1 /*
2  * Copyright 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18 
19 #include <android/hardware/graphics/common/1.0/types.h>
20 #include <grallocusage/GrallocUsageConversion.h>
21 #include <graphicsenv/GraphicsEnv.h>
22 #include <log/log.h>
23 #include <sync/sync.h>
24 #include <system/window.h>
25 #include <ui/BufferQueueDefs.h>
26 #include <utils/StrongPointer.h>
27 #include <utils/Timers.h>
28 #include <utils/Trace.h>
29 
30 #include <algorithm>
31 #include <unordered_set>
32 #include <vector>
33 
34 #include "driver.h"
35 
36 using android::hardware::graphics::common::V1_0::BufferUsage;
37 
38 namespace vulkan {
39 namespace driver {
40 
41 namespace {
42 
43 const VkSurfaceTransformFlagsKHR kSupportedTransforms =
44     VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
45     VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
46     VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
47     VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
48     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
49     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
50     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
51     VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
52     VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
53 
TranslateNativeToVulkanTransform(int native)54 VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) {
55     // Native and Vulkan transforms are isomorphic, but are represented
56     // differently. Vulkan transforms are built up of an optional horizontal
57     // mirror, followed by a clockwise 0/90/180/270-degree rotation. Native
58     // transforms are built up from a horizontal flip, vertical flip, and
59     // 90-degree rotation, all optional but always in that order.
60 
61     switch (native) {
62         case 0:
63             return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
64         case NATIVE_WINDOW_TRANSFORM_FLIP_H:
65             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR;
66         case NATIVE_WINDOW_TRANSFORM_FLIP_V:
67             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR;
68         case NATIVE_WINDOW_TRANSFORM_ROT_180:
69             return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR;
70         case NATIVE_WINDOW_TRANSFORM_ROT_90:
71             return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR;
72         case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90:
73             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR;
74         case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90:
75             return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR;
76         case NATIVE_WINDOW_TRANSFORM_ROT_270:
77             return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR;
78         case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY:
79         default:
80             return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
81     }
82 }
83 
TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform)84 int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) {
85     switch (transform) {
86         case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
87             return NATIVE_WINDOW_TRANSFORM_ROT_90;
88         case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
89             return NATIVE_WINDOW_TRANSFORM_ROT_180;
90         case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
91             return NATIVE_WINDOW_TRANSFORM_ROT_270;
92         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
93             return NATIVE_WINDOW_TRANSFORM_FLIP_H;
94         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
95             return NATIVE_WINDOW_TRANSFORM_FLIP_H |
96                    NATIVE_WINDOW_TRANSFORM_ROT_90;
97         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
98             return NATIVE_WINDOW_TRANSFORM_FLIP_V;
99         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
100             return NATIVE_WINDOW_TRANSFORM_FLIP_V |
101                    NATIVE_WINDOW_TRANSFORM_ROT_90;
102         case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
103         case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
104         default:
105             return 0;
106     }
107 }
108 
InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform)109 int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) {
110     switch (transform) {
111         case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
112             return NATIVE_WINDOW_TRANSFORM_ROT_270;
113         case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
114             return NATIVE_WINDOW_TRANSFORM_ROT_180;
115         case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
116             return NATIVE_WINDOW_TRANSFORM_ROT_90;
117         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
118             return NATIVE_WINDOW_TRANSFORM_FLIP_H;
119         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
120             return NATIVE_WINDOW_TRANSFORM_FLIP_H |
121                    NATIVE_WINDOW_TRANSFORM_ROT_90;
122         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
123             return NATIVE_WINDOW_TRANSFORM_FLIP_V;
124         case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
125             return NATIVE_WINDOW_TRANSFORM_FLIP_V |
126                    NATIVE_WINDOW_TRANSFORM_ROT_90;
127         case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
128         case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
129         default:
130             return 0;
131     }
132 }
133 
134 class TimingInfo {
135    public:
TimingInfo(const VkPresentTimeGOOGLE * qp,uint64_t nativeFrameId)136     TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId)
137         : vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0},
138           native_frame_id_(nativeFrameId) {}
ready() const139     bool ready() const {
140         return (timestamp_desired_present_time_ !=
141                         NATIVE_WINDOW_TIMESTAMP_PENDING &&
142                 timestamp_actual_present_time_ !=
143                         NATIVE_WINDOW_TIMESTAMP_PENDING &&
144                 timestamp_render_complete_time_ !=
145                         NATIVE_WINDOW_TIMESTAMP_PENDING &&
146                 timestamp_composition_latch_time_ !=
147                         NATIVE_WINDOW_TIMESTAMP_PENDING);
148     }
calculate(int64_t rdur)149     void calculate(int64_t rdur) {
150         bool anyTimestampInvalid =
151                 (timestamp_actual_present_time_ ==
152                         NATIVE_WINDOW_TIMESTAMP_INVALID) ||
153                 (timestamp_render_complete_time_ ==
154                         NATIVE_WINDOW_TIMESTAMP_INVALID) ||
155                 (timestamp_composition_latch_time_ ==
156                         NATIVE_WINDOW_TIMESTAMP_INVALID);
157         if (anyTimestampInvalid) {
158             ALOGE("Unexpectedly received invalid timestamp.");
159             vals_.actualPresentTime = 0;
160             vals_.earliestPresentTime = 0;
161             vals_.presentMargin = 0;
162             return;
163         }
164 
165         vals_.actualPresentTime =
166                 static_cast<uint64_t>(timestamp_actual_present_time_);
167         int64_t margin = (timestamp_composition_latch_time_ -
168                            timestamp_render_complete_time_);
169         // Calculate vals_.earliestPresentTime, and potentially adjust
170         // vals_.presentMargin.  The initial value of vals_.earliestPresentTime
171         // is vals_.actualPresentTime.  If we can subtract rdur (the duration
172         // of a refresh cycle) from vals_.earliestPresentTime (and also from
173         // vals_.presentMargin) and still leave a positive margin, then we can
174         // report to the application that it could have presented earlier than
175         // it did (per the extension specification).  If for some reason, we
176         // can do this subtraction repeatedly, we do, since
177         // vals_.earliestPresentTime really is supposed to be the "earliest".
178         int64_t early_time = timestamp_actual_present_time_;
179         while ((margin > rdur) &&
180                ((early_time - rdur) > timestamp_composition_latch_time_)) {
181             early_time -= rdur;
182             margin -= rdur;
183         }
184         vals_.earliestPresentTime = static_cast<uint64_t>(early_time);
185         vals_.presentMargin = static_cast<uint64_t>(margin);
186     }
get_values(VkPastPresentationTimingGOOGLE * values) const187     void get_values(VkPastPresentationTimingGOOGLE* values) const {
188         *values = vals_;
189     }
190 
191    public:
192     VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 };
193 
194     uint64_t native_frame_id_ { 0 };
195     int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING };
196     int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
197     int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
198     int64_t timestamp_composition_latch_time_
199             { NATIVE_WINDOW_TIMESTAMP_PENDING };
200 };
201 
202 struct Surface {
203     android::sp<ANativeWindow> window;
204     VkSwapchainKHR swapchain_handle;
205     uint64_t consumer_usage;
206 };
207 
HandleFromSurface(Surface * surface)208 VkSurfaceKHR HandleFromSurface(Surface* surface) {
209     return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface));
210 }
211 
SurfaceFromHandle(VkSurfaceKHR handle)212 Surface* SurfaceFromHandle(VkSurfaceKHR handle) {
213     return reinterpret_cast<Surface*>(handle);
214 }
215 
216 // Maximum number of TimingInfo structs to keep per swapchain:
217 enum { MAX_TIMING_INFOS = 10 };
218 // Minimum number of frames to look for in the past (so we don't cause
219 // syncronous requests to Surface Flinger):
220 enum { MIN_NUM_FRAMES_AGO = 5 };
221 
222 struct Swapchain {
Swapchainvulkan::driver::__anon3017a7eb0111::Swapchain223     Swapchain(Surface& surface_,
224               uint32_t num_images_,
225               VkPresentModeKHR present_mode,
226               int pre_transform_)
227         : surface(surface_),
228           num_images(num_images_),
229           mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR),
230           pre_transform(pre_transform_),
231           frame_timestamps_enabled(false),
232           acquire_next_image_timeout(-1),
233           shared(present_mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
234                  present_mode ==
235                      VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
236         ANativeWindow* window = surface.window.get();
237         native_window_get_refresh_cycle_duration(
238             window,
239             &refresh_duration);
240     }
get_refresh_durationvulkan::driver::__anon3017a7eb0111::Swapchain241     uint64_t get_refresh_duration()
242     {
243         ANativeWindow* window = surface.window.get();
244         native_window_get_refresh_cycle_duration(
245             window,
246             &refresh_duration);
247         return static_cast<uint64_t>(refresh_duration);
248 
249     }
250 
251     Surface& surface;
252     uint32_t num_images;
253     bool mailbox_mode;
254     int pre_transform;
255     bool frame_timestamps_enabled;
256     int64_t refresh_duration;
257     nsecs_t acquire_next_image_timeout;
258     bool shared;
259 
260     struct Image {
Imagevulkan::driver::__anon3017a7eb0111::Swapchain::Image261         Image() : image(VK_NULL_HANDLE), dequeue_fence(-1), dequeued(false) {}
262         VkImage image;
263         android::sp<ANativeWindowBuffer> buffer;
264         // The fence is only valid when the buffer is dequeued, and should be
265         // -1 any other time. When valid, we own the fd, and must ensure it is
266         // closed: either by closing it explicitly when queueing the buffer,
267         // or by passing ownership e.g. to ANativeWindow::cancelBuffer().
268         int dequeue_fence;
269         bool dequeued;
270     } images[android::BufferQueueDefs::NUM_BUFFER_SLOTS];
271 
272     std::vector<TimingInfo> timing;
273 };
274 
HandleFromSwapchain(Swapchain * swapchain)275 VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) {
276     return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain));
277 }
278 
SwapchainFromHandle(VkSwapchainKHR handle)279 Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) {
280     return reinterpret_cast<Swapchain*>(handle);
281 }
282 
ReleaseSwapchainImage(VkDevice device,ANativeWindow * window,int release_fence,Swapchain::Image & image)283 void ReleaseSwapchainImage(VkDevice device,
284                            ANativeWindow* window,
285                            int release_fence,
286                            Swapchain::Image& image) {
287     ATRACE_CALL();
288 
289     ALOG_ASSERT(release_fence == -1 || image.dequeued,
290                 "ReleaseSwapchainImage: can't provide a release fence for "
291                 "non-dequeued images");
292 
293     if (image.dequeued) {
294         if (release_fence >= 0) {
295             // We get here from vkQueuePresentKHR. The application is
296             // responsible for creating an execution dependency chain from
297             // vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR
298             // (release_fence), so we can drop the dequeue_fence here.
299             if (image.dequeue_fence >= 0)
300                 close(image.dequeue_fence);
301         } else {
302             // We get here during swapchain destruction, or various serious
303             // error cases e.g. when we can't create the release_fence during
304             // vkQueuePresentKHR. In non-error cases, the dequeue_fence should
305             // have already signalled, since the swapchain images are supposed
306             // to be idle before the swapchain is destroyed. In error cases,
307             // there may be rendering in flight to the image, but since we
308             // weren't able to create a release_fence, waiting for the
309             // dequeue_fence is about the best we can do.
310             release_fence = image.dequeue_fence;
311         }
312         image.dequeue_fence = -1;
313 
314         if (window) {
315             window->cancelBuffer(window, image.buffer.get(), release_fence);
316         } else {
317             if (release_fence >= 0) {
318                 sync_wait(release_fence, -1 /* forever */);
319                 close(release_fence);
320             }
321         }
322 
323         image.dequeued = false;
324     }
325 
326     if (image.image) {
327         ATRACE_BEGIN("DestroyImage");
328         GetData(device).driver.DestroyImage(device, image.image, nullptr);
329         ATRACE_END();
330         image.image = VK_NULL_HANDLE;
331     }
332 
333     image.buffer.clear();
334 }
335 
OrphanSwapchain(VkDevice device,Swapchain * swapchain)336 void OrphanSwapchain(VkDevice device, Swapchain* swapchain) {
337     if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain))
338         return;
339     for (uint32_t i = 0; i < swapchain->num_images; i++) {
340         if (!swapchain->images[i].dequeued)
341             ReleaseSwapchainImage(device, nullptr, -1, swapchain->images[i]);
342     }
343     swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
344     swapchain->timing.clear();
345 }
346 
get_num_ready_timings(Swapchain & swapchain)347 uint32_t get_num_ready_timings(Swapchain& swapchain) {
348     if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) {
349         return 0;
350     }
351 
352     uint32_t num_ready = 0;
353     const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1;
354     for (uint32_t i = 0; i < num_timings; i++) {
355         TimingInfo& ti = swapchain.timing[i];
356         if (ti.ready()) {
357             // This TimingInfo is ready to be reported to the user.  Add it
358             // to the num_ready.
359             num_ready++;
360             continue;
361         }
362         // This TimingInfo is not yet ready to be reported to the user,
363         // and so we should look for any available timestamps that
364         // might make it ready.
365         int64_t desired_present_time = 0;
366         int64_t render_complete_time = 0;
367         int64_t composition_latch_time = 0;
368         int64_t actual_present_time = 0;
369         // Obtain timestamps:
370         int err = native_window_get_frame_timestamps(
371             swapchain.surface.window.get(), ti.native_frame_id_,
372             &desired_present_time, &render_complete_time,
373             &composition_latch_time,
374             nullptr,  //&first_composition_start_time,
375             nullptr,  //&last_composition_start_time,
376             nullptr,  //&composition_finish_time,
377             &actual_present_time,
378             nullptr,  //&dequeue_ready_time,
379             nullptr /*&reads_done_time*/);
380 
381         if (err != android::OK) {
382             continue;
383         }
384 
385         // Record the timestamp(s) we received, and then see if this TimingInfo
386         // is ready to be reported to the user:
387         ti.timestamp_desired_present_time_ = desired_present_time;
388         ti.timestamp_actual_present_time_ = actual_present_time;
389         ti.timestamp_render_complete_time_ = render_complete_time;
390         ti.timestamp_composition_latch_time_ = composition_latch_time;
391 
392         if (ti.ready()) {
393             // The TimingInfo has received enough timestamps, and should now
394             // use those timestamps to calculate the info that should be
395             // reported to the user:
396             ti.calculate(swapchain.refresh_duration);
397             num_ready++;
398         }
399     }
400     return num_ready;
401 }
402 
copy_ready_timings(Swapchain & swapchain,uint32_t * count,VkPastPresentationTimingGOOGLE * timings)403 void copy_ready_timings(Swapchain& swapchain,
404                         uint32_t* count,
405                         VkPastPresentationTimingGOOGLE* timings) {
406     if (swapchain.timing.empty()) {
407         *count = 0;
408         return;
409     }
410 
411     size_t last_ready = swapchain.timing.size() - 1;
412     while (!swapchain.timing[last_ready].ready()) {
413         if (last_ready == 0) {
414             *count = 0;
415             return;
416         }
417         last_ready--;
418     }
419 
420     uint32_t num_copied = 0;
421     int32_t num_to_remove = 0;
422     for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) {
423         const TimingInfo& ti = swapchain.timing[i];
424         if (ti.ready()) {
425             ti.get_values(&timings[num_copied]);
426             num_copied++;
427         }
428         num_to_remove++;
429     }
430 
431     // Discard old frames that aren't ready if newer frames are ready.
432     // We don't expect to get the timing info for those old frames.
433     swapchain.timing.erase(swapchain.timing.begin(),
434                            swapchain.timing.begin() + num_to_remove);
435 
436     *count = num_copied;
437 }
438 
GetNativePixelFormat(VkFormat format)439 android_pixel_format GetNativePixelFormat(VkFormat format) {
440     android_pixel_format native_format = HAL_PIXEL_FORMAT_RGBA_8888;
441     switch (format) {
442         case VK_FORMAT_R8G8B8A8_UNORM:
443         case VK_FORMAT_R8G8B8A8_SRGB:
444             native_format = HAL_PIXEL_FORMAT_RGBA_8888;
445             break;
446         case VK_FORMAT_R5G6B5_UNORM_PACK16:
447             native_format = HAL_PIXEL_FORMAT_RGB_565;
448             break;
449         case VK_FORMAT_R16G16B16A16_SFLOAT:
450             native_format = HAL_PIXEL_FORMAT_RGBA_FP16;
451             break;
452         case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
453             native_format = HAL_PIXEL_FORMAT_RGBA_1010102;
454             break;
455         default:
456             ALOGV("unsupported swapchain format %d", format);
457             break;
458     }
459     return native_format;
460 }
461 
GetNativeDataspace(VkColorSpaceKHR colorspace)462 android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace) {
463     switch (colorspace) {
464         case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
465             return HAL_DATASPACE_V0_SRGB;
466         case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
467             return HAL_DATASPACE_DISPLAY_P3;
468         case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
469             return HAL_DATASPACE_V0_SCRGB_LINEAR;
470         case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
471             return HAL_DATASPACE_V0_SCRGB;
472         case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
473             return HAL_DATASPACE_DCI_P3_LINEAR;
474         case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
475             return HAL_DATASPACE_DCI_P3;
476         case VK_COLOR_SPACE_BT709_LINEAR_EXT:
477             return HAL_DATASPACE_V0_SRGB_LINEAR;
478         case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
479             return HAL_DATASPACE_V0_SRGB;
480         case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
481             return HAL_DATASPACE_BT2020_LINEAR;
482         case VK_COLOR_SPACE_HDR10_ST2084_EXT:
483             return static_cast<android_dataspace>(
484                 HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
485                 HAL_DATASPACE_RANGE_FULL);
486         case VK_COLOR_SPACE_DOLBYVISION_EXT:
487             return static_cast<android_dataspace>(
488                 HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
489                 HAL_DATASPACE_RANGE_FULL);
490         case VK_COLOR_SPACE_HDR10_HLG_EXT:
491             return static_cast<android_dataspace>(
492                 HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_HLG |
493                 HAL_DATASPACE_RANGE_FULL);
494         case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
495             return static_cast<android_dataspace>(
496                 HAL_DATASPACE_STANDARD_ADOBE_RGB |
497                 HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL);
498         case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
499             return HAL_DATASPACE_ADOBE_RGB;
500 
501         // Pass through is intended to allow app to provide data that is passed
502         // to the display system without modification.
503         case VK_COLOR_SPACE_PASS_THROUGH_EXT:
504             return HAL_DATASPACE_ARBITRARY;
505 
506         default:
507             // This indicates that we don't know about the
508             // dataspace specified and we should indicate that
509             // it's unsupported
510             return HAL_DATASPACE_UNKNOWN;
511     }
512 }
513 
514 }  // anonymous namespace
515 
516 VKAPI_ATTR
CreateAndroidSurfaceKHR(VkInstance instance,const VkAndroidSurfaceCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * allocator,VkSurfaceKHR * out_surface)517 VkResult CreateAndroidSurfaceKHR(
518     VkInstance instance,
519     const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
520     const VkAllocationCallbacks* allocator,
521     VkSurfaceKHR* out_surface) {
522     ATRACE_CALL();
523 
524     if (!allocator)
525         allocator = &GetData(instance).allocator;
526     void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface),
527                                          alignof(Surface),
528                                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
529     if (!mem)
530         return VK_ERROR_OUT_OF_HOST_MEMORY;
531     Surface* surface = new (mem) Surface;
532 
533     surface->window = pCreateInfo->window;
534     surface->swapchain_handle = VK_NULL_HANDLE;
535     int err = native_window_get_consumer_usage(surface->window.get(),
536                                                &surface->consumer_usage);
537     if (err != android::OK) {
538         ALOGE("native_window_get_consumer_usage() failed: %s (%d)",
539               strerror(-err), err);
540         surface->~Surface();
541         allocator->pfnFree(allocator->pUserData, surface);
542         return VK_ERROR_SURFACE_LOST_KHR;
543     }
544 
545     err =
546         native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL);
547     if (err != android::OK) {
548         ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err),
549               err);
550         surface->~Surface();
551         allocator->pfnFree(allocator->pUserData, surface);
552         return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
553     }
554 
555     *out_surface = HandleFromSurface(surface);
556     return VK_SUCCESS;
557 }
558 
559 VKAPI_ATTR
DestroySurfaceKHR(VkInstance instance,VkSurfaceKHR surface_handle,const VkAllocationCallbacks * allocator)560 void DestroySurfaceKHR(VkInstance instance,
561                        VkSurfaceKHR surface_handle,
562                        const VkAllocationCallbacks* allocator) {
563     ATRACE_CALL();
564 
565     Surface* surface = SurfaceFromHandle(surface_handle);
566     if (!surface)
567         return;
568     native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL);
569     ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE,
570              "destroyed VkSurfaceKHR 0x%" PRIx64
571              " has active VkSwapchainKHR 0x%" PRIx64,
572              reinterpret_cast<uint64_t>(surface_handle),
573              reinterpret_cast<uint64_t>(surface->swapchain_handle));
574     surface->~Surface();
575     if (!allocator)
576         allocator = &GetData(instance).allocator;
577     allocator->pfnFree(allocator->pUserData, surface);
578 }
579 
580 VKAPI_ATTR
GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice,uint32_t,VkSurfaceKHR surface_handle,VkBool32 * supported)581 VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/,
582                                             uint32_t /*queue_family*/,
583                                             VkSurfaceKHR surface_handle,
584                                             VkBool32* supported) {
585     ATRACE_CALL();
586 
587     const Surface* surface = SurfaceFromHandle(surface_handle);
588     if (!surface) {
589         return VK_ERROR_SURFACE_LOST_KHR;
590     }
591     const ANativeWindow* window = surface->window.get();
592 
593     int query_value;
594     int err = window->query(window, NATIVE_WINDOW_FORMAT, &query_value);
595     if (err != android::OK || query_value < 0) {
596         ALOGE("NATIVE_WINDOW_FORMAT query failed: %s (%d) value=%d",
597               strerror(-err), err, query_value);
598         return VK_ERROR_SURFACE_LOST_KHR;
599     }
600 
601     android_pixel_format native_format =
602         static_cast<android_pixel_format>(query_value);
603 
604     bool format_supported = false;
605     switch (native_format) {
606         case HAL_PIXEL_FORMAT_RGBA_8888:
607         case HAL_PIXEL_FORMAT_RGB_565:
608         case HAL_PIXEL_FORMAT_RGBA_FP16:
609         case HAL_PIXEL_FORMAT_RGBA_1010102:
610             format_supported = true;
611             break;
612         default:
613             break;
614     }
615 
616     *supported = static_cast<VkBool32>(
617         format_supported || (surface->consumer_usage &
618                              (AHARDWAREBUFFER_USAGE_CPU_READ_MASK |
619                               AHARDWAREBUFFER_USAGE_CPU_WRITE_MASK)) == 0);
620 
621     return VK_SUCCESS;
622 }
623 
624 VKAPI_ATTR
GetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice,VkSurfaceKHR surface,VkSurfaceCapabilitiesKHR * capabilities)625 VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR(
626     VkPhysicalDevice /*pdev*/,
627     VkSurfaceKHR surface,
628     VkSurfaceCapabilitiesKHR* capabilities) {
629     ATRACE_CALL();
630 
631     int err;
632     ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
633 
634     int width, height;
635     err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
636     if (err != android::OK) {
637         ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
638               strerror(-err), err);
639         return VK_ERROR_SURFACE_LOST_KHR;
640     }
641     err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
642     if (err != android::OK) {
643         ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
644               strerror(-err), err);
645         return VK_ERROR_SURFACE_LOST_KHR;
646     }
647 
648     int transform_hint;
649     err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
650     if (err != android::OK) {
651         ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
652               strerror(-err), err);
653         return VK_ERROR_SURFACE_LOST_KHR;
654     }
655 
656     int max_buffer_count;
657     err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &max_buffer_count);
658     if (err != android::OK) {
659         ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)",
660               strerror(-err), err);
661         return VK_ERROR_SURFACE_LOST_KHR;
662     }
663     capabilities->minImageCount = max_buffer_count == 1 ? 1 : 2;
664     capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
665 
666     capabilities->currentExtent =
667         VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)};
668 
669     // TODO(http://b/134182502): Figure out what the max extent should be.
670     capabilities->minImageExtent = VkExtent2D{1, 1};
671     capabilities->maxImageExtent = VkExtent2D{4096, 4096};
672 
673     capabilities->maxImageArrayLayers = 1;
674 
675     capabilities->supportedTransforms = kSupportedTransforms;
676     capabilities->currentTransform =
677         TranslateNativeToVulkanTransform(transform_hint);
678 
679     // On Android, window composition is a WindowManager property, not something
680     // associated with the bufferqueue. It can't be changed from here.
681     capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
682 
683     capabilities->supportedUsageFlags =
684         VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
685         VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
686         VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
687         VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
688 
689     return VK_SUCCESS;
690 }
691 
692 VKAPI_ATTR
GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,VkSurfaceKHR surface_handle,uint32_t * count,VkSurfaceFormatKHR * formats)693 VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,
694                                             VkSurfaceKHR surface_handle,
695                                             uint32_t* count,
696                                             VkSurfaceFormatKHR* formats) {
697     ATRACE_CALL();
698 
699     const InstanceData& instance_data = GetData(pdev);
700 
701     bool wide_color_support = false;
702     Surface& surface = *SurfaceFromHandle(surface_handle);
703     int err = native_window_get_wide_color_support(surface.window.get(),
704                                                    &wide_color_support);
705     if (err) {
706         return VK_ERROR_SURFACE_LOST_KHR;
707     }
708     ALOGV("wide_color_support is: %d", wide_color_support);
709     wide_color_support =
710         wide_color_support &&
711         instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace);
712 
713     AHardwareBuffer_Desc desc = {};
714     desc.width = 1;
715     desc.height = 1;
716     desc.layers = 1;
717     desc.usage = surface.consumer_usage |
718                  AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
719                  AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER;
720 
721     // We must support R8G8B8A8
722     std::vector<VkSurfaceFormatKHR> all_formats = {
723         {VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
724         {VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}};
725 
726     if (wide_color_support) {
727         all_formats.emplace_back(VkSurfaceFormatKHR{
728             VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
729         all_formats.emplace_back(VkSurfaceFormatKHR{
730             VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
731     }
732 
733     desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM;
734     if (AHardwareBuffer_isSupported(&desc)) {
735         all_formats.emplace_back(VkSurfaceFormatKHR{
736             VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
737     }
738 
739     desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT;
740     if (AHardwareBuffer_isSupported(&desc)) {
741         all_formats.emplace_back(VkSurfaceFormatKHR{
742             VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
743         if (wide_color_support) {
744             all_formats.emplace_back(
745                 VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
746                                    VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT});
747             all_formats.emplace_back(
748                 VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
749                                    VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT});
750         }
751     }
752 
753     desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM;
754     if (AHardwareBuffer_isSupported(&desc)) {
755         all_formats.emplace_back(
756             VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
757                                VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
758         if (wide_color_support) {
759             all_formats.emplace_back(
760                 VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
761                                    VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
762         }
763     }
764 
765     VkResult result = VK_SUCCESS;
766     if (formats) {
767         uint32_t transfer_count = all_formats.size();
768         if (transfer_count > *count) {
769             transfer_count = *count;
770             result = VK_INCOMPLETE;
771         }
772         std::copy(all_formats.begin(), all_formats.begin() + transfer_count,
773                   formats);
774         *count = transfer_count;
775     } else {
776         *count = all_formats.size();
777     }
778 
779     return result;
780 }
781 
782 VKAPI_ATTR
GetPhysicalDeviceSurfaceCapabilities2KHR(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceSurfaceInfo2KHR * pSurfaceInfo,VkSurfaceCapabilities2KHR * pSurfaceCapabilities)783 VkResult GetPhysicalDeviceSurfaceCapabilities2KHR(
784     VkPhysicalDevice physicalDevice,
785     const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
786     VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
787     ATRACE_CALL();
788 
789     VkResult result = GetPhysicalDeviceSurfaceCapabilitiesKHR(
790         physicalDevice, pSurfaceInfo->surface,
791         &pSurfaceCapabilities->surfaceCapabilities);
792 
793     VkSurfaceCapabilities2KHR* caps = pSurfaceCapabilities;
794     while (caps->pNext) {
795         caps = reinterpret_cast<VkSurfaceCapabilities2KHR*>(caps->pNext);
796 
797         switch (caps->sType) {
798             case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: {
799                 VkSharedPresentSurfaceCapabilitiesKHR* shared_caps =
800                     reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(
801                         caps);
802                 // Claim same set of usage flags are supported for
803                 // shared present modes as for other modes.
804                 shared_caps->sharedPresentSupportedUsageFlags =
805                     pSurfaceCapabilities->surfaceCapabilities
806                         .supportedUsageFlags;
807             } break;
808 
809             default:
810                 // Ignore all other extension structs
811                 break;
812         }
813     }
814 
815     return result;
816 }
817 
818 VKAPI_ATTR
GetPhysicalDeviceSurfaceFormats2KHR(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceSurfaceInfo2KHR * pSurfaceInfo,uint32_t * pSurfaceFormatCount,VkSurfaceFormat2KHR * pSurfaceFormats)819 VkResult GetPhysicalDeviceSurfaceFormats2KHR(
820     VkPhysicalDevice physicalDevice,
821     const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
822     uint32_t* pSurfaceFormatCount,
823     VkSurfaceFormat2KHR* pSurfaceFormats) {
824     ATRACE_CALL();
825 
826     if (!pSurfaceFormats) {
827         return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice,
828                                                   pSurfaceInfo->surface,
829                                                   pSurfaceFormatCount, nullptr);
830     } else {
831         // temp vector for forwarding; we'll marshal it into the pSurfaceFormats
832         // after the call.
833         std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount);
834         VkResult result = GetPhysicalDeviceSurfaceFormatsKHR(
835             physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount,
836             surface_formats.data());
837 
838         if (result == VK_SUCCESS || result == VK_INCOMPLETE) {
839             // marshal results individually due to stride difference.
840             // completely ignore any chained extension structs.
841             uint32_t formats_to_marshal = *pSurfaceFormatCount;
842             for (uint32_t i = 0u; i < formats_to_marshal; i++) {
843                 pSurfaceFormats[i].surfaceFormat = surface_formats[i];
844             }
845         }
846 
847         return result;
848     }
849 }
850 
851 VKAPI_ATTR
GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,VkSurfaceKHR surface,uint32_t * count,VkPresentModeKHR * modes)852 VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,
853                                                  VkSurfaceKHR surface,
854                                                  uint32_t* count,
855                                                  VkPresentModeKHR* modes) {
856     ATRACE_CALL();
857 
858     int err;
859     int query_value;
860     ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
861 
862     err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &query_value);
863     if (err != android::OK || query_value < 0) {
864         ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) value=%d",
865               strerror(-err), err, query_value);
866         return VK_ERROR_SURFACE_LOST_KHR;
867     }
868     uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
869 
870     err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value);
871     if (err != android::OK || query_value < 0) {
872         ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d",
873               strerror(-err), err, query_value);
874         return VK_ERROR_SURFACE_LOST_KHR;
875     }
876     uint32_t max_buffer_count = static_cast<uint32_t>(query_value);
877 
878     std::vector<VkPresentModeKHR> present_modes;
879     if (min_undequeued_buffers + 1 < max_buffer_count)
880         present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR);
881     present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
882 
883     VkPhysicalDevicePresentationPropertiesANDROID present_properties;
884     if (QueryPresentationProperties(pdev, &present_properties)) {
885         if (present_properties.sharedImage) {
886             present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
887             present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
888         }
889     }
890 
891     uint32_t num_modes = uint32_t(present_modes.size());
892 
893     VkResult result = VK_SUCCESS;
894     if (modes) {
895         if (*count < num_modes)
896             result = VK_INCOMPLETE;
897         *count = std::min(*count, num_modes);
898         std::copy_n(present_modes.data(), *count, modes);
899     } else {
900         *count = num_modes;
901     }
902     return result;
903 }
904 
905 VKAPI_ATTR
GetDeviceGroupPresentCapabilitiesKHR(VkDevice,VkDeviceGroupPresentCapabilitiesKHR * pDeviceGroupPresentCapabilities)906 VkResult GetDeviceGroupPresentCapabilitiesKHR(
907     VkDevice,
908     VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) {
909     ATRACE_CALL();
910 
911     ALOGV_IF(pDeviceGroupPresentCapabilities->sType !=
912                  VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR,
913              "vkGetDeviceGroupPresentCapabilitiesKHR: invalid "
914              "VkDeviceGroupPresentCapabilitiesKHR structure type %d",
915              pDeviceGroupPresentCapabilities->sType);
916 
917     memset(pDeviceGroupPresentCapabilities->presentMask, 0,
918            sizeof(pDeviceGroupPresentCapabilities->presentMask));
919 
920     // assume device group of size 1
921     pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0;
922     pDeviceGroupPresentCapabilities->modes =
923         VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
924 
925     return VK_SUCCESS;
926 }
927 
928 VKAPI_ATTR
GetDeviceGroupSurfacePresentModesKHR(VkDevice,VkSurfaceKHR,VkDeviceGroupPresentModeFlagsKHR * pModes)929 VkResult GetDeviceGroupSurfacePresentModesKHR(
930     VkDevice,
931     VkSurfaceKHR,
932     VkDeviceGroupPresentModeFlagsKHR* pModes) {
933     ATRACE_CALL();
934 
935     *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
936     return VK_SUCCESS;
937 }
938 
939 VKAPI_ATTR
GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,VkSurfaceKHR surface,uint32_t * pRectCount,VkRect2D * pRects)940 VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,
941                                                VkSurfaceKHR surface,
942                                                uint32_t* pRectCount,
943                                                VkRect2D* pRects) {
944     ATRACE_CALL();
945 
946     if (!pRects) {
947         *pRectCount = 1;
948     } else {
949         uint32_t count = std::min(*pRectCount, 1u);
950         bool incomplete = *pRectCount < 1;
951 
952         *pRectCount = count;
953 
954         if (incomplete) {
955             return VK_INCOMPLETE;
956         }
957 
958         int err;
959         ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
960 
961         int width = 0, height = 0;
962         err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
963         if (err != android::OK) {
964             ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
965                   strerror(-err), err);
966         }
967         err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
968         if (err != android::OK) {
969             ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
970                   strerror(-err), err);
971         }
972 
973         // TODO(b/143294545): Return something better than "whole window"
974         pRects[0].offset.x = 0;
975         pRects[0].offset.y = 0;
976         pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width),
977                                       static_cast<uint32_t>(height)};
978     }
979     return VK_SUCCESS;
980 }
981 
DestroySwapchainInternal(VkDevice device,VkSwapchainKHR swapchain_handle,const VkAllocationCallbacks * allocator)982 static void DestroySwapchainInternal(VkDevice device,
983                                      VkSwapchainKHR swapchain_handle,
984                                      const VkAllocationCallbacks* allocator) {
985     ATRACE_CALL();
986 
987     const auto& dispatch = GetData(device).driver;
988     Swapchain* swapchain = SwapchainFromHandle(swapchain_handle);
989     if (!swapchain) {
990         return;
991     }
992 
993     bool active = swapchain->surface.swapchain_handle == swapchain_handle;
994     ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr;
995 
996     if (window && swapchain->frame_timestamps_enabled) {
997         native_window_enable_frame_timestamps(window, false);
998     }
999 
1000     for (uint32_t i = 0; i < swapchain->num_images; i++) {
1001         ReleaseSwapchainImage(device, window, -1, swapchain->images[i]);
1002     }
1003 
1004     if (active) {
1005         swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
1006     }
1007 
1008     if (!allocator) {
1009         allocator = &GetData(device).allocator;
1010     }
1011 
1012     swapchain->~Swapchain();
1013     allocator->pfnFree(allocator->pUserData, swapchain);
1014 }
1015 
1016 VKAPI_ATTR
CreateSwapchainKHR(VkDevice device,const VkSwapchainCreateInfoKHR * create_info,const VkAllocationCallbacks * allocator,VkSwapchainKHR * swapchain_handle)1017 VkResult CreateSwapchainKHR(VkDevice device,
1018                             const VkSwapchainCreateInfoKHR* create_info,
1019                             const VkAllocationCallbacks* allocator,
1020                             VkSwapchainKHR* swapchain_handle) {
1021     ATRACE_CALL();
1022 
1023     int err;
1024     VkResult result = VK_SUCCESS;
1025 
1026     ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64
1027           " minImageCount=%u imageFormat=%u imageColorSpace=%u"
1028           " imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u"
1029           " oldSwapchain=0x%" PRIx64,
1030           reinterpret_cast<uint64_t>(create_info->surface),
1031           create_info->minImageCount, create_info->imageFormat,
1032           create_info->imageColorSpace, create_info->imageExtent.width,
1033           create_info->imageExtent.height, create_info->imageUsage,
1034           create_info->preTransform, create_info->presentMode,
1035           reinterpret_cast<uint64_t>(create_info->oldSwapchain));
1036 
1037     if (!allocator)
1038         allocator = &GetData(device).allocator;
1039 
1040     android_pixel_format native_pixel_format =
1041         GetNativePixelFormat(create_info->imageFormat);
1042     android_dataspace native_dataspace =
1043         GetNativeDataspace(create_info->imageColorSpace);
1044     if (native_dataspace == HAL_DATASPACE_UNKNOWN) {
1045         ALOGE(
1046             "CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) "
1047             "failed: Unsupported color space",
1048             create_info->imageColorSpace);
1049         return VK_ERROR_INITIALIZATION_FAILED;
1050     }
1051 
1052     ALOGV_IF(create_info->imageArrayLayers != 1,
1053              "swapchain imageArrayLayers=%u not supported",
1054              create_info->imageArrayLayers);
1055     ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0,
1056              "swapchain preTransform=%#x not supported",
1057              create_info->preTransform);
1058     ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR ||
1059                create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ||
1060                create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
1061                create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR),
1062              "swapchain presentMode=%u not supported",
1063              create_info->presentMode);
1064 
1065     Surface& surface = *SurfaceFromHandle(create_info->surface);
1066 
1067     if (surface.swapchain_handle != create_info->oldSwapchain) {
1068         ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64
1069               " because it already has active swapchain 0x%" PRIx64
1070               " but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64,
1071               reinterpret_cast<uint64_t>(create_info->surface),
1072               reinterpret_cast<uint64_t>(surface.swapchain_handle),
1073               reinterpret_cast<uint64_t>(create_info->oldSwapchain));
1074         return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
1075     }
1076     if (create_info->oldSwapchain != VK_NULL_HANDLE)
1077         OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain));
1078 
1079     // -- Reset the native window --
1080     // The native window might have been used previously, and had its properties
1081     // changed from defaults. That will affect the answer we get for queries
1082     // like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we
1083     // attempt such queries.
1084 
1085     // The native window only allows dequeueing all buffers before any have
1086     // been queued, since after that point at least one is assumed to be in
1087     // non-FREE state at any given time. Disconnecting and re-connecting
1088     // orphans the previous buffers, getting us back to the state where we can
1089     // dequeue all buffers.
1090     //
1091     // TODO(http://b/134186185) recycle swapchain images more efficiently
1092     ANativeWindow* window = surface.window.get();
1093     err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
1094     ALOGW_IF(err != android::OK, "native_window_api_disconnect failed: %s (%d)",
1095              strerror(-err), err);
1096     err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
1097     ALOGW_IF(err != android::OK, "native_window_api_connect failed: %s (%d)",
1098              strerror(-err), err);
1099 
1100     err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, -1);
1101     if (err != android::OK) {
1102         ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
1103               strerror(-err), err);
1104         return VK_ERROR_SURFACE_LOST_KHR;
1105     }
1106 
1107     err = native_window_set_buffer_count(window, 0);
1108     if (err != android::OK) {
1109         ALOGE("native_window_set_buffer_count(0) failed: %s (%d)",
1110               strerror(-err), err);
1111         return VK_ERROR_SURFACE_LOST_KHR;
1112     }
1113 
1114     int swap_interval =
1115         create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1;
1116     err = window->setSwapInterval(window, swap_interval);
1117     if (err != android::OK) {
1118         ALOGE("native_window->setSwapInterval(1) failed: %s (%d)",
1119               strerror(-err), err);
1120         return VK_ERROR_SURFACE_LOST_KHR;
1121     }
1122 
1123     err = native_window_set_shared_buffer_mode(window, false);
1124     if (err != android::OK) {
1125         ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)",
1126               strerror(-err), err);
1127         return VK_ERROR_SURFACE_LOST_KHR;
1128     }
1129 
1130     err = native_window_set_auto_refresh(window, false);
1131     if (err != android::OK) {
1132         ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)",
1133               strerror(-err), err);
1134         return VK_ERROR_SURFACE_LOST_KHR;
1135     }
1136 
1137     // -- Configure the native window --
1138 
1139     const auto& dispatch = GetData(device).driver;
1140 
1141     err = native_window_set_buffers_format(window, native_pixel_format);
1142     if (err != android::OK) {
1143         ALOGE("native_window_set_buffers_format(%d) failed: %s (%d)",
1144               native_pixel_format, strerror(-err), err);
1145         return VK_ERROR_SURFACE_LOST_KHR;
1146     }
1147     err = native_window_set_buffers_data_space(window, native_dataspace);
1148     if (err != android::OK) {
1149         ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)",
1150               native_dataspace, strerror(-err), err);
1151         return VK_ERROR_SURFACE_LOST_KHR;
1152     }
1153 
1154     err = native_window_set_buffers_dimensions(
1155         window, static_cast<int>(create_info->imageExtent.width),
1156         static_cast<int>(create_info->imageExtent.height));
1157     if (err != android::OK) {
1158         ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)",
1159               create_info->imageExtent.width, create_info->imageExtent.height,
1160               strerror(-err), err);
1161         return VK_ERROR_SURFACE_LOST_KHR;
1162     }
1163 
1164     // VkSwapchainCreateInfo::preTransform indicates the transformation the app
1165     // applied during rendering. native_window_set_transform() expects the
1166     // inverse: the transform the app is requesting that the compositor perform
1167     // during composition. With native windows, pre-transform works by rendering
1168     // with the same transform the compositor is applying (as in Vulkan), but
1169     // then requesting the inverse transform, so that when the compositor does
1170     // it's job the two transforms cancel each other out and the compositor ends
1171     // up applying an identity transform to the app's buffer.
1172     err = native_window_set_buffers_transform(
1173         window, InvertTransformToNative(create_info->preTransform));
1174     if (err != android::OK) {
1175         ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)",
1176               InvertTransformToNative(create_info->preTransform),
1177               strerror(-err), err);
1178         return VK_ERROR_SURFACE_LOST_KHR;
1179     }
1180 
1181     err = native_window_set_scaling_mode(
1182         window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
1183     if (err != android::OK) {
1184         ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)",
1185               strerror(-err), err);
1186         return VK_ERROR_SURFACE_LOST_KHR;
1187     }
1188 
1189     VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0;
1190     if (create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
1191         create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
1192         swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID;
1193         err = native_window_set_shared_buffer_mode(window, true);
1194         if (err != android::OK) {
1195             ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err);
1196             return VK_ERROR_SURFACE_LOST_KHR;
1197         }
1198     }
1199 
1200     if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
1201         err = native_window_set_auto_refresh(window, true);
1202         if (err != android::OK) {
1203             ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err);
1204             return VK_ERROR_SURFACE_LOST_KHR;
1205         }
1206     }
1207 
1208     int query_value;
1209     err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
1210                         &query_value);
1211     if (err != android::OK || query_value < 0) {
1212         ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err,
1213               query_value);
1214         return VK_ERROR_SURFACE_LOST_KHR;
1215     }
1216     uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
1217     uint32_t num_images =
1218         (swap_interval ? create_info->minImageCount
1219                        : std::max(3u, create_info->minImageCount)) -
1220         1 + min_undequeued_buffers;
1221 
1222     // Lower layer insists that we have at least two buffers. This is wasteful
1223     // and we'd like to relax it in the shared case, but not all the pieces are
1224     // in place for that to work yet. Note we only lie to the lower layer-- we
1225     // don't want to give the app back a swapchain with extra images (which they
1226     // can't actually use!).
1227     err = native_window_set_buffer_count(window, std::max(2u, num_images));
1228     if (err != android::OK) {
1229         ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", num_images,
1230               strerror(-err), err);
1231         return VK_ERROR_SURFACE_LOST_KHR;
1232     }
1233 
1234     int32_t legacy_usage = 0;
1235     if (dispatch.GetSwapchainGrallocUsage2ANDROID) {
1236         uint64_t consumer_usage, producer_usage;
1237         ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID");
1238         result = dispatch.GetSwapchainGrallocUsage2ANDROID(
1239             device, create_info->imageFormat, create_info->imageUsage,
1240             swapchain_image_usage, &consumer_usage, &producer_usage);
1241         ATRACE_END();
1242         if (result != VK_SUCCESS) {
1243             ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result);
1244             return VK_ERROR_SURFACE_LOST_KHR;
1245         }
1246         legacy_usage =
1247             android_convertGralloc1To0Usage(producer_usage, consumer_usage);
1248     } else if (dispatch.GetSwapchainGrallocUsageANDROID) {
1249         ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID");
1250         result = dispatch.GetSwapchainGrallocUsageANDROID(
1251             device, create_info->imageFormat, create_info->imageUsage,
1252             &legacy_usage);
1253         ATRACE_END();
1254         if (result != VK_SUCCESS) {
1255             ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result);
1256             return VK_ERROR_SURFACE_LOST_KHR;
1257         }
1258     }
1259     uint64_t native_usage = static_cast<uint64_t>(legacy_usage);
1260 
1261     bool createProtectedSwapchain = false;
1262     if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
1263         createProtectedSwapchain = true;
1264         native_usage |= BufferUsage::PROTECTED;
1265     }
1266     err = native_window_set_usage(window, native_usage);
1267     if (err != android::OK) {
1268         ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err);
1269         return VK_ERROR_SURFACE_LOST_KHR;
1270     }
1271 
1272     int transform_hint;
1273     err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
1274     if (err != android::OK) {
1275         ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
1276               strerror(-err), err);
1277         return VK_ERROR_SURFACE_LOST_KHR;
1278     }
1279 
1280     // -- Allocate our Swapchain object --
1281     // After this point, we must deallocate the swapchain on error.
1282 
1283     void* mem = allocator->pfnAllocation(allocator->pUserData,
1284                                          sizeof(Swapchain), alignof(Swapchain),
1285                                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1286     if (!mem)
1287         return VK_ERROR_OUT_OF_HOST_MEMORY;
1288     Swapchain* swapchain = new (mem)
1289         Swapchain(surface, num_images, create_info->presentMode,
1290                   TranslateVulkanToNativeTransform(create_info->preTransform));
1291     // -- Dequeue all buffers and create a VkImage for each --
1292     // Any failures during or after this must cancel the dequeued buffers.
1293 
1294     VkSwapchainImageCreateInfoANDROID swapchain_image_create = {
1295 #pragma clang diagnostic push
1296 #pragma clang diagnostic ignored "-Wold-style-cast"
1297         .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID,
1298 #pragma clang diagnostic pop
1299         .pNext = nullptr,
1300         .usage = swapchain_image_usage,
1301     };
1302     VkNativeBufferANDROID image_native_buffer = {
1303 #pragma clang diagnostic push
1304 #pragma clang diagnostic ignored "-Wold-style-cast"
1305         .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
1306 #pragma clang diagnostic pop
1307         .pNext = &swapchain_image_create,
1308     };
1309     VkImageCreateInfo image_create = {
1310         .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1311         .pNext = &image_native_buffer,
1312         .flags = createProtectedSwapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
1313         .imageType = VK_IMAGE_TYPE_2D,
1314         .format = create_info->imageFormat,
1315         .extent = {0, 0, 1},
1316         .mipLevels = 1,
1317         .arrayLayers = 1,
1318         .samples = VK_SAMPLE_COUNT_1_BIT,
1319         .tiling = VK_IMAGE_TILING_OPTIMAL,
1320         .usage = create_info->imageUsage,
1321         .sharingMode = create_info->imageSharingMode,
1322         .queueFamilyIndexCount = create_info->queueFamilyIndexCount,
1323         .pQueueFamilyIndices = create_info->pQueueFamilyIndices,
1324     };
1325 
1326     for (uint32_t i = 0; i < num_images; i++) {
1327         Swapchain::Image& img = swapchain->images[i];
1328 
1329         ANativeWindowBuffer* buffer;
1330         err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence);
1331         if (err != android::OK) {
1332             ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err);
1333             switch (-err) {
1334                 case ENOMEM:
1335                     result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
1336                     break;
1337                 default:
1338                     result = VK_ERROR_SURFACE_LOST_KHR;
1339                     break;
1340             }
1341             break;
1342         }
1343         img.buffer = buffer;
1344         img.dequeued = true;
1345 
1346         image_create.extent =
1347             VkExtent3D{static_cast<uint32_t>(img.buffer->width),
1348                        static_cast<uint32_t>(img.buffer->height),
1349                        1};
1350         image_native_buffer.handle = img.buffer->handle;
1351         image_native_buffer.stride = img.buffer->stride;
1352         image_native_buffer.format = img.buffer->format;
1353         image_native_buffer.usage = int(img.buffer->usage);
1354         android_convertGralloc0To1Usage(int(img.buffer->usage),
1355             &image_native_buffer.usage2.producer,
1356             &image_native_buffer.usage2.consumer);
1357 
1358         ATRACE_BEGIN("CreateImage");
1359         result =
1360             dispatch.CreateImage(device, &image_create, nullptr, &img.image);
1361         ATRACE_END();
1362         if (result != VK_SUCCESS) {
1363             ALOGD("vkCreateImage w/ native buffer failed: %u", result);
1364             break;
1365         }
1366     }
1367 
1368     // -- Cancel all buffers, returning them to the queue --
1369     // If an error occurred before, also destroy the VkImage and release the
1370     // buffer reference. Otherwise, we retain a strong reference to the buffer.
1371     for (uint32_t i = 0; i < num_images; i++) {
1372         Swapchain::Image& img = swapchain->images[i];
1373         if (img.dequeued) {
1374             if (!swapchain->shared) {
1375                 window->cancelBuffer(window, img.buffer.get(),
1376                                      img.dequeue_fence);
1377                 img.dequeue_fence = -1;
1378                 img.dequeued = false;
1379             }
1380         }
1381     }
1382 
1383     if (result != VK_SUCCESS) {
1384         DestroySwapchainInternal(device, HandleFromSwapchain(swapchain),
1385                                  allocator);
1386         return result;
1387     }
1388 
1389     if (transform_hint != swapchain->pre_transform) {
1390         // Log that the app is not doing pre-rotation.
1391         android::GraphicsEnv::getInstance().setTargetStats(
1392             android::GpuStatsInfo::Stats::FALSE_PREROTATION);
1393     }
1394 
1395     surface.swapchain_handle = HandleFromSwapchain(swapchain);
1396     *swapchain_handle = surface.swapchain_handle;
1397     return VK_SUCCESS;
1398 }
1399 
1400 VKAPI_ATTR
DestroySwapchainKHR(VkDevice device,VkSwapchainKHR swapchain_handle,const VkAllocationCallbacks * allocator)1401 void DestroySwapchainKHR(VkDevice device,
1402                          VkSwapchainKHR swapchain_handle,
1403                          const VkAllocationCallbacks* allocator) {
1404     ATRACE_CALL();
1405 
1406     DestroySwapchainInternal(device, swapchain_handle, allocator);
1407 }
1408 
1409 VKAPI_ATTR
GetSwapchainImagesKHR(VkDevice,VkSwapchainKHR swapchain_handle,uint32_t * count,VkImage * images)1410 VkResult GetSwapchainImagesKHR(VkDevice,
1411                                VkSwapchainKHR swapchain_handle,
1412                                uint32_t* count,
1413                                VkImage* images) {
1414     ATRACE_CALL();
1415 
1416     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
1417     ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle,
1418              "getting images for non-active swapchain 0x%" PRIx64
1419              "; only dequeued image handles are valid",
1420              reinterpret_cast<uint64_t>(swapchain_handle));
1421     VkResult result = VK_SUCCESS;
1422     if (images) {
1423         uint32_t n = swapchain.num_images;
1424         if (*count < swapchain.num_images) {
1425             n = *count;
1426             result = VK_INCOMPLETE;
1427         }
1428         for (uint32_t i = 0; i < n; i++)
1429             images[i] = swapchain.images[i].image;
1430         *count = n;
1431     } else {
1432         *count = swapchain.num_images;
1433     }
1434     return result;
1435 }
1436 
1437 VKAPI_ATTR
AcquireNextImageKHR(VkDevice device,VkSwapchainKHR swapchain_handle,uint64_t timeout,VkSemaphore semaphore,VkFence vk_fence,uint32_t * image_index)1438 VkResult AcquireNextImageKHR(VkDevice device,
1439                              VkSwapchainKHR swapchain_handle,
1440                              uint64_t timeout,
1441                              VkSemaphore semaphore,
1442                              VkFence vk_fence,
1443                              uint32_t* image_index) {
1444     ATRACE_CALL();
1445 
1446     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
1447     ANativeWindow* window = swapchain.surface.window.get();
1448     VkResult result;
1449     int err;
1450 
1451     if (swapchain.surface.swapchain_handle != swapchain_handle)
1452         return VK_ERROR_OUT_OF_DATE_KHR;
1453 
1454     if (swapchain.shared) {
1455         // In shared mode, we keep the buffer dequeued all the time, so we don't
1456         // want to dequeue a buffer here. Instead, just ask the driver to ensure
1457         // the semaphore and fence passed to us will be signalled.
1458         *image_index = 0;
1459         result = GetData(device).driver.AcquireImageANDROID(
1460                 device, swapchain.images[*image_index].image, -1, semaphore, vk_fence);
1461         return result;
1462     }
1463 
1464     const nsecs_t acquire_next_image_timeout =
1465         timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout;
1466     if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) {
1467         // Cache the timeout to avoid the duplicate binder cost.
1468         err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT,
1469                               acquire_next_image_timeout);
1470         if (err != android::OK) {
1471             ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
1472                   strerror(-err), err);
1473             return VK_ERROR_SURFACE_LOST_KHR;
1474         }
1475         swapchain.acquire_next_image_timeout = acquire_next_image_timeout;
1476     }
1477 
1478     ANativeWindowBuffer* buffer;
1479     int fence_fd;
1480     err = window->dequeueBuffer(window, &buffer, &fence_fd);
1481     if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) {
1482         ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err);
1483         return timeout ? VK_TIMEOUT : VK_NOT_READY;
1484     } else if (err != android::OK) {
1485         ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
1486         return VK_ERROR_SURFACE_LOST_KHR;
1487     }
1488 
1489     uint32_t idx;
1490     for (idx = 0; idx < swapchain.num_images; idx++) {
1491         if (swapchain.images[idx].buffer.get() == buffer) {
1492             swapchain.images[idx].dequeued = true;
1493             swapchain.images[idx].dequeue_fence = fence_fd;
1494             break;
1495         }
1496     }
1497     if (idx == swapchain.num_images) {
1498         ALOGE("dequeueBuffer returned unrecognized buffer");
1499         window->cancelBuffer(window, buffer, fence_fd);
1500         return VK_ERROR_OUT_OF_DATE_KHR;
1501     }
1502 
1503     int fence_clone = -1;
1504     if (fence_fd != -1) {
1505         fence_clone = dup(fence_fd);
1506         if (fence_clone == -1) {
1507             ALOGE("dup(fence) failed, stalling until signalled: %s (%d)",
1508                   strerror(errno), errno);
1509             sync_wait(fence_fd, -1 /* forever */);
1510         }
1511     }
1512 
1513     result = GetData(device).driver.AcquireImageANDROID(
1514         device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence);
1515     if (result != VK_SUCCESS) {
1516         // NOTE: we're relying on AcquireImageANDROID to close fence_clone,
1517         // even if the call fails. We could close it ourselves on failure, but
1518         // that would create a race condition if the driver closes it on a
1519         // failure path: some other thread might create an fd with the same
1520         // number between the time the driver closes it and the time we close
1521         // it. We must assume one of: the driver *always* closes it even on
1522         // failure, or *never* closes it on failure.
1523         window->cancelBuffer(window, buffer, fence_fd);
1524         swapchain.images[idx].dequeued = false;
1525         swapchain.images[idx].dequeue_fence = -1;
1526         return result;
1527     }
1528 
1529     *image_index = idx;
1530     return VK_SUCCESS;
1531 }
1532 
1533 VKAPI_ATTR
AcquireNextImage2KHR(VkDevice device,const VkAcquireNextImageInfoKHR * pAcquireInfo,uint32_t * pImageIndex)1534 VkResult AcquireNextImage2KHR(VkDevice device,
1535                               const VkAcquireNextImageInfoKHR* pAcquireInfo,
1536                               uint32_t* pImageIndex) {
1537     ATRACE_CALL();
1538 
1539     return AcquireNextImageKHR(device, pAcquireInfo->swapchain,
1540                                pAcquireInfo->timeout, pAcquireInfo->semaphore,
1541                                pAcquireInfo->fence, pImageIndex);
1542 }
1543 
WorstPresentResult(VkResult a,VkResult b)1544 static VkResult WorstPresentResult(VkResult a, VkResult b) {
1545     // See the error ranking for vkQueuePresentKHR at the end of section 29.6
1546     // (in spec version 1.0.14).
1547     static const VkResult kWorstToBest[] = {
1548         VK_ERROR_DEVICE_LOST,
1549         VK_ERROR_SURFACE_LOST_KHR,
1550         VK_ERROR_OUT_OF_DATE_KHR,
1551         VK_ERROR_OUT_OF_DEVICE_MEMORY,
1552         VK_ERROR_OUT_OF_HOST_MEMORY,
1553         VK_SUBOPTIMAL_KHR,
1554     };
1555     for (auto result : kWorstToBest) {
1556         if (a == result || b == result)
1557             return result;
1558     }
1559     ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a);
1560     ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b);
1561     return a != VK_SUCCESS ? a : b;
1562 }
1563 
1564 VKAPI_ATTR
QueuePresentKHR(VkQueue queue,const VkPresentInfoKHR * present_info)1565 VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) {
1566     ATRACE_CALL();
1567 
1568     ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
1569              "vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d",
1570              present_info->sType);
1571 
1572     VkDevice device = GetData(queue).driver_device;
1573     const auto& dispatch = GetData(queue).driver;
1574     VkResult final_result = VK_SUCCESS;
1575 
1576     // Look at the pNext chain for supported extension structs:
1577     const VkPresentRegionsKHR* present_regions = nullptr;
1578     const VkPresentTimesInfoGOOGLE* present_times = nullptr;
1579     const VkPresentRegionsKHR* next =
1580         reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext);
1581     while (next) {
1582         switch (next->sType) {
1583             case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
1584                 present_regions = next;
1585                 break;
1586             case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
1587                 present_times =
1588                     reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next);
1589                 break;
1590             default:
1591                 ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x",
1592                       next->sType);
1593                 break;
1594         }
1595         next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext);
1596     }
1597     ALOGV_IF(
1598         present_regions &&
1599             present_regions->swapchainCount != present_info->swapchainCount,
1600         "VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount");
1601     ALOGV_IF(present_times &&
1602                  present_times->swapchainCount != present_info->swapchainCount,
1603              "VkPresentTimesInfoGOOGLE::swapchainCount != "
1604              "VkPresentInfo::swapchainCount");
1605     const VkPresentRegionKHR* regions =
1606         (present_regions) ? present_regions->pRegions : nullptr;
1607     const VkPresentTimeGOOGLE* times =
1608         (present_times) ? present_times->pTimes : nullptr;
1609     const VkAllocationCallbacks* allocator = &GetData(device).allocator;
1610     android_native_rect_t* rects = nullptr;
1611     uint32_t nrects = 0;
1612 
1613     for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) {
1614         Swapchain& swapchain =
1615             *SwapchainFromHandle(present_info->pSwapchains[sc]);
1616         uint32_t image_idx = present_info->pImageIndices[sc];
1617         Swapchain::Image& img = swapchain.images[image_idx];
1618         const VkPresentRegionKHR* region =
1619             (regions && !swapchain.mailbox_mode) ? &regions[sc] : nullptr;
1620         const VkPresentTimeGOOGLE* time = (times) ? &times[sc] : nullptr;
1621         VkResult swapchain_result = VK_SUCCESS;
1622         VkResult result;
1623         int err;
1624 
1625         int fence = -1;
1626         result = dispatch.QueueSignalReleaseImageANDROID(
1627             queue, present_info->waitSemaphoreCount,
1628             present_info->pWaitSemaphores, img.image, &fence);
1629         if (result != VK_SUCCESS) {
1630             ALOGE("QueueSignalReleaseImageANDROID failed: %d", result);
1631             swapchain_result = result;
1632         }
1633 
1634         if (swapchain.surface.swapchain_handle ==
1635             present_info->pSwapchains[sc]) {
1636             ANativeWindow* window = swapchain.surface.window.get();
1637             if (swapchain_result == VK_SUCCESS) {
1638                 if (region) {
1639                     // Process the incremental-present hint for this swapchain:
1640                     uint32_t rcount = region->rectangleCount;
1641                     if (rcount > nrects) {
1642                         android_native_rect_t* new_rects =
1643                             static_cast<android_native_rect_t*>(
1644                                 allocator->pfnReallocation(
1645                                     allocator->pUserData, rects,
1646                                     sizeof(android_native_rect_t) * rcount,
1647                                     alignof(android_native_rect_t),
1648                                     VK_SYSTEM_ALLOCATION_SCOPE_COMMAND));
1649                         if (new_rects) {
1650                             rects = new_rects;
1651                             nrects = rcount;
1652                         } else {
1653                             rcount = 0;  // Ignore the hint for this swapchain
1654                         }
1655                     }
1656                     for (uint32_t r = 0; r < rcount; ++r) {
1657                         if (region->pRectangles[r].layer > 0) {
1658                             ALOGV(
1659                                 "vkQueuePresentKHR ignoring invalid layer "
1660                                 "(%u); using layer 0 instead",
1661                                 region->pRectangles[r].layer);
1662                         }
1663                         int x = region->pRectangles[r].offset.x;
1664                         int y = region->pRectangles[r].offset.y;
1665                         int width = static_cast<int>(
1666                             region->pRectangles[r].extent.width);
1667                         int height = static_cast<int>(
1668                             region->pRectangles[r].extent.height);
1669                         android_native_rect_t* cur_rect = &rects[r];
1670                         cur_rect->left = x;
1671                         cur_rect->top = y + height;
1672                         cur_rect->right = x + width;
1673                         cur_rect->bottom = y;
1674                     }
1675                     native_window_set_surface_damage(window, rects, rcount);
1676                 }
1677                 if (time) {
1678                     if (!swapchain.frame_timestamps_enabled) {
1679                         ALOGV(
1680                             "Calling "
1681                             "native_window_enable_frame_timestamps(true)");
1682                         native_window_enable_frame_timestamps(window, true);
1683                         swapchain.frame_timestamps_enabled = true;
1684                     }
1685 
1686                     // Record the nativeFrameId so it can be later correlated to
1687                     // this present.
1688                     uint64_t nativeFrameId = 0;
1689                     err = native_window_get_next_frame_id(
1690                             window, &nativeFrameId);
1691                     if (err != android::OK) {
1692                         ALOGE("Failed to get next native frame ID.");
1693                     }
1694 
1695                     // Add a new timing record with the user's presentID and
1696                     // the nativeFrameId.
1697                     swapchain.timing.emplace_back(time, nativeFrameId);
1698                     while (swapchain.timing.size() > MAX_TIMING_INFOS) {
1699                         swapchain.timing.erase(swapchain.timing.begin());
1700                     }
1701                     if (time->desiredPresentTime) {
1702                         // Set the desiredPresentTime:
1703                         ALOGV(
1704                             "Calling "
1705                             "native_window_set_buffers_timestamp(%" PRId64 ")",
1706                             time->desiredPresentTime);
1707                         native_window_set_buffers_timestamp(
1708                             window,
1709                             static_cast<int64_t>(time->desiredPresentTime));
1710                     }
1711                 }
1712 
1713                 err = window->queueBuffer(window, img.buffer.get(), fence);
1714                 // queueBuffer always closes fence, even on error
1715                 if (err != android::OK) {
1716                     ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err);
1717                     swapchain_result = WorstPresentResult(
1718                         swapchain_result, VK_ERROR_OUT_OF_DATE_KHR);
1719                 } else {
1720                     if (img.dequeue_fence >= 0) {
1721                         close(img.dequeue_fence);
1722                         img.dequeue_fence = -1;
1723                     }
1724                     img.dequeued = false;
1725                 }
1726 
1727                 // If the swapchain is in shared mode, immediately dequeue the
1728                 // buffer so it can be presented again without an intervening
1729                 // call to AcquireNextImageKHR. We expect to get the same buffer
1730                 // back from every call to dequeueBuffer in this mode.
1731                 if (swapchain.shared && swapchain_result == VK_SUCCESS) {
1732                     ANativeWindowBuffer* buffer;
1733                     int fence_fd;
1734                     err = window->dequeueBuffer(window, &buffer, &fence_fd);
1735                     if (err != android::OK) {
1736                         ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
1737                         swapchain_result = WorstPresentResult(swapchain_result,
1738                             VK_ERROR_SURFACE_LOST_KHR);
1739                     } else if (img.buffer != buffer) {
1740                         ALOGE("got wrong image back for shared swapchain");
1741                         swapchain_result = WorstPresentResult(swapchain_result,
1742                             VK_ERROR_SURFACE_LOST_KHR);
1743                     } else {
1744                         img.dequeue_fence = fence_fd;
1745                         img.dequeued = true;
1746                     }
1747                 }
1748             }
1749             if (swapchain_result != VK_SUCCESS) {
1750                 OrphanSwapchain(device, &swapchain);
1751             }
1752             int window_transform_hint;
1753             err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
1754                                 &window_transform_hint);
1755             if (err != android::OK) {
1756                 ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
1757                       strerror(-err), err);
1758                 swapchain_result = WorstPresentResult(
1759                     swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
1760             }
1761             if (swapchain.pre_transform != window_transform_hint) {
1762                 swapchain_result =
1763                     WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR);
1764             }
1765         } else {
1766             ReleaseSwapchainImage(device, nullptr, fence, img);
1767             swapchain_result = VK_ERROR_OUT_OF_DATE_KHR;
1768         }
1769 
1770         if (present_info->pResults)
1771             present_info->pResults[sc] = swapchain_result;
1772 
1773         if (swapchain_result != final_result)
1774             final_result = WorstPresentResult(final_result, swapchain_result);
1775     }
1776     if (rects) {
1777         allocator->pfnFree(allocator->pUserData, rects);
1778     }
1779 
1780     return final_result;
1781 }
1782 
1783 VKAPI_ATTR
GetRefreshCycleDurationGOOGLE(VkDevice,VkSwapchainKHR swapchain_handle,VkRefreshCycleDurationGOOGLE * pDisplayTimingProperties)1784 VkResult GetRefreshCycleDurationGOOGLE(
1785     VkDevice,
1786     VkSwapchainKHR swapchain_handle,
1787     VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) {
1788     ATRACE_CALL();
1789 
1790     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
1791     VkResult result = VK_SUCCESS;
1792 
1793     pDisplayTimingProperties->refreshDuration = swapchain.get_refresh_duration();
1794 
1795     return result;
1796 }
1797 
1798 VKAPI_ATTR
GetPastPresentationTimingGOOGLE(VkDevice,VkSwapchainKHR swapchain_handle,uint32_t * count,VkPastPresentationTimingGOOGLE * timings)1799 VkResult GetPastPresentationTimingGOOGLE(
1800     VkDevice,
1801     VkSwapchainKHR swapchain_handle,
1802     uint32_t* count,
1803     VkPastPresentationTimingGOOGLE* timings) {
1804     ATRACE_CALL();
1805 
1806     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
1807     if (swapchain.surface.swapchain_handle != swapchain_handle) {
1808         return VK_ERROR_OUT_OF_DATE_KHR;
1809     }
1810 
1811     ANativeWindow* window = swapchain.surface.window.get();
1812     VkResult result = VK_SUCCESS;
1813 
1814     if (!swapchain.frame_timestamps_enabled) {
1815         ALOGV("Calling native_window_enable_frame_timestamps(true)");
1816         native_window_enable_frame_timestamps(window, true);
1817         swapchain.frame_timestamps_enabled = true;
1818     }
1819 
1820     if (timings) {
1821         // Get the latest ready timing count before copying, since the copied
1822         // timing info will be erased in copy_ready_timings function.
1823         uint32_t n = get_num_ready_timings(swapchain);
1824         copy_ready_timings(swapchain, count, timings);
1825         // Check the *count here against the recorded ready timing count, since
1826         // *count can be overwritten per spec describes.
1827         if (*count < n) {
1828             result = VK_INCOMPLETE;
1829         }
1830     } else {
1831         *count = get_num_ready_timings(swapchain);
1832     }
1833 
1834     return result;
1835 }
1836 
1837 VKAPI_ATTR
GetSwapchainStatusKHR(VkDevice,VkSwapchainKHR swapchain_handle)1838 VkResult GetSwapchainStatusKHR(
1839     VkDevice,
1840     VkSwapchainKHR swapchain_handle) {
1841     ATRACE_CALL();
1842 
1843     Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
1844     VkResult result = VK_SUCCESS;
1845 
1846     if (swapchain.surface.swapchain_handle != swapchain_handle) {
1847         return VK_ERROR_OUT_OF_DATE_KHR;
1848     }
1849 
1850     // TODO(b/143296009): Implement this function properly
1851 
1852     return result;
1853 }
1854 
SetHdrMetadataEXT(VkDevice,uint32_t swapchainCount,const VkSwapchainKHR * pSwapchains,const VkHdrMetadataEXT * pHdrMetadataEXTs)1855 VKAPI_ATTR void SetHdrMetadataEXT(
1856     VkDevice,
1857     uint32_t swapchainCount,
1858     const VkSwapchainKHR* pSwapchains,
1859     const VkHdrMetadataEXT* pHdrMetadataEXTs) {
1860     ATRACE_CALL();
1861 
1862     for (uint32_t idx = 0; idx < swapchainCount; idx++) {
1863         Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]);
1864         if (!swapchain)
1865             continue;
1866 
1867         if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue;
1868 
1869         ANativeWindow* window = swapchain->surface.window.get();
1870 
1871         VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx];
1872         const android_smpte2086_metadata smpteMetdata = {
1873             {vulkanMetadata.displayPrimaryRed.x,
1874              vulkanMetadata.displayPrimaryRed.y},
1875             {vulkanMetadata.displayPrimaryGreen.x,
1876              vulkanMetadata.displayPrimaryGreen.y},
1877             {vulkanMetadata.displayPrimaryBlue.x,
1878              vulkanMetadata.displayPrimaryBlue.y},
1879             {vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y},
1880             vulkanMetadata.maxLuminance,
1881             vulkanMetadata.minLuminance};
1882         native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata);
1883 
1884         const android_cta861_3_metadata cta8613Metadata = {
1885             vulkanMetadata.maxContentLightLevel,
1886             vulkanMetadata.maxFrameAverageLightLevel};
1887         native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata);
1888     }
1889 
1890     return;
1891 }
1892 
InterceptBindImageMemory2(uint32_t bind_info_count,const VkBindImageMemoryInfo * bind_infos,std::vector<VkNativeBufferANDROID> * out_native_buffers,std::vector<VkBindImageMemoryInfo> * out_bind_infos)1893 static void InterceptBindImageMemory2(
1894     uint32_t bind_info_count,
1895     const VkBindImageMemoryInfo* bind_infos,
1896     std::vector<VkNativeBufferANDROID>* out_native_buffers,
1897     std::vector<VkBindImageMemoryInfo>* out_bind_infos) {
1898     out_native_buffers->clear();
1899     out_bind_infos->clear();
1900 
1901     if (!bind_info_count)
1902         return;
1903 
1904     std::unordered_set<uint32_t> intercepted_indexes;
1905 
1906     for (uint32_t idx = 0; idx < bind_info_count; idx++) {
1907         auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
1908             bind_infos[idx].pNext);
1909         while (info &&
1910                info->sType !=
1911                    VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) {
1912             info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
1913                 info->pNext);
1914         }
1915 
1916         if (!info)
1917             continue;
1918 
1919         ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE,
1920                     "swapchain handle must not be NULL");
1921         const Swapchain* swapchain = SwapchainFromHandle(info->swapchain);
1922         ALOG_ASSERT(
1923             info->imageIndex < swapchain->num_images,
1924             "imageIndex must be less than the number of images in swapchain");
1925 
1926         ANativeWindowBuffer* buffer =
1927             swapchain->images[info->imageIndex].buffer.get();
1928         VkNativeBufferANDROID native_buffer = {
1929 #pragma clang diagnostic push
1930 #pragma clang diagnostic ignored "-Wold-style-cast"
1931             .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
1932 #pragma clang diagnostic pop
1933             .pNext = bind_infos[idx].pNext,
1934             .handle = buffer->handle,
1935             .stride = buffer->stride,
1936             .format = buffer->format,
1937             .usage = int(buffer->usage),
1938         };
1939         // Reserve enough space to avoid letting re-allocation invalidate the
1940         // addresses of the elements inside.
1941         out_native_buffers->reserve(bind_info_count);
1942         out_native_buffers->emplace_back(native_buffer);
1943 
1944         // Reserve the space now since we know how much is needed now.
1945         out_bind_infos->reserve(bind_info_count);
1946         out_bind_infos->emplace_back(bind_infos[idx]);
1947         out_bind_infos->back().pNext = &out_native_buffers->back();
1948 
1949         intercepted_indexes.insert(idx);
1950     }
1951 
1952     if (intercepted_indexes.empty())
1953         return;
1954 
1955     for (uint32_t idx = 0; idx < bind_info_count; idx++) {
1956         if (intercepted_indexes.count(idx))
1957             continue;
1958         out_bind_infos->emplace_back(bind_infos[idx]);
1959     }
1960 }
1961 
1962 VKAPI_ATTR
BindImageMemory2(VkDevice device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)1963 VkResult BindImageMemory2(VkDevice device,
1964                           uint32_t bindInfoCount,
1965                           const VkBindImageMemoryInfo* pBindInfos) {
1966     ATRACE_CALL();
1967 
1968     // out_native_buffers is for maintaining the lifecycle of the constructed
1969     // VkNativeBufferANDROID objects inside InterceptBindImageMemory2.
1970     std::vector<VkNativeBufferANDROID> out_native_buffers;
1971     std::vector<VkBindImageMemoryInfo> out_bind_infos;
1972     InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
1973                               &out_bind_infos);
1974     return GetData(device).driver.BindImageMemory2(
1975         device, bindInfoCount,
1976         out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
1977 }
1978 
1979 VKAPI_ATTR
BindImageMemory2KHR(VkDevice device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)1980 VkResult BindImageMemory2KHR(VkDevice device,
1981                              uint32_t bindInfoCount,
1982                              const VkBindImageMemoryInfo* pBindInfos) {
1983     ATRACE_CALL();
1984 
1985     std::vector<VkNativeBufferANDROID> out_native_buffers;
1986     std::vector<VkBindImageMemoryInfo> out_bind_infos;
1987     InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
1988                               &out_bind_infos);
1989     return GetData(device).driver.BindImageMemory2KHR(
1990         device, bindInfoCount,
1991         out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
1992 }
1993 
1994 }  // namespace driver
1995 }  // namespace vulkan
1996