else if (source.IsConstant()) {
1439 DCHECK(CoherentConstantAndType(source, dst_type));
1440 MoveConstant(dst, source.GetConstant());
1441 } else if (source.IsRegister()) {
1442 if (destination.IsRegister()) {
1443 __ Mov(Register(dst), RegisterFrom(source, dst_type));
1444 } else {
1445 DCHECK(destination.IsFpuRegister());
1446 DataType::Type source_type = DataType::Is64BitType(dst_type)
1447 ? DataType::Type::kInt64
1448 : DataType::Type::kInt32;
1449 __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1450 }
1451 } else {
1452 DCHECK(source.IsFpuRegister());
1453 if (destination.IsRegister()) {
1454 DataType::Type source_type = DataType::Is64BitType(dst_type)
1455 ? DataType::Type::kFloat64
1456 : DataType::Type::kFloat32;
1457 __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1458 } else {
1459 DCHECK(destination.IsFpuRegister());
1460 if (GetGraph()->HasSIMD()) {
1461 __ Mov(QRegisterFrom(destination), QRegisterFrom(source));
1462 } else {
1463 __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
1464 }
1465 }
1466 }
1467 } else if (destination.IsSIMDStackSlot()) {
1468 if (source.IsFpuRegister()) {
1469 __ Str(QRegisterFrom(source), StackOperandFrom(destination));
1470 } else {
1471 DCHECK(source.IsSIMDStackSlot());
1472 UseScratchRegisterScope temps(GetVIXLAssembler());
1473 if (GetVIXLAssembler()->GetScratchVRegisterList()->IsEmpty()) {
1474 Register temp = temps.AcquireX();
1475 __ Ldr(temp, MemOperand(sp, source.GetStackIndex()));
1476 __ Str(temp, MemOperand(sp, destination.GetStackIndex()));
1477 __ Ldr(temp, MemOperand(sp, source.GetStackIndex() + kArm64WordSize));
1478 __ Str(temp, MemOperand(sp, destination.GetStackIndex() + kArm64WordSize));
1479 } else {
1480 VRegister temp = temps.AcquireVRegisterOfSize(kQRegSize);
1481 __ Ldr(temp, StackOperandFrom(source));
1482 __ Str(temp, StackOperandFrom(destination));
1483 }
1484 }
1485 } else { // The destination is not a register. It must be a stack slot.
1486 DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1487 if (source.IsRegister() || source.IsFpuRegister()) {
1488 if (unspecified_type) {
1489 if (source.IsRegister()) {
1490 dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
1491 } else {
1492 dst_type =
1493 destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
1494 }
1495 }
1496 DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
1497 (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
1498 __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1499 } else if (source.IsConstant()) {
1500 DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1501 << source << " " << dst_type;
1502 UseScratchRegisterScope temps(GetVIXLAssembler());
1503 HConstant* src_cst = source.GetConstant();
1504 CPURegister temp;
1505 if (src_cst->IsZeroBitPattern()) {
1506 temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
1507 ? Register(xzr)
1508 : Register(wzr);
1509 } else {
1510 if (src_cst->IsIntConstant()) {
1511 temp = temps.AcquireW();
1512 } else if (src_cst->IsLongConstant()) {
1513 temp = temps.AcquireX();
1514 } else if (src_cst->IsFloatConstant()) {
1515 temp = temps.AcquireS();
1516 } else {
1517 DCHECK(src_cst->IsDoubleConstant());
1518 temp = temps.AcquireD();
1519 }
1520 MoveConstant(temp, src_cst);
1521 }
1522 __ Str(temp, StackOperandFrom(destination));
1523 } else {
1524 DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1525 DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1526 UseScratchRegisterScope temps(GetVIXLAssembler());
1527 // Use any scratch register (a core or a floating-point one)
1528 // from VIXL scratch register pools as a temporary.
1529 //
1530 // We used to only use the FP scratch register pool, but in some
1531 // rare cases the only register from this pool (D31) would
1532 // already be used (e.g. within a ParallelMove instruction, when
1533 // a move is blocked by a another move requiring a scratch FP
1534 // register, which would reserve D31). To prevent this issue, we
1535 // ask for a scratch register of any type (core or FP).
1536 //
1537 // Also, we start by asking for a FP scratch register first, as the
1538 // demand of scratch core registers is higher. This is why we
1539 // use AcquireFPOrCoreCPURegisterOfSize instead of
1540 // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
1541 // allocates core scratch registers first.
1542 CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
1543 GetVIXLAssembler(),
1544 &temps,
1545 (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
1546 __ Ldr(temp, StackOperandFrom(source));
1547 __ Str(temp, StackOperandFrom(destination));
1548 }
1549 }
1550 }
1551
Load(DataType::Type type,CPURegister dst,const MemOperand & src)1552 void CodeGeneratorARM64::Load(DataType::Type type,
1553 CPURegister dst,
1554 const MemOperand& src) {
1555 switch (type) {
1556 case DataType::Type::kBool:
1557 case DataType::Type::kUint8:
1558 __ Ldrb(Register(dst), src);
1559 break;
1560 case DataType::Type::kInt8:
1561 __ Ldrsb(Register(dst), src);
1562 break;
1563 case DataType::Type::kUint16:
1564 __ Ldrh(Register(dst), src);
1565 break;
1566 case DataType::Type::kInt16:
1567 __ Ldrsh(Register(dst), src);
1568 break;
1569 case DataType::Type::kInt32:
1570 case DataType::Type::kReference:
1571 case DataType::Type::kInt64:
1572 case DataType::Type::kFloat32:
1573 case DataType::Type::kFloat64:
1574 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1575 __ Ldr(dst, src);
1576 break;
1577 case DataType::Type::kUint32:
1578 case DataType::Type::kUint64:
1579 case DataType::Type::kVoid:
1580 LOG(FATAL) << "Unreachable type " << type;
1581 }
1582 }
1583
LoadAcquire(HInstruction * instruction,CPURegister dst,const MemOperand & src,bool needs_null_check)1584 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1585 CPURegister dst,
1586 const MemOperand& src,
1587 bool needs_null_check) {
1588 MacroAssembler* masm = GetVIXLAssembler();
1589 UseScratchRegisterScope temps(masm);
1590 Register temp_base = temps.AcquireX();
1591 DataType::Type type = instruction->GetType();
1592
1593 DCHECK(!src.IsPreIndex());
1594 DCHECK(!src.IsPostIndex());
1595
1596 // TODO(vixl): Let the MacroAssembler handle MemOperand.
1597 __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
1598 {
1599 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
1600 MemOperand base = MemOperand(temp_base);
1601 switch (type) {
1602 case DataType::Type::kBool:
1603 case DataType::Type::kUint8:
1604 case DataType::Type::kInt8:
1605 {
1606 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1607 __ ldarb(Register(dst), base);
1608 if (needs_null_check) {
1609 MaybeRecordImplicitNullCheck(instruction);
1610 }
1611 }
1612 if (type == DataType::Type::kInt8) {
1613 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1614 }
1615 break;
1616 case DataType::Type::kUint16:
1617 case DataType::Type::kInt16:
1618 {
1619 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1620 __ ldarh(Register(dst), base);
1621 if (needs_null_check) {
1622 MaybeRecordImplicitNullCheck(instruction);
1623 }
1624 }
1625 if (type == DataType::Type::kInt16) {
1626 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1627 }
1628 break;
1629 case DataType::Type::kInt32:
1630 case DataType::Type::kReference:
1631 case DataType::Type::kInt64:
1632 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1633 {
1634 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1635 __ ldar(Register(dst), base);
1636 if (needs_null_check) {
1637 MaybeRecordImplicitNullCheck(instruction);
1638 }
1639 }
1640 break;
1641 case DataType::Type::kFloat32:
1642 case DataType::Type::kFloat64: {
1643 DCHECK(dst.IsFPRegister());
1644 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1645
1646 Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1647 {
1648 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1649 __ ldar(temp, base);
1650 if (needs_null_check) {
1651 MaybeRecordImplicitNullCheck(instruction);
1652 }
1653 }
1654 __ Fmov(VRegister(dst), temp);
1655 break;
1656 }
1657 case DataType::Type::kUint32:
1658 case DataType::Type::kUint64:
1659 case DataType::Type::kVoid:
1660 LOG(FATAL) << "Unreachable type " << type;
1661 }
1662 }
1663 }
1664
Store(DataType::Type type,CPURegister src,const MemOperand & dst)1665 void CodeGeneratorARM64::Store(DataType::Type type,
1666 CPURegister src,
1667 const MemOperand& dst) {
1668 switch (type) {
1669 case DataType::Type::kBool:
1670 case DataType::Type::kUint8:
1671 case DataType::Type::kInt8:
1672 __ Strb(Register(src), dst);
1673 break;
1674 case DataType::Type::kUint16:
1675 case DataType::Type::kInt16:
1676 __ Strh(Register(src), dst);
1677 break;
1678 case DataType::Type::kInt32:
1679 case DataType::Type::kReference:
1680 case DataType::Type::kInt64:
1681 case DataType::Type::kFloat32:
1682 case DataType::Type::kFloat64:
1683 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1684 __ Str(src, dst);
1685 break;
1686 case DataType::Type::kUint32:
1687 case DataType::Type::kUint64:
1688 case DataType::Type::kVoid:
1689 LOG(FATAL) << "Unreachable type " << type;
1690 }
1691 }
1692
StoreRelease(HInstruction * instruction,DataType::Type type,CPURegister src,const MemOperand & dst,bool needs_null_check)1693 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
1694 DataType::Type type,
1695 CPURegister src,
1696 const MemOperand& dst,
1697 bool needs_null_check) {
1698 MacroAssembler* masm = GetVIXLAssembler();
1699 UseScratchRegisterScope temps(GetVIXLAssembler());
1700 Register temp_base = temps.AcquireX();
1701
1702 DCHECK(!dst.IsPreIndex());
1703 DCHECK(!dst.IsPostIndex());
1704
1705 // TODO(vixl): Let the MacroAssembler handle this.
1706 Operand op = OperandFromMemOperand(dst);
1707 __ Add(temp_base, dst.GetBaseRegister(), op);
1708 MemOperand base = MemOperand(temp_base);
1709 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
1710 switch (type) {
1711 case DataType::Type::kBool:
1712 case DataType::Type::kUint8:
1713 case DataType::Type::kInt8:
1714 {
1715 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1716 __ stlrb(Register(src), base);
1717 if (needs_null_check) {
1718 MaybeRecordImplicitNullCheck(instruction);
1719 }
1720 }
1721 break;
1722 case DataType::Type::kUint16:
1723 case DataType::Type::kInt16:
1724 {
1725 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1726 __ stlrh(Register(src), base);
1727 if (needs_null_check) {
1728 MaybeRecordImplicitNullCheck(instruction);
1729 }
1730 }
1731 break;
1732 case DataType::Type::kInt32:
1733 case DataType::Type::kReference:
1734 case DataType::Type::kInt64:
1735 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1736 {
1737 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1738 __ stlr(Register(src), base);
1739 if (needs_null_check) {
1740 MaybeRecordImplicitNullCheck(instruction);
1741 }
1742 }
1743 break;
1744 case DataType::Type::kFloat32:
1745 case DataType::Type::kFloat64: {
1746 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1747 Register temp_src;
1748 if (src.IsZero()) {
1749 // The zero register is used to avoid synthesizing zero constants.
1750 temp_src = Register(src);
1751 } else {
1752 DCHECK(src.IsFPRegister());
1753 temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1754 __ Fmov(temp_src, VRegister(src));
1755 }
1756 {
1757 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1758 __ stlr(temp_src, base);
1759 if (needs_null_check) {
1760 MaybeRecordImplicitNullCheck(instruction);
1761 }
1762 }
1763 break;
1764 }
1765 case DataType::Type::kUint32:
1766 case DataType::Type::kUint64:
1767 case DataType::Type::kVoid:
1768 LOG(FATAL) << "Unreachable type " << type;
1769 }
1770 }
1771
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1772 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1773 HInstruction* instruction,
1774 uint32_t dex_pc,
1775 SlowPathCode* slow_path) {
1776 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1777
1778 ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
1779 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
1780 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
1781 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
1782 if (slow_path == nullptr || Runtime::Current()->UseJitCompilation()) {
1783 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
1784 // Ensure the pc position is recorded immediately after the `blr` instruction.
1785 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1786 __ blr(lr);
1787 if (EntrypointRequiresStackMap(entrypoint)) {
1788 RecordPcInfo(instruction, dex_pc, slow_path);
1789 }
1790 } else {
1791 // Ensure the pc position is recorded immediately after the `bl` instruction.
1792 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1793 EmitEntrypointThunkCall(entrypoint_offset);
1794 if (EntrypointRequiresStackMap(entrypoint)) {
1795 RecordPcInfo(instruction, dex_pc, slow_path);
1796 }
1797 }
1798 }
1799
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)1800 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1801 HInstruction* instruction,
1802 SlowPathCode* slow_path) {
1803 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1804 __ Ldr(lr, MemOperand(tr, entry_point_offset));
1805 __ Blr(lr);
1806 }
1807
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,Register class_reg)1808 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1809 Register class_reg) {
1810 UseScratchRegisterScope temps(GetVIXLAssembler());
1811 Register temp = temps.AcquireW();
1812 constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
1813 const size_t status_byte_offset =
1814 mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
1815 constexpr uint32_t shifted_visibly_initialized_value =
1816 enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte);
1817
1818 // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
1819 // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
1820 // size, load only the high byte of the field and compare with 0xf0.
1821 // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
1822 // show that this pattern is slower (tested on little cores).
1823 __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset));
1824 __ Cmp(temp, shifted_visibly_initialized_value);
1825 __ B(lo, slow_path->GetEntryLabel());
1826 __ Bind(slow_path->GetExitLabel());
1827 }
1828
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl::aarch64::Register temp)1829 void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
1830 HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
1831 uint32_t path_to_root = check->GetBitstringPathToRoot();
1832 uint32_t mask = check->GetBitstringMask();
1833 DCHECK(IsPowerOfTwo(mask + 1));
1834 size_t mask_bits = WhichPowerOf2(mask + 1);
1835
1836 if (mask_bits == 16u) {
1837 // Load only the bitstring part of the status word.
1838 __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
1839 } else {
1840 // /* uint32_t */ temp = temp->status_
1841 __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
1842 // Extract the bitstring bits.
1843 __ Ubfx(temp, temp, 0, mask_bits);
1844 }
1845 // Compare the bitstring bits to `path_to_root`.
1846 __ Cmp(temp, path_to_root);
1847 }
1848
GenerateMemoryBarrier(MemBarrierKind kind)1849 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
1850 BarrierType type = BarrierAll;
1851
1852 switch (kind) {
1853 case MemBarrierKind::kAnyAny:
1854 case MemBarrierKind::kAnyStore: {
1855 type = BarrierAll;
1856 break;
1857 }
1858 case MemBarrierKind::kLoadAny: {
1859 type = BarrierReads;
1860 break;
1861 }
1862 case MemBarrierKind::kStoreStore: {
1863 type = BarrierWrites;
1864 break;
1865 }
1866 default:
1867 LOG(FATAL) << "Unexpected memory barrier " << kind;
1868 }
1869 __ Dmb(InnerShareable, type);
1870 }
1871
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)1872 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
1873 HBasicBlock* successor) {
1874 SuspendCheckSlowPathARM64* slow_path =
1875 down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
1876 if (slow_path == nullptr) {
1877 slow_path =
1878 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
1879 instruction->SetSlowPath(slow_path);
1880 codegen_->AddSlowPath(slow_path);
1881 if (successor != nullptr) {
1882 DCHECK(successor->IsLoopHeader());
1883 }
1884 } else {
1885 DCHECK_EQ(slow_path->GetSuccessor(), successor);
1886 }
1887
1888 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
1889 Register temp = temps.AcquireW();
1890
1891 __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
1892 if (successor == nullptr) {
1893 __ Cbnz(temp, slow_path->GetEntryLabel());
1894 __ Bind(slow_path->GetReturnLabel());
1895 } else {
1896 __ Cbz(temp, codegen_->GetLabelOf(successor));
1897 __ B(slow_path->GetEntryLabel());
1898 // slow_path will return to GetLabelOf(successor).
1899 }
1900 }
1901
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)1902 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
1903 CodeGeneratorARM64* codegen)
1904 : InstructionCodeGenerator(graph, codegen),
1905 assembler_(codegen->GetAssembler()),
1906 codegen_(codegen) {}
1907
HandleBinaryOp(HBinaryOperation * instr)1908 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
1909 DCHECK_EQ(instr->InputCount(), 2U);
1910 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
1911 DataType::Type type = instr->GetResultType();
1912 switch (type) {
1913 case DataType::Type::kInt32:
1914 case DataType::Type::kInt64:
1915 locations->SetInAt(0, Location::RequiresRegister());
1916 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
1917 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1918 break;
1919
1920 case DataType::Type::kFloat32:
1921 case DataType::Type::kFloat64:
1922 locations->SetInAt(0, Location::RequiresFpuRegister());
1923 locations->SetInAt(1, Location::RequiresFpuRegister());
1924 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
1925 break;
1926
1927 default:
1928 LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
1929 }
1930 }
1931
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)1932 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
1933 const FieldInfo& field_info) {
1934 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1935
1936 bool object_field_get_with_read_barrier =
1937 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
1938 LocationSummary* locations =
1939 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
1940 object_field_get_with_read_barrier
1941 ? LocationSummary::kCallOnSlowPath
1942 : LocationSummary::kNoCall);
1943 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
1944 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
1945 // We need a temporary register for the read barrier load in
1946 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
1947 // only if the field is volatile or the offset is too big.
1948 if (field_info.IsVolatile() ||
1949 field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
1950 locations->AddTemp(FixedTempLocation());
1951 }
1952 }
1953 locations->SetInAt(0, Location::RequiresRegister());
1954 if (DataType::IsFloatingPointType(instruction->GetType())) {
1955 locations->SetOut(Location::RequiresFpuRegister());
1956 } else {
1957 // The output overlaps for an object field get when read barriers
1958 // are enabled: we do not want the load to overwrite the object's
1959 // location, as we need it to emit the read barrier.
1960 locations->SetOut(
1961 Location::RequiresRegister(),
1962 object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
1963 }
1964 }
1965
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)1966 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
1967 const FieldInfo& field_info) {
1968 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1969 LocationSummary* locations = instruction->GetLocations();
1970 Location base_loc = locations->InAt(0);
1971 Location out = locations->Out();
1972 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
1973 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
1974 DataType::Type load_type = instruction->GetType();
1975 MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
1976
1977 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier &&
1978 load_type == DataType::Type::kReference) {
1979 // Object FieldGet with Baker's read barrier case.
1980 // /* HeapReference<Object> */ out = *(base + offset)
1981 Register base = RegisterFrom(base_loc, DataType::Type::kReference);
1982 Location maybe_temp =
1983 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
1984 // Note that potential implicit null checks are handled in this
1985 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
1986 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1987 instruction,
1988 out,
1989 base,
1990 offset,
1991 maybe_temp,
1992 /* needs_null_check= */ true,
1993 field_info.IsVolatile());
1994 } else {
1995 // General case.
1996 if (field_info.IsVolatile()) {
1997 // Note that a potential implicit null check is handled in this
1998 // CodeGeneratorARM64::LoadAcquire call.
1999 // NB: LoadAcquire will record the pc info if needed.
2000 codegen_->LoadAcquire(
2001 instruction, OutputCPURegister(instruction), field, /* needs_null_check= */ true);
2002 } else {
2003 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2004 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2005 codegen_->Load(load_type, OutputCPURegister(instruction), field);
2006 codegen_->MaybeRecordImplicitNullCheck(instruction);
2007 }
2008 if (load_type == DataType::Type::kReference) {
2009 // If read barriers are enabled, emit read barriers other than
2010 // Baker's using a slow path (and also unpoison the loaded
2011 // reference, if heap poisoning is enabled).
2012 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
2013 }
2014 }
2015 }
2016
HandleFieldSet(HInstruction * instruction)2017 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
2018 LocationSummary* locations =
2019 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2020 locations->SetInAt(0, Location::RequiresRegister());
2021 if (IsConstantZeroBitPattern(instruction->InputAt(1))) {
2022 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
2023 } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
2024 locations->SetInAt(1, Location::RequiresFpuRegister());
2025 } else {
2026 locations->SetInAt(1, Location::RequiresRegister());
2027 }
2028 }
2029
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)2030 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
2031 const FieldInfo& field_info,
2032 bool value_can_be_null) {
2033 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
2034
2035 Register obj = InputRegisterAt(instruction, 0);
2036 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
2037 CPURegister source = value;
2038 Offset offset = field_info.GetFieldOffset();
2039 DataType::Type field_type = field_info.GetFieldType();
2040
2041 {
2042 // We use a block to end the scratch scope before the write barrier, thus
2043 // freeing the temporary registers so they can be used in `MarkGCCard`.
2044 UseScratchRegisterScope temps(GetVIXLAssembler());
2045
2046 if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
2047 DCHECK(value.IsW());
2048 Register temp = temps.AcquireW();
2049 __ Mov(temp, value.W());
2050 GetAssembler()->PoisonHeapReference(temp.W());
2051 source = temp;
2052 }
2053
2054 if (field_info.IsVolatile()) {
2055 codegen_->StoreRelease(
2056 instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
2057 } else {
2058 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2059 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2060 codegen_->Store(field_type, source, HeapOperand(obj, offset));
2061 codegen_->MaybeRecordImplicitNullCheck(instruction);
2062 }
2063 }
2064
2065 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
2066 codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
2067 }
2068 }
2069
HandleBinaryOp(HBinaryOperation * instr)2070 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
2071 DataType::Type type = instr->GetType();
2072
2073 switch (type) {
2074 case DataType::Type::kInt32:
2075 case DataType::Type::kInt64: {
2076 Register dst = OutputRegister(instr);
2077 Register lhs = InputRegisterAt(instr, 0);
2078 Operand rhs = InputOperandAt(instr, 1);
2079 if (instr->IsAdd()) {
2080 __ Add(dst, lhs, rhs);
2081 } else if (instr->IsAnd()) {
2082 __ And(dst, lhs, rhs);
2083 } else if (instr->IsOr()) {
2084 __ Orr(dst, lhs, rhs);
2085 } else if (instr->IsSub()) {
2086 __ Sub(dst, lhs, rhs);
2087 } else if (instr->IsRor()) {
2088 if (rhs.IsImmediate()) {
2089 uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
2090 __ Ror(dst, lhs, shift);
2091 } else {
2092 // Ensure shift distance is in the same size register as the result. If
2093 // we are rotating a long and the shift comes in a w register originally,
2094 // we don't need to sxtw for use as an x since the shift distances are
2095 // all & reg_bits - 1.
2096 __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
2097 }
2098 } else if (instr->IsMin() || instr->IsMax()) {
2099 __ Cmp(lhs, rhs);
2100 __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
2101 } else {
2102 DCHECK(instr->IsXor());
2103 __ Eor(dst, lhs, rhs);
2104 }
2105 break;
2106 }
2107 case DataType::Type::kFloat32:
2108 case DataType::Type::kFloat64: {
2109 VRegister dst = OutputFPRegister(instr);
2110 VRegister lhs = InputFPRegisterAt(instr, 0);
2111 VRegister rhs = InputFPRegisterAt(instr, 1);
2112 if (instr->IsAdd()) {
2113 __ Fadd(dst, lhs, rhs);
2114 } else if (instr->IsSub()) {
2115 __ Fsub(dst, lhs, rhs);
2116 } else if (instr->IsMin()) {
2117 __ Fmin(dst, lhs, rhs);
2118 } else if (instr->IsMax()) {
2119 __ Fmax(dst, lhs, rhs);
2120 } else {
2121 LOG(FATAL) << "Unexpected floating-point binary operation";
2122 }
2123 break;
2124 }
2125 default:
2126 LOG(FATAL) << "Unexpected binary operation type " << type;
2127 }
2128 }
2129
HandleShift(HBinaryOperation * instr)2130 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
2131 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2132
2133 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2134 DataType::Type type = instr->GetResultType();
2135 switch (type) {
2136 case DataType::Type::kInt32:
2137 case DataType::Type::kInt64: {
2138 locations->SetInAt(0, Location::RequiresRegister());
2139 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2140 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2141 break;
2142 }
2143 default:
2144 LOG(FATAL) << "Unexpected shift type " << type;
2145 }
2146 }
2147
HandleShift(HBinaryOperation * instr)2148 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
2149 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2150
2151 DataType::Type type = instr->GetType();
2152 switch (type) {
2153 case DataType::Type::kInt32:
2154 case DataType::Type::kInt64: {
2155 Register dst = OutputRegister(instr);
2156 Register lhs = InputRegisterAt(instr, 0);
2157 Operand rhs = InputOperandAt(instr, 1);
2158 if (rhs.IsImmediate()) {
2159 uint32_t shift_value = rhs.GetImmediate() &
2160 (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2161 if (instr->IsShl()) {
2162 __ Lsl(dst, lhs, shift_value);
2163 } else if (instr->IsShr()) {
2164 __ Asr(dst, lhs, shift_value);
2165 } else {
2166 __ Lsr(dst, lhs, shift_value);
2167 }
2168 } else {
2169 Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
2170
2171 if (instr->IsShl()) {
2172 __ Lsl(dst, lhs, rhs_reg);
2173 } else if (instr->IsShr()) {
2174 __ Asr(dst, lhs, rhs_reg);
2175 } else {
2176 __ Lsr(dst, lhs, rhs_reg);
2177 }
2178 }
2179 break;
2180 }
2181 default:
2182 LOG(FATAL) << "Unexpected shift operation type " << type;
2183 }
2184 }
2185
VisitAdd(HAdd * instruction)2186 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
2187 HandleBinaryOp(instruction);
2188 }
2189
VisitAdd(HAdd * instruction)2190 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
2191 HandleBinaryOp(instruction);
2192 }
2193
VisitAnd(HAnd * instruction)2194 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
2195 HandleBinaryOp(instruction);
2196 }
2197
VisitAnd(HAnd * instruction)2198 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
2199 HandleBinaryOp(instruction);
2200 }
2201
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2202 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2203 DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
2204 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2205 locations->SetInAt(0, Location::RequiresRegister());
2206 // There is no immediate variant of negated bitwise instructions in AArch64.
2207 locations->SetInAt(1, Location::RequiresRegister());
2208 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2209 }
2210
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2211 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2212 Register dst = OutputRegister(instr);
2213 Register lhs = InputRegisterAt(instr, 0);
2214 Register rhs = InputRegisterAt(instr, 1);
2215
2216 switch (instr->GetOpKind()) {
2217 case HInstruction::kAnd:
2218 __ Bic(dst, lhs, rhs);
2219 break;
2220 case HInstruction::kOr:
2221 __ Orn(dst, lhs, rhs);
2222 break;
2223 case HInstruction::kXor:
2224 __ Eon(dst, lhs, rhs);
2225 break;
2226 default:
2227 LOG(FATAL) << "Unreachable";
2228 }
2229 }
2230
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2231 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
2232 HDataProcWithShifterOp* instruction) {
2233 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
2234 instruction->GetType() == DataType::Type::kInt64);
2235 LocationSummary* locations =
2236 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2237 if (instruction->GetInstrKind() == HInstruction::kNeg) {
2238 locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
2239 } else {
2240 locations->SetInAt(0, Location::RequiresRegister());
2241 }
2242 locations->SetInAt(1, Location::RequiresRegister());
2243 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2244 }
2245
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2246 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
2247 HDataProcWithShifterOp* instruction) {
2248 DataType::Type type = instruction->GetType();
2249 HInstruction::InstructionKind kind = instruction->GetInstrKind();
2250 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2251 Register out = OutputRegister(instruction);
2252 Register left;
2253 if (kind != HInstruction::kNeg) {
2254 left = InputRegisterAt(instruction, 0);
2255 }
2256 // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
2257 // shifter operand operation, the IR generating `right_reg` (input to the type
2258 // conversion) can have a different type from the current instruction's type,
2259 // so we manually indicate the type.
2260 Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
2261 Operand right_operand(0);
2262
2263 HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
2264 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
2265 right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
2266 } else {
2267 right_operand = Operand(right_reg,
2268 helpers::ShiftFromOpKind(op_kind),
2269 instruction->GetShiftAmount());
2270 }
2271
2272 // Logical binary operations do not support extension operations in the
2273 // operand. Note that VIXL would still manage if it was passed by generating
2274 // the extension as a separate instruction.
2275 // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2276 DCHECK(!right_operand.IsExtendedRegister() ||
2277 (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
2278 kind != HInstruction::kNeg));
2279 switch (kind) {
2280 case HInstruction::kAdd:
2281 __ Add(out, left, right_operand);
2282 break;
2283 case HInstruction::kAnd:
2284 __ And(out, left, right_operand);
2285 break;
2286 case HInstruction::kNeg:
2287 DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
2288 __ Neg(out, right_operand);
2289 break;
2290 case HInstruction::kOr:
2291 __ Orr(out, left, right_operand);
2292 break;
2293 case HInstruction::kSub:
2294 __ Sub(out, left, right_operand);
2295 break;
2296 case HInstruction::kXor:
2297 __ Eor(out, left, right_operand);
2298 break;
2299 default:
2300 LOG(FATAL) << "Unexpected operation kind: " << kind;
2301 UNREACHABLE();
2302 }
2303 }
2304
VisitIntermediateAddress(HIntermediateAddress * instruction)2305 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2306 LocationSummary* locations =
2307 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2308 locations->SetInAt(0, Location::RequiresRegister());
2309 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2310 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2311 }
2312
VisitIntermediateAddress(HIntermediateAddress * instruction)2313 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2314 __ Add(OutputRegister(instruction),
2315 InputRegisterAt(instruction, 0),
2316 Operand(InputOperandAt(instruction, 1)));
2317 }
2318
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2319 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
2320 LocationSummary* locations =
2321 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2322
2323 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
2324
2325 locations->SetInAt(0, Location::RequiresRegister());
2326 // For byte case we don't need to shift the index variable so we can encode the data offset into
2327 // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
2328 // data offset constant generation out of the loop and reduce the critical path length in the
2329 // loop.
2330 locations->SetInAt(1, shift->GetValue() == 0
2331 ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant())
2332 : Location::RequiresRegister());
2333 locations->SetInAt(2, Location::ConstantLocation(shift));
2334 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2335 }
2336
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2337 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
2338 HIntermediateAddressIndex* instruction) {
2339 Register index_reg = InputRegisterAt(instruction, 0);
2340 uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
2341 uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
2342
2343 if (shift == 0) {
2344 __ Add(OutputRegister(instruction), index_reg, offset);
2345 } else {
2346 Register offset_reg = InputRegisterAt(instruction, 1);
2347 __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
2348 }
2349 }
2350
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2351 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2352 LocationSummary* locations =
2353 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
2354 HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2355 if (instr->GetOpKind() == HInstruction::kSub &&
2356 accumulator->IsConstant() &&
2357 accumulator->AsConstant()->IsArithmeticZero()) {
2358 // Don't allocate register for Mneg instruction.
2359 } else {
2360 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
2361 Location::RequiresRegister());
2362 }
2363 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2364 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2365 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2366 }
2367
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2368 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2369 Register res = OutputRegister(instr);
2370 Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
2371 Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
2372
2373 // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2374 // This fixup should be carried out for all multiply-accumulate instructions:
2375 // madd, msub, smaddl, smsubl, umaddl and umsubl.
2376 if (instr->GetType() == DataType::Type::kInt64 &&
2377 codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2378 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2379 vixl::aarch64::Instruction* prev =
2380 masm->GetCursorAddress<vixl::aarch64::Instruction*>() - kInstructionSize;
2381 if (prev->IsLoadOrStore()) {
2382 // Make sure we emit only exactly one nop.
2383 ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2384 __ nop();
2385 }
2386 }
2387
2388 if (instr->GetOpKind() == HInstruction::kAdd) {
2389 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2390 __ Madd(res, mul_left, mul_right, accumulator);
2391 } else {
2392 DCHECK(instr->GetOpKind() == HInstruction::kSub);
2393 HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2394 if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2395 __ Mneg(res, mul_left, mul_right);
2396 } else {
2397 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2398 __ Msub(res, mul_left, mul_right, accumulator);
2399 }
2400 }
2401 }
2402
VisitArrayGet(HArrayGet * instruction)2403 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2404 bool object_array_get_with_read_barrier =
2405 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
2406 LocationSummary* locations =
2407 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2408 object_array_get_with_read_barrier
2409 ? LocationSummary::kCallOnSlowPath
2410 : LocationSummary::kNoCall);
2411 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2412 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2413 if (instruction->GetIndex()->IsConstant()) {
2414 // Array loads with constant index are treated as field loads.
2415 // We need a temporary register for the read barrier load in
2416 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2417 // only if the offset is too big.
2418 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2419 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
2420 offset += index << DataType::SizeShift(DataType::Type::kReference);
2421 if (offset >= kReferenceLoadMinFarOffset) {
2422 locations->AddTemp(FixedTempLocation());
2423 }
2424 } else if (!instruction->GetArray()->IsIntermediateAddress()) {
2425 // We need a non-scratch temporary for the array data pointer in
2426 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
2427 // intermediate address.
2428 locations->AddTemp(Location::RequiresRegister());
2429 }
2430 }
2431 locations->SetInAt(0, Location::RequiresRegister());
2432 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2433 if (DataType::IsFloatingPointType(instruction->GetType())) {
2434 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2435 } else {
2436 // The output overlaps in the case of an object array get with
2437 // read barriers enabled: we do not want the move to overwrite the
2438 // array's location, as we need it to emit the read barrier.
2439 locations->SetOut(
2440 Location::RequiresRegister(),
2441 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2442 }
2443 }
2444
VisitArrayGet(HArrayGet * instruction)2445 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2446 DataType::Type type = instruction->GetType();
2447 Register obj = InputRegisterAt(instruction, 0);
2448 LocationSummary* locations = instruction->GetLocations();
2449 Location index = locations->InAt(1);
2450 Location out = locations->Out();
2451 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2452 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2453 instruction->IsStringCharAt();
2454 MacroAssembler* masm = GetVIXLAssembler();
2455 UseScratchRegisterScope temps(masm);
2456
2457 // The non-Baker read barrier instrumentation of object ArrayGet instructions
2458 // does not support the HIntermediateAddress instruction.
2459 DCHECK(!((type == DataType::Type::kReference) &&
2460 instruction->GetArray()->IsIntermediateAddress() &&
2461 kEmitCompilerReadBarrier &&
2462 !kUseBakerReadBarrier));
2463
2464 if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2465 // Object ArrayGet with Baker's read barrier case.
2466 // Note that a potential implicit null check is handled in the
2467 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2468 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2469 if (index.IsConstant()) {
2470 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2471 // Array load with a constant index can be treated as a field load.
2472 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2473 Location maybe_temp =
2474 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2475 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2476 out,
2477 obj.W(),
2478 offset,
2479 maybe_temp,
2480 /* needs_null_check= */ false,
2481 /* use_load_acquire= */ false);
2482 } else {
2483 codegen_->GenerateArrayLoadWithBakerReadBarrier(
2484 instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
2485 }
2486 } else {
2487 // General case.
2488 MemOperand source = HeapOperand(obj);
2489 Register length;
2490 if (maybe_compressed_char_at) {
2491 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2492 length = temps.AcquireW();
2493 {
2494 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2495 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2496
2497 if (instruction->GetArray()->IsIntermediateAddress()) {
2498 DCHECK_LT(count_offset, offset);
2499 int64_t adjusted_offset =
2500 static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
2501 // Note that `adjusted_offset` is negative, so this will be a LDUR.
2502 __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
2503 } else {
2504 __ Ldr(length, HeapOperand(obj, count_offset));
2505 }
2506 codegen_->MaybeRecordImplicitNullCheck(instruction);
2507 }
2508 }
2509 if (index.IsConstant()) {
2510 if (maybe_compressed_char_at) {
2511 vixl::aarch64::Label uncompressed_load, done;
2512 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2513 "Expecting 0=compressed, 1=uncompressed");
2514 __ Tbnz(length.W(), 0, &uncompressed_load);
2515 __ Ldrb(Register(OutputCPURegister(instruction)),
2516 HeapOperand(obj, offset + Int64FromLocation(index)));
2517 __ B(&done);
2518 __ Bind(&uncompressed_load);
2519 __ Ldrh(Register(OutputCPURegister(instruction)),
2520 HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
2521 __ Bind(&done);
2522 } else {
2523 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2524 source = HeapOperand(obj, offset);
2525 }
2526 } else {
2527 Register temp = temps.AcquireSameSizeAs(obj);
2528 if (instruction->GetArray()->IsIntermediateAddress()) {
2529 // We do not need to compute the intermediate address from the array: the
2530 // input instruction has done it already. See the comment in
2531 // `TryExtractArrayAccessAddress()`.
2532 if (kIsDebugBuild) {
2533 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2534 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2535 }
2536 temp = obj;
2537 } else {
2538 __ Add(temp, obj, offset);
2539 }
2540 if (maybe_compressed_char_at) {
2541 vixl::aarch64::Label uncompressed_load, done;
2542 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2543 "Expecting 0=compressed, 1=uncompressed");
2544 __ Tbnz(length.W(), 0, &uncompressed_load);
2545 __ Ldrb(Register(OutputCPURegister(instruction)),
2546 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
2547 __ B(&done);
2548 __ Bind(&uncompressed_load);
2549 __ Ldrh(Register(OutputCPURegister(instruction)),
2550 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
2551 __ Bind(&done);
2552 } else {
2553 source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
2554 }
2555 }
2556 if (!maybe_compressed_char_at) {
2557 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2558 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2559 codegen_->Load(type, OutputCPURegister(instruction), source);
2560 codegen_->MaybeRecordImplicitNullCheck(instruction);
2561 }
2562
2563 if (type == DataType::Type::kReference) {
2564 static_assert(
2565 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2566 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2567 Location obj_loc = locations->InAt(0);
2568 if (index.IsConstant()) {
2569 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2570 } else {
2571 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2572 }
2573 }
2574 }
2575 }
2576
VisitArrayLength(HArrayLength * instruction)2577 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2578 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2579 locations->SetInAt(0, Location::RequiresRegister());
2580 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2581 }
2582
VisitArrayLength(HArrayLength * instruction)2583 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2584 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2585 vixl::aarch64::Register out = OutputRegister(instruction);
2586 {
2587 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2588 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2589 __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
2590 codegen_->MaybeRecordImplicitNullCheck(instruction);
2591 }
2592 // Mask out compression flag from String's array length.
2593 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
2594 __ Lsr(out.W(), out.W(), 1u);
2595 }
2596 }
2597
VisitArraySet(HArraySet * instruction)2598 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2599 DataType::Type value_type = instruction->GetComponentType();
2600
2601 bool needs_type_check = instruction->NeedsTypeCheck();
2602 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
2603 instruction,
2604 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
2605 locations->SetInAt(0, Location::RequiresRegister());
2606 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2607 if (IsConstantZeroBitPattern(instruction->InputAt(2))) {
2608 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
2609 } else if (DataType::IsFloatingPointType(value_type)) {
2610 locations->SetInAt(2, Location::RequiresFpuRegister());
2611 } else {
2612 locations->SetInAt(2, Location::RequiresRegister());
2613 }
2614 }
2615
VisitArraySet(HArraySet * instruction)2616 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2617 DataType::Type value_type = instruction->GetComponentType();
2618 LocationSummary* locations = instruction->GetLocations();
2619 bool needs_type_check = instruction->NeedsTypeCheck();
2620 bool needs_write_barrier =
2621 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2622
2623 Register array = InputRegisterAt(instruction, 0);
2624 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
2625 CPURegister source = value;
2626 Location index = locations->InAt(1);
2627 size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
2628 MemOperand destination = HeapOperand(array);
2629 MacroAssembler* masm = GetVIXLAssembler();
2630
2631 if (!needs_write_barrier) {
2632 DCHECK(!needs_type_check);
2633 if (index.IsConstant()) {
2634 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2635 destination = HeapOperand(array, offset);
2636 } else {
2637 UseScratchRegisterScope temps(masm);
2638 Register temp = temps.AcquireSameSizeAs(array);
2639 if (instruction->GetArray()->IsIntermediateAddress()) {
2640 // We do not need to compute the intermediate address from the array: the
2641 // input instruction has done it already. See the comment in
2642 // `TryExtractArrayAccessAddress()`.
2643 if (kIsDebugBuild) {
2644 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2645 DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2646 }
2647 temp = array;
2648 } else {
2649 __ Add(temp, array, offset);
2650 }
2651 destination = HeapOperand(temp,
2652 XRegisterFrom(index),
2653 LSL,
2654 DataType::SizeShift(value_type));
2655 }
2656 {
2657 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2658 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2659 codegen_->Store(value_type, value, destination);
2660 codegen_->MaybeRecordImplicitNullCheck(instruction);
2661 }
2662 } else {
2663 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2664
2665 bool can_value_be_null = instruction->GetValueCanBeNull();
2666 vixl::aarch64::Label do_store;
2667 if (can_value_be_null) {
2668 __ Cbz(Register(value), &do_store);
2669 }
2670
2671 SlowPathCodeARM64* slow_path = nullptr;
2672 if (needs_type_check) {
2673 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
2674 codegen_->AddSlowPath(slow_path);
2675
2676 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2677 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2678 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2679
2680 UseScratchRegisterScope temps(masm);
2681 Register temp = temps.AcquireSameSizeAs(array);
2682 Register temp2 = temps.AcquireSameSizeAs(array);
2683
2684 // Note that when Baker read barriers are enabled, the type
2685 // checks are performed without read barriers. This is fine,
2686 // even in the case where a class object is in the from-space
2687 // after the flip, as a comparison involving such a type would
2688 // not produce a false positive; it may of course produce a
2689 // false negative, in which case we would take the ArraySet
2690 // slow path.
2691
2692 // /* HeapReference<Class> */ temp = array->klass_
2693 {
2694 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2695 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2696 __ Ldr(temp, HeapOperand(array, class_offset));
2697 codegen_->MaybeRecordImplicitNullCheck(instruction);
2698 }
2699 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2700
2701 // /* HeapReference<Class> */ temp = temp->component_type_
2702 __ Ldr(temp, HeapOperand(temp, component_offset));
2703 // /* HeapReference<Class> */ temp2 = value->klass_
2704 __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2705 // If heap poisoning is enabled, no need to unpoison `temp`
2706 // nor `temp2`, as we are comparing two poisoned references.
2707 __ Cmp(temp, temp2);
2708
2709 if (instruction->StaticTypeOfArrayIsObjectArray()) {
2710 vixl::aarch64::Label do_put;
2711 __ B(eq, &do_put);
2712 // If heap poisoning is enabled, the `temp` reference has
2713 // not been unpoisoned yet; unpoison it now.
2714 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2715
2716 // /* HeapReference<Class> */ temp = temp->super_class_
2717 __ Ldr(temp, HeapOperand(temp, super_offset));
2718 // If heap poisoning is enabled, no need to unpoison
2719 // `temp`, as we are comparing against null below.
2720 __ Cbnz(temp, slow_path->GetEntryLabel());
2721 __ Bind(&do_put);
2722 } else {
2723 __ B(ne, slow_path->GetEntryLabel());
2724 }
2725 }
2726
2727 codegen_->MarkGCCard(array, value.W(), /* value_can_be_null= */ false);
2728
2729 if (can_value_be_null) {
2730 DCHECK(do_store.IsLinked());
2731 __ Bind(&do_store);
2732 }
2733
2734 UseScratchRegisterScope temps(masm);
2735 if (kPoisonHeapReferences) {
2736 Register temp_source = temps.AcquireSameSizeAs(array);
2737 DCHECK(value.IsW());
2738 __ Mov(temp_source, value.W());
2739 GetAssembler()->PoisonHeapReference(temp_source);
2740 source = temp_source;
2741 }
2742
2743 if (index.IsConstant()) {
2744 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2745 destination = HeapOperand(array, offset);
2746 } else {
2747 Register temp_base = temps.AcquireSameSizeAs(array);
2748 __ Add(temp_base, array, offset);
2749 destination = HeapOperand(temp_base,
2750 XRegisterFrom(index),
2751 LSL,
2752 DataType::SizeShift(value_type));
2753 }
2754
2755 {
2756 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2757 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2758 __ Str(source, destination);
2759
2760 if (can_value_be_null || !needs_type_check) {
2761 codegen_->MaybeRecordImplicitNullCheck(instruction);
2762 }
2763 }
2764
2765 if (slow_path != nullptr) {
2766 __ Bind(slow_path->GetExitLabel());
2767 }
2768 }
2769 }
2770
VisitBoundsCheck(HBoundsCheck * instruction)2771 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2772 RegisterSet caller_saves = RegisterSet::Empty();
2773 InvokeRuntimeCallingConvention calling_convention;
2774 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
2775 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
2776 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
2777
2778 // If both index and length are constant, we can check the bounds statically and
2779 // generate code accordingly. We want to make sure we generate constant locations
2780 // in that case, regardless of whether they are encodable in the comparison or not.
2781 HInstruction* index = instruction->InputAt(0);
2782 HInstruction* length = instruction->InputAt(1);
2783 bool both_const = index->IsConstant() && length->IsConstant();
2784 locations->SetInAt(0, both_const
2785 ? Location::ConstantLocation(index->AsConstant())
2786 : ARM64EncodableConstantOrRegister(index, instruction));
2787 locations->SetInAt(1, both_const
2788 ? Location::ConstantLocation(length->AsConstant())
2789 : ARM64EncodableConstantOrRegister(length, instruction));
2790 }
2791
VisitBoundsCheck(HBoundsCheck * instruction)2792 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2793 LocationSummary* locations = instruction->GetLocations();
2794 Location index_loc = locations->InAt(0);
2795 Location length_loc = locations->InAt(1);
2796
2797 int cmp_first_input = 0;
2798 int cmp_second_input = 1;
2799 Condition cond = hs;
2800
2801 if (index_loc.IsConstant()) {
2802 int64_t index = Int64FromLocation(index_loc);
2803 if (length_loc.IsConstant()) {
2804 int64_t length = Int64FromLocation(length_loc);
2805 if (index < 0 || index >= length) {
2806 BoundsCheckSlowPathARM64* slow_path =
2807 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
2808 codegen_->AddSlowPath(slow_path);
2809 __ B(slow_path->GetEntryLabel());
2810 } else {
2811 // BCE will remove the bounds check if we are guaranteed to pass.
2812 // However, some optimization after BCE may have generated this, and we should not
2813 // generate a bounds check if it is a valid range.
2814 }
2815 return;
2816 }
2817 // Only the index is constant: change the order of the operands and commute the condition
2818 // so we can use an immediate constant for the index (only the second input to a cmp
2819 // instruction can be an immediate).
2820 cmp_first_input = 1;
2821 cmp_second_input = 0;
2822 cond = ls;
2823 }
2824 BoundsCheckSlowPathARM64* slow_path =
2825 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
2826 __ Cmp(InputRegisterAt(instruction, cmp_first_input),
2827 InputOperandAt(instruction, cmp_second_input));
2828 codegen_->AddSlowPath(slow_path);
2829 __ B(slow_path->GetEntryLabel(), cond);
2830 }
2831
VisitClinitCheck(HClinitCheck * check)2832 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
2833 LocationSummary* locations =
2834 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
2835 locations->SetInAt(0, Location::RequiresRegister());
2836 if (check->HasUses()) {
2837 locations->SetOut(Location::SameAsFirstInput());
2838 }
2839 // Rely on the type initialization to save everything we need.
2840 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
2841 }
2842
VisitClinitCheck(HClinitCheck * check)2843 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
2844 // We assume the class is not null.
2845 SlowPathCodeARM64* slow_path =
2846 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
2847 codegen_->AddSlowPath(slow_path);
2848 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
2849 }
2850
IsFloatingPointZeroConstant(HInstruction * inst)2851 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
2852 return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
2853 || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
2854 }
2855
GenerateFcmp(HInstruction * instruction)2856 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
2857 VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
2858 Location rhs_loc = instruction->GetLocations()->InAt(1);
2859 if (rhs_loc.IsConstant()) {
2860 // 0.0 is the only immediate that can be encoded directly in
2861 // an FCMP instruction.
2862 //
2863 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
2864 // specify that in a floating-point comparison, positive zero
2865 // and negative zero are considered equal, so we can use the
2866 // literal 0.0 for both cases here.
2867 //
2868 // Note however that some methods (Float.equal, Float.compare,
2869 // Float.compareTo, Double.equal, Double.compare,
2870 // Double.compareTo, Math.max, Math.min, StrictMath.max,
2871 // StrictMath.min) consider 0.0 to be (strictly) greater than
2872 // -0.0. So if we ever translate calls to these methods into a
2873 // HCompare instruction, we must handle the -0.0 case with
2874 // care here.
2875 DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
2876 __ Fcmp(lhs_reg, 0.0);
2877 } else {
2878 __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
2879 }
2880 }
2881
VisitCompare(HCompare * compare)2882 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
2883 LocationSummary* locations =
2884 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
2885 DataType::Type in_type = compare->InputAt(0)->GetType();
2886 switch (in_type) {
2887 case DataType::Type::kBool:
2888 case DataType::Type::kUint8:
2889 case DataType::Type::kInt8:
2890 case DataType::Type::kUint16:
2891 case DataType::Type::kInt16:
2892 case DataType::Type::kInt32:
2893 case DataType::Type::kInt64: {
2894 locations->SetInAt(0, Location::RequiresRegister());
2895 locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
2896 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2897 break;
2898 }
2899 case DataType::Type::kFloat32:
2900 case DataType::Type::kFloat64: {
2901 locations->SetInAt(0, Location::RequiresFpuRegister());
2902 locations->SetInAt(1,
2903 IsFloatingPointZeroConstant(compare->InputAt(1))
2904 ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
2905 : Location::RequiresFpuRegister());
2906 locations->SetOut(Location::RequiresRegister());
2907 break;
2908 }
2909 default:
2910 LOG(FATAL) << "Unexpected type for compare operation " << in_type;
2911 }
2912 }
2913
VisitCompare(HCompare * compare)2914 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
2915 DataType::Type in_type = compare->InputAt(0)->GetType();
2916
2917 // 0 if: left == right
2918 // 1 if: left > right
2919 // -1 if: left < right
2920 switch (in_type) {
2921 case DataType::Type::kBool:
2922 case DataType::Type::kUint8:
2923 case DataType::Type::kInt8:
2924 case DataType::Type::kUint16:
2925 case DataType::Type::kInt16:
2926 case DataType::Type::kInt32:
2927 case DataType::Type::kInt64: {
2928 Register result = OutputRegister(compare);
2929 Register left = InputRegisterAt(compare, 0);
2930 Operand right = InputOperandAt(compare, 1);
2931 __ Cmp(left, right);
2932 __ Cset(result, ne); // result == +1 if NE or 0 otherwise
2933 __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise
2934 break;
2935 }
2936 case DataType::Type::kFloat32:
2937 case DataType::Type::kFloat64: {
2938 Register result = OutputRegister(compare);
2939 GenerateFcmp(compare);
2940 __ Cset(result, ne);
2941 __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
2942 break;
2943 }
2944 default:
2945 LOG(FATAL) << "Unimplemented compare type " << in_type;
2946 }
2947 }
2948
HandleCondition(HCondition * instruction)2949 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
2950 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2951
2952 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2953 locations->SetInAt(0, Location::RequiresFpuRegister());
2954 locations->SetInAt(1,
2955 IsFloatingPointZeroConstant(instruction->InputAt(1))
2956 ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
2957 : Location::RequiresFpuRegister());
2958 } else {
2959 // Integer cases.
2960 locations->SetInAt(0, Location::RequiresRegister());
2961 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2962 }
2963
2964 if (!instruction->IsEmittedAtUseSite()) {
2965 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2966 }
2967 }
2968
HandleCondition(HCondition * instruction)2969 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
2970 if (instruction->IsEmittedAtUseSite()) {
2971 return;
2972 }
2973
2974 LocationSummary* locations = instruction->GetLocations();
2975 Register res = RegisterFrom(locations->Out(), instruction->GetType());
2976 IfCondition if_cond = instruction->GetCondition();
2977
2978 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2979 GenerateFcmp(instruction);
2980 __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
2981 } else {
2982 // Integer cases.
2983 Register lhs = InputRegisterAt(instruction, 0);
2984 Operand rhs = InputOperandAt(instruction, 1);
2985 __ Cmp(lhs, rhs);
2986 __ Cset(res, ARM64Condition(if_cond));
2987 }
2988 }
2989
2990 #define FOR_EACH_CONDITION_INSTRUCTION(M) \
2991 M(Equal) \
2992 M(NotEqual) \
2993 M(LessThan) \
2994 M(LessThanOrEqual) \
2995 M(GreaterThan) \
2996 M(GreaterThanOrEqual) \
2997 M(Below) \
2998 M(BelowOrEqual) \
2999 M(Above) \
3000 M(AboveOrEqual)
3001 #define DEFINE_CONDITION_VISITORS(Name) \
3002 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
3003 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)3004 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
3005 #undef DEFINE_CONDITION_VISITORS
3006 #undef FOR_EACH_CONDITION_INSTRUCTION
3007
3008 void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
3009 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3010 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3011 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
3012
3013 Register out = OutputRegister(instruction);
3014 Register dividend = InputRegisterAt(instruction, 0);
3015
3016 if (abs_imm == 2) {
3017 int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
3018 __ Add(out, dividend, Operand(dividend, LSR, bits - 1));
3019 } else {
3020 UseScratchRegisterScope temps(GetVIXLAssembler());
3021 Register temp = temps.AcquireSameSizeAs(out);
3022 __ Add(temp, dividend, abs_imm - 1);
3023 __ Cmp(dividend, 0);
3024 __ Csel(out, temp, dividend, lt);
3025 }
3026
3027 int ctz_imm = CTZ(abs_imm);
3028 if (imm > 0) {
3029 __ Asr(out, out, ctz_imm);
3030 } else {
3031 __ Neg(out, Operand(out, ASR, ctz_imm));
3032 }
3033 }
3034
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3035 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3036 DCHECK(instruction->IsDiv() || instruction->IsRem());
3037
3038 LocationSummary* locations = instruction->GetLocations();
3039 Location second = locations->InAt(1);
3040 DCHECK(second.IsConstant());
3041
3042 Register out = OutputRegister(instruction);
3043 Register dividend = InputRegisterAt(instruction, 0);
3044 int64_t imm = Int64FromConstant(second.GetConstant());
3045
3046 DataType::Type type = instruction->GetResultType();
3047 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
3048
3049 int64_t magic;
3050 int shift;
3051 CalculateMagicAndShiftForDivRem(
3052 imm, /* is_long= */ type == DataType::Type::kInt64, &magic, &shift);
3053
3054 UseScratchRegisterScope temps(GetVIXLAssembler());
3055 Register temp = temps.AcquireSameSizeAs(out);
3056
3057 // temp = get_high(dividend * magic)
3058 __ Mov(temp, magic);
3059 if (type == DataType::Type::kInt64) {
3060 __ Smulh(temp, dividend, temp);
3061 } else {
3062 __ Smull(temp.X(), dividend, temp);
3063 __ Lsr(temp.X(), temp.X(), 32);
3064 }
3065
3066 if (imm > 0 && magic < 0) {
3067 __ Add(temp, temp, dividend);
3068 } else if (imm < 0 && magic > 0) {
3069 __ Sub(temp, temp, dividend);
3070 }
3071
3072 if (shift != 0) {
3073 __ Asr(temp, temp, shift);
3074 }
3075
3076 if (instruction->IsDiv()) {
3077 __ Sub(out, temp, Operand(temp, ASR, type == DataType::Type::kInt64 ? 63 : 31));
3078 } else {
3079 __ Sub(temp, temp, Operand(temp, ASR, type == DataType::Type::kInt64 ? 63 : 31));
3080 // TODO: Strength reduction for msub.
3081 Register temp_imm = temps.AcquireSameSizeAs(out);
3082 __ Mov(temp_imm, imm);
3083 __ Msub(out, temp, temp_imm, dividend);
3084 }
3085 }
3086
GenerateIntDivForConstDenom(HDiv * instruction)3087 void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
3088 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3089
3090 if (imm == 0) {
3091 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3092 return;
3093 }
3094
3095 if (IsPowerOfTwo(AbsOrMin(imm))) {
3096 GenerateIntDivForPower2Denom(instruction);
3097 } else {
3098 // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
3099 DCHECK(imm < -2 || imm > 2) << imm;
3100 GenerateDivRemWithAnyConstant(instruction);
3101 }
3102 }
3103
GenerateIntDiv(HDiv * instruction)3104 void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
3105 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
3106 << instruction->GetResultType();
3107
3108 if (instruction->GetLocations()->InAt(1).IsConstant()) {
3109 GenerateIntDivForConstDenom(instruction);
3110 } else {
3111 Register out = OutputRegister(instruction);
3112 Register dividend = InputRegisterAt(instruction, 0);
3113 Register divisor = InputRegisterAt(instruction, 1);
3114 __ Sdiv(out, dividend, divisor);
3115 }
3116 }
3117
VisitDiv(HDiv * div)3118 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
3119 LocationSummary* locations =
3120 new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
3121 switch (div->GetResultType()) {
3122 case DataType::Type::kInt32:
3123 case DataType::Type::kInt64:
3124 locations->SetInAt(0, Location::RequiresRegister());
3125 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3126 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3127 break;
3128
3129 case DataType::Type::kFloat32:
3130 case DataType::Type::kFloat64:
3131 locations->SetInAt(0, Location::RequiresFpuRegister());
3132 locations->SetInAt(1, Location::RequiresFpuRegister());
3133 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3134 break;
3135
3136 default:
3137 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3138 }
3139 }
3140
VisitDiv(HDiv * div)3141 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
3142 DataType::Type type = div->GetResultType();
3143 switch (type) {
3144 case DataType::Type::kInt32:
3145 case DataType::Type::kInt64:
3146 GenerateIntDiv(div);
3147 break;
3148
3149 case DataType::Type::kFloat32:
3150 case DataType::Type::kFloat64:
3151 __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
3152 break;
3153
3154 default:
3155 LOG(FATAL) << "Unexpected div type " << type;
3156 }
3157 }
3158
VisitDivZeroCheck(HDivZeroCheck * instruction)3159 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3160 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3161 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3162 }
3163
VisitDivZeroCheck(HDivZeroCheck * instruction)3164 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3165 SlowPathCodeARM64* slow_path =
3166 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
3167 codegen_->AddSlowPath(slow_path);
3168 Location value = instruction->GetLocations()->InAt(0);
3169
3170 DataType::Type type = instruction->GetType();
3171
3172 if (!DataType::IsIntegralType(type)) {
3173 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3174 UNREACHABLE();
3175 }
3176
3177 if (value.IsConstant()) {
3178 int64_t divisor = Int64FromLocation(value);
3179 if (divisor == 0) {
3180 __ B(slow_path->GetEntryLabel());
3181 } else {
3182 // A division by a non-null constant is valid. We don't need to perform
3183 // any check, so simply fall through.
3184 }
3185 } else {
3186 __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
3187 }
3188 }
3189
VisitDoubleConstant(HDoubleConstant * constant)3190 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
3191 LocationSummary* locations =
3192 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3193 locations->SetOut(Location::ConstantLocation(constant));
3194 }
3195
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3196 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
3197 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3198 // Will be generated at use site.
3199 }
3200
VisitExit(HExit * exit)3201 void LocationsBuilderARM64::VisitExit(HExit* exit) {
3202 exit->SetLocations(nullptr);
3203 }
3204
VisitExit(HExit * exit ATTRIBUTE_UNUSED)3205 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
3206 }
3207
VisitFloatConstant(HFloatConstant * constant)3208 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
3209 LocationSummary* locations =
3210 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3211 locations->SetOut(Location::ConstantLocation(constant));
3212 }
3213
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3214 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
3215 // Will be generated at use site.
3216 }
3217
HandleGoto(HInstruction * got,HBasicBlock * successor)3218 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
3219 if (successor->IsExitBlock()) {
3220 DCHECK(got->GetPrevious()->AlwaysThrows());
3221 return; // no code needed
3222 }
3223
3224 HBasicBlock* block = got->GetBlock();
3225 HInstruction* previous = got->GetPrevious();
3226 HLoopInformation* info = block->GetLoopInformation();
3227
3228 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
3229 codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
3230 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
3231 return;
3232 }
3233 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
3234 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
3235 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
3236 }
3237 if (!codegen_->GoesToNextBlock(block, successor)) {
3238 __ B(codegen_->GetLabelOf(successor));
3239 }
3240 }
3241
VisitGoto(HGoto * got)3242 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
3243 got->SetLocations(nullptr);
3244 }
3245
VisitGoto(HGoto * got)3246 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
3247 HandleGoto(got, got->GetSuccessor());
3248 }
3249
VisitTryBoundary(HTryBoundary * try_boundary)3250 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3251 try_boundary->SetLocations(nullptr);
3252 }
3253
VisitTryBoundary(HTryBoundary * try_boundary)3254 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3255 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
3256 if (!successor->IsExitBlock()) {
3257 HandleGoto(try_boundary, successor);
3258 }
3259 }
3260
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::aarch64::Label * true_target,vixl::aarch64::Label * false_target)3261 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
3262 size_t condition_input_index,
3263 vixl::aarch64::Label* true_target,
3264 vixl::aarch64::Label* false_target) {
3265 HInstruction* cond = instruction->InputAt(condition_input_index);
3266
3267 if (true_target == nullptr && false_target == nullptr) {
3268 // Nothing to do. The code always falls through.
3269 return;
3270 } else if (cond->IsIntConstant()) {
3271 // Constant condition, statically compared against "true" (integer value 1).
3272 if (cond->AsIntConstant()->IsTrue()) {
3273 if (true_target != nullptr) {
3274 __ B(true_target);
3275 }
3276 } else {
3277 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
3278 if (false_target != nullptr) {
3279 __ B(false_target);
3280 }
3281 }
3282 return;
3283 }
3284
3285 // The following code generates these patterns:
3286 // (1) true_target == nullptr && false_target != nullptr
3287 // - opposite condition true => branch to false_target
3288 // (2) true_target != nullptr && false_target == nullptr
3289 // - condition true => branch to true_target
3290 // (3) true_target != nullptr && false_target != nullptr
3291 // - condition true => branch to true_target
3292 // - branch to false_target
3293 if (IsBooleanValueOrMaterializedCondition(cond)) {
3294 // The condition instruction has been materialized, compare the output to 0.
3295 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
3296 DCHECK(cond_val.IsRegister());
3297 if (true_target == nullptr) {
3298 __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
3299 } else {
3300 __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
3301 }
3302 } else {
3303 // The condition instruction has not been materialized, use its inputs as
3304 // the comparison and its condition as the branch condition.
3305 HCondition* condition = cond->AsCondition();
3306
3307 DataType::Type type = condition->InputAt(0)->GetType();
3308 if (DataType::IsFloatingPointType(type)) {
3309 GenerateFcmp(condition);
3310 if (true_target == nullptr) {
3311 IfCondition opposite_condition = condition->GetOppositeCondition();
3312 __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
3313 } else {
3314 __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
3315 }
3316 } else {
3317 // Integer cases.
3318 Register lhs = InputRegisterAt(condition, 0);
3319 Operand rhs = InputOperandAt(condition, 1);
3320
3321 Condition arm64_cond;
3322 vixl::aarch64::Label* non_fallthrough_target;
3323 if (true_target == nullptr) {
3324 arm64_cond = ARM64Condition(condition->GetOppositeCondition());
3325 non_fallthrough_target = false_target;
3326 } else {
3327 arm64_cond = ARM64Condition(condition->GetCondition());
3328 non_fallthrough_target = true_target;
3329 }
3330
3331 if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
3332 rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
3333 switch (arm64_cond) {
3334 case eq:
3335 __ Cbz(lhs, non_fallthrough_target);
3336 break;
3337 case ne:
3338 __ Cbnz(lhs, non_fallthrough_target);
3339 break;
3340 case lt:
3341 // Test the sign bit and branch accordingly.
3342 __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3343 break;
3344 case ge:
3345 // Test the sign bit and branch accordingly.
3346 __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3347 break;
3348 default:
3349 // Without the `static_cast` the compiler throws an error for
3350 // `-Werror=sign-promo`.
3351 LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
3352 }
3353 } else {
3354 __ Cmp(lhs, rhs);
3355 __ B(arm64_cond, non_fallthrough_target);
3356 }
3357 }
3358 }
3359
3360 // If neither branch falls through (case 3), the conditional branch to `true_target`
3361 // was already emitted (case 2) and we need to emit a jump to `false_target`.
3362 if (true_target != nullptr && false_target != nullptr) {
3363 __ B(false_target);
3364 }
3365 }
3366
VisitIf(HIf * if_instr)3367 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
3368 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
3369 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
3370 locations->SetInAt(0, Location::RequiresRegister());
3371 }
3372 }
3373
VisitIf(HIf * if_instr)3374 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
3375 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
3376 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
3377 vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
3378 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
3379 true_target = nullptr;
3380 }
3381 vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
3382 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
3383 false_target = nullptr;
3384 }
3385 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
3386 }
3387
VisitDeoptimize(HDeoptimize * deoptimize)3388 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3389 LocationSummary* locations = new (GetGraph()->GetAllocator())
3390 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
3391 InvokeRuntimeCallingConvention calling_convention;
3392 RegisterSet caller_saves = RegisterSet::Empty();
3393 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3394 locations->SetCustomSlowPathCallerSaves(caller_saves);
3395 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
3396 locations->SetInAt(0, Location::RequiresRegister());
3397 }
3398 }
3399
VisitDeoptimize(HDeoptimize * deoptimize)3400 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3401 SlowPathCodeARM64* slow_path =
3402 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
3403 GenerateTestAndBranch(deoptimize,
3404 /* condition_input_index= */ 0,
3405 slow_path->GetEntryLabel(),
3406 /* false_target= */ nullptr);
3407 }
3408
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3409 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3410 LocationSummary* locations = new (GetGraph()->GetAllocator())
3411 LocationSummary(flag, LocationSummary::kNoCall);
3412 locations->SetOut(Location::RequiresRegister());
3413 }
3414
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3415 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3416 __ Ldr(OutputRegister(flag),
3417 MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
3418 }
3419
IsConditionOnFloatingPointValues(HInstruction * condition)3420 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
3421 return condition->IsCondition() &&
3422 DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
3423 }
3424
GetConditionForSelect(HCondition * condition)3425 static inline Condition GetConditionForSelect(HCondition* condition) {
3426 IfCondition cond = condition->AsCondition()->GetCondition();
3427 return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
3428 : ARM64Condition(cond);
3429 }
3430
VisitSelect(HSelect * select)3431 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
3432 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
3433 if (DataType::IsFloatingPointType(select->GetType())) {
3434 locations->SetInAt(0, Location::RequiresFpuRegister());
3435 locations->SetInAt(1, Location::RequiresFpuRegister());
3436 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3437 } else {
3438 HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
3439 HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
3440 bool is_true_value_constant = cst_true_value != nullptr;
3441 bool is_false_value_constant = cst_false_value != nullptr;
3442 // Ask VIXL whether we should synthesize constants in registers.
3443 // We give an arbitrary register to VIXL when dealing with non-constant inputs.
3444 Operand true_op = is_true_value_constant ?
3445 Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
3446 Operand false_op = is_false_value_constant ?
3447 Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
3448 bool true_value_in_register = false;
3449 bool false_value_in_register = false;
3450 MacroAssembler::GetCselSynthesisInformation(
3451 x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
3452 true_value_in_register |= !is_true_value_constant;
3453 false_value_in_register |= !is_false_value_constant;
3454
3455 locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
3456 : Location::ConstantLocation(cst_true_value));
3457 locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
3458 : Location::ConstantLocation(cst_false_value));
3459 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3460 }
3461
3462 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3463 locations->SetInAt(2, Location::RequiresRegister());
3464 }
3465 }
3466
VisitSelect(HSelect * select)3467 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3468 HInstruction* cond = select->GetCondition();
3469 Condition csel_cond;
3470
3471 if (IsBooleanValueOrMaterializedCondition(cond)) {
3472 if (cond->IsCondition() && cond->GetNext() == select) {
3473 // Use the condition flags set by the previous instruction.
3474 csel_cond = GetConditionForSelect(cond->AsCondition());
3475 } else {
3476 __ Cmp(InputRegisterAt(select, 2), 0);
3477 csel_cond = ne;
3478 }
3479 } else if (IsConditionOnFloatingPointValues(cond)) {
3480 GenerateFcmp(cond);
3481 csel_cond = GetConditionForSelect(cond->AsCondition());
3482 } else {
3483 __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
3484 csel_cond = GetConditionForSelect(cond->AsCondition());
3485 }
3486
3487 if (DataType::IsFloatingPointType(select->GetType())) {
3488 __ Fcsel(OutputFPRegister(select),
3489 InputFPRegisterAt(select, 1),
3490 InputFPRegisterAt(select, 0),
3491 csel_cond);
3492 } else {
3493 __ Csel(OutputRegister(select),
3494 InputOperandAt(select, 1),
3495 InputOperandAt(select, 0),
3496 csel_cond);
3497 }
3498 }
3499
VisitNativeDebugInfo(HNativeDebugInfo * info)3500 void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3501 new (GetGraph()->GetAllocator()) LocationSummary(info);
3502 }
3503
VisitNativeDebugInfo(HNativeDebugInfo *)3504 void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
3505 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
3506 }
3507
GenerateNop()3508 void CodeGeneratorARM64::GenerateNop() {
3509 __ Nop();
3510 }
3511
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3512 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3513 HandleFieldGet(instruction, instruction->GetFieldInfo());
3514 }
3515
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3516 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3517 HandleFieldGet(instruction, instruction->GetFieldInfo());
3518 }
3519
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3520 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3521 HandleFieldSet(instruction);
3522 }
3523
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3524 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3525 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
3526 }
3527
3528 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)3529 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
3530 if (kEmitCompilerReadBarrier &&
3531 (kUseBakerReadBarrier ||
3532 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3533 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3534 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
3535 return 1;
3536 }
3537 return 0;
3538 }
3539
3540 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
3541 // interface pointer, one for loading the current interface.
3542 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)3543 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
3544 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
3545 return 3;
3546 }
3547 return 1 + NumberOfInstanceOfTemps(type_check_kind);
3548 }
3549
VisitInstanceOf(HInstanceOf * instruction)3550 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
3551 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3552 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3553 bool baker_read_barrier_slow_path = false;
3554 switch (type_check_kind) {
3555 case TypeCheckKind::kExactCheck:
3556 case TypeCheckKind::kAbstractClassCheck:
3557 case TypeCheckKind::kClassHierarchyCheck:
3558 case TypeCheckKind::kArrayObjectCheck: {
3559 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
3560 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3561 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
3562 break;
3563 }
3564 case TypeCheckKind::kArrayCheck:
3565 case TypeCheckKind::kUnresolvedCheck:
3566 case TypeCheckKind::kInterfaceCheck:
3567 call_kind = LocationSummary::kCallOnSlowPath;
3568 break;
3569 case TypeCheckKind::kBitstringCheck:
3570 break;
3571 }
3572
3573 LocationSummary* locations =
3574 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3575 if (baker_read_barrier_slow_path) {
3576 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
3577 }
3578 locations->SetInAt(0, Location::RequiresRegister());
3579 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3580 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
3581 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
3582 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
3583 } else {
3584 locations->SetInAt(1, Location::RequiresRegister());
3585 }
3586 // The "out" register is used as a temporary, so it overlaps with the inputs.
3587 // Note that TypeCheckSlowPathARM64 uses this register too.
3588 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3589 // Add temps if necessary for read barriers.
3590 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
3591 }
3592
VisitInstanceOf(HInstanceOf * instruction)3593 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
3594 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3595 LocationSummary* locations = instruction->GetLocations();
3596 Location obj_loc = locations->InAt(0);
3597 Register obj = InputRegisterAt(instruction, 0);
3598 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
3599 ? Register()
3600 : InputRegisterAt(instruction, 1);
3601 Location out_loc = locations->Out();
3602 Register out = OutputRegister(instruction);
3603 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
3604 DCHECK_LE(num_temps, 1u);
3605 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
3606 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3607 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3608 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3609 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3610
3611 vixl::aarch64::Label done, zero;
3612 SlowPathCodeARM64* slow_path = nullptr;
3613
3614 // Return 0 if `obj` is null.
3615 // Avoid null check if we know `obj` is not null.
3616 if (instruction->MustDoNullCheck()) {
3617 __ Cbz(obj, &zero);
3618 }
3619
3620 switch (type_check_kind) {
3621 case TypeCheckKind::kExactCheck: {
3622 ReadBarrierOption read_barrier_option =
3623 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3624 // /* HeapReference<Class> */ out = obj->klass_
3625 GenerateReferenceLoadTwoRegisters(instruction,
3626 out_loc,
3627 obj_loc,
3628 class_offset,
3629 maybe_temp_loc,
3630 read_barrier_option);
3631 __ Cmp(out, cls);
3632 __ Cset(out, eq);
3633 if (zero.IsLinked()) {
3634 __ B(&done);
3635 }
3636 break;
3637 }
3638
3639 case TypeCheckKind::kAbstractClassCheck: {
3640 ReadBarrierOption read_barrier_option =
3641 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3642 // /* HeapReference<Class> */ out = obj->klass_
3643 GenerateReferenceLoadTwoRegisters(instruction,
3644 out_loc,
3645 obj_loc,
3646 class_offset,
3647 maybe_temp_loc,
3648 read_barrier_option);
3649 // If the class is abstract, we eagerly fetch the super class of the
3650 // object to avoid doing a comparison we know will fail.
3651 vixl::aarch64::Label loop, success;
3652 __ Bind(&loop);
3653 // /* HeapReference<Class> */ out = out->super_class_
3654 GenerateReferenceLoadOneRegister(instruction,
3655 out_loc,
3656 super_offset,
3657 maybe_temp_loc,
3658 read_barrier_option);
3659 // If `out` is null, we use it for the result, and jump to `done`.
3660 __ Cbz(out, &done);
3661 __ Cmp(out, cls);
3662 __ B(ne, &loop);
3663 __ Mov(out, 1);
3664 if (zero.IsLinked()) {
3665 __ B(&done);
3666 }
3667 break;
3668 }
3669
3670 case TypeCheckKind::kClassHierarchyCheck: {
3671 ReadBarrierOption read_barrier_option =
3672 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3673 // /* HeapReference<Class> */ out = obj->klass_
3674 GenerateReferenceLoadTwoRegisters(instruction,
3675 out_loc,
3676 obj_loc,
3677 class_offset,
3678 maybe_temp_loc,
3679 read_barrier_option);
3680 // Walk over the class hierarchy to find a match.
3681 vixl::aarch64::Label loop, success;
3682 __ Bind(&loop);
3683 __ Cmp(out, cls);
3684 __ B(eq, &success);
3685 // /* HeapReference<Class> */ out = out->super_class_
3686 GenerateReferenceLoadOneRegister(instruction,
3687 out_loc,
3688 super_offset,
3689 maybe_temp_loc,
3690 read_barrier_option);
3691 __ Cbnz(out, &loop);
3692 // If `out` is null, we use it for the result, and jump to `done`.
3693 __ B(&done);
3694 __ Bind(&success);
3695 __ Mov(out, 1);
3696 if (zero.IsLinked()) {
3697 __ B(&done);
3698 }
3699 break;
3700 }
3701
3702 case TypeCheckKind::kArrayObjectCheck: {
3703 ReadBarrierOption read_barrier_option =
3704 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3705 // /* HeapReference<Class> */ out = obj->klass_
3706 GenerateReferenceLoadTwoRegisters(instruction,
3707 out_loc,
3708 obj_loc,
3709 class_offset,
3710 maybe_temp_loc,
3711 read_barrier_option);
3712 // Do an exact check.
3713 vixl::aarch64::Label exact_check;
3714 __ Cmp(out, cls);
3715 __ B(eq, &exact_check);
3716 // Otherwise, we need to check that the object's class is a non-primitive array.
3717 // /* HeapReference<Class> */ out = out->component_type_
3718 GenerateReferenceLoadOneRegister(instruction,
3719 out_loc,
3720 component_offset,
3721 maybe_temp_loc,
3722 read_barrier_option);
3723 // If `out` is null, we use it for the result, and jump to `done`.
3724 __ Cbz(out, &done);
3725 __ Ldrh(out, HeapOperand(out, primitive_offset));
3726 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3727 __ Cbnz(out, &zero);
3728 __ Bind(&exact_check);
3729 __ Mov(out, 1);
3730 __ B(&done);
3731 break;
3732 }
3733
3734 case TypeCheckKind::kArrayCheck: {
3735 // No read barrier since the slow path will retry upon failure.
3736 // /* HeapReference<Class> */ out = obj->klass_
3737 GenerateReferenceLoadTwoRegisters(instruction,
3738 out_loc,
3739 obj_loc,
3740 class_offset,
3741 maybe_temp_loc,
3742 kWithoutReadBarrier);
3743 __ Cmp(out, cls);
3744 DCHECK(locations->OnlyCallsOnSlowPath());
3745 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
3746 instruction, /* is_fatal= */ false);
3747 codegen_->AddSlowPath(slow_path);
3748 __ B(ne, slow_path->GetEntryLabel());
3749 __ Mov(out, 1);
3750 if (zero.IsLinked()) {
3751 __ B(&done);
3752 }
3753 break;
3754 }
3755
3756 case TypeCheckKind::kUnresolvedCheck:
3757 case TypeCheckKind::kInterfaceCheck: {
3758 // Note that we indeed only call on slow path, but we always go
3759 // into the slow path for the unresolved and interface check
3760 // cases.
3761 //
3762 // We cannot directly call the InstanceofNonTrivial runtime
3763 // entry point without resorting to a type checking slow path
3764 // here (i.e. by calling InvokeRuntime directly), as it would
3765 // require to assign fixed registers for the inputs of this
3766 // HInstanceOf instruction (following the runtime calling
3767 // convention), which might be cluttered by the potential first
3768 // read barrier emission at the beginning of this method.
3769 //
3770 // TODO: Introduce a new runtime entry point taking the object
3771 // to test (instead of its class) as argument, and let it deal
3772 // with the read barrier issues. This will let us refactor this
3773 // case of the `switch` code as it was previously (with a direct
3774 // call to the runtime not using a type checking slow path).
3775 // This should also be beneficial for the other cases above.
3776 DCHECK(locations->OnlyCallsOnSlowPath());
3777 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
3778 instruction, /* is_fatal= */ false);
3779 codegen_->AddSlowPath(slow_path);
3780 __ B(slow_path->GetEntryLabel());
3781 if (zero.IsLinked()) {
3782 __ B(&done);
3783 }
3784 break;
3785 }
3786
3787 case TypeCheckKind::kBitstringCheck: {
3788 // /* HeapReference<Class> */ temp = obj->klass_
3789 GenerateReferenceLoadTwoRegisters(instruction,
3790 out_loc,
3791 obj_loc,
3792 class_offset,
3793 maybe_temp_loc,
3794 kWithoutReadBarrier);
3795
3796 GenerateBitstringTypeCheckCompare(instruction, out);
3797 __ Cset(out, eq);
3798 if (zero.IsLinked()) {
3799 __ B(&done);
3800 }
3801 break;
3802 }
3803 }
3804
3805 if (zero.IsLinked()) {
3806 __ Bind(&zero);
3807 __ Mov(out, 0);
3808 }
3809
3810 if (done.IsLinked()) {
3811 __ Bind(&done);
3812 }
3813
3814 if (slow_path != nullptr) {
3815 __ Bind(slow_path->GetExitLabel());
3816 }
3817 }
3818
VisitCheckCast(HCheckCast * instruction)3819 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
3820 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3821 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
3822 LocationSummary* locations =
3823 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3824 locations->SetInAt(0, Location::RequiresRegister());
3825 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3826 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
3827 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
3828 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
3829 } else {
3830 locations->SetInAt(1, Location::RequiresRegister());
3831 }
3832 // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64.
3833 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
3834 }
3835
VisitCheckCast(HCheckCast * instruction)3836 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
3837 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3838 LocationSummary* locations = instruction->GetLocations();
3839 Location obj_loc = locations->InAt(0);
3840 Register obj = InputRegisterAt(instruction, 0);
3841 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
3842 ? Register()
3843 : InputRegisterAt(instruction, 1);
3844 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
3845 DCHECK_GE(num_temps, 1u);
3846 DCHECK_LE(num_temps, 3u);
3847 Location temp_loc = locations->GetTemp(0);
3848 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
3849 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
3850 Register temp = WRegisterFrom(temp_loc);
3851 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3852 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3853 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3854 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3855 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
3856 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
3857 const uint32_t object_array_data_offset =
3858 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3859
3860 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
3861 SlowPathCodeARM64* type_check_slow_path =
3862 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
3863 instruction, is_type_check_slow_path_fatal);
3864 codegen_->AddSlowPath(type_check_slow_path);
3865
3866 vixl::aarch64::Label done;
3867 // Avoid null check if we know obj is not null.
3868 if (instruction->MustDoNullCheck()) {
3869 __ Cbz(obj, &done);
3870 }
3871
3872 switch (type_check_kind) {
3873 case TypeCheckKind::kExactCheck:
3874 case TypeCheckKind::kArrayCheck: {
3875 // /* HeapReference<Class> */ temp = obj->klass_
3876 GenerateReferenceLoadTwoRegisters(instruction,
3877 temp_loc,
3878 obj_loc,
3879 class_offset,
3880 maybe_temp2_loc,
3881 kWithoutReadBarrier);
3882
3883 __ Cmp(temp, cls);
3884 // Jump to slow path for throwing the exception or doing a
3885 // more involved array check.
3886 __ B(ne, type_check_slow_path->GetEntryLabel());
3887 break;
3888 }
3889
3890 case TypeCheckKind::kAbstractClassCheck: {
3891 // /* HeapReference<Class> */ temp = obj->klass_
3892 GenerateReferenceLoadTwoRegisters(instruction,
3893 temp_loc,
3894 obj_loc,
3895 class_offset,
3896 maybe_temp2_loc,
3897 kWithoutReadBarrier);
3898
3899 // If the class is abstract, we eagerly fetch the super class of the
3900 // object to avoid doing a comparison we know will fail.
3901 vixl::aarch64::Label loop;
3902 __ Bind(&loop);
3903 // /* HeapReference<Class> */ temp = temp->super_class_
3904 GenerateReferenceLoadOneRegister(instruction,
3905 temp_loc,
3906 super_offset,
3907 maybe_temp2_loc,
3908 kWithoutReadBarrier);
3909
3910 // If the class reference currently in `temp` is null, jump to the slow path to throw the
3911 // exception.
3912 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
3913 // Otherwise, compare classes.
3914 __ Cmp(temp, cls);
3915 __ B(ne, &loop);
3916 break;
3917 }
3918
3919 case TypeCheckKind::kClassHierarchyCheck: {
3920 // /* HeapReference<Class> */ temp = obj->klass_
3921 GenerateReferenceLoadTwoRegisters(instruction,
3922 temp_loc,
3923 obj_loc,
3924 class_offset,
3925 maybe_temp2_loc,
3926 kWithoutReadBarrier);
3927
3928 // Walk over the class hierarchy to find a match.
3929 vixl::aarch64::Label loop;
3930 __ Bind(&loop);
3931 __ Cmp(temp, cls);
3932 __ B(eq, &done);
3933
3934 // /* HeapReference<Class> */ temp = temp->super_class_
3935 GenerateReferenceLoadOneRegister(instruction,
3936 temp_loc,
3937 super_offset,
3938 maybe_temp2_loc,
3939 kWithoutReadBarrier);
3940
3941 // If the class reference currently in `temp` is not null, jump
3942 // back at the beginning of the loop.
3943 __ Cbnz(temp, &loop);
3944 // Otherwise, jump to the slow path to throw the exception.
3945 __ B(type_check_slow_path->GetEntryLabel());
3946 break;
3947 }
3948
3949 case TypeCheckKind::kArrayObjectCheck: {
3950 // /* HeapReference<Class> */ temp = obj->klass_
3951 GenerateReferenceLoadTwoRegisters(instruction,
3952 temp_loc,
3953 obj_loc,
3954 class_offset,
3955 maybe_temp2_loc,
3956 kWithoutReadBarrier);
3957
3958 // Do an exact check.
3959 __ Cmp(temp, cls);
3960 __ B(eq, &done);
3961
3962 // Otherwise, we need to check that the object's class is a non-primitive array.
3963 // /* HeapReference<Class> */ temp = temp->component_type_
3964 GenerateReferenceLoadOneRegister(instruction,
3965 temp_loc,
3966 component_offset,
3967 maybe_temp2_loc,
3968 kWithoutReadBarrier);
3969
3970 // If the component type is null, jump to the slow path to throw the exception.
3971 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
3972 // Otherwise, the object is indeed an array. Further check that this component type is not a
3973 // primitive type.
3974 __ Ldrh(temp, HeapOperand(temp, primitive_offset));
3975 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3976 __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
3977 break;
3978 }
3979
3980 case TypeCheckKind::kUnresolvedCheck:
3981 // We always go into the type check slow path for the unresolved check cases.
3982 //
3983 // We cannot directly call the CheckCast runtime entry point
3984 // without resorting to a type checking slow path here (i.e. by
3985 // calling InvokeRuntime directly), as it would require to
3986 // assign fixed registers for the inputs of this HInstanceOf
3987 // instruction (following the runtime calling convention), which
3988 // might be cluttered by the potential first read barrier
3989 // emission at the beginning of this method.
3990 __ B(type_check_slow_path->GetEntryLabel());
3991 break;
3992 case TypeCheckKind::kInterfaceCheck: {
3993 // /* HeapReference<Class> */ temp = obj->klass_
3994 GenerateReferenceLoadTwoRegisters(instruction,
3995 temp_loc,
3996 obj_loc,
3997 class_offset,
3998 maybe_temp2_loc,
3999 kWithoutReadBarrier);
4000
4001 // /* HeapReference<Class> */ temp = temp->iftable_
4002 GenerateReferenceLoadTwoRegisters(instruction,
4003 temp_loc,
4004 temp_loc,
4005 iftable_offset,
4006 maybe_temp2_loc,
4007 kWithoutReadBarrier);
4008 // Iftable is never null.
4009 __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
4010 // Loop through the iftable and check if any class matches.
4011 vixl::aarch64::Label start_loop;
4012 __ Bind(&start_loop);
4013 __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
4014 __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
4015 GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
4016 // Go to next interface.
4017 __ Add(temp, temp, 2 * kHeapReferenceSize);
4018 __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
4019 // Compare the classes and continue the loop if they do not match.
4020 __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
4021 __ B(ne, &start_loop);
4022 break;
4023 }
4024
4025 case TypeCheckKind::kBitstringCheck: {
4026 // /* HeapReference<Class> */ temp = obj->klass_
4027 GenerateReferenceLoadTwoRegisters(instruction,
4028 temp_loc,
4029 obj_loc,
4030 class_offset,
4031 maybe_temp2_loc,
4032 kWithoutReadBarrier);
4033
4034 GenerateBitstringTypeCheckCompare(instruction, temp);
4035 __ B(ne, type_check_slow_path->GetEntryLabel());
4036 break;
4037 }
4038 }
4039 __ Bind(&done);
4040
4041 __ Bind(type_check_slow_path->GetExitLabel());
4042 }
4043
VisitIntConstant(HIntConstant * constant)4044 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
4045 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4046 locations->SetOut(Location::ConstantLocation(constant));
4047 }
4048
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)4049 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
4050 // Will be generated at use site.
4051 }
4052
VisitNullConstant(HNullConstant * constant)4053 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
4054 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4055 locations->SetOut(Location::ConstantLocation(constant));
4056 }
4057
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)4058 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
4059 // Will be generated at use site.
4060 }
4061
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4062 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4063 // The trampoline uses the same calling convention as dex calling conventions,
4064 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
4065 // the method_idx.
4066 HandleInvoke(invoke);
4067 }
4068
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4069 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4070 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
4071 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4072 }
4073
HandleInvoke(HInvoke * invoke)4074 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
4075 InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
4076 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4077 }
4078
VisitInvokeInterface(HInvokeInterface * invoke)4079 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4080 HandleInvoke(invoke);
4081 }
4082
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)4083 void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
4084 Register klass) {
4085 DCHECK_EQ(klass.GetCode(), 0u);
4086 // We know the destination of an intrinsic, so no need to record inline
4087 // caches.
4088 if (!instruction->GetLocations()->Intrinsified() &&
4089 GetGraph()->IsCompilingBaseline() &&
4090 !Runtime::Current()->IsAotCompiler()) {
4091 DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
4092 ScopedObjectAccess soa(Thread::Current());
4093 ProfilingInfo* info = GetGraph()->GetArtMethod()->GetProfilingInfo(kRuntimePointerSize);
4094 if (info != nullptr) {
4095 InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
4096 uint64_t address = reinterpret_cast64<uint64_t>(cache);
4097 vixl::aarch64::Label done;
4098 __ Mov(x8, address);
4099 __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
4100 // Fast path for a monomorphic cache.
4101 __ Cmp(klass, x9);
4102 __ B(eq, &done);
4103 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
4104 __ Bind(&done);
4105 }
4106 }
4107 }
4108
VisitInvokeInterface(HInvokeInterface * invoke)4109 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4110 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
4111 LocationSummary* locations = invoke->GetLocations();
4112 Register temp = XRegisterFrom(locations->GetTemp(0));
4113 Location receiver = locations->InAt(0);
4114 Offset class_offset = mirror::Object::ClassOffset();
4115 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4116
4117 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4118 if (receiver.IsStackSlot()) {
4119 __ Ldr(temp.W(), StackOperandFrom(receiver));
4120 {
4121 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4122 // /* HeapReference<Class> */ temp = temp->klass_
4123 __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
4124 codegen_->MaybeRecordImplicitNullCheck(invoke);
4125 }
4126 } else {
4127 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4128 // /* HeapReference<Class> */ temp = receiver->klass_
4129 __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
4130 codegen_->MaybeRecordImplicitNullCheck(invoke);
4131 }
4132
4133 // Instead of simply (possibly) unpoisoning `temp` here, we should
4134 // emit a read barrier for the previous class reference load.
4135 // However this is not required in practice, as this is an
4136 // intermediate/temporary reference and because the current
4137 // concurrent copying collector keeps the from-space memory
4138 // intact/accessible until the end of the marking phase (the
4139 // concurrent copying collector may not in the future).
4140 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4141
4142 // If we're compiling baseline, update the inline cache.
4143 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
4144
4145 // The register ip1 is required to be used for the hidden argument in
4146 // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
4147 MacroAssembler* masm = GetVIXLAssembler();
4148 UseScratchRegisterScope scratch_scope(masm);
4149 scratch_scope.Exclude(ip1);
4150 __ Mov(ip1, invoke->GetDexMethodIndex());
4151
4152 __ Ldr(temp,
4153 MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
4154 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4155 invoke->GetImtIndex(), kArm64PointerSize));
4156 // temp = temp->GetImtEntryAt(method_offset);
4157 __ Ldr(temp, MemOperand(temp, method_offset));
4158 // lr = temp->GetEntryPoint();
4159 __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
4160
4161 {
4162 // Ensure the pc position is recorded immediately after the `blr` instruction.
4163 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4164
4165 // lr();
4166 __ blr(lr);
4167 DCHECK(!codegen_->IsLeafMethod());
4168 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
4169 }
4170
4171 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4172 }
4173
VisitInvokeVirtual(HInvokeVirtual * invoke)4174 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4175 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4176 if (intrinsic.TryDispatch(invoke)) {
4177 return;
4178 }
4179
4180 HandleInvoke(invoke);
4181 }
4182
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4183 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4184 // Explicit clinit checks triggered by static invokes must have been pruned by
4185 // art::PrepareForRegisterAllocation.
4186 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4187
4188 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4189 if (intrinsic.TryDispatch(invoke)) {
4190 return;
4191 }
4192
4193 HandleInvoke(invoke);
4194 }
4195
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)4196 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
4197 if (invoke->GetLocations()->Intrinsified()) {
4198 IntrinsicCodeGeneratorARM64 intrinsic(codegen);
4199 intrinsic.Dispatch(invoke);
4200 return true;
4201 }
4202 return false;
4203 }
4204
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)4205 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
4206 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4207 ArtMethod* method ATTRIBUTE_UNUSED) {
4208 // On ARM64 we support all dispatch types.
4209 return desired_dispatch_info;
4210 }
4211
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)4212 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
4213 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
4214 // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
4215 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
4216 switch (invoke->GetMethodLoadKind()) {
4217 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
4218 uint32_t offset =
4219 GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
4220 // temp = thread->string_init_entrypoint
4221 __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
4222 break;
4223 }
4224 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
4225 callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4226 break;
4227 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
4228 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4229 // Add ADRP with its PC-relative method patch.
4230 vixl::aarch64::Label* adrp_label = NewBootImageMethodPatch(invoke->GetTargetMethod());
4231 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4232 // Add ADD with its PC-relative method patch.
4233 vixl::aarch64::Label* add_label =
4234 NewBootImageMethodPatch(invoke->GetTargetMethod(), adrp_label);
4235 EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
4236 break;
4237 }
4238 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: {
4239 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
4240 uint32_t boot_image_offset = GetBootImageOffset(invoke);
4241 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
4242 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4243 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
4244 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
4245 // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
4246 EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp));
4247 break;
4248 }
4249 case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
4250 // Add ADRP with its PC-relative .bss entry patch.
4251 MethodReference target_method(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex());
4252 vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(target_method);
4253 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4254 // Add LDR with its PC-relative .bss entry patch.
4255 vixl::aarch64::Label* ldr_label =
4256 NewMethodBssEntryPatch(target_method, adrp_label);
4257 // All aligned loads are implicitly atomic consume operations on ARM64.
4258 EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
4259 break;
4260 }
4261 case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress:
4262 // Load method address from literal pool.
4263 __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
4264 break;
4265 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
4266 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
4267 return; // No code pointer retrieval; the runtime performs the call directly.
4268 }
4269 }
4270
4271 switch (invoke->GetCodePtrLocation()) {
4272 case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
4273 {
4274 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4275 ExactAssemblyScope eas(GetVIXLAssembler(),
4276 kInstructionSize,
4277 CodeBufferCheckScope::kExactSize);
4278 __ bl(&frame_entry_label_);
4279 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4280 }
4281 break;
4282 case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
4283 // LR = callee_method->entry_point_from_quick_compiled_code_;
4284 __ Ldr(lr, MemOperand(
4285 XRegisterFrom(callee_method),
4286 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize).Int32Value()));
4287 {
4288 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4289 ExactAssemblyScope eas(GetVIXLAssembler(),
4290 kInstructionSize,
4291 CodeBufferCheckScope::kExactSize);
4292 // lr()
4293 __ blr(lr);
4294 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4295 }
4296 break;
4297 }
4298
4299 DCHECK(!IsLeafMethod());
4300 }
4301
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)4302 void CodeGeneratorARM64::GenerateVirtualCall(
4303 HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
4304 // Use the calling convention instead of the location of the receiver, as
4305 // intrinsics may have put the receiver in a different register. In the intrinsics
4306 // slow path, the arguments have been moved to the right place, so here we are
4307 // guaranteed that the receiver is the first register of the calling convention.
4308 InvokeDexCallingConvention calling_convention;
4309 Register receiver = calling_convention.GetRegisterAt(0);
4310 Register temp = XRegisterFrom(temp_in);
4311 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4312 invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
4313 Offset class_offset = mirror::Object::ClassOffset();
4314 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4315
4316 DCHECK(receiver.IsRegister());
4317
4318 {
4319 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4320 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4321 // /* HeapReference<Class> */ temp = receiver->klass_
4322 __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
4323 MaybeRecordImplicitNullCheck(invoke);
4324 }
4325 // Instead of simply (possibly) unpoisoning `temp` here, we should
4326 // emit a read barrier for the previous class reference load.
4327 // intermediate/temporary reference and because the current
4328 // concurrent copying collector keeps the from-space memory
4329 // intact/accessible until the end of the marking phase (the
4330 // concurrent copying collector may not in the future).
4331 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4332
4333 // If we're compiling baseline, update the inline cache.
4334 MaybeGenerateInlineCacheCheck(invoke, temp);
4335
4336 // temp = temp->GetMethodAt(method_offset);
4337 __ Ldr(temp, MemOperand(temp, method_offset));
4338 // lr = temp->GetEntryPoint();
4339 __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
4340 {
4341 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4342 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4343 // lr();
4344 __ blr(lr);
4345 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4346 }
4347 }
4348
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4349 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4350 HandleInvoke(invoke);
4351 }
4352
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4353 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4354 codegen_->GenerateInvokePolymorphicCall(invoke);
4355 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4356 }
4357
VisitInvokeCustom(HInvokeCustom * invoke)4358 void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4359 HandleInvoke(invoke);
4360 }
4361
VisitInvokeCustom(HInvokeCustom * invoke)4362 void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4363 codegen_->GenerateInvokeCustomCall(invoke);
4364 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4365 }
4366
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,vixl::aarch64::Label * adrp_label)4367 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
4368 uint32_t intrinsic_data,
4369 vixl::aarch64::Label* adrp_label) {
4370 return NewPcRelativePatch(
4371 /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
4372 }
4373
NewBootImageRelRoPatch(uint32_t boot_image_offset,vixl::aarch64::Label * adrp_label)4374 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
4375 uint32_t boot_image_offset,
4376 vixl::aarch64::Label* adrp_label) {
4377 return NewPcRelativePatch(
4378 /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
4379 }
4380
NewBootImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4381 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
4382 MethodReference target_method,
4383 vixl::aarch64::Label* adrp_label) {
4384 return NewPcRelativePatch(
4385 target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
4386 }
4387
NewMethodBssEntryPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4388 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
4389 MethodReference target_method,
4390 vixl::aarch64::Label* adrp_label) {
4391 return NewPcRelativePatch(
4392 target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
4393 }
4394
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)4395 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
4396 const DexFile& dex_file,
4397 dex::TypeIndex type_index,
4398 vixl::aarch64::Label* adrp_label) {
4399 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
4400 }
4401
NewBssEntryTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)4402 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
4403 const DexFile& dex_file,
4404 dex::TypeIndex type_index,
4405 vixl::aarch64::Label* adrp_label) {
4406 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &type_bss_entry_patches_);
4407 }
4408
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)4409 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
4410 const DexFile& dex_file,
4411 dex::StringIndex string_index,
4412 vixl::aarch64::Label* adrp_label) {
4413 return NewPcRelativePatch(
4414 &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
4415 }
4416
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)4417 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
4418 const DexFile& dex_file,
4419 dex::StringIndex string_index,
4420 vixl::aarch64::Label* adrp_label) {
4421 return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
4422 }
4423
EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset)4424 void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
4425 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
4426 DCHECK(!Runtime::Current()->UseJitCompilation());
4427 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
4428 vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
4429 __ bind(bl_label);
4430 __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
4431 }
4432
EmitBakerReadBarrierCbnz(uint32_t custom_data)4433 void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
4434 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
4435 if (Runtime::Current()->UseJitCompilation()) {
4436 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
4437 vixl::aarch64::Label* slow_path_entry = &it->second.label;
4438 __ cbnz(mr, slow_path_entry);
4439 } else {
4440 baker_read_barrier_patches_.emplace_back(custom_data);
4441 vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
4442 __ bind(cbnz_label);
4443 __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
4444 }
4445 }
4446
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,vixl::aarch64::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)4447 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
4448 const DexFile* dex_file,
4449 uint32_t offset_or_index,
4450 vixl::aarch64::Label* adrp_label,
4451 ArenaDeque<PcRelativePatchInfo>* patches) {
4452 // Add a patch entry and return the label.
4453 patches->emplace_back(dex_file, offset_or_index);
4454 PcRelativePatchInfo* info = &patches->back();
4455 vixl::aarch64::Label* label = &info->label;
4456 // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
4457 info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
4458 return label;
4459 }
4460
DeduplicateBootImageAddressLiteral(uint64_t address)4461 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(
4462 uint64_t address) {
4463 return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address));
4464 }
4465
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)4466 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral(
4467 const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) {
4468 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
4469 return jit_string_patches_.GetOrCreate(
4470 StringReference(&dex_file, string_index),
4471 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
4472 }
4473
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)4474 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral(
4475 const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) {
4476 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
4477 return jit_class_patches_.GetOrCreate(
4478 TypeReference(&dex_file, type_index),
4479 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
4480 }
4481
EmitAdrpPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register reg)4482 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
4483 vixl::aarch64::Register reg) {
4484 DCHECK(reg.IsX());
4485 SingleEmissionCheckScope guard(GetVIXLAssembler());
4486 __ Bind(fixup_label);
4487 __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
4488 }
4489
EmitAddPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)4490 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
4491 vixl::aarch64::Register out,
4492 vixl::aarch64::Register base) {
4493 DCHECK(out.IsX());
4494 DCHECK(base.IsX());
4495 SingleEmissionCheckScope guard(GetVIXLAssembler());
4496 __ Bind(fixup_label);
4497 __ add(out, base, Operand(/* offset placeholder */ 0));
4498 }
4499
EmitLdrOffsetPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)4500 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
4501 vixl::aarch64::Register out,
4502 vixl::aarch64::Register base) {
4503 DCHECK(base.IsX());
4504 SingleEmissionCheckScope guard(GetVIXLAssembler());
4505 __ Bind(fixup_label);
4506 __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
4507 }
4508
LoadBootImageAddress(vixl::aarch64::Register reg,uint32_t boot_image_reference)4509 void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
4510 uint32_t boot_image_reference) {
4511 if (GetCompilerOptions().IsBootImage()) {
4512 // Add ADRP with its PC-relative type patch.
4513 vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
4514 EmitAdrpPlaceholder(adrp_label, reg.X());
4515 // Add ADD with its PC-relative type patch.
4516 vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
4517 EmitAddPlaceholder(add_label, reg.X(), reg.X());
4518 } else if (GetCompilerOptions().GetCompilePic()) {
4519 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
4520 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_reference);
4521 EmitAdrpPlaceholder(adrp_label, reg.X());
4522 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
4523 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_reference, adrp_label);
4524 EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
4525 } else {
4526 DCHECK(Runtime::Current()->UseJitCompilation());
4527 gc::Heap* heap = Runtime::Current()->GetHeap();
4528 DCHECK(!heap->GetBootImageSpaces().empty());
4529 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
4530 __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
4531 }
4532 }
4533
AllocateInstanceForIntrinsic(HInvokeStaticOrDirect * invoke,uint32_t boot_image_offset)4534 void CodeGeneratorARM64::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke,
4535 uint32_t boot_image_offset) {
4536 DCHECK(invoke->IsStatic());
4537 InvokeRuntimeCallingConvention calling_convention;
4538 Register argument = calling_convention.GetRegisterAt(0);
4539 if (GetCompilerOptions().IsBootImage()) {
4540 DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference);
4541 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
4542 MethodReference target_method = invoke->GetTargetMethod();
4543 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
4544 // Add ADRP with its PC-relative type patch.
4545 vixl::aarch64::Label* adrp_label = NewBootImageTypePatch(*target_method.dex_file, type_idx);
4546 EmitAdrpPlaceholder(adrp_label, argument.X());
4547 // Add ADD with its PC-relative type patch.
4548 vixl::aarch64::Label* add_label =
4549 NewBootImageTypePatch(*target_method.dex_file, type_idx, adrp_label);
4550 EmitAddPlaceholder(add_label, argument.X(), argument.X());
4551 } else {
4552 LoadBootImageAddress(argument, boot_image_offset);
4553 }
4554 InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
4555 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
4556 }
4557
4558 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)4559 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
4560 const ArenaDeque<PcRelativePatchInfo>& infos,
4561 ArenaVector<linker::LinkerPatch>* linker_patches) {
4562 for (const PcRelativePatchInfo& info : infos) {
4563 linker_patches->push_back(Factory(info.label.GetLocation(),
4564 info.target_dex_file,
4565 info.pc_insn_label->GetLocation(),
4566 info.offset_or_index));
4567 }
4568 }
4569
4570 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)4571 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
4572 const DexFile* target_dex_file,
4573 uint32_t pc_insn_offset,
4574 uint32_t boot_image_offset) {
4575 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
4576 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
4577 }
4578
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)4579 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
4580 DCHECK(linker_patches->empty());
4581 size_t size =
4582 boot_image_method_patches_.size() +
4583 method_bss_entry_patches_.size() +
4584 boot_image_type_patches_.size() +
4585 type_bss_entry_patches_.size() +
4586 boot_image_string_patches_.size() +
4587 string_bss_entry_patches_.size() +
4588 boot_image_other_patches_.size() +
4589 call_entrypoint_patches_.size() +
4590 baker_read_barrier_patches_.size();
4591 linker_patches->reserve(size);
4592 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
4593 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
4594 boot_image_method_patches_, linker_patches);
4595 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
4596 boot_image_type_patches_, linker_patches);
4597 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
4598 boot_image_string_patches_, linker_patches);
4599 } else {
4600 DCHECK(boot_image_method_patches_.empty());
4601 DCHECK(boot_image_type_patches_.empty());
4602 DCHECK(boot_image_string_patches_.empty());
4603 }
4604 if (GetCompilerOptions().IsBootImage()) {
4605 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
4606 boot_image_other_patches_, linker_patches);
4607 } else {
4608 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
4609 boot_image_other_patches_, linker_patches);
4610 }
4611 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
4612 method_bss_entry_patches_, linker_patches);
4613 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
4614 type_bss_entry_patches_, linker_patches);
4615 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
4616 string_bss_entry_patches_, linker_patches);
4617 for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
4618 DCHECK(info.target_dex_file == nullptr);
4619 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
4620 info.label.GetLocation(), info.offset_or_index));
4621 }
4622 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
4623 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
4624 info.label.GetLocation(), info.custom_data));
4625 }
4626 DCHECK_EQ(size, linker_patches->size());
4627 }
4628
NeedsThunkCode(const linker::LinkerPatch & patch) const4629 bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
4630 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
4631 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
4632 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
4633 }
4634
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)4635 void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
4636 /*out*/ ArenaVector<uint8_t>* code,
4637 /*out*/ std::string* debug_name) {
4638 Arm64Assembler assembler(GetGraph()->GetAllocator());
4639 switch (patch.GetType()) {
4640 case linker::LinkerPatch::Type::kCallRelative: {
4641 // The thunk just uses the entry point in the ArtMethod. This works even for calls
4642 // to the generic JNI and interpreter trampolines.
4643 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
4644 kArm64PointerSize).Int32Value());
4645 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
4646 if (GetCompilerOptions().GenerateAnyDebugInfo()) {
4647 *debug_name = "MethodCallThunk";
4648 }
4649 break;
4650 }
4651 case linker::LinkerPatch::Type::kCallEntrypoint: {
4652 Offset offset(patch.EntrypointOffset());
4653 assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
4654 if (GetCompilerOptions().GenerateAnyDebugInfo()) {
4655 *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
4656 }
4657 break;
4658 }
4659 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
4660 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
4661 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
4662 break;
4663 }
4664 default:
4665 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
4666 UNREACHABLE();
4667 }
4668
4669 // Ensure we emit the literal pool if any.
4670 assembler.FinalizeCode();
4671 code->resize(assembler.CodeSize());
4672 MemoryRegion code_region(code->data(), code->size());
4673 assembler.FinalizeInstructions(code_region);
4674 }
4675
DeduplicateUint32Literal(uint32_t value)4676 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) {
4677 return uint32_literals_.GetOrCreate(
4678 value,
4679 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
4680 }
4681
DeduplicateUint64Literal(uint64_t value)4682 vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
4683 return uint64_literals_.GetOrCreate(
4684 value,
4685 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
4686 }
4687
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4688 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4689 // Explicit clinit checks triggered by static invokes must have been pruned by
4690 // art::PrepareForRegisterAllocation.
4691 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4692
4693 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4694 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4695 return;
4696 }
4697
4698 {
4699 // Ensure that between the BLR (emitted by GenerateStaticOrDirectCall) and RecordPcInfo there
4700 // are no pools emitted.
4701 EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
4702 LocationSummary* locations = invoke->GetLocations();
4703 codegen_->GenerateStaticOrDirectCall(
4704 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
4705 }
4706
4707 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4708 }
4709
VisitInvokeVirtual(HInvokeVirtual * invoke)4710 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4711 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4712 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4713 return;
4714 }
4715
4716 {
4717 // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there
4718 // are no pools emitted.
4719 EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
4720 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
4721 DCHECK(!codegen_->IsLeafMethod());
4722 }
4723
4724 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4725 }
4726
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)4727 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
4728 HLoadClass::LoadKind desired_class_load_kind) {
4729 switch (desired_class_load_kind) {
4730 case HLoadClass::LoadKind::kInvalid:
4731 LOG(FATAL) << "UNREACHABLE";
4732 UNREACHABLE();
4733 case HLoadClass::LoadKind::kReferrersClass:
4734 break;
4735 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
4736 case HLoadClass::LoadKind::kBootImageRelRo:
4737 case HLoadClass::LoadKind::kBssEntry:
4738 DCHECK(!Runtime::Current()->UseJitCompilation());
4739 break;
4740 case HLoadClass::LoadKind::kJitBootImageAddress:
4741 case HLoadClass::LoadKind::kJitTableAddress:
4742 DCHECK(Runtime::Current()->UseJitCompilation());
4743 break;
4744 case HLoadClass::LoadKind::kRuntimeCall:
4745 break;
4746 }
4747 return desired_class_load_kind;
4748 }
4749
VisitLoadClass(HLoadClass * cls)4750 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
4751 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
4752 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
4753 InvokeRuntimeCallingConvention calling_convention;
4754 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
4755 cls,
4756 LocationFrom(calling_convention.GetRegisterAt(0)),
4757 LocationFrom(vixl::aarch64::x0));
4758 DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
4759 return;
4760 }
4761 DCHECK(!cls->NeedsAccessCheck());
4762
4763 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
4764 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
4765 ? LocationSummary::kCallOnSlowPath
4766 : LocationSummary::kNoCall;
4767 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
4768 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
4769 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
4770 }
4771
4772 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
4773 locations->SetInAt(0, Location::RequiresRegister());
4774 }
4775 locations->SetOut(Location::RequiresRegister());
4776 if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
4777 if (!kUseReadBarrier || kUseBakerReadBarrier) {
4778 // Rely on the type resolution or initialization and marking to save everything we need.
4779 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
4780 } else {
4781 // For non-Baker read barrier we have a temp-clobbering call.
4782 }
4783 }
4784 }
4785
4786 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
4787 // move.
VisitLoadClass(HLoadClass * cls)4788 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
4789 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
4790 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
4791 codegen_->GenerateLoadClassRuntimeCall(cls);
4792 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4793 return;
4794 }
4795 DCHECK(!cls->NeedsAccessCheck());
4796
4797 Location out_loc = cls->GetLocations()->Out();
4798 Register out = OutputRegister(cls);
4799
4800 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
4801 ? kWithoutReadBarrier
4802 : kCompilerReadBarrierOption;
4803 bool generate_null_check = false;
4804 switch (load_kind) {
4805 case HLoadClass::LoadKind::kReferrersClass: {
4806 DCHECK(!cls->CanCallRuntime());
4807 DCHECK(!cls->MustGenerateClinitCheck());
4808 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
4809 Register current_method = InputRegisterAt(cls, 0);
4810 codegen_->GenerateGcRootFieldLoad(cls,
4811 out_loc,
4812 current_method,
4813 ArtMethod::DeclaringClassOffset().Int32Value(),
4814 /* fixup_label= */ nullptr,
4815 read_barrier_option);
4816 break;
4817 }
4818 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
4819 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
4820 codegen_->GetCompilerOptions().IsBootImageExtension());
4821 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
4822 // Add ADRP with its PC-relative type patch.
4823 const DexFile& dex_file = cls->GetDexFile();
4824 dex::TypeIndex type_index = cls->GetTypeIndex();
4825 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
4826 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
4827 // Add ADD with its PC-relative type patch.
4828 vixl::aarch64::Label* add_label =
4829 codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
4830 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
4831 break;
4832 }
4833 case HLoadClass::LoadKind::kBootImageRelRo: {
4834 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
4835 uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls);
4836 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
4837 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset);
4838 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
4839 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
4840 vixl::aarch64::Label* ldr_label =
4841 codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label);
4842 codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
4843 break;
4844 }
4845 case HLoadClass::LoadKind::kBssEntry: {
4846 // Add ADRP with its PC-relative Class .bss entry patch.
4847 const DexFile& dex_file = cls->GetDexFile();
4848 dex::TypeIndex type_index = cls->GetTypeIndex();
4849 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
4850 vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(dex_file, type_index);
4851 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
4852 // Add LDR with its PC-relative Class .bss entry patch.
4853 vixl::aarch64::Label* ldr_label =
4854 codegen_->NewBssEntryTypePatch(dex_file, type_index, adrp_label);
4855 // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
4856 // All aligned loads are implicitly atomic consume operations on ARM64.
4857 codegen_->GenerateGcRootFieldLoad(cls,
4858 out_loc,
4859 temp,
4860 /* offset placeholder */ 0u,
4861 ldr_label,
4862 read_barrier_option);
4863 generate_null_check = true;
4864 break;
4865 }
4866 case HLoadClass::LoadKind::kJitBootImageAddress: {
4867 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
4868 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
4869 DCHECK_NE(address, 0u);
4870 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
4871 break;
4872 }
4873 case HLoadClass::LoadKind::kJitTableAddress: {
4874 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
4875 cls->GetTypeIndex(),
4876 cls->GetClass()));
4877 codegen_->GenerateGcRootFieldLoad(cls,
4878 out_loc,
4879 out.X(),
4880 /* offset= */ 0,
4881 /* fixup_label= */ nullptr,
4882 read_barrier_option);
4883 break;
4884 }
4885 case HLoadClass::LoadKind::kRuntimeCall:
4886 case HLoadClass::LoadKind::kInvalid:
4887 LOG(FATAL) << "UNREACHABLE";
4888 UNREACHABLE();
4889 }
4890
4891 bool do_clinit = cls->MustGenerateClinitCheck();
4892 if (generate_null_check || do_clinit) {
4893 DCHECK(cls->CanCallRuntime());
4894 SlowPathCodeARM64* slow_path =
4895 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
4896 codegen_->AddSlowPath(slow_path);
4897 if (generate_null_check) {
4898 __ Cbz(out, slow_path->GetEntryLabel());
4899 }
4900 if (cls->MustGenerateClinitCheck()) {
4901 GenerateClassInitializationCheck(slow_path, out);
4902 } else {
4903 __ Bind(slow_path->GetExitLabel());
4904 }
4905 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4906 }
4907 }
4908
VisitLoadMethodHandle(HLoadMethodHandle * load)4909 void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
4910 InvokeRuntimeCallingConvention calling_convention;
4911 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
4912 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
4913 }
4914
VisitLoadMethodHandle(HLoadMethodHandle * load)4915 void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
4916 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
4917 }
4918
VisitLoadMethodType(HLoadMethodType * load)4919 void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
4920 InvokeRuntimeCallingConvention calling_convention;
4921 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
4922 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
4923 }
4924
VisitLoadMethodType(HLoadMethodType * load)4925 void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
4926 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
4927 }
4928
GetExceptionTlsAddress()4929 static MemOperand GetExceptionTlsAddress() {
4930 return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
4931 }
4932
VisitLoadException(HLoadException * load)4933 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
4934 LocationSummary* locations =
4935 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
4936 locations->SetOut(Location::RequiresRegister());
4937 }
4938
VisitLoadException(HLoadException * instruction)4939 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
4940 __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
4941 }
4942
VisitClearException(HClearException * clear)4943 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
4944 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
4945 }
4946
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)4947 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
4948 __ Str(wzr, GetExceptionTlsAddress());
4949 }
4950
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)4951 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
4952 HLoadString::LoadKind desired_string_load_kind) {
4953 switch (desired_string_load_kind) {
4954 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
4955 case HLoadString::LoadKind::kBootImageRelRo:
4956 case HLoadString::LoadKind::kBssEntry:
4957 DCHECK(!Runtime::Current()->UseJitCompilation());
4958 break;
4959 case HLoadString::LoadKind::kJitBootImageAddress:
4960 case HLoadString::LoadKind::kJitTableAddress:
4961 DCHECK(Runtime::Current()->UseJitCompilation());
4962 break;
4963 case HLoadString::LoadKind::kRuntimeCall:
4964 break;
4965 }
4966 return desired_string_load_kind;
4967 }
4968
VisitLoadString(HLoadString * load)4969 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
4970 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
4971 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
4972 if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
4973 InvokeRuntimeCallingConvention calling_convention;
4974 locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
4975 } else {
4976 locations->SetOut(Location::RequiresRegister());
4977 if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
4978 if (!kUseReadBarrier || kUseBakerReadBarrier) {
4979 // Rely on the pResolveString and marking to save everything we need.
4980 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
4981 } else {
4982 // For non-Baker read barrier we have a temp-clobbering call.
4983 }
4984 }
4985 }
4986 }
4987
4988 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
4989 // move.
VisitLoadString(HLoadString * load)4990 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
4991 Register out = OutputRegister(load);
4992 Location out_loc = load->GetLocations()->Out();
4993
4994 switch (load->GetLoadKind()) {
4995 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
4996 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
4997 codegen_->GetCompilerOptions().IsBootImageExtension());
4998 // Add ADRP with its PC-relative String patch.
4999 const DexFile& dex_file = load->GetDexFile();
5000 const dex::StringIndex string_index = load->GetStringIndex();
5001 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
5002 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5003 // Add ADD with its PC-relative String patch.
5004 vixl::aarch64::Label* add_label =
5005 codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
5006 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5007 return;
5008 }
5009 case HLoadString::LoadKind::kBootImageRelRo: {
5010 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5011 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
5012 uint32_t boot_image_offset = codegen_->GetBootImageOffset(load);
5013 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset);
5014 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5015 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
5016 vixl::aarch64::Label* ldr_label =
5017 codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5018 codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
5019 return;
5020 }
5021 case HLoadString::LoadKind::kBssEntry: {
5022 // Add ADRP with its PC-relative String .bss entry patch.
5023 const DexFile& dex_file = load->GetDexFile();
5024 const dex::StringIndex string_index = load->GetStringIndex();
5025 Register temp = XRegisterFrom(out_loc);
5026 vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
5027 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5028 // Add LDR with its PC-relative String .bss entry patch.
5029 vixl::aarch64::Label* ldr_label =
5030 codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
5031 // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
5032 // All aligned loads are implicitly atomic consume operations on ARM64.
5033 codegen_->GenerateGcRootFieldLoad(load,
5034 out_loc,
5035 temp,
5036 /* offset placeholder */ 0u,
5037 ldr_label,
5038 kCompilerReadBarrierOption);
5039 SlowPathCodeARM64* slow_path =
5040 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
5041 codegen_->AddSlowPath(slow_path);
5042 __ Cbz(out.X(), slow_path->GetEntryLabel());
5043 __ Bind(slow_path->GetExitLabel());
5044 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5045 return;
5046 }
5047 case HLoadString::LoadKind::kJitBootImageAddress: {
5048 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
5049 DCHECK_NE(address, 0u);
5050 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5051 return;
5052 }
5053 case HLoadString::LoadKind::kJitTableAddress: {
5054 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
5055 load->GetStringIndex(),
5056 load->GetString()));
5057 codegen_->GenerateGcRootFieldLoad(load,
5058 out_loc,
5059 out.X(),
5060 /* offset= */ 0,
5061 /* fixup_label= */ nullptr,
5062 kCompilerReadBarrierOption);
5063 return;
5064 }
5065 default:
5066 break;
5067 }
5068
5069 // TODO: Re-add the compiler code to do string dex cache lookup again.
5070 InvokeRuntimeCallingConvention calling_convention;
5071 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
5072 __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
5073 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
5074 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
5075 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5076 }
5077
VisitLongConstant(HLongConstant * constant)5078 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
5079 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
5080 locations->SetOut(Location::ConstantLocation(constant));
5081 }
5082
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)5083 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
5084 // Will be generated at use site.
5085 }
5086
VisitMonitorOperation(HMonitorOperation * instruction)5087 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5088 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5089 instruction, LocationSummary::kCallOnMainOnly);
5090 InvokeRuntimeCallingConvention calling_convention;
5091 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5092 }
5093
VisitMonitorOperation(HMonitorOperation * instruction)5094 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5095 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
5096 instruction,
5097 instruction->GetDexPc());
5098 if (instruction->IsEnter()) {
5099 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
5100 } else {
5101 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
5102 }
5103 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5104 }
5105
VisitMul(HMul * mul)5106 void LocationsBuilderARM64::VisitMul(HMul* mul) {
5107 LocationSummary* locations =
5108 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
5109 switch (mul->GetResultType()) {
5110 case DataType::Type::kInt32:
5111 case DataType::Type::kInt64:
5112 locations->SetInAt(0, Location::RequiresRegister());
5113 locations->SetInAt(1, Location::RequiresRegister());
5114 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5115 break;
5116
5117 case DataType::Type::kFloat32:
5118 case DataType::Type::kFloat64:
5119 locations->SetInAt(0, Location::RequiresFpuRegister());
5120 locations->SetInAt(1, Location::RequiresFpuRegister());
5121 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5122 break;
5123
5124 default:
5125 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5126 }
5127 }
5128
VisitMul(HMul * mul)5129 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
5130 switch (mul->GetResultType()) {
5131 case DataType::Type::kInt32:
5132 case DataType::Type::kInt64:
5133 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
5134 break;
5135
5136 case DataType::Type::kFloat32:
5137 case DataType::Type::kFloat64:
5138 __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
5139 break;
5140
5141 default:
5142 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5143 }
5144 }
5145
VisitNeg(HNeg * neg)5146 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
5147 LocationSummary* locations =
5148 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
5149 switch (neg->GetResultType()) {
5150 case DataType::Type::kInt32:
5151 case DataType::Type::kInt64:
5152 locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
5153 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5154 break;
5155
5156 case DataType::Type::kFloat32:
5157 case DataType::Type::kFloat64:
5158 locations->SetInAt(0, Location::RequiresFpuRegister());
5159 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5160 break;
5161
5162 default:
5163 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5164 }
5165 }
5166
VisitNeg(HNeg * neg)5167 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
5168 switch (neg->GetResultType()) {
5169 case DataType::Type::kInt32:
5170 case DataType::Type::kInt64:
5171 __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
5172 break;
5173
5174 case DataType::Type::kFloat32:
5175 case DataType::Type::kFloat64:
5176 __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
5177 break;
5178
5179 default:
5180 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5181 }
5182 }
5183
VisitNewArray(HNewArray * instruction)5184 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
5185 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5186 instruction, LocationSummary::kCallOnMainOnly);
5187 InvokeRuntimeCallingConvention calling_convention;
5188 locations->SetOut(LocationFrom(x0));
5189 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5190 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5191 }
5192
VisitNewArray(HNewArray * instruction)5193 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
5194 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5195 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5196 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5197 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5198 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5199 }
5200
VisitNewInstance(HNewInstance * instruction)5201 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
5202 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5203 instruction, LocationSummary::kCallOnMainOnly);
5204 InvokeRuntimeCallingConvention calling_convention;
5205 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5206 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
5207 }
5208
VisitNewInstance(HNewInstance * instruction)5209 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
5210 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5211 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5212 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5213 }
5214
VisitNot(HNot * instruction)5215 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
5216 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5217 locations->SetInAt(0, Location::RequiresRegister());
5218 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5219 }
5220
VisitNot(HNot * instruction)5221 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
5222 switch (instruction->GetResultType()) {
5223 case DataType::Type::kInt32:
5224 case DataType::Type::kInt64:
5225 __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
5226 break;
5227
5228 default:
5229 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
5230 }
5231 }
5232
VisitBooleanNot(HBooleanNot * instruction)5233 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
5234 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5235 locations->SetInAt(0, Location::RequiresRegister());
5236 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5237 }
5238
VisitBooleanNot(HBooleanNot * instruction)5239 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
5240 __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
5241 }
5242
VisitNullCheck(HNullCheck * instruction)5243 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
5244 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5245 locations->SetInAt(0, Location::RequiresRegister());
5246 }
5247
GenerateImplicitNullCheck(HNullCheck * instruction)5248 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
5249 if (CanMoveNullCheckToUser(instruction)) {
5250 return;
5251 }
5252 {
5253 // Ensure that between load and RecordPcInfo there are no pools emitted.
5254 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5255 Location obj = instruction->GetLocations()->InAt(0);
5256 __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
5257 RecordPcInfo(instruction, instruction->GetDexPc());
5258 }
5259 }
5260
GenerateExplicitNullCheck(HNullCheck * instruction)5261 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
5262 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
5263 AddSlowPath(slow_path);
5264
5265 LocationSummary* locations = instruction->GetLocations();
5266 Location obj = locations->InAt(0);
5267
5268 __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
5269 }
5270
VisitNullCheck(HNullCheck * instruction)5271 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
5272 codegen_->GenerateNullCheck(instruction);
5273 }
5274
VisitOr(HOr * instruction)5275 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
5276 HandleBinaryOp(instruction);
5277 }
5278
VisitOr(HOr * instruction)5279 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
5280 HandleBinaryOp(instruction);
5281 }
5282
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5283 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5284 LOG(FATAL) << "Unreachable";
5285 }
5286
VisitParallelMove(HParallelMove * instruction)5287 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
5288 if (instruction->GetNext()->IsSuspendCheck() &&
5289 instruction->GetBlock()->GetLoopInformation() != nullptr) {
5290 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
5291 // The back edge will generate the suspend check.
5292 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
5293 }
5294
5295 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5296 }
5297
VisitParameterValue(HParameterValue * instruction)5298 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
5299 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5300 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5301 if (location.IsStackSlot()) {
5302 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5303 } else if (location.IsDoubleStackSlot()) {
5304 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5305 }
5306 locations->SetOut(location);
5307 }
5308
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5309 void InstructionCodeGeneratorARM64::VisitParameterValue(
5310 HParameterValue* instruction ATTRIBUTE_UNUSED) {
5311 // Nothing to do, the parameter is already at its location.
5312 }
5313
VisitCurrentMethod(HCurrentMethod * instruction)5314 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
5315 LocationSummary* locations =
5316 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5317 locations->SetOut(LocationFrom(kArtMethodRegister));
5318 }
5319
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5320 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
5321 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5322 // Nothing to do, the method is already at its location.
5323 }
5324
VisitPhi(HPhi * instruction)5325 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
5326 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5327 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5328 locations->SetInAt(i, Location::Any());
5329 }
5330 locations->SetOut(Location::Any());
5331 }
5332
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5333 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5334 LOG(FATAL) << "Unreachable";
5335 }
5336
VisitRem(HRem * rem)5337 void LocationsBuilderARM64::VisitRem(HRem* rem) {
5338 DataType::Type type = rem->GetResultType();
5339 LocationSummary::CallKind call_kind =
5340 DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
5341 : LocationSummary::kNoCall;
5342 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
5343
5344 switch (type) {
5345 case DataType::Type::kInt32:
5346 case DataType::Type::kInt64:
5347 locations->SetInAt(0, Location::RequiresRegister());
5348 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
5349 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5350 break;
5351
5352 case DataType::Type::kFloat32:
5353 case DataType::Type::kFloat64: {
5354 InvokeRuntimeCallingConvention calling_convention;
5355 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
5356 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
5357 locations->SetOut(calling_convention.GetReturnLocation(type));
5358
5359 break;
5360 }
5361
5362 default:
5363 LOG(FATAL) << "Unexpected rem type " << type;
5364 }
5365 }
5366
GenerateIntRemForPower2Denom(HRem * instruction)5367 void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
5368 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
5369 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
5370 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
5371
5372 Register out = OutputRegister(instruction);
5373 Register dividend = InputRegisterAt(instruction, 0);
5374
5375 if (abs_imm == 2) {
5376 __ Cmp(dividend, 0);
5377 __ And(out, dividend, 1);
5378 __ Csneg(out, out, out, ge);
5379 } else {
5380 UseScratchRegisterScope temps(GetVIXLAssembler());
5381 Register temp = temps.AcquireSameSizeAs(out);
5382
5383 __ Negs(temp, dividend);
5384 __ And(out, dividend, abs_imm - 1);
5385 __ And(temp, temp, abs_imm - 1);
5386 __ Csneg(out, out, temp, mi);
5387 }
5388 }
5389
GenerateIntRemForConstDenom(HRem * instruction)5390 void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
5391 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
5392
5393 if (imm == 0) {
5394 // Do not generate anything.
5395 // DivZeroCheck would prevent any code to be executed.
5396 return;
5397 }
5398
5399 if (IsPowerOfTwo(AbsOrMin(imm))) {
5400 // Cases imm == -1 or imm == 1 are handled in constant folding by
5401 // InstructionWithAbsorbingInputSimplifier.
5402 // If the cases have survided till code generation they are handled in
5403 // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
5404 // The correct code is generated for them, just more instructions.
5405 GenerateIntRemForPower2Denom(instruction);
5406 } else {
5407 DCHECK(imm < -2 || imm > 2) << imm;
5408 GenerateDivRemWithAnyConstant(instruction);
5409 }
5410 }
5411
GenerateIntRem(HRem * instruction)5412 void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
5413 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
5414 << instruction->GetResultType();
5415
5416 if (instruction->GetLocations()->InAt(1).IsConstant()) {
5417 GenerateIntRemForConstDenom(instruction);
5418 } else {
5419 Register out = OutputRegister(instruction);
5420 Register dividend = InputRegisterAt(instruction, 0);
5421 Register divisor = InputRegisterAt(instruction, 1);
5422 UseScratchRegisterScope temps(GetVIXLAssembler());
5423 Register temp = temps.AcquireSameSizeAs(out);
5424 __ Sdiv(temp, dividend, divisor);
5425 __ Msub(out, temp, divisor, dividend);
5426 }
5427 }
5428
VisitRem(HRem * rem)5429 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
5430 DataType::Type type = rem->GetResultType();
5431
5432 switch (type) {
5433 case DataType::Type::kInt32:
5434 case DataType::Type::kInt64: {
5435 GenerateIntRem(rem);
5436 break;
5437 }
5438
5439 case DataType::Type::kFloat32:
5440 case DataType::Type::kFloat64: {
5441 QuickEntrypointEnum entrypoint =
5442 (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
5443 codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
5444 if (type == DataType::Type::kFloat32) {
5445 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
5446 } else {
5447 CheckEntrypointTypes<kQuickFmod, double, double, double>();
5448 }
5449 break;
5450 }
5451
5452 default:
5453 LOG(FATAL) << "Unexpected rem type " << type;
5454 UNREACHABLE();
5455 }
5456 }
5457
VisitMin(HMin * min)5458 void LocationsBuilderARM64::VisitMin(HMin* min) {
5459 HandleBinaryOp(min);
5460 }
5461
VisitMin(HMin * min)5462 void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
5463 HandleBinaryOp(min);
5464 }
5465
VisitMax(HMax * max)5466 void LocationsBuilderARM64::VisitMax(HMax* max) {
5467 HandleBinaryOp(max);
5468 }
5469
VisitMax(HMax * max)5470 void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
5471 HandleBinaryOp(max);
5472 }
5473
VisitAbs(HAbs * abs)5474 void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
5475 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
5476 switch (abs->GetResultType()) {
5477 case DataType::Type::kInt32:
5478 case DataType::Type::kInt64:
5479 locations->SetInAt(0, Location::RequiresRegister());
5480 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5481 break;
5482 case DataType::Type::kFloat32:
5483 case DataType::Type::kFloat64:
5484 locations->SetInAt(0, Location::RequiresFpuRegister());
5485 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5486 break;
5487 default:
5488 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5489 }
5490 }
5491
VisitAbs(HAbs * abs)5492 void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
5493 switch (abs->GetResultType()) {
5494 case DataType::Type::kInt32:
5495 case DataType::Type::kInt64: {
5496 Register in_reg = InputRegisterAt(abs, 0);
5497 Register out_reg = OutputRegister(abs);
5498 __ Cmp(in_reg, Operand(0));
5499 __ Cneg(out_reg, in_reg, lt);
5500 break;
5501 }
5502 case DataType::Type::kFloat32:
5503 case DataType::Type::kFloat64: {
5504 VRegister in_reg = InputFPRegisterAt(abs, 0);
5505 VRegister out_reg = OutputFPRegister(abs);
5506 __ Fabs(out_reg, in_reg);
5507 break;
5508 }
5509 default:
5510 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5511 }
5512 }
5513
VisitConstructorFence(HConstructorFence * constructor_fence)5514 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
5515 constructor_fence->SetLocations(nullptr);
5516 }
5517
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)5518 void InstructionCodeGeneratorARM64::VisitConstructorFence(
5519 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
5520 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
5521 }
5522
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)5523 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
5524 memory_barrier->SetLocations(nullptr);
5525 }
5526
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)5527 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
5528 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
5529 }
5530
VisitReturn(HReturn * instruction)5531 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
5532 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5533 DataType::Type return_type = instruction->InputAt(0)->GetType();
5534 locations->SetInAt(0, ARM64ReturnLocation(return_type));
5535 }
5536
VisitReturn(HReturn * ret)5537 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
5538 if (GetGraph()->IsCompilingOsr()) {
5539 // To simplify callers of an OSR method, we put the return value in both
5540 // floating point and core register.
5541 switch (ret->InputAt(0)->GetType()) {
5542 case DataType::Type::kFloat32:
5543 __ Fmov(w0, s0);
5544 break;
5545 case DataType::Type::kFloat64:
5546 __ Fmov(x0, d0);
5547 break;
5548 default:
5549 break;
5550 }
5551 }
5552 codegen_->GenerateFrameExit();
5553 }
5554
VisitReturnVoid(HReturnVoid * instruction)5555 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
5556 instruction->SetLocations(nullptr);
5557 }
5558
VisitReturnVoid(HReturnVoid * instruction ATTRIBUTE_UNUSED)5559 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
5560 codegen_->GenerateFrameExit();
5561 }
5562
VisitRor(HRor * ror)5563 void LocationsBuilderARM64::VisitRor(HRor* ror) {
5564 HandleBinaryOp(ror);
5565 }
5566
VisitRor(HRor * ror)5567 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
5568 HandleBinaryOp(ror);
5569 }
5570
VisitShl(HShl * shl)5571 void LocationsBuilderARM64::VisitShl(HShl* shl) {
5572 HandleShift(shl);
5573 }
5574
VisitShl(HShl * shl)5575 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
5576 HandleShift(shl);
5577 }
5578
VisitShr(HShr * shr)5579 void LocationsBuilderARM64::VisitShr(HShr* shr) {
5580 HandleShift(shr);
5581 }
5582
VisitShr(HShr * shr)5583 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
5584 HandleShift(shr);
5585 }
5586
VisitSub(HSub * instruction)5587 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
5588 HandleBinaryOp(instruction);
5589 }
5590
VisitSub(HSub * instruction)5591 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
5592 HandleBinaryOp(instruction);
5593 }
5594
VisitStaticFieldGet(HStaticFieldGet * instruction)5595 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5596 HandleFieldGet(instruction, instruction->GetFieldInfo());
5597 }
5598
VisitStaticFieldGet(HStaticFieldGet * instruction)5599 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5600 HandleFieldGet(instruction, instruction->GetFieldInfo());
5601 }
5602
VisitStaticFieldSet(HStaticFieldSet * instruction)5603 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5604 HandleFieldSet(instruction);
5605 }
5606
VisitStaticFieldSet(HStaticFieldSet * instruction)5607 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5608 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5609 }
5610
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5611 void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5612 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
5613 }
5614
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5615 void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5616 __ Mov(w0, instruction->GetFormat()->GetValue());
5617 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
5618 }
5619
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5620 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
5621 HUnresolvedInstanceFieldGet* instruction) {
5622 FieldAccessCallingConventionARM64 calling_convention;
5623 codegen_->CreateUnresolvedFieldLocationSummary(
5624 instruction, instruction->GetFieldType(), calling_convention);
5625 }
5626
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5627 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
5628 HUnresolvedInstanceFieldGet* instruction) {
5629 FieldAccessCallingConventionARM64 calling_convention;
5630 codegen_->GenerateUnresolvedFieldAccess(instruction,
5631 instruction->GetFieldType(),
5632 instruction->GetFieldIndex(),
5633 instruction->GetDexPc(),
5634 calling_convention);
5635 }
5636
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5637 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
5638 HUnresolvedInstanceFieldSet* instruction) {
5639 FieldAccessCallingConventionARM64 calling_convention;
5640 codegen_->CreateUnresolvedFieldLocationSummary(
5641 instruction, instruction->GetFieldType(), calling_convention);
5642 }
5643
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5644 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
5645 HUnresolvedInstanceFieldSet* instruction) {
5646 FieldAccessCallingConventionARM64 calling_convention;
5647 codegen_->GenerateUnresolvedFieldAccess(instruction,
5648 instruction->GetFieldType(),
5649 instruction->GetFieldIndex(),
5650 instruction->GetDexPc(),
5651 calling_convention);
5652 }
5653
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5654 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
5655 HUnresolvedStaticFieldGet* instruction) {
5656 FieldAccessCallingConventionARM64 calling_convention;
5657 codegen_->CreateUnresolvedFieldLocationSummary(
5658 instruction, instruction->GetFieldType(), calling_convention);
5659 }
5660
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5661 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
5662 HUnresolvedStaticFieldGet* instruction) {
5663 FieldAccessCallingConventionARM64 calling_convention;
5664 codegen_->GenerateUnresolvedFieldAccess(instruction,
5665 instruction->GetFieldType(),
5666 instruction->GetFieldIndex(),
5667 instruction->GetDexPc(),
5668 calling_convention);
5669 }
5670
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5671 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
5672 HUnresolvedStaticFieldSet* instruction) {
5673 FieldAccessCallingConventionARM64 calling_convention;
5674 codegen_->CreateUnresolvedFieldLocationSummary(
5675 instruction, instruction->GetFieldType(), calling_convention);
5676 }
5677
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5678 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
5679 HUnresolvedStaticFieldSet* instruction) {
5680 FieldAccessCallingConventionARM64 calling_convention;
5681 codegen_->GenerateUnresolvedFieldAccess(instruction,
5682 instruction->GetFieldType(),
5683 instruction->GetFieldIndex(),
5684 instruction->GetDexPc(),
5685 calling_convention);
5686 }
5687
VisitSuspendCheck(HSuspendCheck * instruction)5688 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
5689 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5690 instruction, LocationSummary::kCallOnSlowPath);
5691 // In suspend check slow path, usually there are no caller-save registers at all.
5692 // If SIMD instructions are present, however, we force spilling all live SIMD
5693 // registers in full width (since the runtime only saves/restores lower part).
5694 locations->SetCustomSlowPathCallerSaves(
5695 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
5696 }
5697
VisitSuspendCheck(HSuspendCheck * instruction)5698 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
5699 HBasicBlock* block = instruction->GetBlock();
5700 if (block->GetLoopInformation() != nullptr) {
5701 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5702 // The back edge will generate the suspend check.
5703 return;
5704 }
5705 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5706 // The goto will generate the suspend check.
5707 return;
5708 }
5709 GenerateSuspendCheck(instruction, nullptr);
5710 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5711 }
5712
VisitThrow(HThrow * instruction)5713 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
5714 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5715 instruction, LocationSummary::kCallOnMainOnly);
5716 InvokeRuntimeCallingConvention calling_convention;
5717 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5718 }
5719
VisitThrow(HThrow * instruction)5720 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
5721 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
5722 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
5723 }
5724
VisitTypeConversion(HTypeConversion * conversion)5725 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
5726 LocationSummary* locations =
5727 new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
5728 DataType::Type input_type = conversion->GetInputType();
5729 DataType::Type result_type = conversion->GetResultType();
5730 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
5731 << input_type << " -> " << result_type;
5732 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
5733 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
5734 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
5735 }
5736
5737 if (DataType::IsFloatingPointType(input_type)) {
5738 locations->SetInAt(0, Location::RequiresFpuRegister());
5739 } else {
5740 locations->SetInAt(0, Location::RequiresRegister());
5741 }
5742
5743 if (DataType::IsFloatingPointType(result_type)) {
5744 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5745 } else {
5746 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5747 }
5748 }
5749
VisitTypeConversion(HTypeConversion * conversion)5750 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
5751 DataType::Type result_type = conversion->GetResultType();
5752 DataType::Type input_type = conversion->GetInputType();
5753
5754 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
5755 << input_type << " -> " << result_type;
5756
5757 if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
5758 int result_size = DataType::Size(result_type);
5759 int input_size = DataType::Size(input_type);
5760 int min_size = std::min(result_size, input_size);
5761 Register output = OutputRegister(conversion);
5762 Register source = InputRegisterAt(conversion, 0);
5763 if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
5764 // 'int' values are used directly as W registers, discarding the top
5765 // bits, so we don't need to sign-extend and can just perform a move.
5766 // We do not pass the `kDiscardForSameWReg` argument to force clearing the
5767 // top 32 bits of the target register. We theoretically could leave those
5768 // bits unchanged, but we would have to make sure that no code uses a
5769 // 32bit input value as a 64bit value assuming that the top 32 bits are
5770 // zero.
5771 __ Mov(output.W(), source.W());
5772 } else if (DataType::IsUnsignedType(result_type) ||
5773 (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
5774 __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
5775 } else {
5776 __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
5777 }
5778 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
5779 __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
5780 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
5781 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
5782 __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
5783 } else if (DataType::IsFloatingPointType(result_type) &&
5784 DataType::IsFloatingPointType(input_type)) {
5785 __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
5786 } else {
5787 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
5788 << " to " << result_type;
5789 }
5790 }
5791
VisitUShr(HUShr * ushr)5792 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
5793 HandleShift(ushr);
5794 }
5795
VisitUShr(HUShr * ushr)5796 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
5797 HandleShift(ushr);
5798 }
5799
VisitXor(HXor * instruction)5800 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
5801 HandleBinaryOp(instruction);
5802 }
5803
VisitXor(HXor * instruction)5804 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
5805 HandleBinaryOp(instruction);
5806 }
5807
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)5808 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
5809 // Nothing to do, this should be removed during prepare for register allocator.
5810 LOG(FATAL) << "Unreachable";
5811 }
5812
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)5813 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
5814 // Nothing to do, this should be removed during prepare for register allocator.
5815 LOG(FATAL) << "Unreachable";
5816 }
5817
5818 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)5819 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
5820 LocationSummary* locations =
5821 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
5822 locations->SetInAt(0, Location::RequiresRegister());
5823 }
5824
VisitPackedSwitch(HPackedSwitch * switch_instr)5825 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
5826 int32_t lower_bound = switch_instr->GetStartValue();
5827 uint32_t num_entries = switch_instr->GetNumEntries();
5828 Register value_reg = InputRegisterAt(switch_instr, 0);
5829 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
5830
5831 // Roughly set 16 as max average assemblies generated per HIR in a graph.
5832 static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize;
5833 // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
5834 // make sure we don't emit it if the target may run out of range.
5835 // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
5836 // ranges and emit the tables only as required.
5837 static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
5838
5839 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
5840 // Current instruction id is an upper bound of the number of HIRs in the graph.
5841 GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
5842 // Create a series of compare/jumps.
5843 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
5844 Register temp = temps.AcquireW();
5845 __ Subs(temp, value_reg, Operand(lower_bound));
5846
5847 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
5848 // Jump to successors[0] if value == lower_bound.
5849 __ B(eq, codegen_->GetLabelOf(successors[0]));
5850 int32_t last_index = 0;
5851 for (; num_entries - last_index > 2; last_index += 2) {
5852 __ Subs(temp, temp, Operand(2));
5853 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
5854 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
5855 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
5856 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
5857 }
5858 if (num_entries - last_index == 2) {
5859 // The last missing case_value.
5860 __ Cmp(temp, Operand(1));
5861 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
5862 }
5863
5864 // And the default for any other value.
5865 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
5866 __ B(codegen_->GetLabelOf(default_block));
5867 }
5868 } else {
5869 JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
5870
5871 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
5872
5873 // Below instructions should use at most one blocked register. Since there are two blocked
5874 // registers, we are free to block one.
5875 Register temp_w = temps.AcquireW();
5876 Register index;
5877 // Remove the bias.
5878 if (lower_bound != 0) {
5879 index = temp_w;
5880 __ Sub(index, value_reg, Operand(lower_bound));
5881 } else {
5882 index = value_reg;
5883 }
5884
5885 // Jump to default block if index is out of the range.
5886 __ Cmp(index, Operand(num_entries));
5887 __ B(hs, codegen_->GetLabelOf(default_block));
5888
5889 // In current VIXL implementation, it won't require any blocked registers to encode the
5890 // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
5891 // register pressure.
5892 Register table_base = temps.AcquireX();
5893 // Load jump offset from the table.
5894 __ Adr(table_base, jump_table->GetTableStartLabel());
5895 Register jump_offset = temp_w;
5896 __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
5897
5898 // Jump to target block by branching to table_base(pc related) + offset.
5899 Register target_address = table_base;
5900 __ Add(target_address, table_base, Operand(jump_offset, SXTW));
5901 __ Br(target_address);
5902 }
5903 }
5904
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)5905 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
5906 HInstruction* instruction,
5907 Location out,
5908 uint32_t offset,
5909 Location maybe_temp,
5910 ReadBarrierOption read_barrier_option) {
5911 DataType::Type type = DataType::Type::kReference;
5912 Register out_reg = RegisterFrom(out, type);
5913 if (read_barrier_option == kWithReadBarrier) {
5914 CHECK(kEmitCompilerReadBarrier);
5915 if (kUseBakerReadBarrier) {
5916 // Load with fast path based Baker's read barrier.
5917 // /* HeapReference<Object> */ out = *(out + offset)
5918 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
5919 out,
5920 out_reg,
5921 offset,
5922 maybe_temp,
5923 /* needs_null_check= */ false,
5924 /* use_load_acquire= */ false);
5925 } else {
5926 // Load with slow path based read barrier.
5927 // Save the value of `out` into `maybe_temp` before overwriting it
5928 // in the following move operation, as we will need it for the
5929 // read barrier below.
5930 Register temp_reg = RegisterFrom(maybe_temp, type);
5931 __ Mov(temp_reg, out_reg);
5932 // /* HeapReference<Object> */ out = *(out + offset)
5933 __ Ldr(out_reg, HeapOperand(out_reg, offset));
5934 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
5935 }
5936 } else {
5937 // Plain load with no read barrier.
5938 // /* HeapReference<Object> */ out = *(out + offset)
5939 __ Ldr(out_reg, HeapOperand(out_reg, offset));
5940 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
5941 }
5942 }
5943
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)5944 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
5945 HInstruction* instruction,
5946 Location out,
5947 Location obj,
5948 uint32_t offset,
5949 Location maybe_temp,
5950 ReadBarrierOption read_barrier_option) {
5951 DataType::Type type = DataType::Type::kReference;
5952 Register out_reg = RegisterFrom(out, type);
5953 Register obj_reg = RegisterFrom(obj, type);
5954 if (read_barrier_option == kWithReadBarrier) {
5955 CHECK(kEmitCompilerReadBarrier);
5956 if (kUseBakerReadBarrier) {
5957 // Load with fast path based Baker's read barrier.
5958 // /* HeapReference<Object> */ out = *(obj + offset)
5959 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
5960 out,
5961 obj_reg,
5962 offset,
5963 maybe_temp,
5964 /* needs_null_check= */ false,
5965 /* use_load_acquire= */ false);
5966 } else {
5967 // Load with slow path based read barrier.
5968 // /* HeapReference<Object> */ out = *(obj + offset)
5969 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
5970 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
5971 }
5972 } else {
5973 // Plain load with no read barrier.
5974 // /* HeapReference<Object> */ out = *(obj + offset)
5975 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
5976 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
5977 }
5978 }
5979
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,vixl::aarch64::Label * fixup_label,ReadBarrierOption read_barrier_option)5980 void CodeGeneratorARM64::GenerateGcRootFieldLoad(
5981 HInstruction* instruction,
5982 Location root,
5983 Register obj,
5984 uint32_t offset,
5985 vixl::aarch64::Label* fixup_label,
5986 ReadBarrierOption read_barrier_option) {
5987 DCHECK(fixup_label == nullptr || offset == 0u);
5988 Register root_reg = RegisterFrom(root, DataType::Type::kReference);
5989 if (read_barrier_option == kWithReadBarrier) {
5990 DCHECK(kEmitCompilerReadBarrier);
5991 if (kUseBakerReadBarrier) {
5992 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
5993 // Baker's read barrier are used.
5994
5995 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
5996 // the Marking Register) to decide whether we need to enter
5997 // the slow path to mark the GC root.
5998 //
5999 // We use shared thunks for the slow path; shared within the method
6000 // for JIT, across methods for AOT. That thunk checks the reference
6001 // and jumps to the entrypoint if needed.
6002 //
6003 // lr = &return_address;
6004 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
6005 // if (mr) { // Thread::Current()->GetIsGcMarking()
6006 // goto gc_root_thunk<root_reg>(lr)
6007 // }
6008 // return_address:
6009
6010 UseScratchRegisterScope temps(GetVIXLAssembler());
6011 DCHECK(temps.IsAvailable(ip0));
6012 DCHECK(temps.IsAvailable(ip1));
6013 temps.Exclude(ip0, ip1);
6014 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
6015
6016 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6017 vixl::aarch64::Label return_address;
6018 __ adr(lr, &return_address);
6019 if (fixup_label != nullptr) {
6020 __ bind(fixup_label);
6021 }
6022 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6023 "GC root LDR must be 2 instructions (8B) before the return address label.");
6024 __ ldr(root_reg, MemOperand(obj.X(), offset));
6025 EmitBakerReadBarrierCbnz(custom_data);
6026 __ bind(&return_address);
6027 } else {
6028 // GC root loaded through a slow path for read barriers other
6029 // than Baker's.
6030 // /* GcRoot<mirror::Object>* */ root = obj + offset
6031 if (fixup_label == nullptr) {
6032 __ Add(root_reg.X(), obj.X(), offset);
6033 } else {
6034 EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
6035 }
6036 // /* mirror::Object* */ root = root->Read()
6037 GenerateReadBarrierForRootSlow(instruction, root, root);
6038 }
6039 } else {
6040 // Plain GC root load with no read barrier.
6041 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6042 if (fixup_label == nullptr) {
6043 __ Ldr(root_reg, MemOperand(obj, offset));
6044 } else {
6045 EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
6046 }
6047 // Note that GC roots are not affected by heap poisoning, thus we
6048 // do not have to unpoison `root_reg` here.
6049 }
6050 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6051 }
6052
GenerateUnsafeCasOldValueMovWithBakerReadBarrier(vixl::aarch64::Register marked,vixl::aarch64::Register old_value)6053 void CodeGeneratorARM64::GenerateUnsafeCasOldValueMovWithBakerReadBarrier(
6054 vixl::aarch64::Register marked,
6055 vixl::aarch64::Register old_value) {
6056 DCHECK(kEmitCompilerReadBarrier);
6057 DCHECK(kUseBakerReadBarrier);
6058
6059 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
6060 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked.GetCode());
6061
6062 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6063 vixl::aarch64::Label return_address;
6064 __ adr(lr, &return_address);
6065 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6066 "GC root LDR must be 2 instructions (8B) before the return address label.");
6067 __ mov(marked, old_value);
6068 EmitBakerReadBarrierCbnz(custom_data);
6069 __ bind(&return_address);
6070 }
6071
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::aarch64::Register obj,const vixl::aarch64::MemOperand & src,bool needs_null_check,bool use_load_acquire)6072 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6073 Location ref,
6074 vixl::aarch64::Register obj,
6075 const vixl::aarch64::MemOperand& src,
6076 bool needs_null_check,
6077 bool use_load_acquire) {
6078 DCHECK(kEmitCompilerReadBarrier);
6079 DCHECK(kUseBakerReadBarrier);
6080
6081 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6082 // Marking Register) to decide whether we need to enter the slow
6083 // path to mark the reference. Then, in the slow path, check the
6084 // gray bit in the lock word of the reference's holder (`obj`) to
6085 // decide whether to mark `ref` or not.
6086 //
6087 // We use shared thunks for the slow path; shared within the method
6088 // for JIT, across methods for AOT. That thunk checks the holder
6089 // and jumps to the entrypoint if needed. If the holder is not gray,
6090 // it creates a fake dependency and returns to the LDR instruction.
6091 //
6092 // lr = &gray_return_address;
6093 // if (mr) { // Thread::Current()->GetIsGcMarking()
6094 // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
6095 // }
6096 // not_gray_return_address:
6097 // // Original reference load. If the offset is too large to fit
6098 // // into LDR, we use an adjusted base register here.
6099 // HeapReference<mirror::Object> reference = *(obj+offset);
6100 // gray_return_address:
6101
6102 DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
6103 DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
6104
6105 UseScratchRegisterScope temps(GetVIXLAssembler());
6106 DCHECK(temps.IsAvailable(ip0));
6107 DCHECK(temps.IsAvailable(ip1));
6108 temps.Exclude(ip0, ip1);
6109 uint32_t custom_data = use_load_acquire
6110 ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
6111 : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
6112
6113 {
6114 ExactAssemblyScope guard(GetVIXLAssembler(),
6115 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6116 vixl::aarch64::Label return_address;
6117 __ adr(lr, &return_address);
6118 EmitBakerReadBarrierCbnz(custom_data);
6119 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6120 "Field LDR must be 1 instruction (4B) before the return address label; "
6121 " 2 instructions (8B) for heap poisoning.");
6122 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6123 if (use_load_acquire) {
6124 DCHECK_EQ(src.GetOffset(), 0);
6125 __ ldar(ref_reg, src);
6126 } else {
6127 __ ldr(ref_reg, src);
6128 }
6129 if (needs_null_check) {
6130 MaybeRecordImplicitNullCheck(instruction);
6131 }
6132 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6133 // macro instructions disallowed in ExactAssemblyScope.
6134 if (kPoisonHeapReferences) {
6135 __ neg(ref_reg, Operand(ref_reg));
6136 }
6137 __ bind(&return_address);
6138 }
6139 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6140 }
6141
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check,bool use_load_acquire)6142 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6143 Location ref,
6144 Register obj,
6145 uint32_t offset,
6146 Location maybe_temp,
6147 bool needs_null_check,
6148 bool use_load_acquire) {
6149 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
6150 Register base = obj;
6151 if (use_load_acquire) {
6152 DCHECK(maybe_temp.IsRegister());
6153 base = WRegisterFrom(maybe_temp);
6154 __ Add(base, obj, offset);
6155 offset = 0u;
6156 } else if (offset >= kReferenceLoadMinFarOffset) {
6157 DCHECK(maybe_temp.IsRegister());
6158 base = WRegisterFrom(maybe_temp);
6159 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
6160 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
6161 offset &= (kReferenceLoadMinFarOffset - 1u);
6162 }
6163 MemOperand src(base.X(), offset);
6164 GenerateFieldLoadWithBakerReadBarrier(
6165 instruction, ref, obj, src, needs_null_check, use_load_acquire);
6166 }
6167
GenerateArrayLoadWithBakerReadBarrier(HArrayGet * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)6168 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
6169 Location ref,
6170 Register obj,
6171 uint32_t data_offset,
6172 Location index,
6173 bool needs_null_check) {
6174 DCHECK(kEmitCompilerReadBarrier);
6175 DCHECK(kUseBakerReadBarrier);
6176
6177 static_assert(
6178 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6179 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6180 size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
6181
6182 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6183 // Marking Register) to decide whether we need to enter the slow
6184 // path to mark the reference. Then, in the slow path, check the
6185 // gray bit in the lock word of the reference's holder (`obj`) to
6186 // decide whether to mark `ref` or not.
6187 //
6188 // We use shared thunks for the slow path; shared within the method
6189 // for JIT, across methods for AOT. That thunk checks the holder
6190 // and jumps to the entrypoint if needed. If the holder is not gray,
6191 // it creates a fake dependency and returns to the LDR instruction.
6192 //
6193 // lr = &gray_return_address;
6194 // if (mr) { // Thread::Current()->GetIsGcMarking()
6195 // goto array_thunk<base_reg>(lr)
6196 // }
6197 // not_gray_return_address:
6198 // // Original reference load. If the offset is too large to fit
6199 // // into LDR, we use an adjusted base register here.
6200 // HeapReference<mirror::Object> reference = data[index];
6201 // gray_return_address:
6202
6203 DCHECK(index.IsValid());
6204 Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
6205 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6206
6207 UseScratchRegisterScope temps(GetVIXLAssembler());
6208 DCHECK(temps.IsAvailable(ip0));
6209 DCHECK(temps.IsAvailable(ip1));
6210 temps.Exclude(ip0, ip1);
6211
6212 Register temp;
6213 if (instruction->GetArray()->IsIntermediateAddress()) {
6214 // We do not need to compute the intermediate address from the array: the
6215 // input instruction has done it already. See the comment in
6216 // `TryExtractArrayAccessAddress()`.
6217 if (kIsDebugBuild) {
6218 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
6219 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
6220 }
6221 temp = obj;
6222 } else {
6223 temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
6224 __ Add(temp.X(), obj.X(), Operand(data_offset));
6225 }
6226
6227 uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
6228
6229 {
6230 ExactAssemblyScope guard(GetVIXLAssembler(),
6231 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6232 vixl::aarch64::Label return_address;
6233 __ adr(lr, &return_address);
6234 EmitBakerReadBarrierCbnz(custom_data);
6235 static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6236 "Array LDR must be 1 instruction (4B) before the return address label; "
6237 " 2 instructions (8B) for heap poisoning.");
6238 __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
6239 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
6240 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6241 // macro instructions disallowed in ExactAssemblyScope.
6242 if (kPoisonHeapReferences) {
6243 __ neg(ref_reg, Operand(ref_reg));
6244 }
6245 __ bind(&return_address);
6246 }
6247 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6248 }
6249
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)6250 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
6251 // The following condition is a compile-time one, so it does not have a run-time cost.
6252 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
6253 // The following condition is a run-time one; it is executed after the
6254 // previous compile-time test, to avoid penalizing non-debug builds.
6255 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
6256 UseScratchRegisterScope temps(GetVIXLAssembler());
6257 Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
6258 GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
6259 }
6260 }
6261 }
6262
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6263 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
6264 Location out,
6265 Location ref,
6266 Location obj,
6267 uint32_t offset,
6268 Location index) {
6269 DCHECK(kEmitCompilerReadBarrier);
6270
6271 // Insert a slow path based read barrier *after* the reference load.
6272 //
6273 // If heap poisoning is enabled, the unpoisoning of the loaded
6274 // reference will be carried out by the runtime within the slow
6275 // path.
6276 //
6277 // Note that `ref` currently does not get unpoisoned (when heap
6278 // poisoning is enabled), which is alright as the `ref` argument is
6279 // not used by the artReadBarrierSlow entry point.
6280 //
6281 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6282 SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
6283 ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
6284 AddSlowPath(slow_path);
6285
6286 __ B(slow_path->GetEntryLabel());
6287 __ Bind(slow_path->GetExitLabel());
6288 }
6289
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6290 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6291 Location out,
6292 Location ref,
6293 Location obj,
6294 uint32_t offset,
6295 Location index) {
6296 if (kEmitCompilerReadBarrier) {
6297 // Baker's read barriers shall be handled by the fast path
6298 // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
6299 DCHECK(!kUseBakerReadBarrier);
6300 // If heap poisoning is enabled, unpoisoning will be taken care of
6301 // by the runtime within the slow path.
6302 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6303 } else if (kPoisonHeapReferences) {
6304 GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
6305 }
6306 }
6307
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6308 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6309 Location out,
6310 Location root) {
6311 DCHECK(kEmitCompilerReadBarrier);
6312
6313 // Insert a slow path based read barrier *after* the GC root load.
6314 //
6315 // Note that GC roots are not affected by heap poisoning, so we do
6316 // not need to do anything special for this here.
6317 SlowPathCodeARM64* slow_path =
6318 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
6319 AddSlowPath(slow_path);
6320
6321 __ B(slow_path->GetEntryLabel());
6322 __ Bind(slow_path->GetExitLabel());
6323 }
6324
VisitClassTableGet(HClassTableGet * instruction)6325 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
6326 LocationSummary* locations =
6327 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6328 locations->SetInAt(0, Location::RequiresRegister());
6329 locations->SetOut(Location::RequiresRegister());
6330 }
6331
VisitClassTableGet(HClassTableGet * instruction)6332 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
6333 LocationSummary* locations = instruction->GetLocations();
6334 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
6335 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
6336 instruction->GetIndex(), kArm64PointerSize).SizeValue();
6337 __ Ldr(XRegisterFrom(locations->Out()),
6338 MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
6339 } else {
6340 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
6341 instruction->GetIndex(), kArm64PointerSize));
6342 __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
6343 mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
6344 __ Ldr(XRegisterFrom(locations->Out()),
6345 MemOperand(XRegisterFrom(locations->Out()), method_offset));
6346 }
6347 }
6348
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,vixl::aarch64::Literal<uint32_t> * literal,uint64_t index_in_table)6349 static void PatchJitRootUse(uint8_t* code,
6350 const uint8_t* roots_data,
6351 vixl::aarch64::Literal<uint32_t>* literal,
6352 uint64_t index_in_table) {
6353 uint32_t literal_offset = literal->GetOffset();
6354 uintptr_t address =
6355 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
6356 uint8_t* data = code + literal_offset;
6357 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
6358 }
6359
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)6360 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
6361 for (const auto& entry : jit_string_patches_) {
6362 const StringReference& string_reference = entry.first;
6363 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
6364 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
6365 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6366 }
6367 for (const auto& entry : jit_class_patches_) {
6368 const TypeReference& type_reference = entry.first;
6369 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
6370 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
6371 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6372 }
6373 }
6374
6375 #undef __
6376 #undef QUICK_ENTRY_POINT
6377
6378 #define __ assembler.GetVIXLAssembler()->
6379
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path,vixl::aarch64::Label * throw_npe=nullptr)6380 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
6381 vixl::aarch64::Register base_reg,
6382 vixl::aarch64::MemOperand& lock_word,
6383 vixl::aarch64::Label* slow_path,
6384 vixl::aarch64::Label* throw_npe = nullptr) {
6385 // Load the lock word containing the rb_state.
6386 __ Ldr(ip0.W(), lock_word);
6387 // Given the numeric representation, it's enough to check the low bit of the rb_state.
6388 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
6389 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
6390 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
6391 static_assert(
6392 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
6393 "Field and array LDR offsets must be the same to reuse the same code.");
6394 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
6395 if (throw_npe != nullptr) {
6396 __ Bind(throw_npe);
6397 }
6398 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
6399 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6400 "Field LDR must be 1 instruction (4B) before the return address label; "
6401 " 2 instructions (8B) for heap poisoning.");
6402 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
6403 // Introduce a dependency on the lock_word including rb_state,
6404 // to prevent load-load reordering, and without using
6405 // a memory barrier (which would be more expensive).
6406 __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
6407 __ Br(lr); // And return back to the function.
6408 // Note: The fake dependency is unnecessary for the slow path.
6409 }
6410
6411 // Load the read barrier introspection entrypoint in register `entrypoint`.
LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler & assembler,vixl::aarch64::Register entrypoint)6412 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
6413 vixl::aarch64::Register entrypoint) {
6414 // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
6415 DCHECK_EQ(ip0.GetCode(), 16u);
6416 const int32_t entry_point_offset =
6417 Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
6418 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
6419 }
6420
CompileBakerReadBarrierThunk(Arm64Assembler & assembler,uint32_t encoded_data,std::string * debug_name)6421 void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
6422 uint32_t encoded_data,
6423 /*out*/ std::string* debug_name) {
6424 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
6425 switch (kind) {
6426 case BakerReadBarrierKind::kField:
6427 case BakerReadBarrierKind::kAcquire: {
6428 auto base_reg =
6429 Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
6430 CheckValidReg(base_reg.GetCode());
6431 auto holder_reg =
6432 Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data));
6433 CheckValidReg(holder_reg.GetCode());
6434 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
6435 temps.Exclude(ip0, ip1);
6436 // In the case of a field load (with relaxed semantic), if `base_reg` differs from
6437 // `holder_reg`, the offset was too large and we must have emitted (during the construction
6438 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
6439 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
6440 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
6441 // not necessarily do that check before going to the thunk.
6442 //
6443 // In the case of a field load with load-acquire semantics (where `base_reg` always differs
6444 // from `holder_reg`), we also need an explicit null check when implicit null checks are
6445 // allowed, as we do not emit one before going to the thunk.
6446 vixl::aarch64::Label throw_npe_label;
6447 vixl::aarch64::Label* throw_npe = nullptr;
6448 if (GetCompilerOptions().GetImplicitNullChecks() &&
6449 (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
6450 throw_npe = &throw_npe_label;
6451 __ Cbz(holder_reg.W(), throw_npe);
6452 }
6453 // Check if the holder is gray and, if not, add fake dependency to the base register
6454 // and return to the LDR instruction to load the reference. Otherwise, use introspection
6455 // to load the reference and call the entrypoint that performs further checks on the
6456 // reference and marks it if needed.
6457 vixl::aarch64::Label slow_path;
6458 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
6459 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
6460 __ Bind(&slow_path);
6461 if (kind == BakerReadBarrierKind::kField) {
6462 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
6463 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
6464 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6465 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
6466 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
6467 } else {
6468 DCHECK(kind == BakerReadBarrierKind::kAcquire);
6469 DCHECK(!base_reg.Is(holder_reg));
6470 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6471 __ Ldar(ip0.W(), MemOperand(base_reg));
6472 }
6473 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
6474 __ Br(ip1); // Jump to the entrypoint.
6475 break;
6476 }
6477 case BakerReadBarrierKind::kArray: {
6478 auto base_reg =
6479 Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
6480 CheckValidReg(base_reg.GetCode());
6481 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6482 BakerReadBarrierSecondRegField::Decode(encoded_data));
6483 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
6484 temps.Exclude(ip0, ip1);
6485 vixl::aarch64::Label slow_path;
6486 int32_t data_offset =
6487 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
6488 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
6489 DCHECK_LT(lock_word.GetOffset(), 0);
6490 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
6491 __ Bind(&slow_path);
6492 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
6493 __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
6494 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6495 __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
6496 __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
6497 // a switch case target based on the index register.
6498 __ Mov(ip0, base_reg); // Move the base register to ip0.
6499 __ Br(ip1); // Jump to the entrypoint's array switch case.
6500 break;
6501 }
6502 case BakerReadBarrierKind::kGcRoot: {
6503 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
6504 // and it does not have a forwarding address), call the correct introspection entrypoint;
6505 // otherwise return the reference (or the extracted forwarding address).
6506 // There is no gray bit check for GC roots.
6507 auto root_reg =
6508 Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
6509 CheckValidReg(root_reg.GetCode());
6510 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6511 BakerReadBarrierSecondRegField::Decode(encoded_data));
6512 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
6513 temps.Exclude(ip0, ip1);
6514 vixl::aarch64::Label return_label, not_marked, forwarding_address;
6515 __ Cbz(root_reg, &return_label);
6516 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
6517 __ Ldr(ip0.W(), lock_word);
6518 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
6519 __ Bind(&return_label);
6520 __ Br(lr);
6521 __ Bind(¬_marked);
6522 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
6523 __ B(&forwarding_address, mi);
6524 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
6525 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
6526 // art_quick_read_barrier_mark_introspection_gc_roots.
6527 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
6528 __ Mov(ip0.W(), root_reg);
6529 __ Br(ip1);
6530 __ Bind(&forwarding_address);
6531 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
6532 __ Br(lr);
6533 break;
6534 }
6535 default:
6536 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
6537 UNREACHABLE();
6538 }
6539
6540 // For JIT, the slow path is considered part of the compiled method,
6541 // so JIT should pass null as `debug_name`. Tests may not have a runtime.
6542 DCHECK(Runtime::Current() == nullptr ||
6543 !Runtime::Current()->UseJitCompilation() ||
6544 debug_name == nullptr);
6545 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
6546 std::ostringstream oss;
6547 oss << "BakerReadBarrierThunk";
6548 switch (kind) {
6549 case BakerReadBarrierKind::kField:
6550 oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
6551 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
6552 break;
6553 case BakerReadBarrierKind::kAcquire:
6554 oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
6555 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
6556 break;
6557 case BakerReadBarrierKind::kArray:
6558 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
6559 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6560 BakerReadBarrierSecondRegField::Decode(encoded_data));
6561 break;
6562 case BakerReadBarrierKind::kGcRoot:
6563 oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
6564 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
6565 BakerReadBarrierSecondRegField::Decode(encoded_data));
6566 break;
6567 }
6568 *debug_name = oss.str();
6569 }
6570 }
6571
6572 #undef __
6573
6574 } // namespace arm64
6575 } // namespace art
6576