1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23
24 #include "base/arena_bit_vector.h"
25 #include "base/arena_containers.h"
26 #include "base/arena_object.h"
27 #include "base/array_ref.h"
28 #include "base/intrusive_forward_list.h"
29 #include "base/iteration_range.h"
30 #include "base/mutex.h"
31 #include "base/quasi_atomic.h"
32 #include "base/stl_util.h"
33 #include "base/transform_array_ref.h"
34 #include "art_method.h"
35 #include "data_type.h"
36 #include "deoptimization_kind.h"
37 #include "dex/dex_file.h"
38 #include "dex/dex_file_types.h"
39 #include "dex/invoke_type.h"
40 #include "dex/method_reference.h"
41 #include "entrypoints/quick/quick_entrypoints_enum.h"
42 #include "handle.h"
43 #include "handle_scope.h"
44 #include "intrinsics_enum.h"
45 #include "locations.h"
46 #include "mirror/class.h"
47 #include "mirror/method_type.h"
48 #include "offsets.h"
49
50 namespace art {
51
52 class ArenaStack;
53 class GraphChecker;
54 class HBasicBlock;
55 class HConstructorFence;
56 class HCurrentMethod;
57 class HDoubleConstant;
58 class HEnvironment;
59 class HFloatConstant;
60 class HGraphBuilder;
61 class HGraphVisitor;
62 class HInstruction;
63 class HIntConstant;
64 class HInvoke;
65 class HLongConstant;
66 class HNullConstant;
67 class HParameterValue;
68 class HPhi;
69 class HSuspendCheck;
70 class HTryBoundary;
71 class LiveInterval;
72 class LocationSummary;
73 class SlowPathCode;
74 class SsaBuilder;
75
76 namespace mirror {
77 class DexCache;
78 } // namespace mirror
79
80 static const int kDefaultNumberOfBlocks = 8;
81 static const int kDefaultNumberOfSuccessors = 2;
82 static const int kDefaultNumberOfPredecessors = 2;
83 static const int kDefaultNumberOfExceptionalPredecessors = 0;
84 static const int kDefaultNumberOfDominatedBlocks = 1;
85 static const int kDefaultNumberOfBackEdges = 1;
86
87 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
88 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
89 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
90 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
91
92 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
93 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
94
95 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
96
97 static constexpr uint32_t kNoDexPc = -1;
98
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)99 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
100 // For the purposes of the compiler, the dex files must actually be the same object
101 // if we want to safely treat them as the same. This is especially important for JIT
102 // as custom class loaders can open the same underlying file (or memory) multiple
103 // times and provide different class resolution but no two class loaders should ever
104 // use the same DexFile object - doing so is an unsupported hack that can lead to
105 // all sorts of weird failures.
106 return &lhs == &rhs;
107 }
108
109 enum IfCondition {
110 // All types.
111 kCondEQ, // ==
112 kCondNE, // !=
113 // Signed integers and floating-point numbers.
114 kCondLT, // <
115 kCondLE, // <=
116 kCondGT, // >
117 kCondGE, // >=
118 // Unsigned integers.
119 kCondB, // <
120 kCondBE, // <=
121 kCondA, // >
122 kCondAE, // >=
123 // First and last aliases.
124 kCondFirst = kCondEQ,
125 kCondLast = kCondAE,
126 };
127
128 enum GraphAnalysisResult {
129 kAnalysisSkipped,
130 kAnalysisInvalidBytecode,
131 kAnalysisFailThrowCatchLoop,
132 kAnalysisFailAmbiguousArrayOp,
133 kAnalysisFailIrreducibleLoopAndStringInit,
134 kAnalysisFailPhiEquivalentInOsr,
135 kAnalysisSuccess,
136 };
137
138 template <typename T>
MakeUnsigned(T x)139 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
140 return static_cast<typename std::make_unsigned<T>::type>(x);
141 }
142
143 class HInstructionList : public ValueObject {
144 public:
HInstructionList()145 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
146
147 void AddInstruction(HInstruction* instruction);
148 void RemoveInstruction(HInstruction* instruction);
149
150 // Insert `instruction` before/after an existing instruction `cursor`.
151 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
152 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
153
154 // Return true if this list contains `instruction`.
155 bool Contains(HInstruction* instruction) const;
156
157 // Return true if `instruction1` is found before `instruction2` in
158 // this instruction list and false otherwise. Abort if none
159 // of these instructions is found.
160 bool FoundBefore(const HInstruction* instruction1,
161 const HInstruction* instruction2) const;
162
IsEmpty()163 bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()164 void Clear() { first_instruction_ = last_instruction_ = nullptr; }
165
166 // Update the block of all instructions to be `block`.
167 void SetBlockOfInstructions(HBasicBlock* block) const;
168
169 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
170 void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
171 void Add(const HInstructionList& instruction_list);
172
173 // Return the number of instructions in the list. This is an expensive operation.
174 size_t CountSize() const;
175
176 private:
177 HInstruction* first_instruction_;
178 HInstruction* last_instruction_;
179
180 friend class HBasicBlock;
181 friend class HGraph;
182 friend class HInstruction;
183 friend class HInstructionIterator;
184 friend class HInstructionIteratorHandleChanges;
185 friend class HBackwardInstructionIterator;
186
187 DISALLOW_COPY_AND_ASSIGN(HInstructionList);
188 };
189
190 class ReferenceTypeInfo : ValueObject {
191 public:
192 typedef Handle<mirror::Class> TypeHandle;
193
194 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
195
Create(TypeHandle type_handle)196 static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
197 return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
198 }
199
CreateUnchecked(TypeHandle type_handle,bool is_exact)200 static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
201 return ReferenceTypeInfo(type_handle, is_exact);
202 }
203
CreateInvalid()204 static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
205
IsValidHandle(TypeHandle handle)206 static bool IsValidHandle(TypeHandle handle) {
207 return handle.GetReference() != nullptr;
208 }
209
IsValid()210 bool IsValid() const {
211 return IsValidHandle(type_handle_);
212 }
213
IsExact()214 bool IsExact() const { return is_exact_; }
215
IsObjectClass()216 bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
217 DCHECK(IsValid());
218 return GetTypeHandle()->IsObjectClass();
219 }
220
IsStringClass()221 bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
222 DCHECK(IsValid());
223 return GetTypeHandle()->IsStringClass();
224 }
225
IsObjectArray()226 bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
227 DCHECK(IsValid());
228 return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
229 }
230
IsInterface()231 bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
232 DCHECK(IsValid());
233 return GetTypeHandle()->IsInterface();
234 }
235
IsArrayClass()236 bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
237 DCHECK(IsValid());
238 return GetTypeHandle()->IsArrayClass();
239 }
240
IsPrimitiveArrayClass()241 bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
242 DCHECK(IsValid());
243 return GetTypeHandle()->IsPrimitiveArray();
244 }
245
IsNonPrimitiveArrayClass()246 bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
247 DCHECK(IsValid());
248 return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
249 }
250
CanArrayHold(ReferenceTypeInfo rti)251 bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
252 DCHECK(IsValid());
253 if (!IsExact()) return false;
254 if (!IsArrayClass()) return false;
255 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
256 }
257
CanArrayHoldValuesOf(ReferenceTypeInfo rti)258 bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
259 DCHECK(IsValid());
260 if (!IsExact()) return false;
261 if (!IsArrayClass()) return false;
262 if (!rti.IsArrayClass()) return false;
263 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
264 rti.GetTypeHandle()->GetComponentType());
265 }
266
GetTypeHandle()267 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
268
IsSupertypeOf(ReferenceTypeInfo rti)269 bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
270 DCHECK(IsValid());
271 DCHECK(rti.IsValid());
272 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
273 }
274
IsStrictSupertypeOf(ReferenceTypeInfo rti)275 bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
276 DCHECK(IsValid());
277 DCHECK(rti.IsValid());
278 return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
279 GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
280 }
281
282 // Returns true if the type information provide the same amount of details.
283 // Note that it does not mean that the instructions have the same actual type
284 // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)285 bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
286 if (!IsValid() && !rti.IsValid()) {
287 // Invalid types are equal.
288 return true;
289 }
290 if (!IsValid() || !rti.IsValid()) {
291 // One is valid, the other not.
292 return false;
293 }
294 return IsExact() == rti.IsExact()
295 && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
296 }
297
298 private:
ReferenceTypeInfo()299 ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)300 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
301 : type_handle_(type_handle), is_exact_(is_exact) { }
302
303 // The class of the object.
304 TypeHandle type_handle_;
305 // Whether or not the type is exact or a superclass of the actual type.
306 // Whether or not we have any information about this type.
307 bool is_exact_;
308 };
309
310 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
311
312 // Control-flow graph of a method. Contains a list of basic blocks.
313 class HGraph : public ArenaObject<kArenaAllocGraph> {
314 public:
315 HGraph(ArenaAllocator* allocator,
316 ArenaStack* arena_stack,
317 const DexFile& dex_file,
318 uint32_t method_idx,
319 InstructionSet instruction_set,
320 InvokeType invoke_type = kInvalidInvokeType,
321 bool dead_reference_safe = false,
322 bool debuggable = false,
323 bool osr = false,
324 bool is_shared_jit_code = false,
325 bool baseline = false,
326 int start_instruction_id = 0)
allocator_(allocator)327 : allocator_(allocator),
328 arena_stack_(arena_stack),
329 blocks_(allocator->Adapter(kArenaAllocBlockList)),
330 reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
331 linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
332 entry_block_(nullptr),
333 exit_block_(nullptr),
334 maximum_number_of_out_vregs_(0),
335 number_of_vregs_(0),
336 number_of_in_vregs_(0),
337 temporaries_vreg_slots_(0),
338 has_bounds_checks_(false),
339 has_try_catch_(false),
340 has_monitor_operations_(false),
341 has_simd_(false),
342 has_loops_(false),
343 has_irreducible_loops_(false),
344 dead_reference_safe_(dead_reference_safe),
345 debuggable_(debuggable),
346 current_instruction_id_(start_instruction_id),
347 dex_file_(dex_file),
348 method_idx_(method_idx),
349 invoke_type_(invoke_type),
350 in_ssa_form_(false),
351 number_of_cha_guards_(0),
352 instruction_set_(instruction_set),
353 cached_null_constant_(nullptr),
354 cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
355 cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
356 cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
357 cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
358 cached_current_method_(nullptr),
359 art_method_(nullptr),
360 inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
361 osr_(osr),
362 baseline_(baseline),
363 cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)),
364 is_shared_jit_code_(is_shared_jit_code) {
365 blocks_.reserve(kDefaultNumberOfBlocks);
366 }
367
368 // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
369 void InitializeInexactObjectRTI(VariableSizedHandleScope* handles);
370
GetAllocator()371 ArenaAllocator* GetAllocator() const { return allocator_; }
GetArenaStack()372 ArenaStack* GetArenaStack() const { return arena_stack_; }
GetBlocks()373 const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
374
IsInSsaForm()375 bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()376 void SetInSsaForm() { in_ssa_form_ = true; }
377
GetEntryBlock()378 HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()379 HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()380 bool HasExitBlock() const { return exit_block_ != nullptr; }
381
SetEntryBlock(HBasicBlock * block)382 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)383 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
384
385 void AddBlock(HBasicBlock* block);
386
387 void ComputeDominanceInformation();
388 void ClearDominanceInformation();
389 void ClearLoopInformation();
390 void FindBackEdges(ArenaBitVector* visited);
391 GraphAnalysisResult BuildDominatorTree();
392 void SimplifyCFG();
393 void SimplifyCatchBlocks();
394
395 // Analyze all natural loops in this graph. Returns a code specifying that it
396 // was successful or the reason for failure. The method will fail if a loop
397 // is a throw-catch loop, i.e. the header is a catch block.
398 GraphAnalysisResult AnalyzeLoops() const;
399
400 // Iterate over blocks to compute try block membership. Needs reverse post
401 // order and loop information.
402 void ComputeTryBlockInformation();
403
404 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
405 // Returns the instruction to replace the invoke expression or null if the
406 // invoke is for a void method. Note that the caller is responsible for replacing
407 // and removing the invoke instruction.
408 HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
409
410 // Update the loop and try membership of `block`, which was spawned from `reference`.
411 // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
412 // should be the new back edge.
413 void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
414 HBasicBlock* reference,
415 bool replace_if_back_edge);
416
417 // Need to add a couple of blocks to test if the loop body is entered and
418 // put deoptimization instructions, etc.
419 void TransformLoopHeaderForBCE(HBasicBlock* header);
420
421 // Adds a new loop directly after the loop with the given header and exit.
422 // Returns the new preheader.
423 HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
424 HBasicBlock* body,
425 HBasicBlock* exit);
426
427 // Removes `block` from the graph. Assumes `block` has been disconnected from
428 // other blocks and has no instructions or phis.
429 void DeleteDeadEmptyBlock(HBasicBlock* block);
430
431 // Splits the edge between `block` and `successor` while preserving the
432 // indices in the predecessor/successor lists. If there are multiple edges
433 // between the blocks, the lowest indices are used.
434 // Returns the new block which is empty and has the same dex pc as `successor`.
435 HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
436
437 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
438 void OrderLoopHeaderPredecessors(HBasicBlock* header);
439
440 // Transform a loop into a format with a single preheader.
441 //
442 // Each phi in the header should be split: original one in the header should only hold
443 // inputs reachable from the back edges and a single input from the preheader. The newly created
444 // phi in the preheader should collate the inputs from the original multiple incoming blocks.
445 //
446 // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
447 // that no longer have this property.
448 void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
449
450 void SimplifyLoop(HBasicBlock* header);
451
GetNextInstructionId()452 int32_t GetNextInstructionId() {
453 CHECK_NE(current_instruction_id_, INT32_MAX);
454 return current_instruction_id_++;
455 }
456
GetCurrentInstructionId()457 int32_t GetCurrentInstructionId() const {
458 return current_instruction_id_;
459 }
460
SetCurrentInstructionId(int32_t id)461 void SetCurrentInstructionId(int32_t id) {
462 CHECK_GE(id, current_instruction_id_);
463 current_instruction_id_ = id;
464 }
465
GetMaximumNumberOfOutVRegs()466 uint16_t GetMaximumNumberOfOutVRegs() const {
467 return maximum_number_of_out_vregs_;
468 }
469
SetMaximumNumberOfOutVRegs(uint16_t new_value)470 void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
471 maximum_number_of_out_vregs_ = new_value;
472 }
473
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)474 void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
475 maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
476 }
477
UpdateTemporariesVRegSlots(size_t slots)478 void UpdateTemporariesVRegSlots(size_t slots) {
479 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
480 }
481
GetTemporariesVRegSlots()482 size_t GetTemporariesVRegSlots() const {
483 DCHECK(!in_ssa_form_);
484 return temporaries_vreg_slots_;
485 }
486
SetNumberOfVRegs(uint16_t number_of_vregs)487 void SetNumberOfVRegs(uint16_t number_of_vregs) {
488 number_of_vregs_ = number_of_vregs;
489 }
490
GetNumberOfVRegs()491 uint16_t GetNumberOfVRegs() const {
492 return number_of_vregs_;
493 }
494
SetNumberOfInVRegs(uint16_t value)495 void SetNumberOfInVRegs(uint16_t value) {
496 number_of_in_vregs_ = value;
497 }
498
GetNumberOfInVRegs()499 uint16_t GetNumberOfInVRegs() const {
500 return number_of_in_vregs_;
501 }
502
GetNumberOfLocalVRegs()503 uint16_t GetNumberOfLocalVRegs() const {
504 DCHECK(!in_ssa_form_);
505 return number_of_vregs_ - number_of_in_vregs_;
506 }
507
GetReversePostOrder()508 const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
509 return reverse_post_order_;
510 }
511
GetReversePostOrderSkipEntryBlock()512 ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
513 DCHECK(GetReversePostOrder()[0] == entry_block_);
514 return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
515 }
516
GetPostOrder()517 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
518 return ReverseRange(GetReversePostOrder());
519 }
520
GetLinearOrder()521 const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
522 return linear_order_;
523 }
524
GetLinearPostOrder()525 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
526 return ReverseRange(GetLinearOrder());
527 }
528
HasBoundsChecks()529 bool HasBoundsChecks() const {
530 return has_bounds_checks_;
531 }
532
SetHasBoundsChecks(bool value)533 void SetHasBoundsChecks(bool value) {
534 has_bounds_checks_ = value;
535 }
536
537 // Is the code known to be robust against eliminating dead references
538 // and the effects of early finalization?
IsDeadReferenceSafe()539 bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
540
MarkDeadReferenceUnsafe()541 void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
542
IsDebuggable()543 bool IsDebuggable() const { return debuggable_; }
544
545 // Returns a constant of the given type and value. If it does not exist
546 // already, it is created and inserted into the graph. This method is only for
547 // integral types.
548 HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
549
550 // TODO: This is problematic for the consistency of reference type propagation
551 // because it can be created anytime after the pass and thus it will be left
552 // with an invalid type.
553 HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
554
555 HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
556 return CreateConstant(value, &cached_int_constants_, dex_pc);
557 }
558 HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
559 return CreateConstant(value, &cached_long_constants_, dex_pc);
560 }
561 HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
562 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
563 }
564 HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
565 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
566 }
567
568 HCurrentMethod* GetCurrentMethod();
569
GetDexFile()570 const DexFile& GetDexFile() const {
571 return dex_file_;
572 }
573
GetMethodIdx()574 uint32_t GetMethodIdx() const {
575 return method_idx_;
576 }
577
578 // Get the method name (without the signature), e.g. "<init>"
579 const char* GetMethodName() const;
580
581 // Get the pretty method name (class + name + optionally signature).
582 std::string PrettyMethod(bool with_signature = true) const;
583
GetInvokeType()584 InvokeType GetInvokeType() const {
585 return invoke_type_;
586 }
587
GetInstructionSet()588 InstructionSet GetInstructionSet() const {
589 return instruction_set_;
590 }
591
IsCompilingOsr()592 bool IsCompilingOsr() const { return osr_; }
593
IsCompilingBaseline()594 bool IsCompilingBaseline() const { return baseline_; }
595
IsCompilingForSharedJitCode()596 bool IsCompilingForSharedJitCode() const {
597 return is_shared_jit_code_;
598 }
599
GetCHASingleImplementationList()600 ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
601 return cha_single_implementation_list_;
602 }
603
AddCHASingleImplementationDependency(ArtMethod * method)604 void AddCHASingleImplementationDependency(ArtMethod* method) {
605 cha_single_implementation_list_.insert(method);
606 }
607
HasShouldDeoptimizeFlag()608 bool HasShouldDeoptimizeFlag() const {
609 return number_of_cha_guards_ != 0;
610 }
611
HasTryCatch()612 bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)613 void SetHasTryCatch(bool value) { has_try_catch_ = value; }
614
HasMonitorOperations()615 bool HasMonitorOperations() const { return has_monitor_operations_; }
SetHasMonitorOperations(bool value)616 void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
617
HasSIMD()618 bool HasSIMD() const { return has_simd_; }
SetHasSIMD(bool value)619 void SetHasSIMD(bool value) { has_simd_ = value; }
620
HasLoops()621 bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)622 void SetHasLoops(bool value) { has_loops_ = value; }
623
HasIrreducibleLoops()624 bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)625 void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
626
GetArtMethod()627 ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)628 void SetArtMethod(ArtMethod* method) { art_method_ = method; }
629
630 // Returns an instruction with the opposite Boolean value from 'cond'.
631 // The instruction has been inserted into the graph, either as a constant, or
632 // before cursor.
633 HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
634
GetInexactObjectRti()635 ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
636
GetNumberOfCHAGuards()637 uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)638 void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()639 void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
640
641 private:
642 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
643 void RemoveDeadBlocks(const ArenaBitVector& visited);
644
645 template <class InstructionType, typename ValueType>
646 InstructionType* CreateConstant(ValueType value,
647 ArenaSafeMap<ValueType, InstructionType*>* cache,
648 uint32_t dex_pc = kNoDexPc) {
649 // Try to find an existing constant of the given value.
650 InstructionType* constant = nullptr;
651 auto cached_constant = cache->find(value);
652 if (cached_constant != cache->end()) {
653 constant = cached_constant->second;
654 }
655
656 // If not found or previously deleted, create and cache a new instruction.
657 // Don't bother reviving a previously deleted instruction, for simplicity.
658 if (constant == nullptr || constant->GetBlock() == nullptr) {
659 constant = new (allocator_) InstructionType(value, dex_pc);
660 cache->Overwrite(value, constant);
661 InsertConstant(constant);
662 }
663 return constant;
664 }
665
666 void InsertConstant(HConstant* instruction);
667
668 // Cache a float constant into the graph. This method should only be
669 // called by the SsaBuilder when creating "equivalent" instructions.
670 void CacheFloatConstant(HFloatConstant* constant);
671
672 // See CacheFloatConstant comment.
673 void CacheDoubleConstant(HDoubleConstant* constant);
674
675 ArenaAllocator* const allocator_;
676 ArenaStack* const arena_stack_;
677
678 // List of blocks in insertion order.
679 ArenaVector<HBasicBlock*> blocks_;
680
681 // List of blocks to perform a reverse post order tree traversal.
682 ArenaVector<HBasicBlock*> reverse_post_order_;
683
684 // List of blocks to perform a linear order tree traversal. Unlike the reverse
685 // post order, this order is not incrementally kept up-to-date.
686 ArenaVector<HBasicBlock*> linear_order_;
687
688 HBasicBlock* entry_block_;
689 HBasicBlock* exit_block_;
690
691 // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
692 uint16_t maximum_number_of_out_vregs_;
693
694 // The number of virtual registers in this method. Contains the parameters.
695 uint16_t number_of_vregs_;
696
697 // The number of virtual registers used by parameters of this method.
698 uint16_t number_of_in_vregs_;
699
700 // Number of vreg size slots that the temporaries use (used in baseline compiler).
701 size_t temporaries_vreg_slots_;
702
703 // Flag whether there are bounds checks in the graph. We can skip
704 // BCE if it's false. It's only best effort to keep it up to date in
705 // the presence of code elimination so there might be false positives.
706 bool has_bounds_checks_;
707
708 // Flag whether there are try/catch blocks in the graph. We will skip
709 // try/catch-related passes if it's false. It's only best effort to keep
710 // it up to date in the presence of code elimination so there might be
711 // false positives.
712 bool has_try_catch_;
713
714 // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
715 // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
716 bool has_monitor_operations_;
717
718 // Flag whether SIMD instructions appear in the graph. If true, the
719 // code generators may have to be more careful spilling the wider
720 // contents of SIMD registers.
721 bool has_simd_;
722
723 // Flag whether there are any loops in the graph. We can skip loop
724 // optimization if it's false. It's only best effort to keep it up
725 // to date in the presence of code elimination so there might be false
726 // positives.
727 bool has_loops_;
728
729 // Flag whether there are any irreducible loops in the graph. It's only
730 // best effort to keep it up to date in the presence of code elimination
731 // so there might be false positives.
732 bool has_irreducible_loops_;
733
734 // Is the code known to be robust against eliminating dead references
735 // and the effects of early finalization? If false, dead reference variables
736 // are kept if they might be visible to the garbage collector.
737 // Currently this means that the class was declared to be dead-reference-safe,
738 // the method accesses no reachability-sensitive fields or data, and the same
739 // is true for any methods that were inlined into the current one.
740 bool dead_reference_safe_;
741
742 // Indicates whether the graph should be compiled in a way that
743 // ensures full debuggability. If false, we can apply more
744 // aggressive optimizations that may limit the level of debugging.
745 const bool debuggable_;
746
747 // The current id to assign to a newly added instruction. See HInstruction.id_.
748 int32_t current_instruction_id_;
749
750 // The dex file from which the method is from.
751 const DexFile& dex_file_;
752
753 // The method index in the dex file.
754 const uint32_t method_idx_;
755
756 // If inlined, this encodes how the callee is being invoked.
757 const InvokeType invoke_type_;
758
759 // Whether the graph has been transformed to SSA form. Only used
760 // in debug mode to ensure we are not using properties only valid
761 // for non-SSA form (like the number of temporaries).
762 bool in_ssa_form_;
763
764 // Number of CHA guards in the graph. Used to short-circuit the
765 // CHA guard optimization pass when there is no CHA guard left.
766 uint32_t number_of_cha_guards_;
767
768 const InstructionSet instruction_set_;
769
770 // Cached constants.
771 HNullConstant* cached_null_constant_;
772 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
773 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
774 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
775 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
776
777 HCurrentMethod* cached_current_method_;
778
779 // The ArtMethod this graph is for. Note that for AOT, it may be null,
780 // for example for methods whose declaring class could not be resolved
781 // (such as when the superclass could not be found).
782 ArtMethod* art_method_;
783
784 // Keep the RTI of inexact Object to avoid having to pass stack handle
785 // collection pointer to passes which may create NullConstant.
786 ReferenceTypeInfo inexact_object_rti_;
787
788 // Whether we are compiling this graph for on stack replacement: this will
789 // make all loops seen as irreducible and emit special stack maps to mark
790 // compiled code entries which the interpreter can directly jump to.
791 const bool osr_;
792
793 // Whether we are compiling baseline (not running optimizations). This affects
794 // the code being generated.
795 const bool baseline_;
796
797 // List of methods that are assumed to have single implementation.
798 ArenaSet<ArtMethod*> cha_single_implementation_list_;
799
800 // Whether we are JIT compiling in the shared region area, putting
801 // restrictions on, for example, how literals are being generated.
802 bool is_shared_jit_code_;
803
804 friend class SsaBuilder; // For caching constants.
805 friend class SsaLivenessAnalysis; // For the linear order.
806 friend class HInliner; // For the reverse post order.
807 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
808 DISALLOW_COPY_AND_ASSIGN(HGraph);
809 };
810
811 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
812 public:
HLoopInformation(HBasicBlock * header,HGraph * graph)813 HLoopInformation(HBasicBlock* header, HGraph* graph)
814 : header_(header),
815 suspend_check_(nullptr),
816 irreducible_(false),
817 contains_irreducible_loop_(false),
818 back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
819 // Make bit vector growable, as the number of blocks may change.
820 blocks_(graph->GetAllocator(),
821 graph->GetBlocks().size(),
822 true,
823 kArenaAllocLoopInfoBackEdges) {
824 back_edges_.reserve(kDefaultNumberOfBackEdges);
825 }
826
IsIrreducible()827 bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()828 bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
829
830 void Dump(std::ostream& os);
831
GetHeader()832 HBasicBlock* GetHeader() const {
833 return header_;
834 }
835
SetHeader(HBasicBlock * block)836 void SetHeader(HBasicBlock* block) {
837 header_ = block;
838 }
839
GetSuspendCheck()840 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)841 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()842 bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
843
AddBackEdge(HBasicBlock * back_edge)844 void AddBackEdge(HBasicBlock* back_edge) {
845 back_edges_.push_back(back_edge);
846 }
847
RemoveBackEdge(HBasicBlock * back_edge)848 void RemoveBackEdge(HBasicBlock* back_edge) {
849 RemoveElement(back_edges_, back_edge);
850 }
851
IsBackEdge(const HBasicBlock & block)852 bool IsBackEdge(const HBasicBlock& block) const {
853 return ContainsElement(back_edges_, &block);
854 }
855
NumberOfBackEdges()856 size_t NumberOfBackEdges() const {
857 return back_edges_.size();
858 }
859
860 HBasicBlock* GetPreHeader() const;
861
GetBackEdges()862 const ArenaVector<HBasicBlock*>& GetBackEdges() const {
863 return back_edges_;
864 }
865
866 // Returns the lifetime position of the back edge that has the
867 // greatest lifetime position.
868 size_t GetLifetimeEnd() const;
869
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)870 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
871 ReplaceElement(back_edges_, existing, new_back_edge);
872 }
873
874 // Finds blocks that are part of this loop.
875 void Populate();
876
877 // Updates blocks population of the loop and all of its outer' ones recursively after the
878 // population of the inner loop is updated.
879 void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
880
881 // Returns whether this loop information contains `block`.
882 // Note that this loop information *must* be populated before entering this function.
883 bool Contains(const HBasicBlock& block) const;
884
885 // Returns whether this loop information is an inner loop of `other`.
886 // Note that `other` *must* be populated before entering this function.
887 bool IsIn(const HLoopInformation& other) const;
888
889 // Returns true if instruction is not defined within this loop.
890 bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
891
GetBlocks()892 const ArenaBitVector& GetBlocks() const { return blocks_; }
893
894 void Add(HBasicBlock* block);
895 void Remove(HBasicBlock* block);
896
ClearAllBlocks()897 void ClearAllBlocks() {
898 blocks_.ClearAllBits();
899 }
900
901 bool HasBackEdgeNotDominatedByHeader() const;
902
IsPopulated()903 bool IsPopulated() const {
904 return blocks_.GetHighestBitSet() != -1;
905 }
906
907 bool DominatesAllBackEdges(HBasicBlock* block);
908
909 bool HasExitEdge() const;
910
911 // Resets back edge and blocks-in-loop data.
ResetBasicBlockData()912 void ResetBasicBlockData() {
913 back_edges_.clear();
914 ClearAllBlocks();
915 }
916
917 private:
918 // Internal recursive implementation of `Populate`.
919 void PopulateRecursive(HBasicBlock* block);
920 void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
921
922 HBasicBlock* header_;
923 HSuspendCheck* suspend_check_;
924 bool irreducible_;
925 bool contains_irreducible_loop_;
926 ArenaVector<HBasicBlock*> back_edges_;
927 ArenaBitVector blocks_;
928
929 DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
930 };
931
932 // Stores try/catch information for basic blocks.
933 // Note that HGraph is constructed so that catch blocks cannot simultaneously
934 // be try blocks.
935 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
936 public:
937 // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)938 explicit TryCatchInformation(const HTryBoundary& try_entry)
939 : try_entry_(&try_entry),
940 catch_dex_file_(nullptr),
941 catch_type_index_(dex::TypeIndex::Invalid()) {
942 DCHECK(try_entry_ != nullptr);
943 }
944
945 // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)946 TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
947 : try_entry_(nullptr),
948 catch_dex_file_(&dex_file),
949 catch_type_index_(catch_type_index) {}
950
IsTryBlock()951 bool IsTryBlock() const { return try_entry_ != nullptr; }
952
GetTryEntry()953 const HTryBoundary& GetTryEntry() const {
954 DCHECK(IsTryBlock());
955 return *try_entry_;
956 }
957
IsCatchBlock()958 bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
959
IsValidTypeIndex()960 bool IsValidTypeIndex() const {
961 DCHECK(IsCatchBlock());
962 return catch_type_index_.IsValid();
963 }
964
GetCatchTypeIndex()965 dex::TypeIndex GetCatchTypeIndex() const {
966 DCHECK(IsCatchBlock());
967 return catch_type_index_;
968 }
969
GetCatchDexFile()970 const DexFile& GetCatchDexFile() const {
971 DCHECK(IsCatchBlock());
972 return *catch_dex_file_;
973 }
974
SetInvalidTypeIndex()975 void SetInvalidTypeIndex() {
976 catch_type_index_ = dex::TypeIndex::Invalid();
977 }
978
979 private:
980 // One of possibly several TryBoundary instructions entering the block's try.
981 // Only set for try blocks.
982 const HTryBoundary* try_entry_;
983
984 // Exception type information. Only set for catch blocks.
985 const DexFile* catch_dex_file_;
986 dex::TypeIndex catch_type_index_;
987 };
988
989 static constexpr size_t kNoLifetime = -1;
990 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
991
992 // A block in a method. Contains the list of instructions represented
993 // as a double linked list. Each block knows its predecessors and
994 // successors.
995
996 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
997 public:
998 explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)999 : graph_(graph),
1000 predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
1001 successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
1002 loop_information_(nullptr),
1003 dominator_(nullptr),
1004 dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
1005 block_id_(kInvalidBlockId),
1006 dex_pc_(dex_pc),
1007 lifetime_start_(kNoLifetime),
1008 lifetime_end_(kNoLifetime),
1009 try_catch_information_(nullptr) {
1010 predecessors_.reserve(kDefaultNumberOfPredecessors);
1011 successors_.reserve(kDefaultNumberOfSuccessors);
1012 dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
1013 }
1014
GetPredecessors()1015 const ArenaVector<HBasicBlock*>& GetPredecessors() const {
1016 return predecessors_;
1017 }
1018
GetSuccessors()1019 const ArenaVector<HBasicBlock*>& GetSuccessors() const {
1020 return successors_;
1021 }
1022
1023 ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
1024 ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
1025
1026 bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
1027 return ContainsElement(successors_, block, start_from);
1028 }
1029
GetDominatedBlocks()1030 const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
1031 return dominated_blocks_;
1032 }
1033
IsEntryBlock()1034 bool IsEntryBlock() const {
1035 return graph_->GetEntryBlock() == this;
1036 }
1037
IsExitBlock()1038 bool IsExitBlock() const {
1039 return graph_->GetExitBlock() == this;
1040 }
1041
1042 bool IsSingleGoto() const;
1043 bool IsSingleReturn() const;
1044 bool IsSingleReturnOrReturnVoidAllowingPhis() const;
1045 bool IsSingleTryBoundary() const;
1046
1047 // Returns true if this block emits nothing but a jump.
IsSingleJump()1048 bool IsSingleJump() const {
1049 HLoopInformation* loop_info = GetLoopInformation();
1050 return (IsSingleGoto() || IsSingleTryBoundary())
1051 // Back edges generate a suspend check.
1052 && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
1053 }
1054
AddBackEdge(HBasicBlock * back_edge)1055 void AddBackEdge(HBasicBlock* back_edge) {
1056 if (loop_information_ == nullptr) {
1057 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1058 }
1059 DCHECK_EQ(loop_information_->GetHeader(), this);
1060 loop_information_->AddBackEdge(back_edge);
1061 }
1062
1063 // Registers a back edge; if the block was not a loop header before the call associates a newly
1064 // created loop info with it.
1065 //
1066 // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
1067 // info for all blocks during back edges recalculation.
AddBackEdgeWhileUpdating(HBasicBlock * back_edge)1068 void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
1069 if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
1070 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1071 }
1072 loop_information_->AddBackEdge(back_edge);
1073 }
1074
GetGraph()1075 HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)1076 void SetGraph(HGraph* graph) { graph_ = graph; }
1077
GetBlockId()1078 uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)1079 void SetBlockId(int id) { block_id_ = id; }
GetDexPc()1080 uint32_t GetDexPc() const { return dex_pc_; }
1081
GetDominator()1082 HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)1083 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)1084 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
1085
RemoveDominatedBlock(HBasicBlock * block)1086 void RemoveDominatedBlock(HBasicBlock* block) {
1087 RemoveElement(dominated_blocks_, block);
1088 }
1089
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)1090 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
1091 ReplaceElement(dominated_blocks_, existing, new_block);
1092 }
1093
1094 void ClearDominanceInformation();
1095
NumberOfBackEdges()1096 int NumberOfBackEdges() const {
1097 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
1098 }
1099
GetFirstInstruction()1100 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()1101 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()1102 const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()1103 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()1104 HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()1105 const HInstructionList& GetPhis() const { return phis_; }
1106
1107 HInstruction* GetFirstInstructionDisregardMoves() const;
1108
AddSuccessor(HBasicBlock * block)1109 void AddSuccessor(HBasicBlock* block) {
1110 successors_.push_back(block);
1111 block->predecessors_.push_back(this);
1112 }
1113
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1114 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1115 size_t successor_index = GetSuccessorIndexOf(existing);
1116 existing->RemovePredecessor(this);
1117 new_block->predecessors_.push_back(this);
1118 successors_[successor_index] = new_block;
1119 }
1120
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1121 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1122 size_t predecessor_index = GetPredecessorIndexOf(existing);
1123 existing->RemoveSuccessor(this);
1124 new_block->successors_.push_back(this);
1125 predecessors_[predecessor_index] = new_block;
1126 }
1127
1128 // Insert `this` between `predecessor` and `successor. This method
1129 // preserves the indices, and will update the first edge found between
1130 // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1131 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1132 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1133 size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1134 successor->predecessors_[predecessor_index] = this;
1135 predecessor->successors_[successor_index] = this;
1136 successors_.push_back(successor);
1137 predecessors_.push_back(predecessor);
1138 }
1139
RemovePredecessor(HBasicBlock * block)1140 void RemovePredecessor(HBasicBlock* block) {
1141 predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1142 }
1143
RemoveSuccessor(HBasicBlock * block)1144 void RemoveSuccessor(HBasicBlock* block) {
1145 successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1146 }
1147
ClearAllPredecessors()1148 void ClearAllPredecessors() {
1149 predecessors_.clear();
1150 }
1151
AddPredecessor(HBasicBlock * block)1152 void AddPredecessor(HBasicBlock* block) {
1153 predecessors_.push_back(block);
1154 block->successors_.push_back(this);
1155 }
1156
SwapPredecessors()1157 void SwapPredecessors() {
1158 DCHECK_EQ(predecessors_.size(), 2u);
1159 std::swap(predecessors_[0], predecessors_[1]);
1160 }
1161
SwapSuccessors()1162 void SwapSuccessors() {
1163 DCHECK_EQ(successors_.size(), 2u);
1164 std::swap(successors_[0], successors_[1]);
1165 }
1166
GetPredecessorIndexOf(HBasicBlock * predecessor)1167 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1168 return IndexOfElement(predecessors_, predecessor);
1169 }
1170
GetSuccessorIndexOf(HBasicBlock * successor)1171 size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1172 return IndexOfElement(successors_, successor);
1173 }
1174
GetSinglePredecessor()1175 HBasicBlock* GetSinglePredecessor() const {
1176 DCHECK_EQ(GetPredecessors().size(), 1u);
1177 return GetPredecessors()[0];
1178 }
1179
GetSingleSuccessor()1180 HBasicBlock* GetSingleSuccessor() const {
1181 DCHECK_EQ(GetSuccessors().size(), 1u);
1182 return GetSuccessors()[0];
1183 }
1184
1185 // Returns whether the first occurrence of `predecessor` in the list of
1186 // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1187 bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1188 DCHECK_EQ(GetPredecessors()[idx], predecessor);
1189 return GetPredecessorIndexOf(predecessor) == idx;
1190 }
1191
1192 // Create a new block between this block and its predecessors. The new block
1193 // is added to the graph, all predecessor edges are relinked to it and an edge
1194 // is created to `this`. Returns the new empty block. Reverse post order or
1195 // loop and try/catch information are not updated.
1196 HBasicBlock* CreateImmediateDominator();
1197
1198 // Split the block into two blocks just before `cursor`. Returns the newly
1199 // created, latter block. Note that this method will add the block to the
1200 // graph, create a Goto at the end of the former block and will create an edge
1201 // between the blocks. It will not, however, update the reverse post order or
1202 // loop and try/catch information.
1203 HBasicBlock* SplitBefore(HInstruction* cursor);
1204
1205 // Split the block into two blocks just before `cursor`. Returns the newly
1206 // created block. Note that this method just updates raw block information,
1207 // like predecessors, successors, dominators, and instruction list. It does not
1208 // update the graph, reverse post order, loop information, nor make sure the
1209 // blocks are consistent (for example ending with a control flow instruction).
1210 HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1211
1212 // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1213 HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1214
1215 // Merge `other` at the end of `this`. Successors and dominated blocks of
1216 // `other` are changed to be successors and dominated blocks of `this`. Note
1217 // that this method does not update the graph, reverse post order, loop
1218 // information, nor make sure the blocks are consistent (for example ending
1219 // with a control flow instruction).
1220 void MergeWithInlined(HBasicBlock* other);
1221
1222 // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1223 // of `this` are moved to `other`.
1224 // Note that this method does not update the graph, reverse post order, loop
1225 // information, nor make sure the blocks are consistent (for example ending
1226 // with a control flow instruction).
1227 void ReplaceWith(HBasicBlock* other);
1228
1229 // Merges the instructions of `other` at the end of `this`.
1230 void MergeInstructionsWith(HBasicBlock* other);
1231
1232 // Merge `other` at the end of `this`. This method updates loops, reverse post
1233 // order, links to predecessors, successors, dominators and deletes the block
1234 // from the graph. The two blocks must be successive, i.e. `this` the only
1235 // predecessor of `other` and vice versa.
1236 void MergeWith(HBasicBlock* other);
1237
1238 // Disconnects `this` from all its predecessors, successors and dominator,
1239 // removes it from all loops it is included in and eventually from the graph.
1240 // The block must not dominate any other block. Predecessors and successors
1241 // are safely updated.
1242 void DisconnectAndDelete();
1243
1244 void AddInstruction(HInstruction* instruction);
1245 // Insert `instruction` before/after an existing instruction `cursor`.
1246 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1247 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1248 // Replace phi `initial` with `replacement` within this block.
1249 void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
1250 // Replace instruction `initial` with `replacement` within this block.
1251 void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1252 HInstruction* replacement);
1253 void AddPhi(HPhi* phi);
1254 void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1255 // RemoveInstruction and RemovePhi delete a given instruction from the respective
1256 // instruction list. With 'ensure_safety' set to true, it verifies that the
1257 // instruction is not in use and removes it from the use lists of its inputs.
1258 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1259 void RemovePhi(HPhi* phi, bool ensure_safety = true);
1260 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1261
IsLoopHeader()1262 bool IsLoopHeader() const {
1263 return IsInLoop() && (loop_information_->GetHeader() == this);
1264 }
1265
IsLoopPreHeaderFirstPredecessor()1266 bool IsLoopPreHeaderFirstPredecessor() const {
1267 DCHECK(IsLoopHeader());
1268 return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1269 }
1270
IsFirstPredecessorBackEdge()1271 bool IsFirstPredecessorBackEdge() const {
1272 DCHECK(IsLoopHeader());
1273 return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1274 }
1275
GetLoopInformation()1276 HLoopInformation* GetLoopInformation() const {
1277 return loop_information_;
1278 }
1279
1280 // Set the loop_information_ on this block. Overrides the current
1281 // loop_information if it is an outer loop of the passed loop information.
1282 // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1283 void SetInLoop(HLoopInformation* info) {
1284 if (IsLoopHeader()) {
1285 // Nothing to do. This just means `info` is an outer loop.
1286 } else if (!IsInLoop()) {
1287 loop_information_ = info;
1288 } else if (loop_information_->Contains(*info->GetHeader())) {
1289 // Block is currently part of an outer loop. Make it part of this inner loop.
1290 // Note that a non loop header having a loop information means this loop information
1291 // has already been populated
1292 loop_information_ = info;
1293 } else {
1294 // Block is part of an inner loop. Do not update the loop information.
1295 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1296 // at this point, because this method is being called while populating `info`.
1297 }
1298 }
1299
1300 // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1301 void SetLoopInformation(HLoopInformation* info) {
1302 loop_information_ = info;
1303 }
1304
IsInLoop()1305 bool IsInLoop() const { return loop_information_ != nullptr; }
1306
GetTryCatchInformation()1307 TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1308
SetTryCatchInformation(TryCatchInformation * try_catch_information)1309 void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1310 try_catch_information_ = try_catch_information;
1311 }
1312
IsTryBlock()1313 bool IsTryBlock() const {
1314 return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1315 }
1316
IsCatchBlock()1317 bool IsCatchBlock() const {
1318 return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1319 }
1320
1321 // Returns the try entry that this block's successors should have. They will
1322 // be in the same try, unless the block ends in a try boundary. In that case,
1323 // the appropriate try entry will be returned.
1324 const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1325
1326 bool HasThrowingInstructions() const;
1327
1328 // Returns whether this block dominates the blocked passed as parameter.
1329 bool Dominates(HBasicBlock* block) const;
1330
GetLifetimeStart()1331 size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1332 size_t GetLifetimeEnd() const { return lifetime_end_; }
1333
SetLifetimeStart(size_t start)1334 void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1335 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1336
1337 bool EndsWithControlFlowInstruction() const;
1338 bool EndsWithReturn() const;
1339 bool EndsWithIf() const;
1340 bool EndsWithTryBoundary() const;
1341 bool HasSinglePhi() const;
1342
1343 private:
1344 HGraph* graph_;
1345 ArenaVector<HBasicBlock*> predecessors_;
1346 ArenaVector<HBasicBlock*> successors_;
1347 HInstructionList instructions_;
1348 HInstructionList phis_;
1349 HLoopInformation* loop_information_;
1350 HBasicBlock* dominator_;
1351 ArenaVector<HBasicBlock*> dominated_blocks_;
1352 uint32_t block_id_;
1353 // The dex program counter of the first instruction of this block.
1354 const uint32_t dex_pc_;
1355 size_t lifetime_start_;
1356 size_t lifetime_end_;
1357 TryCatchInformation* try_catch_information_;
1358
1359 friend class HGraph;
1360 friend class HInstruction;
1361
1362 DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1363 };
1364
1365 // Iterates over the LoopInformation of all loops which contain 'block'
1366 // from the innermost to the outermost.
1367 class HLoopInformationOutwardIterator : public ValueObject {
1368 public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1369 explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1370 : current_(block.GetLoopInformation()) {}
1371
Done()1372 bool Done() const { return current_ == nullptr; }
1373
Advance()1374 void Advance() {
1375 DCHECK(!Done());
1376 current_ = current_->GetPreHeader()->GetLoopInformation();
1377 }
1378
Current()1379 HLoopInformation* Current() const {
1380 DCHECK(!Done());
1381 return current_;
1382 }
1383
1384 private:
1385 HLoopInformation* current_;
1386
1387 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1388 };
1389
1390 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1391 M(Above, Condition) \
1392 M(AboveOrEqual, Condition) \
1393 M(Abs, UnaryOperation) \
1394 M(Add, BinaryOperation) \
1395 M(And, BinaryOperation) \
1396 M(ArrayGet, Instruction) \
1397 M(ArrayLength, Instruction) \
1398 M(ArraySet, Instruction) \
1399 M(Below, Condition) \
1400 M(BelowOrEqual, Condition) \
1401 M(BooleanNot, UnaryOperation) \
1402 M(BoundsCheck, Instruction) \
1403 M(BoundType, Instruction) \
1404 M(CheckCast, Instruction) \
1405 M(ClassTableGet, Instruction) \
1406 M(ClearException, Instruction) \
1407 M(ClinitCheck, Instruction) \
1408 M(Compare, BinaryOperation) \
1409 M(ConstructorFence, Instruction) \
1410 M(CurrentMethod, Instruction) \
1411 M(ShouldDeoptimizeFlag, Instruction) \
1412 M(Deoptimize, Instruction) \
1413 M(Div, BinaryOperation) \
1414 M(DivZeroCheck, Instruction) \
1415 M(DoubleConstant, Constant) \
1416 M(Equal, Condition) \
1417 M(Exit, Instruction) \
1418 M(FloatConstant, Constant) \
1419 M(Goto, Instruction) \
1420 M(GreaterThan, Condition) \
1421 M(GreaterThanOrEqual, Condition) \
1422 M(If, Instruction) \
1423 M(InstanceFieldGet, Instruction) \
1424 M(InstanceFieldSet, Instruction) \
1425 M(InstanceOf, Instruction) \
1426 M(IntConstant, Constant) \
1427 M(IntermediateAddress, Instruction) \
1428 M(InvokeUnresolved, Invoke) \
1429 M(InvokeInterface, Invoke) \
1430 M(InvokeStaticOrDirect, Invoke) \
1431 M(InvokeVirtual, Invoke) \
1432 M(InvokePolymorphic, Invoke) \
1433 M(InvokeCustom, Invoke) \
1434 M(LessThan, Condition) \
1435 M(LessThanOrEqual, Condition) \
1436 M(LoadClass, Instruction) \
1437 M(LoadException, Instruction) \
1438 M(LoadMethodHandle, Instruction) \
1439 M(LoadMethodType, Instruction) \
1440 M(LoadString, Instruction) \
1441 M(LongConstant, Constant) \
1442 M(Max, Instruction) \
1443 M(MemoryBarrier, Instruction) \
1444 M(Min, BinaryOperation) \
1445 M(MonitorOperation, Instruction) \
1446 M(Mul, BinaryOperation) \
1447 M(NativeDebugInfo, Instruction) \
1448 M(Neg, UnaryOperation) \
1449 M(NewArray, Instruction) \
1450 M(NewInstance, Instruction) \
1451 M(Not, UnaryOperation) \
1452 M(NotEqual, Condition) \
1453 M(NullConstant, Instruction) \
1454 M(NullCheck, Instruction) \
1455 M(Or, BinaryOperation) \
1456 M(PackedSwitch, Instruction) \
1457 M(ParallelMove, Instruction) \
1458 M(ParameterValue, Instruction) \
1459 M(Phi, Instruction) \
1460 M(Rem, BinaryOperation) \
1461 M(Return, Instruction) \
1462 M(ReturnVoid, Instruction) \
1463 M(Ror, BinaryOperation) \
1464 M(Shl, BinaryOperation) \
1465 M(Shr, BinaryOperation) \
1466 M(StaticFieldGet, Instruction) \
1467 M(StaticFieldSet, Instruction) \
1468 M(StringBuilderAppend, Instruction) \
1469 M(UnresolvedInstanceFieldGet, Instruction) \
1470 M(UnresolvedInstanceFieldSet, Instruction) \
1471 M(UnresolvedStaticFieldGet, Instruction) \
1472 M(UnresolvedStaticFieldSet, Instruction) \
1473 M(Select, Instruction) \
1474 M(Sub, BinaryOperation) \
1475 M(SuspendCheck, Instruction) \
1476 M(Throw, Instruction) \
1477 M(TryBoundary, Instruction) \
1478 M(TypeConversion, Instruction) \
1479 M(UShr, BinaryOperation) \
1480 M(Xor, BinaryOperation) \
1481 M(VecReplicateScalar, VecUnaryOperation) \
1482 M(VecExtractScalar, VecUnaryOperation) \
1483 M(VecReduce, VecUnaryOperation) \
1484 M(VecCnv, VecUnaryOperation) \
1485 M(VecNeg, VecUnaryOperation) \
1486 M(VecAbs, VecUnaryOperation) \
1487 M(VecNot, VecUnaryOperation) \
1488 M(VecAdd, VecBinaryOperation) \
1489 M(VecHalvingAdd, VecBinaryOperation) \
1490 M(VecSub, VecBinaryOperation) \
1491 M(VecMul, VecBinaryOperation) \
1492 M(VecDiv, VecBinaryOperation) \
1493 M(VecMin, VecBinaryOperation) \
1494 M(VecMax, VecBinaryOperation) \
1495 M(VecAnd, VecBinaryOperation) \
1496 M(VecAndNot, VecBinaryOperation) \
1497 M(VecOr, VecBinaryOperation) \
1498 M(VecXor, VecBinaryOperation) \
1499 M(VecSaturationAdd, VecBinaryOperation) \
1500 M(VecSaturationSub, VecBinaryOperation) \
1501 M(VecShl, VecBinaryOperation) \
1502 M(VecShr, VecBinaryOperation) \
1503 M(VecUShr, VecBinaryOperation) \
1504 M(VecSetScalars, VecOperation) \
1505 M(VecMultiplyAccumulate, VecOperation) \
1506 M(VecSADAccumulate, VecOperation) \
1507 M(VecDotProd, VecOperation) \
1508 M(VecLoad, VecMemoryOperation) \
1509 M(VecStore, VecMemoryOperation) \
1510
1511 /*
1512 * Instructions, shared across several (not all) architectures.
1513 */
1514 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1515 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1516 #else
1517 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1518 M(BitwiseNegatedRight, Instruction) \
1519 M(DataProcWithShifterOp, Instruction) \
1520 M(MultiplyAccumulate, Instruction) \
1521 M(IntermediateAddressIndex, Instruction)
1522 #endif
1523
1524 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1525
1526 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1527
1528 #ifndef ART_ENABLE_CODEGEN_x86
1529 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1530 #else
1531 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1532 M(X86ComputeBaseMethodAddress, Instruction) \
1533 M(X86LoadFromConstantTable, Instruction) \
1534 M(X86FPNeg, Instruction) \
1535 M(X86PackedSwitch, Instruction)
1536 #endif
1537
1538 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
1539 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) \
1540 M(X86AndNot, Instruction) \
1541 M(X86MaskOrResetLeastSetBit, Instruction)
1542 #else
1543 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1544 #endif
1545
1546 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1547
1548 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \
1549 FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1550 FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1551 FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
1552 FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
1553 FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1554 FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) \
1555 FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1556
1557 #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \
1558 M(Condition, BinaryOperation) \
1559 M(Constant, Instruction) \
1560 M(UnaryOperation, Instruction) \
1561 M(BinaryOperation, Instruction) \
1562 M(Invoke, Instruction) \
1563 M(VecOperation, Instruction) \
1564 M(VecUnaryOperation, VecOperation) \
1565 M(VecBinaryOperation, VecOperation) \
1566 M(VecMemoryOperation, VecOperation)
1567
1568 #define FOR_EACH_INSTRUCTION(M) \
1569 FOR_EACH_CONCRETE_INSTRUCTION(M) \
1570 FOR_EACH_ABSTRACT_INSTRUCTION(M)
1571
1572 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1573 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1574 #undef FORWARD_DECLARATION
1575
1576 #define DECLARE_INSTRUCTION(type) \
1577 private: \
1578 H##type& operator=(const H##type&) = delete; \
1579 public: \
1580 const char* DebugName() const override { return #type; } \
1581 HInstruction* Clone(ArenaAllocator* arena) const override { \
1582 DCHECK(IsClonable()); \
1583 return new (arena) H##type(*this->As##type()); \
1584 } \
1585 void Accept(HGraphVisitor* visitor) override
1586
1587 #define DECLARE_ABSTRACT_INSTRUCTION(type) \
1588 private: \
1589 H##type& operator=(const H##type&) = delete; \
1590 public:
1591
1592 #define DEFAULT_COPY_CONSTRUCTOR(type) \
1593 explicit H##type(const H##type& other) = default;
1594
1595 template <typename T>
1596 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1597 public IntrusiveForwardListNode<HUseListNode<T>> {
1598 public:
1599 // Get the instruction which has this use as one of the inputs.
1600 T GetUser() const { return user_; }
1601 // Get the position of the input record that this use corresponds to.
1602 size_t GetIndex() const { return index_; }
1603 // Set the position of the input record that this use corresponds to.
1604 void SetIndex(size_t index) { index_ = index; }
1605
1606 private:
1607 HUseListNode(T user, size_t index)
1608 : user_(user), index_(index) {}
1609
1610 T const user_;
1611 size_t index_;
1612
1613 friend class HInstruction;
1614
1615 DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1616 };
1617
1618 template <typename T>
1619 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1620
1621 // This class is used by HEnvironment and HInstruction classes to record the
1622 // instructions they use and pointers to the corresponding HUseListNodes kept
1623 // by the used instructions.
1624 template <typename T>
1625 class HUserRecord : public ValueObject {
1626 public:
HUserRecord()1627 HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1628 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1629
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1630 HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1631 : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1632 HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1633 : instruction_(instruction), before_use_node_(before_use_node) {
1634 DCHECK(instruction_ != nullptr);
1635 }
1636
GetInstruction()1637 HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1638 typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1639 typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1640
1641 private:
1642 // Instruction used by the user.
1643 HInstruction* instruction_;
1644
1645 // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1646 typename HUseList<T>::iterator before_use_node_;
1647 };
1648
1649 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1650 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1651 // HInstruction* values even though the underlying container has HUserRecord<>s.
1652 struct HInputExtractor {
operatorHInputExtractor1653 HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1654 return record.GetInstruction();
1655 }
operatorHInputExtractor1656 const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1657 return record.GetInstruction();
1658 }
1659 };
1660
1661 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1662 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1663
1664 /**
1665 * Side-effects representation.
1666 *
1667 * For write/read dependences on fields/arrays, the dependence analysis uses
1668 * type disambiguation (e.g. a float field write cannot modify the value of an
1669 * integer field read) and the access type (e.g. a reference array write cannot
1670 * modify the value of a reference field read [although it may modify the
1671 * reference fetch prior to reading the field, which is represented by its own
1672 * write/read dependence]). The analysis makes conservative points-to
1673 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1674 * the same, and any reference read depends on any reference read without
1675 * further regard of its type).
1676 *
1677 * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
1678 * alive across the point where garbage collection might happen.
1679 *
1680 * Note: Instructions with kCanTriggerGCBit do not depend on each other.
1681 *
1682 * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
1683 * those instructions from the compiler perspective (between this instruction and the next one
1684 * in the IR).
1685 *
1686 * Note: Instructions which can cause GC only on a fatal slow path do not need
1687 * kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
1688 * one. However the execution may return to compiled code if there is a catch block in the
1689 * current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
1690 * set.
1691 *
1692 * The internal representation uses 38-bit and is described in the table below.
1693 * The first line indicates the side effect, and for field/array accesses the
1694 * second line indicates the type of the access (in the order of the
1695 * DataType::Type enum).
1696 * The two numbered lines below indicate the bit position in the bitfield (read
1697 * vertically).
1698 *
1699 * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W |
1700 * +-------------+---------+---------+--------------+---------+---------+
1701 * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL|
1702 * | 3 |333333322|222222221| 1 |111111110|000000000|
1703 * | 7 |654321098|765432109| 8 |765432109|876543210|
1704 *
1705 * Note that, to ease the implementation, 'changes' bits are least significant
1706 * bits, while 'dependency' bits are most significant bits.
1707 */
1708 class SideEffects : public ValueObject {
1709 public:
SideEffects()1710 SideEffects() : flags_(0) {}
1711
None()1712 static SideEffects None() {
1713 return SideEffects(0);
1714 }
1715
All()1716 static SideEffects All() {
1717 return SideEffects(kAllChangeBits | kAllDependOnBits);
1718 }
1719
AllChanges()1720 static SideEffects AllChanges() {
1721 return SideEffects(kAllChangeBits);
1722 }
1723
AllDependencies()1724 static SideEffects AllDependencies() {
1725 return SideEffects(kAllDependOnBits);
1726 }
1727
AllExceptGCDependency()1728 static SideEffects AllExceptGCDependency() {
1729 return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1730 }
1731
AllWritesAndReads()1732 static SideEffects AllWritesAndReads() {
1733 return SideEffects(kAllWrites | kAllReads);
1734 }
1735
AllWrites()1736 static SideEffects AllWrites() {
1737 return SideEffects(kAllWrites);
1738 }
1739
AllReads()1740 static SideEffects AllReads() {
1741 return SideEffects(kAllReads);
1742 }
1743
FieldWriteOfType(DataType::Type type,bool is_volatile)1744 static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
1745 return is_volatile
1746 ? AllWritesAndReads()
1747 : SideEffects(TypeFlag(type, kFieldWriteOffset));
1748 }
1749
ArrayWriteOfType(DataType::Type type)1750 static SideEffects ArrayWriteOfType(DataType::Type type) {
1751 return SideEffects(TypeFlag(type, kArrayWriteOffset));
1752 }
1753
FieldReadOfType(DataType::Type type,bool is_volatile)1754 static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
1755 return is_volatile
1756 ? AllWritesAndReads()
1757 : SideEffects(TypeFlag(type, kFieldReadOffset));
1758 }
1759
ArrayReadOfType(DataType::Type type)1760 static SideEffects ArrayReadOfType(DataType::Type type) {
1761 return SideEffects(TypeFlag(type, kArrayReadOffset));
1762 }
1763
1764 // Returns whether GC might happen across this instruction from the compiler perspective so
1765 // the next instruction in the IR would see that.
1766 //
1767 // See the SideEffect class comments.
CanTriggerGC()1768 static SideEffects CanTriggerGC() {
1769 return SideEffects(1ULL << kCanTriggerGCBit);
1770 }
1771
1772 // Returns whether the instruction must not be alive across a GC point.
1773 //
1774 // See the SideEffect class comments.
DependsOnGC()1775 static SideEffects DependsOnGC() {
1776 return SideEffects(1ULL << kDependsOnGCBit);
1777 }
1778
1779 // Combines the side-effects of this and the other.
Union(SideEffects other)1780 SideEffects Union(SideEffects other) const {
1781 return SideEffects(flags_ | other.flags_);
1782 }
1783
Exclusion(SideEffects other)1784 SideEffects Exclusion(SideEffects other) const {
1785 return SideEffects(flags_ & ~other.flags_);
1786 }
1787
Add(SideEffects other)1788 void Add(SideEffects other) {
1789 flags_ |= other.flags_;
1790 }
1791
Includes(SideEffects other)1792 bool Includes(SideEffects other) const {
1793 return (other.flags_ & flags_) == other.flags_;
1794 }
1795
HasSideEffects()1796 bool HasSideEffects() const {
1797 return (flags_ & kAllChangeBits);
1798 }
1799
HasDependencies()1800 bool HasDependencies() const {
1801 return (flags_ & kAllDependOnBits);
1802 }
1803
1804 // Returns true if there are no side effects or dependencies.
DoesNothing()1805 bool DoesNothing() const {
1806 return flags_ == 0;
1807 }
1808
1809 // Returns true if something is written.
DoesAnyWrite()1810 bool DoesAnyWrite() const {
1811 return (flags_ & kAllWrites);
1812 }
1813
1814 // Returns true if something is read.
DoesAnyRead()1815 bool DoesAnyRead() const {
1816 return (flags_ & kAllReads);
1817 }
1818
1819 // Returns true if potentially everything is written and read
1820 // (every type and every kind of access).
DoesAllReadWrite()1821 bool DoesAllReadWrite() const {
1822 return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1823 }
1824
DoesAll()1825 bool DoesAll() const {
1826 return flags_ == (kAllChangeBits | kAllDependOnBits);
1827 }
1828
1829 // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1830 bool MayDependOn(SideEffects other) const {
1831 const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1832 return (other.flags_ & depends_on_flags);
1833 }
1834
1835 // Returns string representation of flags (for debugging only).
1836 // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1837 std::string ToString() const {
1838 std::string flags = "|";
1839 for (int s = kLastBit; s >= 0; s--) {
1840 bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1841 if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1842 // This is a bit for the GC side effect.
1843 if (current_bit_is_set) {
1844 flags += "GC";
1845 }
1846 flags += "|";
1847 } else {
1848 // This is a bit for the array/field analysis.
1849 // The underscore character stands for the 'can trigger GC' bit.
1850 static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1851 if (current_bit_is_set) {
1852 flags += kDebug[s];
1853 }
1854 if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1855 (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1856 flags += "|";
1857 }
1858 }
1859 }
1860 return flags;
1861 }
1862
Equals(const SideEffects & other)1863 bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1864
1865 private:
1866 static constexpr int kFieldArrayAnalysisBits = 9;
1867
1868 static constexpr int kFieldWriteOffset = 0;
1869 static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1870 static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1871 static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1872
1873 static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1874
1875 static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1876 static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1877 static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1878 static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1879
1880 static constexpr int kLastBit = kDependsOnGCBit;
1881 static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1882
1883 // Aliases.
1884
1885 static_assert(kChangeBits == kDependOnBits,
1886 "the 'change' bits should match the 'depend on' bits.");
1887
1888 static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1889 static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1890 static constexpr uint64_t kAllWrites =
1891 ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1892 static constexpr uint64_t kAllReads =
1893 ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1894
1895 // Translates type to bit flag. The type must correspond to a Java type.
TypeFlag(DataType::Type type,int offset)1896 static uint64_t TypeFlag(DataType::Type type, int offset) {
1897 int shift;
1898 switch (type) {
1899 case DataType::Type::kReference: shift = 0; break;
1900 case DataType::Type::kBool: shift = 1; break;
1901 case DataType::Type::kInt8: shift = 2; break;
1902 case DataType::Type::kUint16: shift = 3; break;
1903 case DataType::Type::kInt16: shift = 4; break;
1904 case DataType::Type::kInt32: shift = 5; break;
1905 case DataType::Type::kInt64: shift = 6; break;
1906 case DataType::Type::kFloat32: shift = 7; break;
1907 case DataType::Type::kFloat64: shift = 8; break;
1908 default:
1909 LOG(FATAL) << "Unexpected data type " << type;
1910 UNREACHABLE();
1911 }
1912 DCHECK_LE(kFieldWriteOffset, shift);
1913 DCHECK_LT(shift, kArrayWriteOffset);
1914 return UINT64_C(1) << (shift + offset);
1915 }
1916
1917 // Private constructor on direct flags value.
SideEffects(uint64_t flags)1918 explicit SideEffects(uint64_t flags) : flags_(flags) {}
1919
1920 uint64_t flags_;
1921 };
1922
1923 // A HEnvironment object contains the values of virtual registers at a given location.
1924 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1925 public:
HEnvironment(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1926 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
1927 size_t number_of_vregs,
1928 ArtMethod* method,
1929 uint32_t dex_pc,
1930 HInstruction* holder)
1931 : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
1932 locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
1933 parent_(nullptr),
1934 method_(method),
1935 dex_pc_(dex_pc),
1936 holder_(holder) {
1937 }
1938
HEnvironment(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)1939 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
1940 const HEnvironment& to_copy,
1941 HInstruction* holder)
1942 : HEnvironment(allocator,
1943 to_copy.Size(),
1944 to_copy.GetMethod(),
1945 to_copy.GetDexPc(),
1946 holder) {}
1947
AllocateLocations()1948 void AllocateLocations() {
1949 DCHECK(locations_.empty());
1950 locations_.resize(vregs_.size());
1951 }
1952
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1953 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1954 if (parent_ != nullptr) {
1955 parent_->SetAndCopyParentChain(allocator, parent);
1956 } else {
1957 parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1958 parent_->CopyFrom(parent);
1959 if (parent->GetParent() != nullptr) {
1960 parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1961 }
1962 }
1963 }
1964
1965 void CopyFrom(ArrayRef<HInstruction* const> locals);
1966 void CopyFrom(HEnvironment* environment);
1967
1968 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1969 // input to the loop phi instead. This is for inserting instructions that
1970 // require an environment (like HDeoptimization) in the loop pre-header.
1971 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1972
SetRawEnvAt(size_t index,HInstruction * instruction)1973 void SetRawEnvAt(size_t index, HInstruction* instruction) {
1974 vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1975 }
1976
GetInstructionAt(size_t index)1977 HInstruction* GetInstructionAt(size_t index) const {
1978 return vregs_[index].GetInstruction();
1979 }
1980
1981 void RemoveAsUserOfInput(size_t index) const;
1982
1983 // Replaces the input at the position 'index' with the replacement; the replacement and old
1984 // input instructions' env_uses_ lists are adjusted. The function works similar to
1985 // HInstruction::ReplaceInput.
1986 void ReplaceInput(HInstruction* replacement, size_t index);
1987
Size()1988 size_t Size() const { return vregs_.size(); }
1989
GetParent()1990 HEnvironment* GetParent() const { return parent_; }
1991
SetLocationAt(size_t index,Location location)1992 void SetLocationAt(size_t index, Location location) {
1993 locations_[index] = location;
1994 }
1995
GetLocationAt(size_t index)1996 Location GetLocationAt(size_t index) const {
1997 return locations_[index];
1998 }
1999
GetDexPc()2000 uint32_t GetDexPc() const {
2001 return dex_pc_;
2002 }
2003
GetMethod()2004 ArtMethod* GetMethod() const {
2005 return method_;
2006 }
2007
GetHolder()2008 HInstruction* GetHolder() const {
2009 return holder_;
2010 }
2011
2012
IsFromInlinedInvoke()2013 bool IsFromInlinedInvoke() const {
2014 return GetParent() != nullptr;
2015 }
2016
2017 private:
2018 ArenaVector<HUserRecord<HEnvironment*>> vregs_;
2019 ArenaVector<Location> locations_;
2020 HEnvironment* parent_;
2021 ArtMethod* method_;
2022 const uint32_t dex_pc_;
2023
2024 // The instruction that holds this environment.
2025 HInstruction* const holder_;
2026
2027 friend class HInstruction;
2028
2029 DISALLOW_COPY_AND_ASSIGN(HEnvironment);
2030 };
2031
2032 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
2033 public:
2034 #define DECLARE_KIND(type, super) k##type,
2035 enum InstructionKind {
2036 FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
2037 kLastInstructionKind
2038 };
2039 #undef DECLARE_KIND
2040
HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2041 HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2042 : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
2043
HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2044 HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
2045 : previous_(nullptr),
2046 next_(nullptr),
2047 block_(nullptr),
2048 dex_pc_(dex_pc),
2049 id_(-1),
2050 ssa_index_(-1),
2051 packed_fields_(0u),
2052 environment_(nullptr),
2053 locations_(nullptr),
2054 live_interval_(nullptr),
2055 lifetime_position_(kNoLifetime),
2056 side_effects_(side_effects),
2057 reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
2058 SetPackedField<InstructionKindField>(kind);
2059 SetPackedField<TypeField>(type);
2060 SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
2061 }
2062
~HInstruction()2063 virtual ~HInstruction() {}
2064
2065
GetNext()2066 HInstruction* GetNext() const { return next_; }
GetPrevious()2067 HInstruction* GetPrevious() const { return previous_; }
2068
2069 HInstruction* GetNextDisregardingMoves() const;
2070 HInstruction* GetPreviousDisregardingMoves() const;
2071
GetBlock()2072 HBasicBlock* GetBlock() const { return block_; }
GetAllocator()2073 ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
SetBlock(HBasicBlock * block)2074 void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()2075 bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()2076 bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()2077 bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()2078 bool IsIrreducibleLoopHeaderPhi() const {
2079 return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
2080 }
2081
2082 virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
2083
GetInputRecords()2084 ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
2085 // One virtual method is enough, just const_cast<> and then re-add the const.
2086 return ArrayRef<const HUserRecord<HInstruction*>>(
2087 const_cast<HInstruction*>(this)->GetInputRecords());
2088 }
2089
GetInputs()2090 HInputsRef GetInputs() {
2091 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2092 }
2093
GetInputs()2094 HConstInputsRef GetInputs() const {
2095 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2096 }
2097
InputCount()2098 size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)2099 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
2100
HasInput(HInstruction * input)2101 bool HasInput(HInstruction* input) const {
2102 for (const HInstruction* i : GetInputs()) {
2103 if (i == input) {
2104 return true;
2105 }
2106 }
2107 return false;
2108 }
2109
SetRawInputAt(size_t index,HInstruction * input)2110 void SetRawInputAt(size_t index, HInstruction* input) {
2111 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
2112 }
2113
2114 virtual void Accept(HGraphVisitor* visitor) = 0;
2115 virtual const char* DebugName() const = 0;
2116
GetType()2117 DataType::Type GetType() const {
2118 return TypeField::Decode(GetPackedFields());
2119 }
2120
NeedsEnvironment()2121 virtual bool NeedsEnvironment() const { return false; }
2122
GetDexPc()2123 uint32_t GetDexPc() const { return dex_pc_; }
2124
IsControlFlow()2125 virtual bool IsControlFlow() const { return false; }
2126
2127 // Can the instruction throw?
2128 // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
2129 // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()2130 virtual bool CanThrow() const { return false; }
2131
2132 // Does the instruction always throw an exception unconditionally?
AlwaysThrows()2133 virtual bool AlwaysThrows() const { return false; }
2134
CanThrowIntoCatchBlock()2135 bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
2136
HasSideEffects()2137 bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()2138 bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
2139
2140 // Does not apply for all instructions, but having this at top level greatly
2141 // simplifies the null check elimination.
2142 // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()2143 virtual bool CanBeNull() const {
2144 DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
2145 return true;
2146 }
2147
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)2148 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
2149 return false;
2150 }
2151
2152 // If this instruction will do an implicit null check, return the `HNullCheck` associated
2153 // with it. Otherwise return null.
GetImplicitNullCheck()2154 HNullCheck* GetImplicitNullCheck() const {
2155 // Go over previous non-move instructions that are emitted at use site.
2156 HInstruction* prev_not_move = GetPreviousDisregardingMoves();
2157 while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
2158 if (prev_not_move->IsNullCheck()) {
2159 return prev_not_move->AsNullCheck();
2160 }
2161 prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
2162 }
2163 return nullptr;
2164 }
2165
IsActualObject()2166 virtual bool IsActualObject() const {
2167 return GetType() == DataType::Type::kReference;
2168 }
2169
2170 void SetReferenceTypeInfo(ReferenceTypeInfo rti);
2171
GetReferenceTypeInfo()2172 ReferenceTypeInfo GetReferenceTypeInfo() const {
2173 DCHECK_EQ(GetType(), DataType::Type::kReference);
2174 return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
2175 GetPackedFlag<kFlagReferenceTypeIsExact>());
2176 }
2177
AddUseAt(HInstruction * user,size_t index)2178 void AddUseAt(HInstruction* user, size_t index) {
2179 DCHECK(user != nullptr);
2180 // Note: fixup_end remains valid across push_front().
2181 auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
2182 HUseListNode<HInstruction*>* new_node =
2183 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index);
2184 uses_.push_front(*new_node);
2185 FixUpUserRecordsAfterUseInsertion(fixup_end);
2186 }
2187
AddEnvUseAt(HEnvironment * user,size_t index)2188 void AddEnvUseAt(HEnvironment* user, size_t index) {
2189 DCHECK(user != nullptr);
2190 // Note: env_fixup_end remains valid across push_front().
2191 auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
2192 HUseListNode<HEnvironment*>* new_node =
2193 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
2194 env_uses_.push_front(*new_node);
2195 FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
2196 }
2197
RemoveAsUserOfInput(size_t input)2198 void RemoveAsUserOfInput(size_t input) {
2199 HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2200 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2201 input_use.GetInstruction()->uses_.erase_after(before_use_node);
2202 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2203 }
2204
RemoveAsUserOfAllInputs()2205 void RemoveAsUserOfAllInputs() {
2206 for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2207 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2208 input_use.GetInstruction()->uses_.erase_after(before_use_node);
2209 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2210 }
2211 }
2212
GetUses()2213 const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2214 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2215
HasUses()2216 bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2217 bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2218 bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2219 bool HasOnlyOneNonEnvironmentUse() const {
2220 return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2221 }
2222
IsRemovable()2223 bool IsRemovable() const {
2224 return
2225 !DoesAnyWrite() &&
2226 !CanThrow() &&
2227 !IsSuspendCheck() &&
2228 !IsControlFlow() &&
2229 !IsNativeDebugInfo() &&
2230 !IsParameterValue() &&
2231 // If we added an explicit barrier then we should keep it.
2232 !IsMemoryBarrier() &&
2233 !IsConstructorFence();
2234 }
2235
IsDeadAndRemovable()2236 bool IsDeadAndRemovable() const {
2237 return IsRemovable() && !HasUses();
2238 }
2239
2240 // Does this instruction strictly dominate `other_instruction`?
2241 // Returns false if this instruction and `other_instruction` are the same.
2242 // Aborts if this instruction and `other_instruction` are both phis.
2243 bool StrictlyDominates(HInstruction* other_instruction) const;
2244
GetId()2245 int GetId() const { return id_; }
SetId(int id)2246 void SetId(int id) { id_ = id; }
2247
GetSsaIndex()2248 int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2249 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2250 bool HasSsaIndex() const { return ssa_index_ != -1; }
2251
HasEnvironment()2252 bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2253 HEnvironment* GetEnvironment() const { return environment_; }
2254 // Set the `environment_` field. Raw because this method does not
2255 // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2256 void SetRawEnvironment(HEnvironment* environment) {
2257 DCHECK(environment_ == nullptr);
2258 DCHECK_EQ(environment->GetHolder(), this);
2259 environment_ = environment;
2260 }
2261
InsertRawEnvironment(HEnvironment * environment)2262 void InsertRawEnvironment(HEnvironment* environment) {
2263 DCHECK(environment_ != nullptr);
2264 DCHECK_EQ(environment->GetHolder(), this);
2265 DCHECK(environment->GetParent() == nullptr);
2266 environment->parent_ = environment_;
2267 environment_ = environment;
2268 }
2269
2270 void RemoveEnvironment();
2271
2272 // Set the environment of this instruction, copying it from `environment`. While
2273 // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2274 void CopyEnvironmentFrom(HEnvironment* environment) {
2275 DCHECK(environment_ == nullptr);
2276 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2277 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2278 environment_->CopyFrom(environment);
2279 if (environment->GetParent() != nullptr) {
2280 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2281 }
2282 }
2283
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2284 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2285 HBasicBlock* block) {
2286 DCHECK(environment_ == nullptr);
2287 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2288 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2289 environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2290 if (environment->GetParent() != nullptr) {
2291 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2292 }
2293 }
2294
2295 // Returns the number of entries in the environment. Typically, that is the
2296 // number of dex registers in a method. It could be more in case of inlining.
2297 size_t EnvironmentSize() const;
2298
GetLocations()2299 LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2300 void SetLocations(LocationSummary* locations) { locations_ = locations; }
2301
2302 void ReplaceWith(HInstruction* instruction);
2303 void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2304 void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2305 void ReplaceInput(HInstruction* replacement, size_t index);
2306
2307 // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2308 // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2309 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2310 ReplaceWith(other);
2311 other->ReplaceInput(this, use_index);
2312 }
2313
2314 // Move `this` instruction before `cursor`
2315 void MoveBefore(HInstruction* cursor, bool do_checks = true);
2316
2317 // Move `this` before its first user and out of any loops. If there is no
2318 // out-of-loop user that dominates all other users, move the instruction
2319 // to the end of the out-of-loop common dominator of the user's blocks.
2320 //
2321 // This can be used only on non-throwing instructions with no side effects that
2322 // have at least one use but no environment uses.
2323 void MoveBeforeFirstUserAndOutOfLoops();
2324
2325 #define INSTRUCTION_TYPE_CHECK(type, super) \
2326 bool Is##type() const;
2327
2328 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2329 #undef INSTRUCTION_TYPE_CHECK
2330
2331 #define INSTRUCTION_TYPE_CAST(type, super) \
2332 const H##type* As##type() const; \
2333 H##type* As##type();
2334
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2335 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
2336 #undef INSTRUCTION_TYPE_CAST
2337
2338 // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
2339 // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
2340 // the instruction then the behaviour of this function is undefined.
2341 //
2342 // Note: It is semantically valid to create a clone of the instruction only until
2343 // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
2344 // copied.
2345 //
2346 // Note: HEnvironment and some other fields are not copied and are set to default values, see
2347 // 'explicit HInstruction(const HInstruction& other)' for details.
2348 virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
2349 LOG(FATAL) << "Cloning is not implemented for the instruction " <<
2350 DebugName() << " " << GetId();
2351 UNREACHABLE();
2352 }
2353
2354 // Return whether instruction can be cloned (copied).
IsClonable()2355 virtual bool IsClonable() const { return false; }
2356
2357 // Returns whether the instruction can be moved within the graph.
2358 // TODO: this method is used by LICM and GVN with possibly different
2359 // meanings? split and rename?
CanBeMoved()2360 virtual bool CanBeMoved() const { return false; }
2361
2362 // Returns whether any data encoded in the two instructions is equal.
2363 // This method does not look at the inputs. Both instructions must be
2364 // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2365 virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2366 return false;
2367 }
2368
2369 // Returns whether two instructions are equal, that is:
2370 // 1) They have the same type and contain the same data (InstructionDataEquals).
2371 // 2) Their inputs are identical.
2372 bool Equals(const HInstruction* other) const;
2373
GetKind()2374 InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
2375
ComputeHashCode()2376 virtual size_t ComputeHashCode() const {
2377 size_t result = GetKind();
2378 for (const HInstruction* input : GetInputs()) {
2379 result = (result * 31) + input->GetId();
2380 }
2381 return result;
2382 }
2383
GetSideEffects()2384 SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2385 void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2386 void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2387
GetLifetimePosition()2388 size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2389 void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2390 LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2391 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2392 bool HasLiveInterval() const { return live_interval_ != nullptr; }
2393
IsSuspendCheckEntry()2394 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2395
2396 // Returns whether the code generation of the instruction will require to have access
2397 // to the current method. Such instructions are:
2398 // (1): Instructions that require an environment, as calling the runtime requires
2399 // to walk the stack and have the current method stored at a specific stack address.
2400 // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2401 // to access the dex cache.
NeedsCurrentMethod()2402 bool NeedsCurrentMethod() const {
2403 return NeedsEnvironment() || IsCurrentMethod();
2404 }
2405
2406 // Returns whether the code generation of the instruction will require to have access
2407 // to the dex cache of the current method's declaring class via the current method.
NeedsDexCacheOfDeclaringClass()2408 virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2409
2410 // Does this instruction have any use in an environment before
2411 // control flow hits 'other'?
2412 bool HasAnyEnvironmentUseBefore(HInstruction* other);
2413
2414 // Remove all references to environment uses of this instruction.
2415 // The caller must ensure that this is safe to do.
2416 void RemoveEnvironmentUsers();
2417
IsEmittedAtUseSite()2418 bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2419 void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2420
2421 protected:
2422 // If set, the machine code for this instruction is assumed to be generated by
2423 // its users. Used by liveness analysis to compute use positions accordingly.
2424 static constexpr size_t kFlagEmittedAtUseSite = 0u;
2425 static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2426 static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
2427 static constexpr size_t kFieldInstructionKindSize =
2428 MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
2429 static constexpr size_t kFieldType =
2430 kFieldInstructionKind + kFieldInstructionKindSize;
2431 static constexpr size_t kFieldTypeSize =
2432 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
2433 static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
2434 static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2435
2436 static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
2437 "Too many generic packed fields");
2438
2439 using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
2440
InputRecordAt(size_t i)2441 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2442 return GetInputRecords()[i];
2443 }
2444
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2445 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2446 ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2447 input_records[index] = input;
2448 }
2449
GetPackedFields()2450 uint32_t GetPackedFields() const {
2451 return packed_fields_;
2452 }
2453
2454 template <size_t flag>
GetPackedFlag()2455 bool GetPackedFlag() const {
2456 return (packed_fields_ & (1u << flag)) != 0u;
2457 }
2458
2459 template <size_t flag>
2460 void SetPackedFlag(bool value = true) {
2461 packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2462 }
2463
2464 template <typename BitFieldType>
GetPackedField()2465 typename BitFieldType::value_type GetPackedField() const {
2466 return BitFieldType::Decode(packed_fields_);
2467 }
2468
2469 template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2470 void SetPackedField(typename BitFieldType::value_type value) {
2471 DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2472 packed_fields_ = BitFieldType::Update(value, packed_fields_);
2473 }
2474
2475 // Copy construction for the instruction (used for Clone function).
2476 //
2477 // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
2478 // prepare_for_register_allocator are not copied (set to default values).
2479 //
2480 // Copy constructors must be provided for every HInstruction type; default copy constructor is
2481 // fine for most of them. However for some of the instructions a custom copy constructor must be
2482 // specified (when instruction has non-trivially copyable fields and must have a special behaviour
2483 // for copying them).
HInstruction(const HInstruction & other)2484 explicit HInstruction(const HInstruction& other)
2485 : previous_(nullptr),
2486 next_(nullptr),
2487 block_(nullptr),
2488 dex_pc_(other.dex_pc_),
2489 id_(-1),
2490 ssa_index_(-1),
2491 packed_fields_(other.packed_fields_),
2492 environment_(nullptr),
2493 locations_(nullptr),
2494 live_interval_(nullptr),
2495 lifetime_position_(kNoLifetime),
2496 side_effects_(other.side_effects_),
2497 reference_type_handle_(other.reference_type_handle_) {
2498 }
2499
2500 private:
2501 using InstructionKindField =
2502 BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
2503
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2504 void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2505 auto before_use_node = uses_.before_begin();
2506 for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2507 HInstruction* user = use_node->GetUser();
2508 size_t input_index = use_node->GetIndex();
2509 user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2510 before_use_node = use_node;
2511 }
2512 }
2513
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2514 void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2515 auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2516 if (next != uses_.end()) {
2517 HInstruction* next_user = next->GetUser();
2518 size_t next_index = next->GetIndex();
2519 DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2520 next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2521 }
2522 }
2523
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2524 void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2525 auto before_env_use_node = env_uses_.before_begin();
2526 for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2527 HEnvironment* user = env_use_node->GetUser();
2528 size_t input_index = env_use_node->GetIndex();
2529 user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2530 before_env_use_node = env_use_node;
2531 }
2532 }
2533
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2534 void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2535 auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2536 if (next != env_uses_.end()) {
2537 HEnvironment* next_user = next->GetUser();
2538 size_t next_index = next->GetIndex();
2539 DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2540 next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2541 }
2542 }
2543
2544 HInstruction* previous_;
2545 HInstruction* next_;
2546 HBasicBlock* block_;
2547 const uint32_t dex_pc_;
2548
2549 // An instruction gets an id when it is added to the graph.
2550 // It reflects creation order. A negative id means the instruction
2551 // has not been added to the graph.
2552 int id_;
2553
2554 // When doing liveness analysis, instructions that have uses get an SSA index.
2555 int ssa_index_;
2556
2557 // Packed fields.
2558 uint32_t packed_fields_;
2559
2560 // List of instructions that have this instruction as input.
2561 HUseList<HInstruction*> uses_;
2562
2563 // List of environments that contain this instruction.
2564 HUseList<HEnvironment*> env_uses_;
2565
2566 // The environment associated with this instruction. Not null if the instruction
2567 // might jump out of the method.
2568 HEnvironment* environment_;
2569
2570 // Set by the code generator.
2571 LocationSummary* locations_;
2572
2573 // Set by the liveness analysis.
2574 LiveInterval* live_interval_;
2575
2576 // Set by the liveness analysis, this is the position in a linear
2577 // order of blocks where this instruction's live interval start.
2578 size_t lifetime_position_;
2579
2580 SideEffects side_effects_;
2581
2582 // The reference handle part of the reference type info.
2583 // The IsExact() flag is stored in packed fields.
2584 // TODO: for primitive types this should be marked as invalid.
2585 ReferenceTypeInfo::TypeHandle reference_type_handle_;
2586
2587 friend class GraphChecker;
2588 friend class HBasicBlock;
2589 friend class HEnvironment;
2590 friend class HGraph;
2591 friend class HInstructionList;
2592 };
2593 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2594
2595 // Iterates over the instructions, while preserving the next instruction
2596 // in case the current instruction gets removed from the list by the user
2597 // of this iterator.
2598 class HInstructionIterator : public ValueObject {
2599 public:
HInstructionIterator(const HInstructionList & instructions)2600 explicit HInstructionIterator(const HInstructionList& instructions)
2601 : instruction_(instructions.first_instruction_) {
2602 next_ = Done() ? nullptr : instruction_->GetNext();
2603 }
2604
Done()2605 bool Done() const { return instruction_ == nullptr; }
Current()2606 HInstruction* Current() const { return instruction_; }
Advance()2607 void Advance() {
2608 instruction_ = next_;
2609 next_ = Done() ? nullptr : instruction_->GetNext();
2610 }
2611
2612 private:
2613 HInstruction* instruction_;
2614 HInstruction* next_;
2615
2616 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2617 };
2618
2619 // Iterates over the instructions without saving the next instruction,
2620 // therefore handling changes in the graph potentially made by the user
2621 // of this iterator.
2622 class HInstructionIteratorHandleChanges : public ValueObject {
2623 public:
HInstructionIteratorHandleChanges(const HInstructionList & instructions)2624 explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2625 : instruction_(instructions.first_instruction_) {
2626 }
2627
Done()2628 bool Done() const { return instruction_ == nullptr; }
Current()2629 HInstruction* Current() const { return instruction_; }
Advance()2630 void Advance() {
2631 instruction_ = instruction_->GetNext();
2632 }
2633
2634 private:
2635 HInstruction* instruction_;
2636
2637 DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges);
2638 };
2639
2640
2641 class HBackwardInstructionIterator : public ValueObject {
2642 public:
HBackwardInstructionIterator(const HInstructionList & instructions)2643 explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2644 : instruction_(instructions.last_instruction_) {
2645 next_ = Done() ? nullptr : instruction_->GetPrevious();
2646 }
2647
Done()2648 bool Done() const { return instruction_ == nullptr; }
Current()2649 HInstruction* Current() const { return instruction_; }
Advance()2650 void Advance() {
2651 instruction_ = next_;
2652 next_ = Done() ? nullptr : instruction_->GetPrevious();
2653 }
2654
2655 private:
2656 HInstruction* instruction_;
2657 HInstruction* next_;
2658
2659 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2660 };
2661
2662 class HVariableInputSizeInstruction : public HInstruction {
2663 public:
2664 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2665 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
2666 return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2667 }
2668
2669 void AddInput(HInstruction* input);
2670 void InsertInputAt(size_t index, HInstruction* input);
2671 void RemoveInputAt(size_t index);
2672
2673 // Removes all the inputs.
2674 // Also removes this instructions from each input's use list
2675 // (for non-environment uses only).
2676 void RemoveAllInputs();
2677
2678 protected:
HVariableInputSizeInstruction(InstructionKind inst_kind,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2679 HVariableInputSizeInstruction(InstructionKind inst_kind,
2680 SideEffects side_effects,
2681 uint32_t dex_pc,
2682 ArenaAllocator* allocator,
2683 size_t number_of_inputs,
2684 ArenaAllocKind kind)
2685 : HInstruction(inst_kind, side_effects, dex_pc),
2686 inputs_(number_of_inputs, allocator->Adapter(kind)) {}
HVariableInputSizeInstruction(InstructionKind inst_kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2687 HVariableInputSizeInstruction(InstructionKind inst_kind,
2688 DataType::Type type,
2689 SideEffects side_effects,
2690 uint32_t dex_pc,
2691 ArenaAllocator* allocator,
2692 size_t number_of_inputs,
2693 ArenaAllocKind kind)
2694 : HInstruction(inst_kind, type, side_effects, dex_pc),
2695 inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2696
2697 DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
2698
2699 ArenaVector<HUserRecord<HInstruction*>> inputs_;
2700 };
2701
2702 template<size_t N>
2703 class HExpression : public HInstruction {
2704 public:
2705 HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
HInstruction(kind,side_effects,dex_pc)2706 : HInstruction(kind, side_effects, dex_pc), inputs_() {}
2707 HExpression<N>(InstructionKind kind,
2708 DataType::Type type,
2709 SideEffects side_effects,
2710 uint32_t dex_pc)
HInstruction(kind,type,side_effects,dex_pc)2711 : HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
~HExpression()2712 virtual ~HExpression() {}
2713
2714 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2715 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2716 return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2717 }
2718
2719 protected:
2720 DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
2721
2722 private:
2723 std::array<HUserRecord<HInstruction*>, N> inputs_;
2724
2725 friend class SsaBuilder;
2726 };
2727
2728 // HExpression specialization for N=0.
2729 template<>
2730 class HExpression<0> : public HInstruction {
2731 public:
2732 using HInstruction::HInstruction;
2733
~HExpression()2734 virtual ~HExpression() {}
2735
2736 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2737 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2738 return ArrayRef<HUserRecord<HInstruction*>>();
2739 }
2740
2741 protected:
2742 DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
2743
2744 private:
2745 friend class SsaBuilder;
2746 };
2747
2748 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2749 // instruction that branches to the exit block.
2750 class HReturnVoid final : public HExpression<0> {
2751 public:
2752 explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
HExpression(kReturnVoid,SideEffects::None (),dex_pc)2753 : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
2754 }
2755
IsControlFlow()2756 bool IsControlFlow() const override { return true; }
2757
2758 DECLARE_INSTRUCTION(ReturnVoid);
2759
2760 protected:
2761 DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
2762 };
2763
2764 // Represents dex's RETURN opcodes. A HReturn is a control flow
2765 // instruction that branches to the exit block.
2766 class HReturn final : public HExpression<1> {
2767 public:
2768 explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
HExpression(kReturn,SideEffects::None (),dex_pc)2769 : HExpression(kReturn, SideEffects::None(), dex_pc) {
2770 SetRawInputAt(0, value);
2771 }
2772
IsControlFlow()2773 bool IsControlFlow() const override { return true; }
2774
2775 DECLARE_INSTRUCTION(Return);
2776
2777 protected:
2778 DEFAULT_COPY_CONSTRUCTOR(Return);
2779 };
2780
2781 class HPhi final : public HVariableInputSizeInstruction {
2782 public:
2783 HPhi(ArenaAllocator* allocator,
2784 uint32_t reg_number,
2785 size_t number_of_inputs,
2786 DataType::Type type,
2787 uint32_t dex_pc = kNoDexPc)
HVariableInputSizeInstruction(kPhi,ToPhiType (type),SideEffects::None (),dex_pc,allocator,number_of_inputs,kArenaAllocPhiInputs)2788 : HVariableInputSizeInstruction(
2789 kPhi,
2790 ToPhiType(type),
2791 SideEffects::None(),
2792 dex_pc,
2793 allocator,
2794 number_of_inputs,
2795 kArenaAllocPhiInputs),
2796 reg_number_(reg_number) {
2797 DCHECK_NE(GetType(), DataType::Type::kVoid);
2798 // Phis are constructed live and marked dead if conflicting or unused.
2799 // Individual steps of SsaBuilder should assume that if a phi has been
2800 // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2801 SetPackedFlag<kFlagIsLive>(true);
2802 SetPackedFlag<kFlagCanBeNull>(true);
2803 }
2804
IsClonable()2805 bool IsClonable() const override { return true; }
2806
2807 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
ToPhiType(DataType::Type type)2808 static DataType::Type ToPhiType(DataType::Type type) {
2809 return DataType::Kind(type);
2810 }
2811
IsCatchPhi()2812 bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
2813
SetType(DataType::Type new_type)2814 void SetType(DataType::Type new_type) {
2815 // Make sure that only valid type changes occur. The following are allowed:
2816 // (1) int -> float/ref (primitive type propagation),
2817 // (2) long -> double (primitive type propagation).
2818 DCHECK(GetType() == new_type ||
2819 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
2820 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
2821 (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
2822 SetPackedField<TypeField>(new_type);
2823 }
2824
CanBeNull()2825 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)2826 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
2827
GetRegNumber()2828 uint32_t GetRegNumber() const { return reg_number_; }
2829
SetDead()2830 void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
SetLive()2831 void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
IsDead()2832 bool IsDead() const { return !IsLive(); }
IsLive()2833 bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
2834
IsVRegEquivalentOf(const HInstruction * other)2835 bool IsVRegEquivalentOf(const HInstruction* other) const {
2836 return other != nullptr
2837 && other->IsPhi()
2838 && other->AsPhi()->GetBlock() == GetBlock()
2839 && other->AsPhi()->GetRegNumber() == GetRegNumber();
2840 }
2841
HasEquivalentPhi()2842 bool HasEquivalentPhi() const {
2843 if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2844 return true;
2845 }
2846 if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2847 return true;
2848 }
2849 return false;
2850 }
2851
2852 // Returns the next equivalent phi (starting from the current one) or null if there is none.
2853 // An equivalent phi is a phi having the same dex register and type.
2854 // It assumes that phis with the same dex register are adjacent.
GetNextEquivalentPhiWithSameType()2855 HPhi* GetNextEquivalentPhiWithSameType() {
2856 HInstruction* next = GetNext();
2857 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2858 if (next->GetType() == GetType()) {
2859 return next->AsPhi();
2860 }
2861 next = next->GetNext();
2862 }
2863 return nullptr;
2864 }
2865
2866 DECLARE_INSTRUCTION(Phi);
2867
2868 protected:
2869 DEFAULT_COPY_CONSTRUCTOR(Phi);
2870
2871 private:
2872 static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
2873 static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
2874 static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
2875 static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
2876
2877 const uint32_t reg_number_;
2878 };
2879
2880 // The exit instruction is the only instruction of the exit block.
2881 // Instructions aborting the method (HThrow and HReturn) must branch to the
2882 // exit block.
2883 class HExit final : public HExpression<0> {
2884 public:
2885 explicit HExit(uint32_t dex_pc = kNoDexPc)
HExpression(kExit,SideEffects::None (),dex_pc)2886 : HExpression(kExit, SideEffects::None(), dex_pc) {
2887 }
2888
IsControlFlow()2889 bool IsControlFlow() const override { return true; }
2890
2891 DECLARE_INSTRUCTION(Exit);
2892
2893 protected:
2894 DEFAULT_COPY_CONSTRUCTOR(Exit);
2895 };
2896
2897 // Jumps from one block to another.
2898 class HGoto final : public HExpression<0> {
2899 public:
2900 explicit HGoto(uint32_t dex_pc = kNoDexPc)
HExpression(kGoto,SideEffects::None (),dex_pc)2901 : HExpression(kGoto, SideEffects::None(), dex_pc) {
2902 }
2903
IsClonable()2904 bool IsClonable() const override { return true; }
IsControlFlow()2905 bool IsControlFlow() const override { return true; }
2906
GetSuccessor()2907 HBasicBlock* GetSuccessor() const {
2908 return GetBlock()->GetSingleSuccessor();
2909 }
2910
2911 DECLARE_INSTRUCTION(Goto);
2912
2913 protected:
2914 DEFAULT_COPY_CONSTRUCTOR(Goto);
2915 };
2916
2917 class HConstant : public HExpression<0> {
2918 public:
2919 explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(kind,type,SideEffects::None (),dex_pc)2920 : HExpression(kind, type, SideEffects::None(), dex_pc) {
2921 }
2922
CanBeMoved()2923 bool CanBeMoved() const override { return true; }
2924
2925 // Is this constant -1 in the arithmetic sense?
IsMinusOne()2926 virtual bool IsMinusOne() const { return false; }
2927 // Is this constant 0 in the arithmetic sense?
IsArithmeticZero()2928 virtual bool IsArithmeticZero() const { return false; }
2929 // Is this constant a 0-bit pattern?
IsZeroBitPattern()2930 virtual bool IsZeroBitPattern() const { return false; }
2931 // Is this constant 1 in the arithmetic sense?
IsOne()2932 virtual bool IsOne() const { return false; }
2933
2934 virtual uint64_t GetValueAsUint64() const = 0;
2935
2936 DECLARE_ABSTRACT_INSTRUCTION(Constant);
2937
2938 protected:
2939 DEFAULT_COPY_CONSTRUCTOR(Constant);
2940 };
2941
2942 class HNullConstant final : public HConstant {
2943 public:
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2944 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
2945 return true;
2946 }
2947
GetValueAsUint64()2948 uint64_t GetValueAsUint64() const override { return 0; }
2949
ComputeHashCode()2950 size_t ComputeHashCode() const override { return 0; }
2951
2952 // The null constant representation is a 0-bit pattern.
IsZeroBitPattern()2953 bool IsZeroBitPattern() const override { return true; }
2954
2955 DECLARE_INSTRUCTION(NullConstant);
2956
2957 protected:
2958 DEFAULT_COPY_CONSTRUCTOR(NullConstant);
2959
2960 private:
2961 explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
HConstant(kNullConstant,DataType::Type::kReference,dex_pc)2962 : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
2963 }
2964
2965 friend class HGraph;
2966 };
2967
2968 // Constants of the type int. Those can be from Dex instructions, or
2969 // synthesized (for example with the if-eqz instruction).
2970 class HIntConstant final : public HConstant {
2971 public:
GetValue()2972 int32_t GetValue() const { return value_; }
2973
GetValueAsUint64()2974 uint64_t GetValueAsUint64() const override {
2975 return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2976 }
2977
InstructionDataEquals(const HInstruction * other)2978 bool InstructionDataEquals(const HInstruction* other) const override {
2979 DCHECK(other->IsIntConstant()) << other->DebugName();
2980 return other->AsIntConstant()->value_ == value_;
2981 }
2982
ComputeHashCode()2983 size_t ComputeHashCode() const override { return GetValue(); }
2984
IsMinusOne()2985 bool IsMinusOne() const override { return GetValue() == -1; }
IsArithmeticZero()2986 bool IsArithmeticZero() const override { return GetValue() == 0; }
IsZeroBitPattern()2987 bool IsZeroBitPattern() const override { return GetValue() == 0; }
IsOne()2988 bool IsOne() const override { return GetValue() == 1; }
2989
2990 // Integer constants are used to encode Boolean values as well,
2991 // where 1 means true and 0 means false.
IsTrue()2992 bool IsTrue() const { return GetValue() == 1; }
IsFalse()2993 bool IsFalse() const { return GetValue() == 0; }
2994
2995 DECLARE_INSTRUCTION(IntConstant);
2996
2997 protected:
2998 DEFAULT_COPY_CONSTRUCTOR(IntConstant);
2999
3000 private:
3001 explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3002 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
3003 }
3004 explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3005 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
3006 value_(value ? 1 : 0) {
3007 }
3008
3009 const int32_t value_;
3010
3011 friend class HGraph;
3012 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
3013 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
3014 };
3015
3016 class HLongConstant final : public HConstant {
3017 public:
GetValue()3018 int64_t GetValue() const { return value_; }
3019
GetValueAsUint64()3020 uint64_t GetValueAsUint64() const override { return value_; }
3021
InstructionDataEquals(const HInstruction * other)3022 bool InstructionDataEquals(const HInstruction* other) const override {
3023 DCHECK(other->IsLongConstant()) << other->DebugName();
3024 return other->AsLongConstant()->value_ == value_;
3025 }
3026
ComputeHashCode()3027 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3028
IsMinusOne()3029 bool IsMinusOne() const override { return GetValue() == -1; }
IsArithmeticZero()3030 bool IsArithmeticZero() const override { return GetValue() == 0; }
IsZeroBitPattern()3031 bool IsZeroBitPattern() const override { return GetValue() == 0; }
IsOne()3032 bool IsOne() const override { return GetValue() == 1; }
3033
3034 DECLARE_INSTRUCTION(LongConstant);
3035
3036 protected:
3037 DEFAULT_COPY_CONSTRUCTOR(LongConstant);
3038
3039 private:
3040 explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kLongConstant,DataType::Type::kInt64,dex_pc)3041 : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
3042 value_(value) {
3043 }
3044
3045 const int64_t value_;
3046
3047 friend class HGraph;
3048 };
3049
3050 class HFloatConstant final : public HConstant {
3051 public:
GetValue()3052 float GetValue() const { return value_; }
3053
GetValueAsUint64()3054 uint64_t GetValueAsUint64() const override {
3055 return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3056 }
3057
InstructionDataEquals(const HInstruction * other)3058 bool InstructionDataEquals(const HInstruction* other) const override {
3059 DCHECK(other->IsFloatConstant()) << other->DebugName();
3060 return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3061 }
3062
ComputeHashCode()3063 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3064
IsMinusOne()3065 bool IsMinusOne() const override {
3066 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3067 }
IsArithmeticZero()3068 bool IsArithmeticZero() const override {
3069 return std::fpclassify(value_) == FP_ZERO;
3070 }
IsArithmeticPositiveZero()3071 bool IsArithmeticPositiveZero() const {
3072 return IsArithmeticZero() && !std::signbit(value_);
3073 }
IsArithmeticNegativeZero()3074 bool IsArithmeticNegativeZero() const {
3075 return IsArithmeticZero() && std::signbit(value_);
3076 }
IsZeroBitPattern()3077 bool IsZeroBitPattern() const override {
3078 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
3079 }
IsOne()3080 bool IsOne() const override {
3081 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3082 }
IsNaN()3083 bool IsNaN() const {
3084 return std::isnan(value_);
3085 }
3086
3087 DECLARE_INSTRUCTION(FloatConstant);
3088
3089 protected:
3090 DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
3091
3092 private:
3093 explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3094 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3095 value_(value) {
3096 }
3097 explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3098 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3099 value_(bit_cast<float, int32_t>(value)) {
3100 }
3101
3102 const float value_;
3103
3104 // Only the SsaBuilder and HGraph can create floating-point constants.
3105 friend class SsaBuilder;
3106 friend class HGraph;
3107 };
3108
3109 class HDoubleConstant final : public HConstant {
3110 public:
GetValue()3111 double GetValue() const { return value_; }
3112
GetValueAsUint64()3113 uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
3114
InstructionDataEquals(const HInstruction * other)3115 bool InstructionDataEquals(const HInstruction* other) const override {
3116 DCHECK(other->IsDoubleConstant()) << other->DebugName();
3117 return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3118 }
3119
ComputeHashCode()3120 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3121
IsMinusOne()3122 bool IsMinusOne() const override {
3123 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3124 }
IsArithmeticZero()3125 bool IsArithmeticZero() const override {
3126 return std::fpclassify(value_) == FP_ZERO;
3127 }
IsArithmeticPositiveZero()3128 bool IsArithmeticPositiveZero() const {
3129 return IsArithmeticZero() && !std::signbit(value_);
3130 }
IsArithmeticNegativeZero()3131 bool IsArithmeticNegativeZero() const {
3132 return IsArithmeticZero() && std::signbit(value_);
3133 }
IsZeroBitPattern()3134 bool IsZeroBitPattern() const override {
3135 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
3136 }
IsOne()3137 bool IsOne() const override {
3138 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3139 }
IsNaN()3140 bool IsNaN() const {
3141 return std::isnan(value_);
3142 }
3143
3144 DECLARE_INSTRUCTION(DoubleConstant);
3145
3146 protected:
3147 DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
3148
3149 private:
3150 explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3151 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3152 value_(value) {
3153 }
3154 explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3155 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3156 value_(bit_cast<double, int64_t>(value)) {
3157 }
3158
3159 const double value_;
3160
3161 // Only the SsaBuilder and HGraph can create floating-point constants.
3162 friend class SsaBuilder;
3163 friend class HGraph;
3164 };
3165
3166 // Conditional branch. A block ending with an HIf instruction must have
3167 // two successors.
3168 class HIf final : public HExpression<1> {
3169 public:
3170 explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kIf,SideEffects::None (),dex_pc)3171 : HExpression(kIf, SideEffects::None(), dex_pc) {
3172 SetRawInputAt(0, input);
3173 }
3174
IsClonable()3175 bool IsClonable() const override { return true; }
IsControlFlow()3176 bool IsControlFlow() const override { return true; }
3177
IfTrueSuccessor()3178 HBasicBlock* IfTrueSuccessor() const {
3179 return GetBlock()->GetSuccessors()[0];
3180 }
3181
IfFalseSuccessor()3182 HBasicBlock* IfFalseSuccessor() const {
3183 return GetBlock()->GetSuccessors()[1];
3184 }
3185
3186 DECLARE_INSTRUCTION(If);
3187
3188 protected:
3189 DEFAULT_COPY_CONSTRUCTOR(If);
3190 };
3191
3192
3193 // Abstract instruction which marks the beginning and/or end of a try block and
3194 // links it to the respective exception handlers. Behaves the same as a Goto in
3195 // non-exceptional control flow.
3196 // Normal-flow successor is stored at index zero, exception handlers under
3197 // higher indices in no particular order.
3198 class HTryBoundary final : public HExpression<0> {
3199 public:
3200 enum class BoundaryKind {
3201 kEntry,
3202 kExit,
3203 kLast = kExit
3204 };
3205
3206 // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
3207 // across the catch block entering edges as GC might happen during throwing an exception.
3208 // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
3209 // HInstruction which a catch block must start from.
3210 explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
3211 : HExpression(kTryBoundary,
3212 (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
3213 : SideEffects::None(),
3214 dex_pc) {
3215 SetPackedField<BoundaryKindField>(kind);
3216 }
3217
IsControlFlow()3218 bool IsControlFlow() const override { return true; }
3219
3220 // Returns the block's non-exceptional successor (index zero).
GetNormalFlowSuccessor()3221 HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
3222
GetExceptionHandlers()3223 ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
3224 return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
3225 }
3226
3227 // Returns whether `handler` is among its exception handlers (non-zero index
3228 // successors).
HasExceptionHandler(const HBasicBlock & handler)3229 bool HasExceptionHandler(const HBasicBlock& handler) const {
3230 DCHECK(handler.IsCatchBlock());
3231 return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
3232 }
3233
3234 // If not present already, adds `handler` to its block's list of exception
3235 // handlers.
AddExceptionHandler(HBasicBlock * handler)3236 void AddExceptionHandler(HBasicBlock* handler) {
3237 if (!HasExceptionHandler(*handler)) {
3238 GetBlock()->AddSuccessor(handler);
3239 }
3240 }
3241
GetBoundaryKind()3242 BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
IsEntry()3243 bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
3244
3245 bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
3246
3247 DECLARE_INSTRUCTION(TryBoundary);
3248
3249 protected:
3250 DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
3251
3252 private:
3253 static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
3254 static constexpr size_t kFieldBoundaryKindSize =
3255 MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
3256 static constexpr size_t kNumberOfTryBoundaryPackedBits =
3257 kFieldBoundaryKind + kFieldBoundaryKindSize;
3258 static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
3259 "Too many packed fields.");
3260 using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
3261 };
3262
3263 // Deoptimize to interpreter, upon checking a condition.
3264 class HDeoptimize final : public HVariableInputSizeInstruction {
3265 public:
3266 // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3267 // across.
HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,DeoptimizationKind kind,uint32_t dex_pc)3268 HDeoptimize(ArenaAllocator* allocator,
3269 HInstruction* cond,
3270 DeoptimizationKind kind,
3271 uint32_t dex_pc)
3272 : HVariableInputSizeInstruction(
3273 kDeoptimize,
3274 SideEffects::All(),
3275 dex_pc,
3276 allocator,
3277 /* number_of_inputs= */ 1,
3278 kArenaAllocMisc) {
3279 SetPackedFlag<kFieldCanBeMoved>(false);
3280 SetPackedField<DeoptimizeKindField>(kind);
3281 SetRawInputAt(0, cond);
3282 }
3283
IsClonable()3284 bool IsClonable() const override { return true; }
3285
3286 // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3287 // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3288 // instead of `guard`.
3289 // We set CanTriggerGC to prevent any intermediate address to be live
3290 // at the point of the `HDeoptimize`.
HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,HInstruction * guard,DeoptimizationKind kind,uint32_t dex_pc)3291 HDeoptimize(ArenaAllocator* allocator,
3292 HInstruction* cond,
3293 HInstruction* guard,
3294 DeoptimizationKind kind,
3295 uint32_t dex_pc)
3296 : HVariableInputSizeInstruction(
3297 kDeoptimize,
3298 guard->GetType(),
3299 SideEffects::CanTriggerGC(),
3300 dex_pc,
3301 allocator,
3302 /* number_of_inputs= */ 2,
3303 kArenaAllocMisc) {
3304 SetPackedFlag<kFieldCanBeMoved>(true);
3305 SetPackedField<DeoptimizeKindField>(kind);
3306 SetRawInputAt(0, cond);
3307 SetRawInputAt(1, guard);
3308 }
3309
CanBeMoved()3310 bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
3311
InstructionDataEquals(const HInstruction * other)3312 bool InstructionDataEquals(const HInstruction* other) const override {
3313 return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
3314 }
3315
NeedsEnvironment()3316 bool NeedsEnvironment() const override { return true; }
3317
CanThrow()3318 bool CanThrow() const override { return true; }
3319
GetDeoptimizationKind()3320 DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3321
GuardsAnInput()3322 bool GuardsAnInput() const {
3323 return InputCount() == 2;
3324 }
3325
GuardedInput()3326 HInstruction* GuardedInput() const {
3327 DCHECK(GuardsAnInput());
3328 return InputAt(1);
3329 }
3330
RemoveGuard()3331 void RemoveGuard() {
3332 RemoveInputAt(1);
3333 }
3334
3335 DECLARE_INSTRUCTION(Deoptimize);
3336
3337 protected:
3338 DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
3339
3340 private:
3341 static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3342 static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3343 static constexpr size_t kFieldDeoptimizeKindSize =
3344 MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3345 static constexpr size_t kNumberOfDeoptimizePackedBits =
3346 kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3347 static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3348 "Too many packed fields.");
3349 using DeoptimizeKindField =
3350 BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3351 };
3352
3353 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3354 // The compiled code checks this flag value in a guard before devirtualized call and
3355 // if it's true, starts to do deoptimization.
3356 // It has a 4-byte slot on stack.
3357 // TODO: allocate a register for this flag.
3358 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
3359 public:
3360 // CHA guards are only optimized in a separate pass and it has no side effects
3361 // with regard to other passes.
HShouldDeoptimizeFlag(ArenaAllocator * allocator,uint32_t dex_pc)3362 HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
3363 : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
3364 DataType::Type::kInt32,
3365 SideEffects::None(),
3366 dex_pc,
3367 allocator,
3368 0,
3369 kArenaAllocCHA) {
3370 }
3371
3372 // We do all CHA guard elimination/motion in a single pass, after which there is no
3373 // further guard elimination/motion since a guard might have been used for justification
3374 // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3375 // to avoid other optimizations trying to move it.
CanBeMoved()3376 bool CanBeMoved() const override { return false; }
3377
3378 DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3379
3380 protected:
3381 DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
3382 };
3383
3384 // Represents the ArtMethod that was passed as a first argument to
3385 // the method. It is used by instructions that depend on it, like
3386 // instructions that work with the dex cache.
3387 class HCurrentMethod final : public HExpression<0> {
3388 public:
3389 explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(kCurrentMethod,type,SideEffects::None (),dex_pc)3390 : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
3391 }
3392
3393 DECLARE_INSTRUCTION(CurrentMethod);
3394
3395 protected:
3396 DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
3397 };
3398
3399 // Fetches an ArtMethod from the virtual table or the interface method table
3400 // of a class.
3401 class HClassTableGet final : public HExpression<1> {
3402 public:
3403 enum class TableKind {
3404 kVTable,
3405 kIMTable,
3406 kLast = kIMTable
3407 };
HClassTableGet(HInstruction * cls,DataType::Type type,TableKind kind,size_t index,uint32_t dex_pc)3408 HClassTableGet(HInstruction* cls,
3409 DataType::Type type,
3410 TableKind kind,
3411 size_t index,
3412 uint32_t dex_pc)
3413 : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
3414 index_(index) {
3415 SetPackedField<TableKindField>(kind);
3416 SetRawInputAt(0, cls);
3417 }
3418
IsClonable()3419 bool IsClonable() const override { return true; }
CanBeMoved()3420 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other)3421 bool InstructionDataEquals(const HInstruction* other) const override {
3422 return other->AsClassTableGet()->GetIndex() == index_ &&
3423 other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3424 }
3425
GetTableKind()3426 TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
GetIndex()3427 size_t GetIndex() const { return index_; }
3428
3429 DECLARE_INSTRUCTION(ClassTableGet);
3430
3431 protected:
3432 DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
3433
3434 private:
3435 static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
3436 static constexpr size_t kFieldTableKindSize =
3437 MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3438 static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3439 static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3440 "Too many packed fields.");
3441 using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
3442
3443 // The index of the ArtMethod in the table.
3444 const size_t index_;
3445 };
3446
3447 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3448 // have one successor for each entry in the switch table, and the final successor
3449 // will be the block containing the next Dex opcode.
3450 class HPackedSwitch final : public HExpression<1> {
3451 public:
3452 HPackedSwitch(int32_t start_value,
3453 uint32_t num_entries,
3454 HInstruction* input,
3455 uint32_t dex_pc = kNoDexPc)
HExpression(kPackedSwitch,SideEffects::None (),dex_pc)3456 : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
3457 start_value_(start_value),
3458 num_entries_(num_entries) {
3459 SetRawInputAt(0, input);
3460 }
3461
IsClonable()3462 bool IsClonable() const override { return true; }
3463
IsControlFlow()3464 bool IsControlFlow() const override { return true; }
3465
GetStartValue()3466 int32_t GetStartValue() const { return start_value_; }
3467
GetNumEntries()3468 uint32_t GetNumEntries() const { return num_entries_; }
3469
GetDefaultBlock()3470 HBasicBlock* GetDefaultBlock() const {
3471 // Last entry is the default block.
3472 return GetBlock()->GetSuccessors()[num_entries_];
3473 }
3474 DECLARE_INSTRUCTION(PackedSwitch);
3475
3476 protected:
3477 DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
3478
3479 private:
3480 const int32_t start_value_;
3481 const uint32_t num_entries_;
3482 };
3483
3484 class HUnaryOperation : public HExpression<1> {
3485 public:
3486 HUnaryOperation(InstructionKind kind,
3487 DataType::Type result_type,
3488 HInstruction* input,
3489 uint32_t dex_pc = kNoDexPc)
HExpression(kind,result_type,SideEffects::None (),dex_pc)3490 : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
3491 SetRawInputAt(0, input);
3492 }
3493
3494 // All of the UnaryOperation instructions are clonable.
IsClonable()3495 bool IsClonable() const override { return true; }
3496
GetInput()3497 HInstruction* GetInput() const { return InputAt(0); }
GetResultType()3498 DataType::Type GetResultType() const { return GetType(); }
3499
CanBeMoved()3500 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3501 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3502 return true;
3503 }
3504
3505 // Try to statically evaluate `this` and return a HConstant
3506 // containing the result of this evaluation. If `this` cannot
3507 // be evaluated as a constant, return null.
3508 HConstant* TryStaticEvaluation() const;
3509
3510 // Apply this operation to `x`.
3511 virtual HConstant* Evaluate(HIntConstant* x) const = 0;
3512 virtual HConstant* Evaluate(HLongConstant* x) const = 0;
3513 virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
3514 virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
3515
3516 DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3517
3518 protected:
3519 DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
3520 };
3521
3522 class HBinaryOperation : public HExpression<2> {
3523 public:
3524 HBinaryOperation(InstructionKind kind,
3525 DataType::Type result_type,
3526 HInstruction* left,
3527 HInstruction* right,
3528 SideEffects side_effects = SideEffects::None(),
3529 uint32_t dex_pc = kNoDexPc)
HExpression(kind,result_type,side_effects,dex_pc)3530 : HExpression(kind, result_type, side_effects, dex_pc) {
3531 SetRawInputAt(0, left);
3532 SetRawInputAt(1, right);
3533 }
3534
3535 // All of the BinaryOperation instructions are clonable.
IsClonable()3536 bool IsClonable() const override { return true; }
3537
GetLeft()3538 HInstruction* GetLeft() const { return InputAt(0); }
GetRight()3539 HInstruction* GetRight() const { return InputAt(1); }
GetResultType()3540 DataType::Type GetResultType() const { return GetType(); }
3541
IsCommutative()3542 virtual bool IsCommutative() const { return false; }
3543
3544 // Put constant on the right.
3545 // Returns whether order is changed.
OrderInputsWithConstantOnTheRight()3546 bool OrderInputsWithConstantOnTheRight() {
3547 HInstruction* left = InputAt(0);
3548 HInstruction* right = InputAt(1);
3549 if (left->IsConstant() && !right->IsConstant()) {
3550 ReplaceInput(right, 0);
3551 ReplaceInput(left, 1);
3552 return true;
3553 }
3554 return false;
3555 }
3556
3557 // Order inputs by instruction id, but favor constant on the right side.
3558 // This helps GVN for commutative ops.
OrderInputs()3559 void OrderInputs() {
3560 DCHECK(IsCommutative());
3561 HInstruction* left = InputAt(0);
3562 HInstruction* right = InputAt(1);
3563 if (left == right || (!left->IsConstant() && right->IsConstant())) {
3564 return;
3565 }
3566 if (OrderInputsWithConstantOnTheRight()) {
3567 return;
3568 }
3569 // Order according to instruction id.
3570 if (left->GetId() > right->GetId()) {
3571 ReplaceInput(right, 0);
3572 ReplaceInput(left, 1);
3573 }
3574 }
3575
CanBeMoved()3576 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3577 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3578 return true;
3579 }
3580
3581 // Try to statically evaluate `this` and return a HConstant
3582 // containing the result of this evaluation. If `this` cannot
3583 // be evaluated as a constant, return null.
3584 HConstant* TryStaticEvaluation() const;
3585
3586 // Apply this operation to `x` and `y`.
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3587 virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3588 HNullConstant* y ATTRIBUTE_UNUSED) const {
3589 LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3590 UNREACHABLE();
3591 }
3592 virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3593 virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED,HIntConstant * y ATTRIBUTE_UNUSED)3594 virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3595 HIntConstant* y ATTRIBUTE_UNUSED) const {
3596 LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3597 UNREACHABLE();
3598 }
3599 virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3600 virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3601
3602 // Returns an input that can legally be used as the right input and is
3603 // constant, or null.
3604 HConstant* GetConstantRight() const;
3605
3606 // If `GetConstantRight()` returns one of the input, this returns the other
3607 // one. Otherwise it returns null.
3608 HInstruction* GetLeastConstantLeft() const;
3609
3610 DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3611
3612 protected:
3613 DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
3614 };
3615
3616 // The comparison bias applies for floating point operations and indicates how NaN
3617 // comparisons are treated:
3618 enum class ComparisonBias {
3619 kNoBias, // bias is not applicable (i.e. for long operation)
3620 kGtBias, // return 1 for NaN comparisons
3621 kLtBias, // return -1 for NaN comparisons
3622 kLast = kLtBias
3623 };
3624
3625 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
3626
3627 class HCondition : public HBinaryOperation {
3628 public:
3629 HCondition(InstructionKind kind,
3630 HInstruction* first,
3631 HInstruction* second,
3632 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kind,DataType::Type::kBool,first,second,SideEffects::None (),dex_pc)3633 : HBinaryOperation(kind,
3634 DataType::Type::kBool,
3635 first,
3636 second,
3637 SideEffects::None(),
3638 dex_pc) {
3639 SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3640 }
3641
3642 // For code generation purposes, returns whether this instruction is just before
3643 // `instruction`, and disregard moves in between.
3644 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3645
3646 DECLARE_ABSTRACT_INSTRUCTION(Condition);
3647
3648 virtual IfCondition GetCondition() const = 0;
3649
3650 virtual IfCondition GetOppositeCondition() const = 0;
3651
IsGtBias()3652 bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
IsLtBias()3653 bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3654
GetBias()3655 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
SetBias(ComparisonBias bias)3656 void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3657
InstructionDataEquals(const HInstruction * other)3658 bool InstructionDataEquals(const HInstruction* other) const override {
3659 return GetPackedFields() == other->AsCondition()->GetPackedFields();
3660 }
3661
IsFPConditionTrueIfNaN()3662 bool IsFPConditionTrueIfNaN() const {
3663 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3664 IfCondition if_cond = GetCondition();
3665 if (if_cond == kCondNE) {
3666 return true;
3667 } else if (if_cond == kCondEQ) {
3668 return false;
3669 }
3670 return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3671 }
3672
IsFPConditionFalseIfNaN()3673 bool IsFPConditionFalseIfNaN() const {
3674 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3675 IfCondition if_cond = GetCondition();
3676 if (if_cond == kCondEQ) {
3677 return true;
3678 } else if (if_cond == kCondNE) {
3679 return false;
3680 }
3681 return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3682 }
3683
3684 protected:
3685 // Needed if we merge a HCompare into a HCondition.
3686 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
3687 static constexpr size_t kFieldComparisonBiasSize =
3688 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3689 static constexpr size_t kNumberOfConditionPackedBits =
3690 kFieldComparisonBias + kFieldComparisonBiasSize;
3691 static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3692 using ComparisonBiasField =
3693 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3694
3695 template <typename T>
Compare(T x,T y)3696 int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3697
3698 template <typename T>
CompareFP(T x,T y)3699 int32_t CompareFP(T x, T y) const {
3700 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3701 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3702 // Handle the bias.
3703 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3704 }
3705
3706 // Return an integer constant containing the result of a condition evaluated at compile time.
MakeConstantCondition(bool value,uint32_t dex_pc)3707 HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3708 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3709 }
3710
3711 DEFAULT_COPY_CONSTRUCTOR(Condition);
3712 };
3713
3714 // Instruction to check if two inputs are equal to each other.
3715 class HEqual final : public HCondition {
3716 public:
3717 HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kEqual,first,second,dex_pc)3718 : HCondition(kEqual, first, second, dex_pc) {
3719 }
3720
IsCommutative()3721 bool IsCommutative() const override { return true; }
3722
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3723 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3724 HNullConstant* y ATTRIBUTE_UNUSED) const override {
3725 return MakeConstantCondition(true, GetDexPc());
3726 }
Evaluate(HIntConstant * x,HIntConstant * y)3727 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3728 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3729 }
3730 // In the following Evaluate methods, a HCompare instruction has
3731 // been merged into this HEqual instruction; evaluate it as
3732 // `Compare(x, y) == 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3733 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3734 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3735 GetDexPc());
3736 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3737 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3738 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3739 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3740 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3741 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3742 }
3743
3744 DECLARE_INSTRUCTION(Equal);
3745
GetCondition()3746 IfCondition GetCondition() const override {
3747 return kCondEQ;
3748 }
3749
GetOppositeCondition()3750 IfCondition GetOppositeCondition() const override {
3751 return kCondNE;
3752 }
3753
3754 protected:
3755 DEFAULT_COPY_CONSTRUCTOR(Equal);
3756
3757 private:
Compute(T x,T y)3758 template <typename T> static bool Compute(T x, T y) { return x == y; }
3759 };
3760
3761 class HNotEqual final : public HCondition {
3762 public:
3763 HNotEqual(HInstruction* first, HInstruction* second,
3764 uint32_t dex_pc = kNoDexPc)
HCondition(kNotEqual,first,second,dex_pc)3765 : HCondition(kNotEqual, first, second, dex_pc) {
3766 }
3767
IsCommutative()3768 bool IsCommutative() const override { return true; }
3769
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3770 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3771 HNullConstant* y ATTRIBUTE_UNUSED) const override {
3772 return MakeConstantCondition(false, GetDexPc());
3773 }
Evaluate(HIntConstant * x,HIntConstant * y)3774 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3775 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3776 }
3777 // In the following Evaluate methods, a HCompare instruction has
3778 // been merged into this HNotEqual instruction; evaluate it as
3779 // `Compare(x, y) != 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3780 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3781 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3782 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3783 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3784 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3785 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3786 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3787 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3788 }
3789
3790 DECLARE_INSTRUCTION(NotEqual);
3791
GetCondition()3792 IfCondition GetCondition() const override {
3793 return kCondNE;
3794 }
3795
GetOppositeCondition()3796 IfCondition GetOppositeCondition() const override {
3797 return kCondEQ;
3798 }
3799
3800 protected:
3801 DEFAULT_COPY_CONSTRUCTOR(NotEqual);
3802
3803 private:
Compute(T x,T y)3804 template <typename T> static bool Compute(T x, T y) { return x != y; }
3805 };
3806
3807 class HLessThan final : public HCondition {
3808 public:
3809 HLessThan(HInstruction* first, HInstruction* second,
3810 uint32_t dex_pc = kNoDexPc)
HCondition(kLessThan,first,second,dex_pc)3811 : HCondition(kLessThan, first, second, dex_pc) {
3812 }
3813
Evaluate(HIntConstant * x,HIntConstant * y)3814 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3815 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3816 }
3817 // In the following Evaluate methods, a HCompare instruction has
3818 // been merged into this HLessThan instruction; evaluate it as
3819 // `Compare(x, y) < 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3820 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3821 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3822 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3823 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3824 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3825 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3826 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3827 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3828 }
3829
3830 DECLARE_INSTRUCTION(LessThan);
3831
GetCondition()3832 IfCondition GetCondition() const override {
3833 return kCondLT;
3834 }
3835
GetOppositeCondition()3836 IfCondition GetOppositeCondition() const override {
3837 return kCondGE;
3838 }
3839
3840 protected:
3841 DEFAULT_COPY_CONSTRUCTOR(LessThan);
3842
3843 private:
Compute(T x,T y)3844 template <typename T> static bool Compute(T x, T y) { return x < y; }
3845 };
3846
3847 class HLessThanOrEqual final : public HCondition {
3848 public:
3849 HLessThanOrEqual(HInstruction* first, HInstruction* second,
3850 uint32_t dex_pc = kNoDexPc)
HCondition(kLessThanOrEqual,first,second,dex_pc)3851 : HCondition(kLessThanOrEqual, first, second, dex_pc) {
3852 }
3853
Evaluate(HIntConstant * x,HIntConstant * y)3854 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3855 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3856 }
3857 // In the following Evaluate methods, a HCompare instruction has
3858 // been merged into this HLessThanOrEqual instruction; evaluate it as
3859 // `Compare(x, y) <= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3860 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3861 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3862 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3863 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3864 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3865 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3866 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3867 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3868 }
3869
3870 DECLARE_INSTRUCTION(LessThanOrEqual);
3871
GetCondition()3872 IfCondition GetCondition() const override {
3873 return kCondLE;
3874 }
3875
GetOppositeCondition()3876 IfCondition GetOppositeCondition() const override {
3877 return kCondGT;
3878 }
3879
3880 protected:
3881 DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
3882
3883 private:
Compute(T x,T y)3884 template <typename T> static bool Compute(T x, T y) { return x <= y; }
3885 };
3886
3887 class HGreaterThan final : public HCondition {
3888 public:
3889 HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kGreaterThan,first,second,dex_pc)3890 : HCondition(kGreaterThan, first, second, dex_pc) {
3891 }
3892
Evaluate(HIntConstant * x,HIntConstant * y)3893 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3894 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3895 }
3896 // In the following Evaluate methods, a HCompare instruction has
3897 // been merged into this HGreaterThan instruction; evaluate it as
3898 // `Compare(x, y) > 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3899 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3900 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3901 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3902 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3903 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3904 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3905 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3906 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3907 }
3908
3909 DECLARE_INSTRUCTION(GreaterThan);
3910
GetCondition()3911 IfCondition GetCondition() const override {
3912 return kCondGT;
3913 }
3914
GetOppositeCondition()3915 IfCondition GetOppositeCondition() const override {
3916 return kCondLE;
3917 }
3918
3919 protected:
3920 DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
3921
3922 private:
Compute(T x,T y)3923 template <typename T> static bool Compute(T x, T y) { return x > y; }
3924 };
3925
3926 class HGreaterThanOrEqual final : public HCondition {
3927 public:
3928 HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kGreaterThanOrEqual,first,second,dex_pc)3929 : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
3930 }
3931
Evaluate(HIntConstant * x,HIntConstant * y)3932 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3933 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3934 }
3935 // In the following Evaluate methods, a HCompare instruction has
3936 // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3937 // `Compare(x, y) >= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3938 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3939 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3940 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3941 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3942 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3943 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3944 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3945 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3946 }
3947
3948 DECLARE_INSTRUCTION(GreaterThanOrEqual);
3949
GetCondition()3950 IfCondition GetCondition() const override {
3951 return kCondGE;
3952 }
3953
GetOppositeCondition()3954 IfCondition GetOppositeCondition() const override {
3955 return kCondLT;
3956 }
3957
3958 protected:
3959 DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
3960
3961 private:
Compute(T x,T y)3962 template <typename T> static bool Compute(T x, T y) { return x >= y; }
3963 };
3964
3965 class HBelow final : public HCondition {
3966 public:
3967 HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kBelow,first,second,dex_pc)3968 : HCondition(kBelow, first, second, dex_pc) {
3969 }
3970
Evaluate(HIntConstant * x,HIntConstant * y)3971 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3972 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3973 }
Evaluate(HLongConstant * x,HLongConstant * y)3974 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3975 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3976 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3977 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3978 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
3979 LOG(FATAL) << DebugName() << " is not defined for float values";
3980 UNREACHABLE();
3981 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3982 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3983 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
3984 LOG(FATAL) << DebugName() << " is not defined for double values";
3985 UNREACHABLE();
3986 }
3987
3988 DECLARE_INSTRUCTION(Below);
3989
GetCondition()3990 IfCondition GetCondition() const override {
3991 return kCondB;
3992 }
3993
GetOppositeCondition()3994 IfCondition GetOppositeCondition() const override {
3995 return kCondAE;
3996 }
3997
3998 protected:
3999 DEFAULT_COPY_CONSTRUCTOR(Below);
4000
4001 private:
Compute(T x,T y)4002 template <typename T> static bool Compute(T x, T y) {
4003 return MakeUnsigned(x) < MakeUnsigned(y);
4004 }
4005 };
4006
4007 class HBelowOrEqual final : public HCondition {
4008 public:
4009 HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kBelowOrEqual,first,second,dex_pc)4010 : HCondition(kBelowOrEqual, first, second, dex_pc) {
4011 }
4012
Evaluate(HIntConstant * x,HIntConstant * y)4013 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4014 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4015 }
Evaluate(HLongConstant * x,HLongConstant * y)4016 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4017 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4018 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4019 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4020 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4021 LOG(FATAL) << DebugName() << " is not defined for float values";
4022 UNREACHABLE();
4023 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4024 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4025 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4026 LOG(FATAL) << DebugName() << " is not defined for double values";
4027 UNREACHABLE();
4028 }
4029
4030 DECLARE_INSTRUCTION(BelowOrEqual);
4031
GetCondition()4032 IfCondition GetCondition() const override {
4033 return kCondBE;
4034 }
4035
GetOppositeCondition()4036 IfCondition GetOppositeCondition() const override {
4037 return kCondA;
4038 }
4039
4040 protected:
4041 DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
4042
4043 private:
Compute(T x,T y)4044 template <typename T> static bool Compute(T x, T y) {
4045 return MakeUnsigned(x) <= MakeUnsigned(y);
4046 }
4047 };
4048
4049 class HAbove final : public HCondition {
4050 public:
4051 HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kAbove,first,second,dex_pc)4052 : HCondition(kAbove, first, second, dex_pc) {
4053 }
4054
Evaluate(HIntConstant * x,HIntConstant * y)4055 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4056 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4057 }
Evaluate(HLongConstant * x,HLongConstant * y)4058 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4059 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4060 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4061 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4062 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4063 LOG(FATAL) << DebugName() << " is not defined for float values";
4064 UNREACHABLE();
4065 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4066 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4067 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4068 LOG(FATAL) << DebugName() << " is not defined for double values";
4069 UNREACHABLE();
4070 }
4071
4072 DECLARE_INSTRUCTION(Above);
4073
GetCondition()4074 IfCondition GetCondition() const override {
4075 return kCondA;
4076 }
4077
GetOppositeCondition()4078 IfCondition GetOppositeCondition() const override {
4079 return kCondBE;
4080 }
4081
4082 protected:
4083 DEFAULT_COPY_CONSTRUCTOR(Above);
4084
4085 private:
Compute(T x,T y)4086 template <typename T> static bool Compute(T x, T y) {
4087 return MakeUnsigned(x) > MakeUnsigned(y);
4088 }
4089 };
4090
4091 class HAboveOrEqual final : public HCondition {
4092 public:
4093 HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kAboveOrEqual,first,second,dex_pc)4094 : HCondition(kAboveOrEqual, first, second, dex_pc) {
4095 }
4096
Evaluate(HIntConstant * x,HIntConstant * y)4097 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4098 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4099 }
Evaluate(HLongConstant * x,HLongConstant * y)4100 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4101 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4102 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4103 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4104 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4105 LOG(FATAL) << DebugName() << " is not defined for float values";
4106 UNREACHABLE();
4107 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4108 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4109 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4110 LOG(FATAL) << DebugName() << " is not defined for double values";
4111 UNREACHABLE();
4112 }
4113
4114 DECLARE_INSTRUCTION(AboveOrEqual);
4115
GetCondition()4116 IfCondition GetCondition() const override {
4117 return kCondAE;
4118 }
4119
GetOppositeCondition()4120 IfCondition GetOppositeCondition() const override {
4121 return kCondB;
4122 }
4123
4124 protected:
4125 DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
4126
4127 private:
Compute(T x,T y)4128 template <typename T> static bool Compute(T x, T y) {
4129 return MakeUnsigned(x) >= MakeUnsigned(y);
4130 }
4131 };
4132
4133 // Instruction to check how two inputs compare to each other.
4134 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
4135 class HCompare final : public HBinaryOperation {
4136 public:
4137 // Note that `comparison_type` is the type of comparison performed
4138 // between the comparison's inputs, not the type of the instantiated
4139 // HCompare instruction (which is always DataType::Type::kInt).
HCompare(DataType::Type comparison_type,HInstruction * first,HInstruction * second,ComparisonBias bias,uint32_t dex_pc)4140 HCompare(DataType::Type comparison_type,
4141 HInstruction* first,
4142 HInstruction* second,
4143 ComparisonBias bias,
4144 uint32_t dex_pc)
4145 : HBinaryOperation(kCompare,
4146 DataType::Type::kInt32,
4147 first,
4148 second,
4149 SideEffectsForArchRuntimeCalls(comparison_type),
4150 dex_pc) {
4151 SetPackedField<ComparisonBiasField>(bias);
4152 DCHECK_EQ(comparison_type, DataType::Kind(first->GetType()));
4153 DCHECK_EQ(comparison_type, DataType::Kind(second->GetType()));
4154 }
4155
4156 template <typename T>
Compute(T x,T y)4157 int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
4158
4159 template <typename T>
ComputeFP(T x,T y)4160 int32_t ComputeFP(T x, T y) const {
4161 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4162 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
4163 // Handle the bias.
4164 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
4165 }
4166
Evaluate(HIntConstant * x,HIntConstant * y)4167 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4168 // Note that there is no "cmp-int" Dex instruction so we shouldn't
4169 // reach this code path when processing a freshly built HIR
4170 // graph. However HCompare integer instructions can be synthesized
4171 // by the instruction simplifier to implement IntegerCompare and
4172 // IntegerSignum intrinsics, so we have to handle this case.
4173 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4174 }
Evaluate(HLongConstant * x,HLongConstant * y)4175 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4176 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4177 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4178 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4179 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4180 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4181 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4182 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4183 }
4184
InstructionDataEquals(const HInstruction * other)4185 bool InstructionDataEquals(const HInstruction* other) const override {
4186 return GetPackedFields() == other->AsCompare()->GetPackedFields();
4187 }
4188
GetBias()4189 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
4190
4191 // Does this compare instruction have a "gt bias" (vs an "lt bias")?
4192 // Only meaningful for floating-point comparisons.
IsGtBias()4193 bool IsGtBias() const {
4194 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4195 return GetBias() == ComparisonBias::kGtBias;
4196 }
4197
SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED)4198 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
4199 // Comparisons do not require a runtime call in any back end.
4200 return SideEffects::None();
4201 }
4202
4203 DECLARE_INSTRUCTION(Compare);
4204
4205 protected:
4206 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
4207 static constexpr size_t kFieldComparisonBiasSize =
4208 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
4209 static constexpr size_t kNumberOfComparePackedBits =
4210 kFieldComparisonBias + kFieldComparisonBiasSize;
4211 static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4212 using ComparisonBiasField =
4213 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
4214
4215 // Return an integer constant containing the result of a comparison evaluated at compile time.
MakeConstantComparison(int32_t value,uint32_t dex_pc)4216 HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
4217 DCHECK(value == -1 || value == 0 || value == 1) << value;
4218 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
4219 }
4220
4221 DEFAULT_COPY_CONSTRUCTOR(Compare);
4222 };
4223
4224 class HNewInstance final : public HExpression<1> {
4225 public:
HNewInstance(HInstruction * cls,uint32_t dex_pc,dex::TypeIndex type_index,const DexFile & dex_file,bool finalizable,QuickEntrypointEnum entrypoint)4226 HNewInstance(HInstruction* cls,
4227 uint32_t dex_pc,
4228 dex::TypeIndex type_index,
4229 const DexFile& dex_file,
4230 bool finalizable,
4231 QuickEntrypointEnum entrypoint)
4232 : HExpression(kNewInstance,
4233 DataType::Type::kReference,
4234 SideEffects::CanTriggerGC(),
4235 dex_pc),
4236 type_index_(type_index),
4237 dex_file_(dex_file),
4238 entrypoint_(entrypoint) {
4239 SetPackedFlag<kFlagFinalizable>(finalizable);
4240 SetRawInputAt(0, cls);
4241 }
4242
IsClonable()4243 bool IsClonable() const override { return true; }
4244
GetTypeIndex()4245 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()4246 const DexFile& GetDexFile() const { return dex_file_; }
4247
4248 // Calls runtime so needs an environment.
NeedsEnvironment()4249 bool NeedsEnvironment() const override { return true; }
4250
4251 // Can throw errors when out-of-memory or if it's not instantiable/accessible.
CanThrow()4252 bool CanThrow() const override { return true; }
4253
NeedsChecks()4254 bool NeedsChecks() const {
4255 return entrypoint_ == kQuickAllocObjectWithChecks;
4256 }
4257
IsFinalizable()4258 bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
4259
CanBeNull()4260 bool CanBeNull() const override { return false; }
4261
GetEntrypoint()4262 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4263
SetEntrypoint(QuickEntrypointEnum entrypoint)4264 void SetEntrypoint(QuickEntrypointEnum entrypoint) {
4265 entrypoint_ = entrypoint;
4266 }
4267
GetLoadClass()4268 HLoadClass* GetLoadClass() const {
4269 HInstruction* input = InputAt(0);
4270 if (input->IsClinitCheck()) {
4271 input = input->InputAt(0);
4272 }
4273 DCHECK(input->IsLoadClass());
4274 return input->AsLoadClass();
4275 }
4276
4277 bool IsStringAlloc() const;
4278
4279 DECLARE_INSTRUCTION(NewInstance);
4280
4281 protected:
4282 DEFAULT_COPY_CONSTRUCTOR(NewInstance);
4283
4284 private:
4285 static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
4286 static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
4287 static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
4288 "Too many packed fields.");
4289
4290 const dex::TypeIndex type_index_;
4291 const DexFile& dex_file_;
4292 QuickEntrypointEnum entrypoint_;
4293 };
4294
4295 enum IntrinsicNeedsEnvironmentOrCache {
4296 kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache.
4297 kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache.
4298 };
4299
4300 enum IntrinsicSideEffects {
4301 kNoSideEffects, // Intrinsic does not have any heap memory side effects.
4302 kReadSideEffects, // Intrinsic may read heap memory.
4303 kWriteSideEffects, // Intrinsic may write heap memory.
4304 kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC.
4305 };
4306
4307 enum IntrinsicExceptions {
4308 kNoThrow, // Intrinsic does not throw any exceptions.
4309 kCanThrow // Intrinsic may throw exceptions.
4310 };
4311
4312 class HInvoke : public HVariableInputSizeInstruction {
4313 public:
4314 bool NeedsEnvironment() const override;
4315
SetArgumentAt(size_t index,HInstruction * argument)4316 void SetArgumentAt(size_t index, HInstruction* argument) {
4317 SetRawInputAt(index, argument);
4318 }
4319
4320 // Return the number of arguments. This number can be lower than
4321 // the number of inputs returned by InputCount(), as some invoke
4322 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
4323 // inputs at the end of their list of inputs.
GetNumberOfArguments()4324 uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4325
GetDexMethodIndex()4326 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4327
GetInvokeType()4328 InvokeType GetInvokeType() const {
4329 return GetPackedField<InvokeTypeField>();
4330 }
4331
GetIntrinsic()4332 Intrinsics GetIntrinsic() const {
4333 return intrinsic_;
4334 }
4335
4336 void SetIntrinsic(Intrinsics intrinsic,
4337 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
4338 IntrinsicSideEffects side_effects,
4339 IntrinsicExceptions exceptions);
4340
IsFromInlinedInvoke()4341 bool IsFromInlinedInvoke() const {
4342 return GetEnvironment()->IsFromInlinedInvoke();
4343 }
4344
SetCanThrow(bool can_throw)4345 void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4346
CanThrow()4347 bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
4348
SetAlwaysThrows(bool always_throws)4349 void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
4350
AlwaysThrows()4351 bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); }
4352
CanBeMoved()4353 bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
4354
InstructionDataEquals(const HInstruction * other)4355 bool InstructionDataEquals(const HInstruction* other) const override {
4356 return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4357 }
4358
GetIntrinsicOptimizations()4359 uint32_t* GetIntrinsicOptimizations() {
4360 return &intrinsic_optimizations_;
4361 }
4362
GetIntrinsicOptimizations()4363 const uint32_t* GetIntrinsicOptimizations() const {
4364 return &intrinsic_optimizations_;
4365 }
4366
IsIntrinsic()4367 bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4368
GetResolvedMethod()4369 ArtMethod* GetResolvedMethod() const { return resolved_method_; }
4370 void SetResolvedMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
4371
4372 DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4373
4374 protected:
4375 static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4376 static constexpr size_t kFieldInvokeTypeSize =
4377 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4378 static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
4379 static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
4380 static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
4381 static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4382 using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4383
HInvoke(InstructionKind kind,ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t number_of_other_inputs,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,InvokeType invoke_type)4384 HInvoke(InstructionKind kind,
4385 ArenaAllocator* allocator,
4386 uint32_t number_of_arguments,
4387 uint32_t number_of_other_inputs,
4388 DataType::Type return_type,
4389 uint32_t dex_pc,
4390 uint32_t dex_method_index,
4391 ArtMethod* resolved_method,
4392 InvokeType invoke_type)
4393 : HVariableInputSizeInstruction(
4394 kind,
4395 return_type,
4396 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
4397 dex_pc,
4398 allocator,
4399 number_of_arguments + number_of_other_inputs,
4400 kArenaAllocInvokeInputs),
4401 number_of_arguments_(number_of_arguments),
4402 dex_method_index_(dex_method_index),
4403 intrinsic_(Intrinsics::kNone),
4404 intrinsic_optimizations_(0) {
4405 SetPackedField<InvokeTypeField>(invoke_type);
4406 SetPackedFlag<kFlagCanThrow>(true);
4407 // Check mutator lock, constructors lack annotalysis support.
4408 Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current());
4409 SetResolvedMethod(resolved_method);
4410 }
4411
4412 DEFAULT_COPY_CONSTRUCTOR(Invoke);
4413
4414 uint32_t number_of_arguments_;
4415 ArtMethod* resolved_method_;
4416 const uint32_t dex_method_index_;
4417 Intrinsics intrinsic_;
4418
4419 // A magic word holding optimizations for intrinsics. See intrinsics.h.
4420 uint32_t intrinsic_optimizations_;
4421 };
4422
4423 class HInvokeUnresolved final : public HInvoke {
4424 public:
HInvokeUnresolved(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType invoke_type)4425 HInvokeUnresolved(ArenaAllocator* allocator,
4426 uint32_t number_of_arguments,
4427 DataType::Type return_type,
4428 uint32_t dex_pc,
4429 uint32_t dex_method_index,
4430 InvokeType invoke_type)
4431 : HInvoke(kInvokeUnresolved,
4432 allocator,
4433 number_of_arguments,
4434 /* number_of_other_inputs= */ 0u,
4435 return_type,
4436 dex_pc,
4437 dex_method_index,
4438 nullptr,
4439 invoke_type) {
4440 }
4441
IsClonable()4442 bool IsClonable() const override { return true; }
4443
4444 DECLARE_INSTRUCTION(InvokeUnresolved);
4445
4446 protected:
4447 DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
4448 };
4449
4450 class HInvokePolymorphic final : public HInvoke {
4451 public:
HInvokePolymorphic(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index)4452 HInvokePolymorphic(ArenaAllocator* allocator,
4453 uint32_t number_of_arguments,
4454 DataType::Type return_type,
4455 uint32_t dex_pc,
4456 uint32_t dex_method_index)
4457 : HInvoke(kInvokePolymorphic,
4458 allocator,
4459 number_of_arguments,
4460 /* number_of_other_inputs= */ 0u,
4461 return_type,
4462 dex_pc,
4463 dex_method_index,
4464 nullptr,
4465 kVirtual) {
4466 }
4467
IsClonable()4468 bool IsClonable() const override { return true; }
4469
4470 DECLARE_INSTRUCTION(InvokePolymorphic);
4471
4472 protected:
4473 DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
4474 };
4475
4476 class HInvokeCustom final : public HInvoke {
4477 public:
HInvokeCustom(ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t call_site_index,DataType::Type return_type,uint32_t dex_pc)4478 HInvokeCustom(ArenaAllocator* allocator,
4479 uint32_t number_of_arguments,
4480 uint32_t call_site_index,
4481 DataType::Type return_type,
4482 uint32_t dex_pc)
4483 : HInvoke(kInvokeCustom,
4484 allocator,
4485 number_of_arguments,
4486 /* number_of_other_inputs= */ 0u,
4487 return_type,
4488 dex_pc,
4489 /* dex_method_index= */ dex::kDexNoIndex,
4490 /* resolved_method= */ nullptr,
4491 kStatic),
4492 call_site_index_(call_site_index) {
4493 }
4494
GetCallSiteIndex()4495 uint32_t GetCallSiteIndex() const { return call_site_index_; }
4496
IsClonable()4497 bool IsClonable() const override { return true; }
4498
4499 DECLARE_INSTRUCTION(InvokeCustom);
4500
4501 protected:
4502 DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
4503
4504 private:
4505 uint32_t call_site_index_;
4506 };
4507
4508 class HInvokeStaticOrDirect final : public HInvoke {
4509 public:
4510 // Requirements of this method call regarding the class
4511 // initialization (clinit) check of its declaring class.
4512 enum class ClinitCheckRequirement {
4513 kNone, // Class already initialized.
4514 kExplicit, // Static call having explicit clinit check as last input.
4515 kImplicit, // Static call implicitly requiring a clinit check.
4516 kLast = kImplicit
4517 };
4518
4519 // Determines how to load the target ArtMethod*.
4520 enum class MethodLoadKind {
4521 // Use a String init ArtMethod* loaded from Thread entrypoints.
4522 kStringInit,
4523
4524 // Use the method's own ArtMethod* loaded by the register allocator.
4525 kRecursive,
4526
4527 // Use PC-relative boot image ArtMethod* address that will be known at link time.
4528 // Used for boot image methods referenced by boot image code.
4529 kBootImageLinkTimePcRelative,
4530
4531 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
4532 // Used for app->boot calls with relocatable image.
4533 kBootImageRelRo,
4534
4535 // Load from an entry in the .bss section using a PC-relative load.
4536 // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
4537 kBssEntry,
4538
4539 // Use ArtMethod* at a known address, embed the direct address in the code.
4540 // Used for for JIT-compiled calls.
4541 kJitDirectAddress,
4542
4543 // Make a runtime call to resolve and call the method. This is the last-resort-kind
4544 // used when other kinds are unimplemented on a particular architecture.
4545 kRuntimeCall,
4546 };
4547
4548 // Determines the location of the code pointer.
4549 enum class CodePtrLocation {
4550 // Recursive call, use local PC-relative call instruction.
4551 kCallSelf,
4552
4553 // Use code pointer from the ArtMethod*.
4554 // Used when we don't know the target code. This is also the last-resort-kind used when
4555 // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4556 kCallArtMethod,
4557 };
4558
4559 struct DispatchInfo {
4560 MethodLoadKind method_load_kind;
4561 CodePtrLocation code_ptr_location;
4562 // The method load data holds
4563 // - thread entrypoint offset for kStringInit method if this is a string init invoke.
4564 // Note that there are multiple string init methods, each having its own offset.
4565 // - the method address for kDirectAddress
4566 uint64_t method_load_data;
4567 };
4568
HInvokeStaticOrDirect(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t method_index,ArtMethod * resolved_method,DispatchInfo dispatch_info,InvokeType invoke_type,MethodReference target_method,ClinitCheckRequirement clinit_check_requirement)4569 HInvokeStaticOrDirect(ArenaAllocator* allocator,
4570 uint32_t number_of_arguments,
4571 DataType::Type return_type,
4572 uint32_t dex_pc,
4573 uint32_t method_index,
4574 ArtMethod* resolved_method,
4575 DispatchInfo dispatch_info,
4576 InvokeType invoke_type,
4577 MethodReference target_method,
4578 ClinitCheckRequirement clinit_check_requirement)
4579 : HInvoke(kInvokeStaticOrDirect,
4580 allocator,
4581 number_of_arguments,
4582 // There is potentially one extra argument for the HCurrentMethod node, and
4583 // potentially one other if the clinit check is explicit.
4584 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
4585 (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4586 return_type,
4587 dex_pc,
4588 method_index,
4589 resolved_method,
4590 invoke_type),
4591 target_method_(target_method),
4592 dispatch_info_(dispatch_info) {
4593 SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4594 }
4595
IsClonable()4596 bool IsClonable() const override { return true; }
4597
SetDispatchInfo(const DispatchInfo & dispatch_info)4598 void SetDispatchInfo(const DispatchInfo& dispatch_info) {
4599 bool had_current_method_input = HasCurrentMethodInput();
4600 bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
4601
4602 // Using the current method is the default and once we find a better
4603 // method load kind, we should not go back to using the current method.
4604 DCHECK(had_current_method_input || !needs_current_method_input);
4605
4606 if (had_current_method_input && !needs_current_method_input) {
4607 DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4608 RemoveInputAt(GetSpecialInputIndex());
4609 }
4610 dispatch_info_ = dispatch_info;
4611 }
4612
GetDispatchInfo()4613 DispatchInfo GetDispatchInfo() const {
4614 return dispatch_info_;
4615 }
4616
AddSpecialInput(HInstruction * input)4617 void AddSpecialInput(HInstruction* input) {
4618 // We allow only one special input.
4619 DCHECK(!IsStringInit() && !HasCurrentMethodInput());
4620 DCHECK(InputCount() == GetSpecialInputIndex() ||
4621 (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
4622 InsertInputAt(GetSpecialInputIndex(), input);
4623 }
4624
4625 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()4626 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
4627 ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4628 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4629 DCHECK(!input_records.empty());
4630 DCHECK_GT(input_records.size(), GetNumberOfArguments());
4631 HInstruction* last_input = input_records.back().GetInstruction();
4632 // Note: `last_input` may be null during arguments setup.
4633 if (last_input != nullptr) {
4634 // `last_input` is the last input of a static invoke marked as having
4635 // an explicit clinit check. It must either be:
4636 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4637 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4638 DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4639 }
4640 }
4641 return input_records;
4642 }
4643
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)4644 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
4645 // We access the method via the dex cache so we can't do an implicit null check.
4646 // TODO: for intrinsics we can generate implicit null checks.
4647 return false;
4648 }
4649
CanBeNull()4650 bool CanBeNull() const override {
4651 return GetType() == DataType::Type::kReference && !IsStringInit();
4652 }
4653
4654 // Get the index of the special input, if any.
4655 //
4656 // If the invoke HasCurrentMethodInput(), the "special input" is the current
4657 // method pointer; otherwise there may be one platform-specific special input,
4658 // such as PC-relative addressing base.
GetSpecialInputIndex()4659 uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
HasSpecialInput()4660 bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
4661
GetMethodLoadKind()4662 MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
GetCodePtrLocation()4663 CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
IsRecursive()4664 bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4665 bool NeedsDexCacheOfDeclaringClass() const override;
IsStringInit()4666 bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
HasMethodAddress()4667 bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
HasPcRelativeMethodLoadKind()4668 bool HasPcRelativeMethodLoadKind() const {
4669 return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative ||
4670 GetMethodLoadKind() == MethodLoadKind::kBootImageRelRo ||
4671 GetMethodLoadKind() == MethodLoadKind::kBssEntry;
4672 }
HasCurrentMethodInput()4673 bool HasCurrentMethodInput() const {
4674 // This function can be called only after the invoke has been fully initialized by the builder.
4675 if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
4676 DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4677 return true;
4678 } else {
4679 DCHECK(InputCount() == GetSpecialInputIndex() ||
4680 !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4681 return false;
4682 }
4683 }
4684
GetStringInitEntryPoint()4685 QuickEntrypointEnum GetStringInitEntryPoint() const {
4686 DCHECK(IsStringInit());
4687 return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4688 }
4689
GetMethodAddress()4690 uint64_t GetMethodAddress() const {
4691 DCHECK(HasMethodAddress());
4692 return dispatch_info_.method_load_data;
4693 }
4694
4695 const DexFile& GetDexFileForPcRelativeDexCache() const;
4696
GetClinitCheckRequirement()4697 ClinitCheckRequirement GetClinitCheckRequirement() const {
4698 return GetPackedField<ClinitCheckRequirementField>();
4699 }
4700
4701 // Is this instruction a call to a static method?
IsStatic()4702 bool IsStatic() const {
4703 return GetInvokeType() == kStatic;
4704 }
4705
GetTargetMethod()4706 MethodReference GetTargetMethod() const {
4707 return target_method_;
4708 }
4709
4710 // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4711 // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4712 // instruction; only relevant for static calls with explicit clinit check.
RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement)4713 void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4714 DCHECK(IsStaticWithExplicitClinitCheck());
4715 size_t last_input_index = inputs_.size() - 1u;
4716 HInstruction* last_input = inputs_.back().GetInstruction();
4717 DCHECK(last_input != nullptr);
4718 DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4719 RemoveAsUserOfInput(last_input_index);
4720 inputs_.pop_back();
4721 SetPackedField<ClinitCheckRequirementField>(new_requirement);
4722 DCHECK(!IsStaticWithExplicitClinitCheck());
4723 }
4724
4725 // Is this a call to a static method whose declaring class has an
4726 // explicit initialization check in the graph?
IsStaticWithExplicitClinitCheck()4727 bool IsStaticWithExplicitClinitCheck() const {
4728 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4729 }
4730
4731 // Is this a call to a static method whose declaring class has an
4732 // implicit intialization check requirement?
IsStaticWithImplicitClinitCheck()4733 bool IsStaticWithImplicitClinitCheck() const {
4734 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4735 }
4736
4737 // Does this method load kind need the current method as an input?
NeedsCurrentMethodInput(MethodLoadKind kind)4738 static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
4739 return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall;
4740 }
4741
4742 DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4743
4744 protected:
4745 DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
4746
4747 private:
4748 static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
4749 static constexpr size_t kFieldClinitCheckRequirementSize =
4750 MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4751 static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4752 kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4753 static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4754 "Too many packed fields.");
4755 using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4756 kFieldClinitCheckRequirement,
4757 kFieldClinitCheckRequirementSize>;
4758
4759 // Cached values of the resolved method, to avoid needing the mutator lock.
4760 const MethodReference target_method_;
4761 DispatchInfo dispatch_info_;
4762 };
4763 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4764 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4765
4766 class HInvokeVirtual final : public HInvoke {
4767 public:
HInvokeVirtual(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t vtable_index)4768 HInvokeVirtual(ArenaAllocator* allocator,
4769 uint32_t number_of_arguments,
4770 DataType::Type return_type,
4771 uint32_t dex_pc,
4772 uint32_t dex_method_index,
4773 ArtMethod* resolved_method,
4774 uint32_t vtable_index)
4775 : HInvoke(kInvokeVirtual,
4776 allocator,
4777 number_of_arguments,
4778 0u,
4779 return_type,
4780 dex_pc,
4781 dex_method_index,
4782 resolved_method,
4783 kVirtual),
4784 vtable_index_(vtable_index) {
4785 }
4786
IsClonable()4787 bool IsClonable() const override { return true; }
4788
CanBeNull()4789 bool CanBeNull() const override {
4790 switch (GetIntrinsic()) {
4791 case Intrinsics::kThreadCurrentThread:
4792 case Intrinsics::kStringBufferAppend:
4793 case Intrinsics::kStringBufferToString:
4794 case Intrinsics::kStringBuilderAppendObject:
4795 case Intrinsics::kStringBuilderAppendString:
4796 case Intrinsics::kStringBuilderAppendCharSequence:
4797 case Intrinsics::kStringBuilderAppendCharArray:
4798 case Intrinsics::kStringBuilderAppendBoolean:
4799 case Intrinsics::kStringBuilderAppendChar:
4800 case Intrinsics::kStringBuilderAppendInt:
4801 case Intrinsics::kStringBuilderAppendLong:
4802 case Intrinsics::kStringBuilderAppendFloat:
4803 case Intrinsics::kStringBuilderAppendDouble:
4804 case Intrinsics::kStringBuilderToString:
4805 return false;
4806 default:
4807 return HInvoke::CanBeNull();
4808 }
4809 }
4810
CanDoImplicitNullCheckOn(HInstruction * obj)4811 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
4812 // TODO: Add implicit null checks in intrinsics.
4813 return (obj == InputAt(0)) && !IsIntrinsic();
4814 }
4815
GetVTableIndex()4816 uint32_t GetVTableIndex() const { return vtable_index_; }
4817
4818 DECLARE_INSTRUCTION(InvokeVirtual);
4819
4820 protected:
4821 DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
4822
4823 private:
4824 // Cached value of the resolved method, to avoid needing the mutator lock.
4825 const uint32_t vtable_index_;
4826 };
4827
4828 class HInvokeInterface final : public HInvoke {
4829 public:
HInvokeInterface(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t imt_index)4830 HInvokeInterface(ArenaAllocator* allocator,
4831 uint32_t number_of_arguments,
4832 DataType::Type return_type,
4833 uint32_t dex_pc,
4834 uint32_t dex_method_index,
4835 ArtMethod* resolved_method,
4836 uint32_t imt_index)
4837 : HInvoke(kInvokeInterface,
4838 allocator,
4839 number_of_arguments,
4840 0u,
4841 return_type,
4842 dex_pc,
4843 dex_method_index,
4844 resolved_method,
4845 kInterface),
4846 imt_index_(imt_index) {
4847 }
4848
IsClonable()4849 bool IsClonable() const override { return true; }
4850
CanDoImplicitNullCheckOn(HInstruction * obj)4851 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
4852 // TODO: Add implicit null checks in intrinsics.
4853 return (obj == InputAt(0)) && !IsIntrinsic();
4854 }
4855
NeedsDexCacheOfDeclaringClass()4856 bool NeedsDexCacheOfDeclaringClass() const override {
4857 // The assembly stub currently needs it.
4858 return true;
4859 }
4860
GetImtIndex()4861 uint32_t GetImtIndex() const { return imt_index_; }
4862
4863 DECLARE_INSTRUCTION(InvokeInterface);
4864
4865 protected:
4866 DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
4867
4868 private:
4869 // Cached value of the resolved method, to avoid needing the mutator lock.
4870 const uint32_t imt_index_;
4871 };
4872
4873 class HNeg final : public HUnaryOperation {
4874 public:
4875 HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kNeg,result_type,input,dex_pc)4876 : HUnaryOperation(kNeg, result_type, input, dex_pc) {
4877 DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
4878 }
4879
Compute(T x)4880 template <typename T> static T Compute(T x) { return -x; }
4881
Evaluate(HIntConstant * x)4882 HConstant* Evaluate(HIntConstant* x) const override {
4883 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4884 }
Evaluate(HLongConstant * x)4885 HConstant* Evaluate(HLongConstant* x) const override {
4886 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4887 }
Evaluate(HFloatConstant * x)4888 HConstant* Evaluate(HFloatConstant* x) const override {
4889 return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4890 }
Evaluate(HDoubleConstant * x)4891 HConstant* Evaluate(HDoubleConstant* x) const override {
4892 return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4893 }
4894
4895 DECLARE_INSTRUCTION(Neg);
4896
4897 protected:
4898 DEFAULT_COPY_CONSTRUCTOR(Neg);
4899 };
4900
4901 class HNewArray final : public HExpression<2> {
4902 public:
HNewArray(HInstruction * cls,HInstruction * length,uint32_t dex_pc,size_t component_size_shift)4903 HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
4904 : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
4905 SetRawInputAt(0, cls);
4906 SetRawInputAt(1, length);
4907 SetPackedField<ComponentSizeShiftField>(component_size_shift);
4908 }
4909
IsClonable()4910 bool IsClonable() const override { return true; }
4911
4912 // Calls runtime so needs an environment.
NeedsEnvironment()4913 bool NeedsEnvironment() const override { return true; }
4914
4915 // May throw NegativeArraySizeException, OutOfMemoryError, etc.
CanThrow()4916 bool CanThrow() const override { return true; }
4917
CanBeNull()4918 bool CanBeNull() const override { return false; }
4919
GetLoadClass()4920 HLoadClass* GetLoadClass() const {
4921 DCHECK(InputAt(0)->IsLoadClass());
4922 return InputAt(0)->AsLoadClass();
4923 }
4924
GetLength()4925 HInstruction* GetLength() const {
4926 return InputAt(1);
4927 }
4928
GetComponentSizeShift()4929 size_t GetComponentSizeShift() {
4930 return GetPackedField<ComponentSizeShiftField>();
4931 }
4932
4933 DECLARE_INSTRUCTION(NewArray);
4934
4935 protected:
4936 DEFAULT_COPY_CONSTRUCTOR(NewArray);
4937
4938 private:
4939 static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
4940 static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
4941 static constexpr size_t kNumberOfNewArrayPackedBits =
4942 kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
4943 static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4944 using ComponentSizeShiftField =
4945 BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>;
4946 };
4947
4948 class HAdd final : public HBinaryOperation {
4949 public:
4950 HAdd(DataType::Type result_type,
4951 HInstruction* left,
4952 HInstruction* right,
4953 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kAdd,result_type,left,right,SideEffects::None (),dex_pc)4954 : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
4955 }
4956
IsCommutative()4957 bool IsCommutative() const override { return true; }
4958
Compute(T x,T y)4959 template <typename T> static T Compute(T x, T y) { return x + y; }
4960
Evaluate(HIntConstant * x,HIntConstant * y)4961 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4962 return GetBlock()->GetGraph()->GetIntConstant(
4963 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4964 }
Evaluate(HLongConstant * x,HLongConstant * y)4965 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4966 return GetBlock()->GetGraph()->GetLongConstant(
4967 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4968 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4969 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4970 return GetBlock()->GetGraph()->GetFloatConstant(
4971 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4972 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4973 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4974 return GetBlock()->GetGraph()->GetDoubleConstant(
4975 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4976 }
4977
4978 DECLARE_INSTRUCTION(Add);
4979
4980 protected:
4981 DEFAULT_COPY_CONSTRUCTOR(Add);
4982 };
4983
4984 class HSub final : public HBinaryOperation {
4985 public:
4986 HSub(DataType::Type result_type,
4987 HInstruction* left,
4988 HInstruction* right,
4989 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kSub,result_type,left,right,SideEffects::None (),dex_pc)4990 : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
4991 }
4992
Compute(T x,T y)4993 template <typename T> static T Compute(T x, T y) { return x - y; }
4994
Evaluate(HIntConstant * x,HIntConstant * y)4995 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4996 return GetBlock()->GetGraph()->GetIntConstant(
4997 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4998 }
Evaluate(HLongConstant * x,HLongConstant * y)4999 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5000 return GetBlock()->GetGraph()->GetLongConstant(
5001 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5002 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5003 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5004 return GetBlock()->GetGraph()->GetFloatConstant(
5005 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5006 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5007 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5008 return GetBlock()->GetGraph()->GetDoubleConstant(
5009 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5010 }
5011
5012 DECLARE_INSTRUCTION(Sub);
5013
5014 protected:
5015 DEFAULT_COPY_CONSTRUCTOR(Sub);
5016 };
5017
5018 class HMul final : public HBinaryOperation {
5019 public:
5020 HMul(DataType::Type result_type,
5021 HInstruction* left,
5022 HInstruction* right,
5023 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kMul,result_type,left,right,SideEffects::None (),dex_pc)5024 : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
5025 }
5026
IsCommutative()5027 bool IsCommutative() const override { return true; }
5028
Compute(T x,T y)5029 template <typename T> static T Compute(T x, T y) { return x * y; }
5030
Evaluate(HIntConstant * x,HIntConstant * y)5031 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5032 return GetBlock()->GetGraph()->GetIntConstant(
5033 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5034 }
Evaluate(HLongConstant * x,HLongConstant * y)5035 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5036 return GetBlock()->GetGraph()->GetLongConstant(
5037 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5038 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5039 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5040 return GetBlock()->GetGraph()->GetFloatConstant(
5041 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5042 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5043 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5044 return GetBlock()->GetGraph()->GetDoubleConstant(
5045 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5046 }
5047
5048 DECLARE_INSTRUCTION(Mul);
5049
5050 protected:
5051 DEFAULT_COPY_CONSTRUCTOR(Mul);
5052 };
5053
5054 class HDiv final : public HBinaryOperation {
5055 public:
HDiv(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5056 HDiv(DataType::Type result_type,
5057 HInstruction* left,
5058 HInstruction* right,
5059 uint32_t dex_pc)
5060 : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
5061 }
5062
5063 template <typename T>
ComputeIntegral(T x,T y)5064 T ComputeIntegral(T x, T y) const {
5065 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5066 // Our graph structure ensures we never have 0 for `y` during
5067 // constant folding.
5068 DCHECK_NE(y, 0);
5069 // Special case -1 to avoid getting a SIGFPE on x86(_64).
5070 return (y == -1) ? -x : x / y;
5071 }
5072
5073 template <typename T>
ComputeFP(T x,T y)5074 T ComputeFP(T x, T y) const {
5075 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5076 return x / y;
5077 }
5078
Evaluate(HIntConstant * x,HIntConstant * y)5079 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5080 return GetBlock()->GetGraph()->GetIntConstant(
5081 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5082 }
Evaluate(HLongConstant * x,HLongConstant * y)5083 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5084 return GetBlock()->GetGraph()->GetLongConstant(
5085 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5086 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5087 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5088 return GetBlock()->GetGraph()->GetFloatConstant(
5089 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5090 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5091 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5092 return GetBlock()->GetGraph()->GetDoubleConstant(
5093 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5094 }
5095
5096 DECLARE_INSTRUCTION(Div);
5097
5098 protected:
5099 DEFAULT_COPY_CONSTRUCTOR(Div);
5100 };
5101
5102 class HRem final : public HBinaryOperation {
5103 public:
HRem(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5104 HRem(DataType::Type result_type,
5105 HInstruction* left,
5106 HInstruction* right,
5107 uint32_t dex_pc)
5108 : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
5109 }
5110
5111 template <typename T>
ComputeIntegral(T x,T y)5112 T ComputeIntegral(T x, T y) const {
5113 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5114 // Our graph structure ensures we never have 0 for `y` during
5115 // constant folding.
5116 DCHECK_NE(y, 0);
5117 // Special case -1 to avoid getting a SIGFPE on x86(_64).
5118 return (y == -1) ? 0 : x % y;
5119 }
5120
5121 template <typename T>
ComputeFP(T x,T y)5122 T ComputeFP(T x, T y) const {
5123 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5124 return std::fmod(x, y);
5125 }
5126
Evaluate(HIntConstant * x,HIntConstant * y)5127 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5128 return GetBlock()->GetGraph()->GetIntConstant(
5129 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5130 }
Evaluate(HLongConstant * x,HLongConstant * y)5131 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5132 return GetBlock()->GetGraph()->GetLongConstant(
5133 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5134 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5135 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5136 return GetBlock()->GetGraph()->GetFloatConstant(
5137 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5138 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5139 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5140 return GetBlock()->GetGraph()->GetDoubleConstant(
5141 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5142 }
5143
5144 DECLARE_INSTRUCTION(Rem);
5145
5146 protected:
5147 DEFAULT_COPY_CONSTRUCTOR(Rem);
5148 };
5149
5150 class HMin final : public HBinaryOperation {
5151 public:
HMin(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5152 HMin(DataType::Type result_type,
5153 HInstruction* left,
5154 HInstruction* right,
5155 uint32_t dex_pc)
5156 : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
5157
IsCommutative()5158 bool IsCommutative() const override { return true; }
5159
5160 // Evaluation for integral values.
ComputeIntegral(T x,T y)5161 template <typename T> static T ComputeIntegral(T x, T y) {
5162 return (x <= y) ? x : y;
5163 }
5164
Evaluate(HIntConstant * x,HIntConstant * y)5165 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5166 return GetBlock()->GetGraph()->GetIntConstant(
5167 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5168 }
Evaluate(HLongConstant * x,HLongConstant * y)5169 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5170 return GetBlock()->GetGraph()->GetLongConstant(
5171 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5172 }
5173 // TODO: Evaluation for floating-point values.
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5174 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5175 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5176 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5177 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5178
5179 DECLARE_INSTRUCTION(Min);
5180
5181 protected:
5182 DEFAULT_COPY_CONSTRUCTOR(Min);
5183 };
5184
5185 class HMax final : public HBinaryOperation {
5186 public:
HMax(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5187 HMax(DataType::Type result_type,
5188 HInstruction* left,
5189 HInstruction* right,
5190 uint32_t dex_pc)
5191 : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
5192
IsCommutative()5193 bool IsCommutative() const override { return true; }
5194
5195 // Evaluation for integral values.
ComputeIntegral(T x,T y)5196 template <typename T> static T ComputeIntegral(T x, T y) {
5197 return (x >= y) ? x : y;
5198 }
5199
Evaluate(HIntConstant * x,HIntConstant * y)5200 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5201 return GetBlock()->GetGraph()->GetIntConstant(
5202 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5203 }
Evaluate(HLongConstant * x,HLongConstant * y)5204 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5205 return GetBlock()->GetGraph()->GetLongConstant(
5206 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5207 }
5208 // TODO: Evaluation for floating-point values.
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5209 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5210 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5211 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5212 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5213
5214 DECLARE_INSTRUCTION(Max);
5215
5216 protected:
5217 DEFAULT_COPY_CONSTRUCTOR(Max);
5218 };
5219
5220 class HAbs final : public HUnaryOperation {
5221 public:
5222 HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kAbs,result_type,input,dex_pc)5223 : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
5224
5225 // Evaluation for integral values.
ComputeIntegral(T x)5226 template <typename T> static T ComputeIntegral(T x) {
5227 return x < 0 ? -x : x;
5228 }
5229
5230 // Evaluation for floating-point values.
5231 // Note, as a "quality of implementation", rather than pure "spec compliance",
5232 // we require that Math.abs() clears the sign bit (but changes nothing else)
5233 // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
5234 // http://b/30758343
ComputeFP(T x)5235 template <typename T, typename S> static T ComputeFP(T x) {
5236 S bits = bit_cast<S, T>(x);
5237 return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
5238 }
5239
Evaluate(HIntConstant * x)5240 HConstant* Evaluate(HIntConstant* x) const override {
5241 return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5242 }
Evaluate(HLongConstant * x)5243 HConstant* Evaluate(HLongConstant* x) const override {
5244 return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5245 }
Evaluate(HFloatConstant * x)5246 HConstant* Evaluate(HFloatConstant* x) const override {
5247 return GetBlock()->GetGraph()->GetFloatConstant(
5248 ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
5249 }
Evaluate(HDoubleConstant * x)5250 HConstant* Evaluate(HDoubleConstant* x) const override {
5251 return GetBlock()->GetGraph()->GetDoubleConstant(
5252 ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
5253 }
5254
5255 DECLARE_INSTRUCTION(Abs);
5256
5257 protected:
5258 DEFAULT_COPY_CONSTRUCTOR(Abs);
5259 };
5260
5261 class HDivZeroCheck final : public HExpression<1> {
5262 public:
5263 // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
5264 // constructor. However it can only do it on a fatal slow path so execution never returns to the
5265 // instruction following the current one; thus 'SideEffects::None()' is used.
HDivZeroCheck(HInstruction * value,uint32_t dex_pc)5266 HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
5267 : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
5268 SetRawInputAt(0, value);
5269 }
5270
IsClonable()5271 bool IsClonable() const override { return true; }
CanBeMoved()5272 bool CanBeMoved() const override { return true; }
5273
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5274 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5275 return true;
5276 }
5277
NeedsEnvironment()5278 bool NeedsEnvironment() const override { return true; }
CanThrow()5279 bool CanThrow() const override { return true; }
5280
5281 DECLARE_INSTRUCTION(DivZeroCheck);
5282
5283 protected:
5284 DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
5285 };
5286
5287 class HShl final : public HBinaryOperation {
5288 public:
5289 HShl(DataType::Type result_type,
5290 HInstruction* value,
5291 HInstruction* distance,
5292 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kShl,result_type,value,distance,SideEffects::None (),dex_pc)5293 : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
5294 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5295 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5296 }
5297
5298 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5299 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5300 return value << (distance & max_shift_distance);
5301 }
5302
Evaluate(HIntConstant * value,HIntConstant * distance)5303 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5304 return GetBlock()->GetGraph()->GetIntConstant(
5305 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5306 }
Evaluate(HLongConstant * value,HIntConstant * distance)5307 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5308 return GetBlock()->GetGraph()->GetLongConstant(
5309 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5310 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5311 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5312 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5313 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5314 UNREACHABLE();
5315 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5316 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5317 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5318 LOG(FATAL) << DebugName() << " is not defined for float values";
5319 UNREACHABLE();
5320 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5321 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5322 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5323 LOG(FATAL) << DebugName() << " is not defined for double values";
5324 UNREACHABLE();
5325 }
5326
5327 DECLARE_INSTRUCTION(Shl);
5328
5329 protected:
5330 DEFAULT_COPY_CONSTRUCTOR(Shl);
5331 };
5332
5333 class HShr final : public HBinaryOperation {
5334 public:
5335 HShr(DataType::Type result_type,
5336 HInstruction* value,
5337 HInstruction* distance,
5338 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kShr,result_type,value,distance,SideEffects::None (),dex_pc)5339 : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5340 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5341 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5342 }
5343
5344 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5345 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5346 return value >> (distance & max_shift_distance);
5347 }
5348
Evaluate(HIntConstant * value,HIntConstant * distance)5349 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5350 return GetBlock()->GetGraph()->GetIntConstant(
5351 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5352 }
Evaluate(HLongConstant * value,HIntConstant * distance)5353 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5354 return GetBlock()->GetGraph()->GetLongConstant(
5355 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5356 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5357 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5358 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5359 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5360 UNREACHABLE();
5361 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5362 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5363 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5364 LOG(FATAL) << DebugName() << " is not defined for float values";
5365 UNREACHABLE();
5366 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5367 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5368 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5369 LOG(FATAL) << DebugName() << " is not defined for double values";
5370 UNREACHABLE();
5371 }
5372
5373 DECLARE_INSTRUCTION(Shr);
5374
5375 protected:
5376 DEFAULT_COPY_CONSTRUCTOR(Shr);
5377 };
5378
5379 class HUShr final : public HBinaryOperation {
5380 public:
5381 HUShr(DataType::Type result_type,
5382 HInstruction* value,
5383 HInstruction* distance,
5384 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kUShr,result_type,value,distance,SideEffects::None (),dex_pc)5385 : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5386 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5387 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5388 }
5389
5390 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5391 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5392 typedef typename std::make_unsigned<T>::type V;
5393 V ux = static_cast<V>(value);
5394 return static_cast<T>(ux >> (distance & max_shift_distance));
5395 }
5396
Evaluate(HIntConstant * value,HIntConstant * distance)5397 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5398 return GetBlock()->GetGraph()->GetIntConstant(
5399 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5400 }
Evaluate(HLongConstant * value,HIntConstant * distance)5401 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5402 return GetBlock()->GetGraph()->GetLongConstant(
5403 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5404 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5405 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5406 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5407 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5408 UNREACHABLE();
5409 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5410 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5411 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5412 LOG(FATAL) << DebugName() << " is not defined for float values";
5413 UNREACHABLE();
5414 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5415 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5416 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5417 LOG(FATAL) << DebugName() << " is not defined for double values";
5418 UNREACHABLE();
5419 }
5420
5421 DECLARE_INSTRUCTION(UShr);
5422
5423 protected:
5424 DEFAULT_COPY_CONSTRUCTOR(UShr);
5425 };
5426
5427 class HAnd final : public HBinaryOperation {
5428 public:
5429 HAnd(DataType::Type result_type,
5430 HInstruction* left,
5431 HInstruction* right,
5432 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kAnd,result_type,left,right,SideEffects::None (),dex_pc)5433 : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
5434 }
5435
IsCommutative()5436 bool IsCommutative() const override { return true; }
5437
Compute(T x,T y)5438 template <typename T> static T Compute(T x, T y) { return x & y; }
5439
Evaluate(HIntConstant * x,HIntConstant * y)5440 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5441 return GetBlock()->GetGraph()->GetIntConstant(
5442 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5443 }
Evaluate(HLongConstant * x,HLongConstant * y)5444 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5445 return GetBlock()->GetGraph()->GetLongConstant(
5446 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5447 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5448 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5449 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5450 LOG(FATAL) << DebugName() << " is not defined for float values";
5451 UNREACHABLE();
5452 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5453 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5454 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5455 LOG(FATAL) << DebugName() << " is not defined for double values";
5456 UNREACHABLE();
5457 }
5458
5459 DECLARE_INSTRUCTION(And);
5460
5461 protected:
5462 DEFAULT_COPY_CONSTRUCTOR(And);
5463 };
5464
5465 class HOr final : public HBinaryOperation {
5466 public:
5467 HOr(DataType::Type result_type,
5468 HInstruction* left,
5469 HInstruction* right,
5470 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kOr,result_type,left,right,SideEffects::None (),dex_pc)5471 : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
5472 }
5473
IsCommutative()5474 bool IsCommutative() const override { return true; }
5475
Compute(T x,T y)5476 template <typename T> static T Compute(T x, T y) { return x | y; }
5477
Evaluate(HIntConstant * x,HIntConstant * y)5478 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5479 return GetBlock()->GetGraph()->GetIntConstant(
5480 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5481 }
Evaluate(HLongConstant * x,HLongConstant * y)5482 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5483 return GetBlock()->GetGraph()->GetLongConstant(
5484 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5485 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5486 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5487 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5488 LOG(FATAL) << DebugName() << " is not defined for float values";
5489 UNREACHABLE();
5490 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5491 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5492 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5493 LOG(FATAL) << DebugName() << " is not defined for double values";
5494 UNREACHABLE();
5495 }
5496
5497 DECLARE_INSTRUCTION(Or);
5498
5499 protected:
5500 DEFAULT_COPY_CONSTRUCTOR(Or);
5501 };
5502
5503 class HXor final : public HBinaryOperation {
5504 public:
5505 HXor(DataType::Type result_type,
5506 HInstruction* left,
5507 HInstruction* right,
5508 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kXor,result_type,left,right,SideEffects::None (),dex_pc)5509 : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
5510 }
5511
IsCommutative()5512 bool IsCommutative() const override { return true; }
5513
Compute(T x,T y)5514 template <typename T> static T Compute(T x, T y) { return x ^ y; }
5515
Evaluate(HIntConstant * x,HIntConstant * y)5516 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5517 return GetBlock()->GetGraph()->GetIntConstant(
5518 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5519 }
Evaluate(HLongConstant * x,HLongConstant * y)5520 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5521 return GetBlock()->GetGraph()->GetLongConstant(
5522 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5523 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5524 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5525 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5526 LOG(FATAL) << DebugName() << " is not defined for float values";
5527 UNREACHABLE();
5528 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5529 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5530 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5531 LOG(FATAL) << DebugName() << " is not defined for double values";
5532 UNREACHABLE();
5533 }
5534
5535 DECLARE_INSTRUCTION(Xor);
5536
5537 protected:
5538 DEFAULT_COPY_CONSTRUCTOR(Xor);
5539 };
5540
5541 class HRor final : public HBinaryOperation {
5542 public:
HRor(DataType::Type result_type,HInstruction * value,HInstruction * distance)5543 HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5544 : HBinaryOperation(kRor, result_type, value, distance) {
5545 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5546 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5547 }
5548
5549 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_value)5550 static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5551 typedef typename std::make_unsigned<T>::type V;
5552 V ux = static_cast<V>(value);
5553 if ((distance & max_shift_value) == 0) {
5554 return static_cast<T>(ux);
5555 } else {
5556 const V reg_bits = sizeof(T) * 8;
5557 return static_cast<T>(ux >> (distance & max_shift_value)) |
5558 (value << (reg_bits - (distance & max_shift_value)));
5559 }
5560 }
5561
Evaluate(HIntConstant * value,HIntConstant * distance)5562 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5563 return GetBlock()->GetGraph()->GetIntConstant(
5564 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5565 }
Evaluate(HLongConstant * value,HIntConstant * distance)5566 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5567 return GetBlock()->GetGraph()->GetLongConstant(
5568 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5569 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5570 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5571 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5572 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5573 UNREACHABLE();
5574 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5575 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5576 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5577 LOG(FATAL) << DebugName() << " is not defined for float values";
5578 UNREACHABLE();
5579 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5580 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5581 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5582 LOG(FATAL) << DebugName() << " is not defined for double values";
5583 UNREACHABLE();
5584 }
5585
5586 DECLARE_INSTRUCTION(Ror);
5587
5588 protected:
5589 DEFAULT_COPY_CONSTRUCTOR(Ror);
5590 };
5591
5592 // The value of a parameter in this method. Its location depends on
5593 // the calling convention.
5594 class HParameterValue final : public HExpression<0> {
5595 public:
5596 HParameterValue(const DexFile& dex_file,
5597 dex::TypeIndex type_index,
5598 uint8_t index,
5599 DataType::Type parameter_type,
5600 bool is_this = false)
HExpression(kParameterValue,parameter_type,SideEffects::None (),kNoDexPc)5601 : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
5602 dex_file_(dex_file),
5603 type_index_(type_index),
5604 index_(index) {
5605 SetPackedFlag<kFlagIsThis>(is_this);
5606 SetPackedFlag<kFlagCanBeNull>(!is_this);
5607 }
5608
GetDexFile()5609 const DexFile& GetDexFile() const { return dex_file_; }
GetTypeIndex()5610 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetIndex()5611 uint8_t GetIndex() const { return index_; }
IsThis()5612 bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5613
CanBeNull()5614 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)5615 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5616
5617 DECLARE_INSTRUCTION(ParameterValue);
5618
5619 protected:
5620 DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
5621
5622 private:
5623 // Whether or not the parameter value corresponds to 'this' argument.
5624 static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
5625 static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
5626 static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
5627 static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
5628 "Too many packed fields.");
5629
5630 const DexFile& dex_file_;
5631 const dex::TypeIndex type_index_;
5632 // The index of this parameter in the parameters list. Must be less
5633 // than HGraph::number_of_in_vregs_.
5634 const uint8_t index_;
5635 };
5636
5637 class HNot final : public HUnaryOperation {
5638 public:
5639 HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kNot,result_type,input,dex_pc)5640 : HUnaryOperation(kNot, result_type, input, dex_pc) {
5641 }
5642
CanBeMoved()5643 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5644 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5645 return true;
5646 }
5647
Compute(T x)5648 template <typename T> static T Compute(T x) { return ~x; }
5649
Evaluate(HIntConstant * x)5650 HConstant* Evaluate(HIntConstant* x) const override {
5651 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5652 }
Evaluate(HLongConstant * x)5653 HConstant* Evaluate(HLongConstant* x) const override {
5654 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5655 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5656 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5657 LOG(FATAL) << DebugName() << " is not defined for float values";
5658 UNREACHABLE();
5659 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5660 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5661 LOG(FATAL) << DebugName() << " is not defined for double values";
5662 UNREACHABLE();
5663 }
5664
5665 DECLARE_INSTRUCTION(Not);
5666
5667 protected:
5668 DEFAULT_COPY_CONSTRUCTOR(Not);
5669 };
5670
5671 class HBooleanNot final : public HUnaryOperation {
5672 public:
5673 explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kBooleanNot,DataType::Type::kBool,input,dex_pc)5674 : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
5675 }
5676
CanBeMoved()5677 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5678 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5679 return true;
5680 }
5681
Compute(T x)5682 template <typename T> static bool Compute(T x) {
5683 DCHECK(IsUint<1>(x)) << x;
5684 return !x;
5685 }
5686
Evaluate(HIntConstant * x)5687 HConstant* Evaluate(HIntConstant* x) const override {
5688 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5689 }
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED)5690 HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
5691 LOG(FATAL) << DebugName() << " is not defined for long values";
5692 UNREACHABLE();
5693 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5694 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5695 LOG(FATAL) << DebugName() << " is not defined for float values";
5696 UNREACHABLE();
5697 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5698 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5699 LOG(FATAL) << DebugName() << " is not defined for double values";
5700 UNREACHABLE();
5701 }
5702
5703 DECLARE_INSTRUCTION(BooleanNot);
5704
5705 protected:
5706 DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
5707 };
5708
5709 class HTypeConversion final : public HExpression<1> {
5710 public:
5711 // Instantiate a type conversion of `input` to `result_type`.
5712 HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kTypeConversion,result_type,SideEffects::None (),dex_pc)5713 : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
5714 SetRawInputAt(0, input);
5715 // Invariant: We should never generate a conversion to a Boolean value.
5716 DCHECK_NE(DataType::Type::kBool, result_type);
5717 }
5718
GetInput()5719 HInstruction* GetInput() const { return InputAt(0); }
GetInputType()5720 DataType::Type GetInputType() const { return GetInput()->GetType(); }
GetResultType()5721 DataType::Type GetResultType() const { return GetType(); }
5722
IsClonable()5723 bool IsClonable() const override { return true; }
CanBeMoved()5724 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5725 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5726 return true;
5727 }
5728 // Return whether the conversion is implicit. This includes conversion to the same type.
IsImplicitConversion()5729 bool IsImplicitConversion() const {
5730 return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
5731 }
5732
5733 // Try to statically evaluate the conversion and return a HConstant
5734 // containing the result. If the input cannot be converted, return nullptr.
5735 HConstant* TryStaticEvaluation() const;
5736
5737 DECLARE_INSTRUCTION(TypeConversion);
5738
5739 protected:
5740 DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
5741 };
5742
5743 static constexpr uint32_t kNoRegNumber = -1;
5744
5745 class HNullCheck final : public HExpression<1> {
5746 public:
5747 // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
5748 // constructor. However it can only do it on a fatal slow path so execution never returns to the
5749 // instruction following the current one; thus 'SideEffects::None()' is used.
HNullCheck(HInstruction * value,uint32_t dex_pc)5750 HNullCheck(HInstruction* value, uint32_t dex_pc)
5751 : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
5752 SetRawInputAt(0, value);
5753 }
5754
IsClonable()5755 bool IsClonable() const override { return true; }
CanBeMoved()5756 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5757 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5758 return true;
5759 }
5760
NeedsEnvironment()5761 bool NeedsEnvironment() const override { return true; }
5762
CanThrow()5763 bool CanThrow() const override { return true; }
5764
CanBeNull()5765 bool CanBeNull() const override { return false; }
5766
5767 DECLARE_INSTRUCTION(NullCheck);
5768
5769 protected:
5770 DEFAULT_COPY_CONSTRUCTOR(NullCheck);
5771 };
5772
5773 // Embeds an ArtField and all the information required by the compiler. We cache
5774 // that information to avoid requiring the mutator lock every time we need it.
5775 class FieldInfo : public ValueObject {
5776 public:
FieldInfo(ArtField * field,MemberOffset field_offset,DataType::Type field_type,bool is_volatile,uint32_t index,uint16_t declaring_class_def_index,const DexFile & dex_file)5777 FieldInfo(ArtField* field,
5778 MemberOffset field_offset,
5779 DataType::Type field_type,
5780 bool is_volatile,
5781 uint32_t index,
5782 uint16_t declaring_class_def_index,
5783 const DexFile& dex_file)
5784 : field_(field),
5785 field_offset_(field_offset),
5786 field_type_(field_type),
5787 is_volatile_(is_volatile),
5788 index_(index),
5789 declaring_class_def_index_(declaring_class_def_index),
5790 dex_file_(dex_file) {}
5791
GetField()5792 ArtField* GetField() const { return field_; }
GetFieldOffset()5793 MemberOffset GetFieldOffset() const { return field_offset_; }
GetFieldType()5794 DataType::Type GetFieldType() const { return field_type_; }
GetFieldIndex()5795 uint32_t GetFieldIndex() const { return index_; }
GetDeclaringClassDefIndex()5796 uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
GetDexFile()5797 const DexFile& GetDexFile() const { return dex_file_; }
IsVolatile()5798 bool IsVolatile() const { return is_volatile_; }
5799
5800 private:
5801 ArtField* const field_;
5802 const MemberOffset field_offset_;
5803 const DataType::Type field_type_;
5804 const bool is_volatile_;
5805 const uint32_t index_;
5806 const uint16_t declaring_class_def_index_;
5807 const DexFile& dex_file_;
5808 };
5809
5810 class HInstanceFieldGet final : public HExpression<1> {
5811 public:
HInstanceFieldGet(HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5812 HInstanceFieldGet(HInstruction* value,
5813 ArtField* field,
5814 DataType::Type field_type,
5815 MemberOffset field_offset,
5816 bool is_volatile,
5817 uint32_t field_idx,
5818 uint16_t declaring_class_def_index,
5819 const DexFile& dex_file,
5820 uint32_t dex_pc)
5821 : HExpression(kInstanceFieldGet,
5822 field_type,
5823 SideEffects::FieldReadOfType(field_type, is_volatile),
5824 dex_pc),
5825 field_info_(field,
5826 field_offset,
5827 field_type,
5828 is_volatile,
5829 field_idx,
5830 declaring_class_def_index,
5831 dex_file) {
5832 SetRawInputAt(0, value);
5833 }
5834
IsClonable()5835 bool IsClonable() const override { return true; }
CanBeMoved()5836 bool CanBeMoved() const override { return !IsVolatile(); }
5837
InstructionDataEquals(const HInstruction * other)5838 bool InstructionDataEquals(const HInstruction* other) const override {
5839 const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5840 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5841 }
5842
CanDoImplicitNullCheckOn(HInstruction * obj)5843 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5844 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5845 }
5846
ComputeHashCode()5847 size_t ComputeHashCode() const override {
5848 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5849 }
5850
GetFieldInfo()5851 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5852 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5853 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5854 bool IsVolatile() const { return field_info_.IsVolatile(); }
5855
SetType(DataType::Type new_type)5856 void SetType(DataType::Type new_type) {
5857 DCHECK(DataType::IsIntegralType(GetType()));
5858 DCHECK(DataType::IsIntegralType(new_type));
5859 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
5860 SetPackedField<TypeField>(new_type);
5861 }
5862
5863 DECLARE_INSTRUCTION(InstanceFieldGet);
5864
5865 protected:
5866 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
5867
5868 private:
5869 const FieldInfo field_info_;
5870 };
5871
5872 class HInstanceFieldSet final : public HExpression<2> {
5873 public:
HInstanceFieldSet(HInstruction * object,HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5874 HInstanceFieldSet(HInstruction* object,
5875 HInstruction* value,
5876 ArtField* field,
5877 DataType::Type field_type,
5878 MemberOffset field_offset,
5879 bool is_volatile,
5880 uint32_t field_idx,
5881 uint16_t declaring_class_def_index,
5882 const DexFile& dex_file,
5883 uint32_t dex_pc)
5884 : HExpression(kInstanceFieldSet,
5885 SideEffects::FieldWriteOfType(field_type, is_volatile),
5886 dex_pc),
5887 field_info_(field,
5888 field_offset,
5889 field_type,
5890 is_volatile,
5891 field_idx,
5892 declaring_class_def_index,
5893 dex_file) {
5894 SetPackedFlag<kFlagValueCanBeNull>(true);
5895 SetRawInputAt(0, object);
5896 SetRawInputAt(1, value);
5897 }
5898
IsClonable()5899 bool IsClonable() const override { return true; }
5900
CanDoImplicitNullCheckOn(HInstruction * obj)5901 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5902 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5903 }
5904
GetFieldInfo()5905 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5906 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5907 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5908 bool IsVolatile() const { return field_info_.IsVolatile(); }
GetValue()5909 HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()5910 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()5911 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5912
5913 DECLARE_INSTRUCTION(InstanceFieldSet);
5914
5915 protected:
5916 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
5917
5918 private:
5919 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5920 static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
5921 static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
5922 "Too many packed fields.");
5923
5924 const FieldInfo field_info_;
5925 };
5926
5927 class HArrayGet final : public HExpression<2> {
5928 public:
HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,uint32_t dex_pc)5929 HArrayGet(HInstruction* array,
5930 HInstruction* index,
5931 DataType::Type type,
5932 uint32_t dex_pc)
5933 : HArrayGet(array,
5934 index,
5935 type,
5936 SideEffects::ArrayReadOfType(type),
5937 dex_pc,
5938 /* is_string_char_at= */ false) {
5939 }
5940
HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,bool is_string_char_at)5941 HArrayGet(HInstruction* array,
5942 HInstruction* index,
5943 DataType::Type type,
5944 SideEffects side_effects,
5945 uint32_t dex_pc,
5946 bool is_string_char_at)
5947 : HExpression(kArrayGet, type, side_effects, dex_pc) {
5948 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
5949 SetRawInputAt(0, array);
5950 SetRawInputAt(1, index);
5951 }
5952
IsClonable()5953 bool IsClonable() const override { return true; }
CanBeMoved()5954 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5955 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5956 return true;
5957 }
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5958 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
5959 // TODO: We can be smarter here.
5960 // Currently, unless the array is the result of NewArray, the array access is always
5961 // preceded by some form of null NullCheck necessary for the bounds check, usually
5962 // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
5963 // dynamic BCE. There are cases when these could be removed to produce better code.
5964 // If we ever add optimizations to do so we should allow an implicit check here
5965 // (as long as the address falls in the first page).
5966 //
5967 // As an example of such fancy optimization, we could eliminate BoundsCheck for
5968 // a = cond ? new int[1] : null;
5969 // a[0]; // The Phi does not need bounds check for either input.
5970 return false;
5971 }
5972
IsEquivalentOf(HArrayGet * other)5973 bool IsEquivalentOf(HArrayGet* other) const {
5974 bool result = (GetDexPc() == other->GetDexPc());
5975 if (kIsDebugBuild && result) {
5976 DCHECK_EQ(GetBlock(), other->GetBlock());
5977 DCHECK_EQ(GetArray(), other->GetArray());
5978 DCHECK_EQ(GetIndex(), other->GetIndex());
5979 if (DataType::IsIntOrLongType(GetType())) {
5980 DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
5981 } else {
5982 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5983 DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
5984 }
5985 }
5986 return result;
5987 }
5988
IsStringCharAt()5989 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
5990
GetArray()5991 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()5992 HInstruction* GetIndex() const { return InputAt(1); }
5993
SetType(DataType::Type new_type)5994 void SetType(DataType::Type new_type) {
5995 DCHECK(DataType::IsIntegralType(GetType()));
5996 DCHECK(DataType::IsIntegralType(new_type));
5997 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
5998 SetPackedField<TypeField>(new_type);
5999 }
6000
6001 DECLARE_INSTRUCTION(ArrayGet);
6002
6003 protected:
6004 DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
6005
6006 private:
6007 // We treat a String as an array, creating the HArrayGet from String.charAt()
6008 // intrinsic in the instruction simplifier. We can always determine whether
6009 // a particular HArrayGet is actually a String.charAt() by looking at the type
6010 // of the input but that requires holding the mutator lock, so we prefer to use
6011 // a flag, so that code generators don't need to do the locking.
6012 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6013 static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
6014 static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6015 "Too many packed fields.");
6016 };
6017
6018 class HArraySet final : public HExpression<3> {
6019 public:
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,uint32_t dex_pc)6020 HArraySet(HInstruction* array,
6021 HInstruction* index,
6022 HInstruction* value,
6023 DataType::Type expected_component_type,
6024 uint32_t dex_pc)
6025 : HArraySet(array,
6026 index,
6027 value,
6028 expected_component_type,
6029 // Make a best guess for side effects now, may be refined during SSA building.
6030 ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
6031 dex_pc) {
6032 }
6033
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,SideEffects side_effects,uint32_t dex_pc)6034 HArraySet(HInstruction* array,
6035 HInstruction* index,
6036 HInstruction* value,
6037 DataType::Type expected_component_type,
6038 SideEffects side_effects,
6039 uint32_t dex_pc)
6040 : HExpression(kArraySet, side_effects, dex_pc) {
6041 SetPackedField<ExpectedComponentTypeField>(expected_component_type);
6042 SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
6043 SetPackedFlag<kFlagValueCanBeNull>(true);
6044 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
6045 SetRawInputAt(0, array);
6046 SetRawInputAt(1, index);
6047 SetRawInputAt(2, value);
6048 }
6049
IsClonable()6050 bool IsClonable() const override { return true; }
6051
NeedsEnvironment()6052 bool NeedsEnvironment() const override {
6053 // We call a runtime method to throw ArrayStoreException.
6054 return NeedsTypeCheck();
6055 }
6056
6057 // Can throw ArrayStoreException.
CanThrow()6058 bool CanThrow() const override { return NeedsTypeCheck(); }
6059
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)6060 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6061 // TODO: Same as for ArrayGet.
6062 return false;
6063 }
6064
ClearNeedsTypeCheck()6065 void ClearNeedsTypeCheck() {
6066 SetPackedFlag<kFlagNeedsTypeCheck>(false);
6067 }
6068
ClearValueCanBeNull()6069 void ClearValueCanBeNull() {
6070 SetPackedFlag<kFlagValueCanBeNull>(false);
6071 }
6072
SetStaticTypeOfArrayIsObjectArray()6073 void SetStaticTypeOfArrayIsObjectArray() {
6074 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
6075 }
6076
GetValueCanBeNull()6077 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
NeedsTypeCheck()6078 bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
StaticTypeOfArrayIsObjectArray()6079 bool StaticTypeOfArrayIsObjectArray() const {
6080 return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
6081 }
6082
GetArray()6083 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()6084 HInstruction* GetIndex() const { return InputAt(1); }
GetValue()6085 HInstruction* GetValue() const { return InputAt(2); }
6086
GetComponentType()6087 DataType::Type GetComponentType() const {
6088 return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
6089 }
6090
GetComponentType(DataType::Type value_type,DataType::Type expected_component_type)6091 static DataType::Type GetComponentType(DataType::Type value_type,
6092 DataType::Type expected_component_type) {
6093 // The Dex format does not type floating point index operations. Since the
6094 // `expected_component_type` comes from SSA building and can therefore not
6095 // be correct, we also check what is the value type. If it is a floating
6096 // point type, we must use that type.
6097 return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
6098 ? value_type
6099 : expected_component_type;
6100 }
6101
GetRawExpectedComponentType()6102 DataType::Type GetRawExpectedComponentType() const {
6103 return GetPackedField<ExpectedComponentTypeField>();
6104 }
6105
ComputeSideEffects(DataType::Type type)6106 static SideEffects ComputeSideEffects(DataType::Type type) {
6107 return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
6108 }
6109
SideEffectsForArchRuntimeCalls(DataType::Type value_type)6110 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
6111 return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
6112 : SideEffects::None();
6113 }
6114
6115 DECLARE_INSTRUCTION(ArraySet);
6116
6117 protected:
6118 DEFAULT_COPY_CONSTRUCTOR(ArraySet);
6119
6120 private:
6121 static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
6122 static constexpr size_t kFieldExpectedComponentTypeSize =
6123 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
6124 static constexpr size_t kFlagNeedsTypeCheck =
6125 kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
6126 static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
6127 // Cached information for the reference_type_info_ so that codegen
6128 // does not need to inspect the static type.
6129 static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
6130 static constexpr size_t kNumberOfArraySetPackedBits =
6131 kFlagStaticTypeOfArrayIsObjectArray + 1;
6132 static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6133 using ExpectedComponentTypeField =
6134 BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
6135 };
6136
6137 class HArrayLength final : public HExpression<1> {
6138 public:
6139 HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
HExpression(kArrayLength,DataType::Type::kInt32,SideEffects::None (),dex_pc)6140 : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
6141 SetPackedFlag<kFlagIsStringLength>(is_string_length);
6142 // Note that arrays do not change length, so the instruction does not
6143 // depend on any write.
6144 SetRawInputAt(0, array);
6145 }
6146
IsClonable()6147 bool IsClonable() const override { return true; }
CanBeMoved()6148 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6149 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6150 return true;
6151 }
CanDoImplicitNullCheckOn(HInstruction * obj)6152 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6153 return obj == InputAt(0);
6154 }
6155
IsStringLength()6156 bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
6157
6158 DECLARE_INSTRUCTION(ArrayLength);
6159
6160 protected:
6161 DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
6162
6163 private:
6164 // We treat a String as an array, creating the HArrayLength from String.length()
6165 // or String.isEmpty() intrinsic in the instruction simplifier. We can always
6166 // determine whether a particular HArrayLength is actually a String.length() by
6167 // looking at the type of the input but that requires holding the mutator lock, so
6168 // we prefer to use a flag, so that code generators don't need to do the locking.
6169 static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
6170 static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
6171 static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6172 "Too many packed fields.");
6173 };
6174
6175 class HBoundsCheck final : public HExpression<2> {
6176 public:
6177 // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
6178 // constructor. However it can only do it on a fatal slow path so execution never returns to the
6179 // instruction following the current one; thus 'SideEffects::None()' is used.
6180 HBoundsCheck(HInstruction* index,
6181 HInstruction* length,
6182 uint32_t dex_pc,
6183 bool is_string_char_at = false)
6184 : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
6185 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
6186 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6187 SetRawInputAt(0, index);
6188 SetRawInputAt(1, length);
6189 }
6190
IsClonable()6191 bool IsClonable() const override { return true; }
CanBeMoved()6192 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6193 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6194 return true;
6195 }
6196
NeedsEnvironment()6197 bool NeedsEnvironment() const override { return true; }
6198
CanThrow()6199 bool CanThrow() const override { return true; }
6200
IsStringCharAt()6201 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6202
GetIndex()6203 HInstruction* GetIndex() const { return InputAt(0); }
6204
6205 DECLARE_INSTRUCTION(BoundsCheck);
6206
6207 protected:
6208 DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
6209
6210 private:
6211 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6212 static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
6213 static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6214 "Too many packed fields.");
6215 };
6216
6217 class HSuspendCheck final : public HExpression<0> {
6218 public:
6219 explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
HExpression(kSuspendCheck,SideEffects::CanTriggerGC (),dex_pc)6220 : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
6221 slow_path_(nullptr) {
6222 }
6223
IsClonable()6224 bool IsClonable() const override { return true; }
6225
NeedsEnvironment()6226 bool NeedsEnvironment() const override {
6227 return true;
6228 }
6229
SetSlowPath(SlowPathCode * slow_path)6230 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
GetSlowPath()6231 SlowPathCode* GetSlowPath() const { return slow_path_; }
6232
6233 DECLARE_INSTRUCTION(SuspendCheck);
6234
6235 protected:
6236 DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
6237
6238 private:
6239 // Only used for code generation, in order to share the same slow path between back edges
6240 // of a same loop.
6241 SlowPathCode* slow_path_;
6242 };
6243
6244 // Pseudo-instruction which provides the native debugger with mapping information.
6245 // It ensures that we can generate line number and local variables at this point.
6246 class HNativeDebugInfo : public HExpression<0> {
6247 public:
HNativeDebugInfo(uint32_t dex_pc)6248 explicit HNativeDebugInfo(uint32_t dex_pc)
6249 : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) {
6250 }
6251
NeedsEnvironment()6252 bool NeedsEnvironment() const override {
6253 return true;
6254 }
6255
6256 DECLARE_INSTRUCTION(NativeDebugInfo);
6257
6258 protected:
6259 DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo);
6260 };
6261
6262 /**
6263 * Instruction to load a Class object.
6264 */
6265 class HLoadClass final : public HInstruction {
6266 public:
6267 // Determines how to load the Class.
6268 enum class LoadKind {
6269 // We cannot load this class. See HSharpening::SharpenLoadClass.
6270 kInvalid = -1,
6271
6272 // Use the Class* from the method's own ArtMethod*.
6273 kReferrersClass,
6274
6275 // Use PC-relative boot image Class* address that will be known at link time.
6276 // Used for boot image classes referenced by boot image code.
6277 kBootImageLinkTimePcRelative,
6278
6279 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6280 // Used for boot image classes referenced by apps in AOT-compiled code.
6281 kBootImageRelRo,
6282
6283 // Load from an entry in the .bss section using a PC-relative load.
6284 // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
6285 kBssEntry,
6286
6287 // Use a known boot image Class* address, embedded in the code by the codegen.
6288 // Used for boot image classes referenced by apps in JIT-compiled code.
6289 kJitBootImageAddress,
6290
6291 // Load from the root table associated with the JIT compiled method.
6292 kJitTableAddress,
6293
6294 // Load using a simple runtime call. This is the fall-back load kind when
6295 // the codegen is unable to use another appropriate kind.
6296 kRuntimeCall,
6297
6298 kLast = kRuntimeCall
6299 };
6300
HLoadClass(HCurrentMethod * current_method,dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,bool is_referrers_class,uint32_t dex_pc,bool needs_access_check)6301 HLoadClass(HCurrentMethod* current_method,
6302 dex::TypeIndex type_index,
6303 const DexFile& dex_file,
6304 Handle<mirror::Class> klass,
6305 bool is_referrers_class,
6306 uint32_t dex_pc,
6307 bool needs_access_check)
6308 : HInstruction(kLoadClass,
6309 DataType::Type::kReference,
6310 SideEffectsForArchRuntimeCalls(),
6311 dex_pc),
6312 special_input_(HUserRecord<HInstruction*>(current_method)),
6313 type_index_(type_index),
6314 dex_file_(dex_file),
6315 klass_(klass) {
6316 // Referrers class should not need access check. We never inline unverified
6317 // methods so we can't possibly end up in this situation.
6318 DCHECK(!is_referrers_class || !needs_access_check);
6319
6320 SetPackedField<LoadKindField>(
6321 is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
6322 SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
6323 SetPackedFlag<kFlagIsInBootImage>(false);
6324 SetPackedFlag<kFlagGenerateClInitCheck>(false);
6325 SetPackedFlag<kFlagValidLoadedClassRTI>(false);
6326 }
6327
IsClonable()6328 bool IsClonable() const override { return true; }
6329
6330 void SetLoadKind(LoadKind load_kind);
6331
GetLoadKind()6332 LoadKind GetLoadKind() const {
6333 return GetPackedField<LoadKindField>();
6334 }
6335
HasPcRelativeLoadKind()6336 bool HasPcRelativeLoadKind() const {
6337 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6338 GetLoadKind() == LoadKind::kBootImageRelRo ||
6339 GetLoadKind() == LoadKind::kBssEntry;
6340 }
6341
CanBeMoved()6342 bool CanBeMoved() const override { return true; }
6343
6344 bool InstructionDataEquals(const HInstruction* other) const override;
6345
ComputeHashCode()6346 size_t ComputeHashCode() const override { return type_index_.index_; }
6347
CanBeNull()6348 bool CanBeNull() const override { return false; }
6349
NeedsEnvironment()6350 bool NeedsEnvironment() const override {
6351 return CanCallRuntime();
6352 }
6353
SetMustGenerateClinitCheck(bool generate_clinit_check)6354 void SetMustGenerateClinitCheck(bool generate_clinit_check) {
6355 // The entrypoint the code generator is going to call does not do
6356 // clinit of the class.
6357 DCHECK(!NeedsAccessCheck());
6358 SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
6359 }
6360
CanCallRuntime()6361 bool CanCallRuntime() const {
6362 return NeedsAccessCheck() ||
6363 MustGenerateClinitCheck() ||
6364 GetLoadKind() == LoadKind::kRuntimeCall ||
6365 GetLoadKind() == LoadKind::kBssEntry;
6366 }
6367
CanThrow()6368 bool CanThrow() const override {
6369 return NeedsAccessCheck() ||
6370 MustGenerateClinitCheck() ||
6371 // If the class is in the boot image, the lookup in the runtime call cannot throw.
6372 ((GetLoadKind() == LoadKind::kRuntimeCall ||
6373 GetLoadKind() == LoadKind::kBssEntry) &&
6374 !IsInBootImage());
6375 }
6376
GetLoadedClassRTI()6377 ReferenceTypeInfo GetLoadedClassRTI() {
6378 if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
6379 // Note: The is_exact flag from the return value should not be used.
6380 return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
6381 } else {
6382 return ReferenceTypeInfo::CreateInvalid();
6383 }
6384 }
6385
6386 // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
SetValidLoadedClassRTI()6387 void SetValidLoadedClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) {
6388 DCHECK(klass_ != nullptr);
6389 SetPackedFlag<kFlagValidLoadedClassRTI>(true);
6390 }
6391
GetTypeIndex()6392 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()6393 const DexFile& GetDexFile() const { return dex_file_; }
6394
NeedsDexCacheOfDeclaringClass()6395 bool NeedsDexCacheOfDeclaringClass() const override {
6396 return GetLoadKind() == LoadKind::kRuntimeCall;
6397 }
6398
SideEffectsForArchRuntimeCalls()6399 static SideEffects SideEffectsForArchRuntimeCalls() {
6400 return SideEffects::CanTriggerGC();
6401 }
6402
IsReferrersClass()6403 bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
NeedsAccessCheck()6404 bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
IsInBootImage()6405 bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
MustGenerateClinitCheck()6406 bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
6407
MustResolveTypeOnSlowPath()6408 bool MustResolveTypeOnSlowPath() const {
6409 // Check that this instruction has a slow path.
6410 DCHECK(GetLoadKind() != LoadKind::kRuntimeCall); // kRuntimeCall calls on main path.
6411 DCHECK(GetLoadKind() == LoadKind::kBssEntry || MustGenerateClinitCheck());
6412 return GetLoadKind() == LoadKind::kBssEntry;
6413 }
6414
MarkInBootImage()6415 void MarkInBootImage() {
6416 SetPackedFlag<kFlagIsInBootImage>(true);
6417 }
6418
6419 void AddSpecialInput(HInstruction* special_input);
6420
6421 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6422 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6423 return ArrayRef<HUserRecord<HInstruction*>>(
6424 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6425 }
6426
GetClass()6427 Handle<mirror::Class> GetClass() const {
6428 return klass_;
6429 }
6430
6431 DECLARE_INSTRUCTION(LoadClass);
6432
6433 protected:
6434 DEFAULT_COPY_CONSTRUCTOR(LoadClass);
6435
6436 private:
6437 static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits;
6438 static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1;
6439 // Whether this instruction must generate the initialization check.
6440 // Used for code generation.
6441 static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
6442 static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1;
6443 static constexpr size_t kFieldLoadKindSize =
6444 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6445 static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
6446 static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
6447 static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
6448 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6449
HasTypeReference(LoadKind load_kind)6450 static bool HasTypeReference(LoadKind load_kind) {
6451 return load_kind == LoadKind::kReferrersClass ||
6452 load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6453 load_kind == LoadKind::kBssEntry ||
6454 load_kind == LoadKind::kRuntimeCall;
6455 }
6456
6457 void SetLoadKindInternal(LoadKind load_kind);
6458
6459 // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
6460 // For other load kinds it's empty or possibly some architecture-specific instruction
6461 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
6462 HUserRecord<HInstruction*> special_input_;
6463
6464 // A type index and dex file where the class can be accessed. The dex file can be:
6465 // - The compiling method's dex file if the class is defined there too.
6466 // - The compiling method's dex file if the class is referenced there.
6467 // - The dex file where the class is defined. When the load kind can only be
6468 // kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`.
6469 const dex::TypeIndex type_index_;
6470 const DexFile& dex_file_;
6471
6472 Handle<mirror::Class> klass_;
6473 };
6474 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
6475
6476 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
SetLoadKind(LoadKind load_kind)6477 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
6478 // The load kind should be determined before inserting the instruction to the graph.
6479 DCHECK(GetBlock() == nullptr);
6480 DCHECK(GetEnvironment() == nullptr);
6481 SetPackedField<LoadKindField>(load_kind);
6482 if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
6483 special_input_ = HUserRecord<HInstruction*>(nullptr);
6484 }
6485 if (!NeedsEnvironment()) {
6486 SetSideEffects(SideEffects::None());
6487 }
6488 }
6489
6490 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
AddSpecialInput(HInstruction * special_input)6491 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
6492 // The special input is used for PC-relative loads on some architectures,
6493 // including literal pool loads, which are PC-relative too.
6494 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6495 GetLoadKind() == LoadKind::kBootImageRelRo ||
6496 GetLoadKind() == LoadKind::kBssEntry ||
6497 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6498 DCHECK(special_input_.GetInstruction() == nullptr);
6499 special_input_ = HUserRecord<HInstruction*>(special_input);
6500 special_input->AddUseAt(this, 0);
6501 }
6502
6503 class HLoadString final : public HInstruction {
6504 public:
6505 // Determines how to load the String.
6506 enum class LoadKind {
6507 // Use PC-relative boot image String* address that will be known at link time.
6508 // Used for boot image strings referenced by boot image code.
6509 kBootImageLinkTimePcRelative,
6510
6511 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6512 // Used for boot image strings referenced by apps in AOT-compiled code.
6513 kBootImageRelRo,
6514
6515 // Load from an entry in the .bss section using a PC-relative load.
6516 // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
6517 kBssEntry,
6518
6519 // Use a known boot image String* address, embedded in the code by the codegen.
6520 // Used for boot image strings referenced by apps in JIT-compiled code.
6521 kJitBootImageAddress,
6522
6523 // Load from the root table associated with the JIT compiled method.
6524 kJitTableAddress,
6525
6526 // Load using a simple runtime call. This is the fall-back load kind when
6527 // the codegen is unable to use another appropriate kind.
6528 kRuntimeCall,
6529
6530 kLast = kRuntimeCall,
6531 };
6532
HLoadString(HCurrentMethod * current_method,dex::StringIndex string_index,const DexFile & dex_file,uint32_t dex_pc)6533 HLoadString(HCurrentMethod* current_method,
6534 dex::StringIndex string_index,
6535 const DexFile& dex_file,
6536 uint32_t dex_pc)
6537 : HInstruction(kLoadString,
6538 DataType::Type::kReference,
6539 SideEffectsForArchRuntimeCalls(),
6540 dex_pc),
6541 special_input_(HUserRecord<HInstruction*>(current_method)),
6542 string_index_(string_index),
6543 dex_file_(dex_file) {
6544 SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
6545 }
6546
IsClonable()6547 bool IsClonable() const override { return true; }
6548
6549 void SetLoadKind(LoadKind load_kind);
6550
GetLoadKind()6551 LoadKind GetLoadKind() const {
6552 return GetPackedField<LoadKindField>();
6553 }
6554
HasPcRelativeLoadKind()6555 bool HasPcRelativeLoadKind() const {
6556 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6557 GetLoadKind() == LoadKind::kBootImageRelRo ||
6558 GetLoadKind() == LoadKind::kBssEntry;
6559 }
6560
GetDexFile()6561 const DexFile& GetDexFile() const {
6562 return dex_file_;
6563 }
6564
GetStringIndex()6565 dex::StringIndex GetStringIndex() const {
6566 return string_index_;
6567 }
6568
GetString()6569 Handle<mirror::String> GetString() const {
6570 return string_;
6571 }
6572
SetString(Handle<mirror::String> str)6573 void SetString(Handle<mirror::String> str) {
6574 string_ = str;
6575 }
6576
CanBeMoved()6577 bool CanBeMoved() const override { return true; }
6578
6579 bool InstructionDataEquals(const HInstruction* other) const override;
6580
ComputeHashCode()6581 size_t ComputeHashCode() const override { return string_index_.index_; }
6582
6583 // Will call the runtime if we need to load the string through
6584 // the dex cache and the string is not guaranteed to be there yet.
NeedsEnvironment()6585 bool NeedsEnvironment() const override {
6586 LoadKind load_kind = GetLoadKind();
6587 if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6588 load_kind == LoadKind::kBootImageRelRo ||
6589 load_kind == LoadKind::kJitBootImageAddress ||
6590 load_kind == LoadKind::kJitTableAddress) {
6591 return false;
6592 }
6593 return true;
6594 }
6595
NeedsDexCacheOfDeclaringClass()6596 bool NeedsDexCacheOfDeclaringClass() const override {
6597 return GetLoadKind() == LoadKind::kRuntimeCall;
6598 }
6599
CanBeNull()6600 bool CanBeNull() const override { return false; }
CanThrow()6601 bool CanThrow() const override { return NeedsEnvironment(); }
6602
SideEffectsForArchRuntimeCalls()6603 static SideEffects SideEffectsForArchRuntimeCalls() {
6604 return SideEffects::CanTriggerGC();
6605 }
6606
6607 void AddSpecialInput(HInstruction* special_input);
6608
6609 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6610 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6611 return ArrayRef<HUserRecord<HInstruction*>>(
6612 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6613 }
6614
6615 DECLARE_INSTRUCTION(LoadString);
6616
6617 protected:
6618 DEFAULT_COPY_CONSTRUCTOR(LoadString);
6619
6620 private:
6621 static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
6622 static constexpr size_t kFieldLoadKindSize =
6623 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6624 static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
6625 static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6626 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6627
6628 void SetLoadKindInternal(LoadKind load_kind);
6629
6630 // The special input is the HCurrentMethod for kRuntimeCall.
6631 // For other load kinds it's empty or possibly some architecture-specific instruction
6632 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
6633 HUserRecord<HInstruction*> special_input_;
6634
6635 dex::StringIndex string_index_;
6636 const DexFile& dex_file_;
6637
6638 Handle<mirror::String> string_;
6639 };
6640 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
6641
6642 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
SetLoadKind(LoadKind load_kind)6643 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
6644 // The load kind should be determined before inserting the instruction to the graph.
6645 DCHECK(GetBlock() == nullptr);
6646 DCHECK(GetEnvironment() == nullptr);
6647 DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
6648 SetPackedField<LoadKindField>(load_kind);
6649 if (load_kind != LoadKind::kRuntimeCall) {
6650 special_input_ = HUserRecord<HInstruction*>(nullptr);
6651 }
6652 if (!NeedsEnvironment()) {
6653 SetSideEffects(SideEffects::None());
6654 }
6655 }
6656
6657 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
AddSpecialInput(HInstruction * special_input)6658 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
6659 // The special input is used for PC-relative loads on some architectures,
6660 // including literal pool loads, which are PC-relative too.
6661 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6662 GetLoadKind() == LoadKind::kBootImageRelRo ||
6663 GetLoadKind() == LoadKind::kBssEntry ||
6664 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6665 // HLoadString::GetInputRecords() returns an empty array at this point,
6666 // so use the GetInputRecords() from the base class to set the input record.
6667 DCHECK(special_input_.GetInstruction() == nullptr);
6668 special_input_ = HUserRecord<HInstruction*>(special_input);
6669 special_input->AddUseAt(this, 0);
6670 }
6671
6672 class HLoadMethodHandle final : public HInstruction {
6673 public:
HLoadMethodHandle(HCurrentMethod * current_method,uint16_t method_handle_idx,const DexFile & dex_file,uint32_t dex_pc)6674 HLoadMethodHandle(HCurrentMethod* current_method,
6675 uint16_t method_handle_idx,
6676 const DexFile& dex_file,
6677 uint32_t dex_pc)
6678 : HInstruction(kLoadMethodHandle,
6679 DataType::Type::kReference,
6680 SideEffectsForArchRuntimeCalls(),
6681 dex_pc),
6682 special_input_(HUserRecord<HInstruction*>(current_method)),
6683 method_handle_idx_(method_handle_idx),
6684 dex_file_(dex_file) {
6685 }
6686
6687 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6688 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6689 return ArrayRef<HUserRecord<HInstruction*>>(
6690 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6691 }
6692
IsClonable()6693 bool IsClonable() const override { return true; }
6694
GetMethodHandleIndex()6695 uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
6696
GetDexFile()6697 const DexFile& GetDexFile() const { return dex_file_; }
6698
SideEffectsForArchRuntimeCalls()6699 static SideEffects SideEffectsForArchRuntimeCalls() {
6700 return SideEffects::CanTriggerGC();
6701 }
6702
6703 DECLARE_INSTRUCTION(LoadMethodHandle);
6704
6705 protected:
6706 DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
6707
6708 private:
6709 // The special input is the HCurrentMethod for kRuntimeCall.
6710 HUserRecord<HInstruction*> special_input_;
6711
6712 const uint16_t method_handle_idx_;
6713 const DexFile& dex_file_;
6714 };
6715
6716 class HLoadMethodType final : public HInstruction {
6717 public:
HLoadMethodType(HCurrentMethod * current_method,dex::ProtoIndex proto_index,const DexFile & dex_file,uint32_t dex_pc)6718 HLoadMethodType(HCurrentMethod* current_method,
6719 dex::ProtoIndex proto_index,
6720 const DexFile& dex_file,
6721 uint32_t dex_pc)
6722 : HInstruction(kLoadMethodType,
6723 DataType::Type::kReference,
6724 SideEffectsForArchRuntimeCalls(),
6725 dex_pc),
6726 special_input_(HUserRecord<HInstruction*>(current_method)),
6727 proto_index_(proto_index),
6728 dex_file_(dex_file) {
6729 }
6730
6731 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6732 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6733 return ArrayRef<HUserRecord<HInstruction*>>(
6734 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6735 }
6736
IsClonable()6737 bool IsClonable() const override { return true; }
6738
GetProtoIndex()6739 dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
6740
GetDexFile()6741 const DexFile& GetDexFile() const { return dex_file_; }
6742
SideEffectsForArchRuntimeCalls()6743 static SideEffects SideEffectsForArchRuntimeCalls() {
6744 return SideEffects::CanTriggerGC();
6745 }
6746
6747 DECLARE_INSTRUCTION(LoadMethodType);
6748
6749 protected:
6750 DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
6751
6752 private:
6753 // The special input is the HCurrentMethod for kRuntimeCall.
6754 HUserRecord<HInstruction*> special_input_;
6755
6756 const dex::ProtoIndex proto_index_;
6757 const DexFile& dex_file_;
6758 };
6759
6760 /**
6761 * Performs an initialization check on its Class object input.
6762 */
6763 class HClinitCheck final : public HExpression<1> {
6764 public:
HClinitCheck(HLoadClass * constant,uint32_t dex_pc)6765 HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
6766 : HExpression(
6767 kClinitCheck,
6768 DataType::Type::kReference,
6769 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
6770 dex_pc) {
6771 SetRawInputAt(0, constant);
6772 }
6773 // TODO: Make ClinitCheck clonable.
CanBeMoved()6774 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6775 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6776 return true;
6777 }
6778
NeedsEnvironment()6779 bool NeedsEnvironment() const override {
6780 // May call runtime to initialize the class.
6781 return true;
6782 }
6783
CanThrow()6784 bool CanThrow() const override { return true; }
6785
GetLoadClass()6786 HLoadClass* GetLoadClass() const {
6787 DCHECK(InputAt(0)->IsLoadClass());
6788 return InputAt(0)->AsLoadClass();
6789 }
6790
6791 DECLARE_INSTRUCTION(ClinitCheck);
6792
6793
6794 protected:
6795 DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
6796 };
6797
6798 class HStaticFieldGet final : public HExpression<1> {
6799 public:
HStaticFieldGet(HInstruction * cls,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6800 HStaticFieldGet(HInstruction* cls,
6801 ArtField* field,
6802 DataType::Type field_type,
6803 MemberOffset field_offset,
6804 bool is_volatile,
6805 uint32_t field_idx,
6806 uint16_t declaring_class_def_index,
6807 const DexFile& dex_file,
6808 uint32_t dex_pc)
6809 : HExpression(kStaticFieldGet,
6810 field_type,
6811 SideEffects::FieldReadOfType(field_type, is_volatile),
6812 dex_pc),
6813 field_info_(field,
6814 field_offset,
6815 field_type,
6816 is_volatile,
6817 field_idx,
6818 declaring_class_def_index,
6819 dex_file) {
6820 SetRawInputAt(0, cls);
6821 }
6822
6823
IsClonable()6824 bool IsClonable() const override { return true; }
CanBeMoved()6825 bool CanBeMoved() const override { return !IsVolatile(); }
6826
InstructionDataEquals(const HInstruction * other)6827 bool InstructionDataEquals(const HInstruction* other) const override {
6828 const HStaticFieldGet* other_get = other->AsStaticFieldGet();
6829 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6830 }
6831
ComputeHashCode()6832 size_t ComputeHashCode() const override {
6833 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6834 }
6835
GetFieldInfo()6836 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()6837