1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "induction_var_range.h"
18
19 #include <limits>
20
21 namespace art {
22
23 /** Returns true if 64-bit constant fits in 32-bit constant. */
CanLongValueFitIntoInt(int64_t c)24 static bool CanLongValueFitIntoInt(int64_t c) {
25 return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max();
26 }
27
28 /** Returns true if 32-bit addition can be done safely. */
IsSafeAdd(int32_t c1,int32_t c2)29 static bool IsSafeAdd(int32_t c1, int32_t c2) {
30 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
31 }
32
33 /** Returns true if 32-bit subtraction can be done safely. */
IsSafeSub(int32_t c1,int32_t c2)34 static bool IsSafeSub(int32_t c1, int32_t c2) {
35 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
36 }
37
38 /** Returns true if 32-bit multiplication can be done safely. */
IsSafeMul(int32_t c1,int32_t c2)39 static bool IsSafeMul(int32_t c1, int32_t c2) {
40 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
41 }
42
43 /** Returns true if 32-bit division can be done safely. */
IsSafeDiv(int32_t c1,int32_t c2)44 static bool IsSafeDiv(int32_t c1, int32_t c2) {
45 return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
46 }
47
48 /** Computes a * b for a,b > 0 (at least until first overflow happens). */
SafeMul(int64_t a,int64_t b,bool * overflow)49 static int64_t SafeMul(int64_t a, int64_t b, /*out*/ bool* overflow) {
50 if (a > 0 && b > 0 && a > (std::numeric_limits<int64_t>::max() / b)) {
51 *overflow = true;
52 }
53 return a * b;
54 }
55
56 /** Returns b^e for b,e > 0. Sets overflow if arithmetic wrap-around occurred. */
IntPow(int64_t b,int64_t e,bool * overflow)57 static int64_t IntPow(int64_t b, int64_t e, /*out*/ bool* overflow) {
58 DCHECK_LT(0, b);
59 DCHECK_LT(0, e);
60 int64_t pow = 1;
61 while (e) {
62 if (e & 1) {
63 pow = SafeMul(pow, b, overflow);
64 }
65 e >>= 1;
66 if (e) {
67 b = SafeMul(b, b, overflow);
68 }
69 }
70 return pow;
71 }
72
73 /**
74 * Detects an instruction that is >= 0. As long as the value is carried by
75 * a single instruction, arithmetic wrap-around cannot occur.
76 */
IsGEZero(HInstruction * instruction)77 static bool IsGEZero(HInstruction* instruction) {
78 DCHECK(instruction != nullptr);
79 if (instruction->IsArrayLength()) {
80 return true;
81 } else if (instruction->IsMin()) {
82 // Instruction MIN(>=0, >=0) is >= 0.
83 return IsGEZero(instruction->InputAt(0)) &&
84 IsGEZero(instruction->InputAt(1));
85 } else if (instruction->IsAbs()) {
86 // Instruction ABS(>=0) is >= 0.
87 // NOTE: ABS(minint) = minint prevents assuming
88 // >= 0 without looking at the argument.
89 return IsGEZero(instruction->InputAt(0));
90 }
91 int64_t value = -1;
92 return IsInt64AndGet(instruction, &value) && value >= 0;
93 }
94
95 /** Hunts "under the hood" for a suitable instruction at the hint. */
IsMaxAtHint(HInstruction * instruction,HInstruction * hint,HInstruction ** suitable)96 static bool IsMaxAtHint(
97 HInstruction* instruction, HInstruction* hint, /*out*/HInstruction** suitable) {
98 if (instruction->IsMin()) {
99 // For MIN(x, y), return most suitable x or y as maximum.
100 return IsMaxAtHint(instruction->InputAt(0), hint, suitable) ||
101 IsMaxAtHint(instruction->InputAt(1), hint, suitable);
102 } else {
103 *suitable = instruction;
104 return HuntForDeclaration(instruction) == hint;
105 }
106 }
107
108 /** Post-analysis simplification of a minimum value that makes the bound more useful to clients. */
SimplifyMin(InductionVarRange::Value v)109 static InductionVarRange::Value SimplifyMin(InductionVarRange::Value v) {
110 if (v.is_known && v.a_constant == 1 && v.b_constant <= 0) {
111 // If a == 1, instruction >= 0 and b <= 0, just return the constant b.
112 // No arithmetic wrap-around can occur.
113 if (IsGEZero(v.instruction)) {
114 return InductionVarRange::Value(v.b_constant);
115 }
116 }
117 return v;
118 }
119
120 /** Post-analysis simplification of a maximum value that makes the bound more useful to clients. */
SimplifyMax(InductionVarRange::Value v,HInstruction * hint)121 static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v, HInstruction* hint) {
122 if (v.is_known && v.a_constant >= 1) {
123 // An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as
124 // length + b because length >= 0 is true.
125 int64_t value;
126 if (v.instruction->IsDiv() &&
127 v.instruction->InputAt(0)->IsArrayLength() &&
128 IsInt64AndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) {
129 return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant);
130 }
131 // If a == 1, the most suitable one suffices as maximum value.
132 HInstruction* suitable = nullptr;
133 if (v.a_constant == 1 && IsMaxAtHint(v.instruction, hint, &suitable)) {
134 return InductionVarRange::Value(suitable, 1, v.b_constant);
135 }
136 }
137 return v;
138 }
139
140 /** Tests for a constant value. */
IsConstantValue(InductionVarRange::Value v)141 static bool IsConstantValue(InductionVarRange::Value v) {
142 return v.is_known && v.a_constant == 0;
143 }
144
145 /** Corrects a value for type to account for arithmetic wrap-around in lower precision. */
CorrectForType(InductionVarRange::Value v,DataType::Type type)146 static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, DataType::Type type) {
147 switch (type) {
148 case DataType::Type::kUint8:
149 case DataType::Type::kInt8:
150 case DataType::Type::kUint16:
151 case DataType::Type::kInt16: {
152 // Constants within range only.
153 // TODO: maybe some room for improvement, like allowing widening conversions
154 int32_t min = DataType::MinValueOfIntegralType(type);
155 int32_t max = DataType::MaxValueOfIntegralType(type);
156 return (IsConstantValue(v) && min <= v.b_constant && v.b_constant <= max)
157 ? v
158 : InductionVarRange::Value();
159 }
160 default:
161 return v;
162 }
163 }
164
165 /** Inserts an instruction. */
Insert(HBasicBlock * block,HInstruction * instruction)166 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
167 DCHECK(block != nullptr);
168 DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId();
169 DCHECK(instruction != nullptr);
170 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
171 return instruction;
172 }
173
174 /** Obtains loop's control instruction. */
GetLoopControl(HLoopInformation * loop)175 static HInstruction* GetLoopControl(HLoopInformation* loop) {
176 DCHECK(loop != nullptr);
177 return loop->GetHeader()->GetLastInstruction();
178 }
179
180 //
181 // Public class methods.
182 //
183
InductionVarRange(HInductionVarAnalysis * induction_analysis)184 InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
185 : induction_analysis_(induction_analysis),
186 chase_hint_(nullptr) {
187 DCHECK(induction_analysis != nullptr);
188 }
189
GetInductionRange(HInstruction * context,HInstruction * instruction,HInstruction * chase_hint,Value * min_val,Value * max_val,bool * needs_finite_test)190 bool InductionVarRange::GetInductionRange(HInstruction* context,
191 HInstruction* instruction,
192 HInstruction* chase_hint,
193 /*out*/Value* min_val,
194 /*out*/Value* max_val,
195 /*out*/bool* needs_finite_test) {
196 HLoopInformation* loop = nullptr;
197 HInductionVarAnalysis::InductionInfo* info = nullptr;
198 HInductionVarAnalysis::InductionInfo* trip = nullptr;
199 if (!HasInductionInfo(context, instruction, &loop, &info, &trip)) {
200 return false;
201 }
202 // Type int or lower (this is not too restrictive since intended clients, like
203 // bounds check elimination, will have truncated higher precision induction
204 // at their use point already).
205 switch (info->type) {
206 case DataType::Type::kUint8:
207 case DataType::Type::kInt8:
208 case DataType::Type::kUint16:
209 case DataType::Type::kInt16:
210 case DataType::Type::kInt32:
211 break;
212 default:
213 return false;
214 }
215 // Find range.
216 chase_hint_ = chase_hint;
217 bool in_body = context->GetBlock() != loop->GetHeader();
218 int64_t stride_value = 0;
219 *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min= */ true));
220 *max_val = SimplifyMax(GetVal(info, trip, in_body, /* is_min= */ false), chase_hint);
221 *needs_finite_test = NeedsTripCount(info, &stride_value) && IsUnsafeTripCount(trip);
222 chase_hint_ = nullptr;
223 // Retry chasing constants for wrap-around (merge sensitive).
224 if (!min_val->is_known && info->induction_class == HInductionVarAnalysis::kWrapAround) {
225 *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min= */ true));
226 }
227 return true;
228 }
229
CanGenerateRange(HInstruction * context,HInstruction * instruction,bool * needs_finite_test,bool * needs_taken_test)230 bool InductionVarRange::CanGenerateRange(HInstruction* context,
231 HInstruction* instruction,
232 /*out*/bool* needs_finite_test,
233 /*out*/bool* needs_taken_test) {
234 bool is_last_value = false;
235 int64_t stride_value = 0;
236 return GenerateRangeOrLastValue(context,
237 instruction,
238 is_last_value,
239 nullptr,
240 nullptr,
241 nullptr,
242 nullptr,
243 nullptr, // nothing generated yet
244 &stride_value,
245 needs_finite_test,
246 needs_taken_test)
247 && (stride_value == -1 ||
248 stride_value == 0 ||
249 stride_value == 1); // avoid arithmetic wrap-around anomalies.
250 }
251
GenerateRange(HInstruction * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper)252 void InductionVarRange::GenerateRange(HInstruction* context,
253 HInstruction* instruction,
254 HGraph* graph,
255 HBasicBlock* block,
256 /*out*/HInstruction** lower,
257 /*out*/HInstruction** upper) {
258 bool is_last_value = false;
259 int64_t stride_value = 0;
260 bool b1, b2; // unused
261 if (!GenerateRangeOrLastValue(context,
262 instruction,
263 is_last_value,
264 graph,
265 block,
266 lower,
267 upper,
268 nullptr,
269 &stride_value,
270 &b1,
271 &b2)) {
272 LOG(FATAL) << "Failed precondition: CanGenerateRange()";
273 }
274 }
275
GenerateTakenTest(HInstruction * context,HGraph * graph,HBasicBlock * block)276 HInstruction* InductionVarRange::GenerateTakenTest(HInstruction* context,
277 HGraph* graph,
278 HBasicBlock* block) {
279 HInstruction* taken_test = nullptr;
280 bool is_last_value = false;
281 int64_t stride_value = 0;
282 bool b1, b2; // unused
283 if (!GenerateRangeOrLastValue(context,
284 context,
285 is_last_value,
286 graph,
287 block,
288 nullptr,
289 nullptr,
290 &taken_test,
291 &stride_value,
292 &b1,
293 &b2)) {
294 LOG(FATAL) << "Failed precondition: CanGenerateRange()";
295 }
296 return taken_test;
297 }
298
CanGenerateLastValue(HInstruction * instruction)299 bool InductionVarRange::CanGenerateLastValue(HInstruction* instruction) {
300 bool is_last_value = true;
301 int64_t stride_value = 0;
302 bool needs_finite_test = false;
303 bool needs_taken_test = false;
304 return GenerateRangeOrLastValue(instruction,
305 instruction,
306 is_last_value,
307 nullptr,
308 nullptr,
309 nullptr,
310 nullptr,
311 nullptr, // nothing generated yet
312 &stride_value,
313 &needs_finite_test,
314 &needs_taken_test)
315 && !needs_finite_test && !needs_taken_test;
316 }
317
GenerateLastValue(HInstruction * instruction,HGraph * graph,HBasicBlock * block)318 HInstruction* InductionVarRange::GenerateLastValue(HInstruction* instruction,
319 HGraph* graph,
320 HBasicBlock* block) {
321 HInstruction* last_value = nullptr;
322 bool is_last_value = true;
323 int64_t stride_value = 0;
324 bool b1, b2; // unused
325 if (!GenerateRangeOrLastValue(instruction,
326 instruction,
327 is_last_value,
328 graph,
329 block,
330 &last_value,
331 &last_value,
332 nullptr,
333 &stride_value,
334 &b1,
335 &b2)) {
336 LOG(FATAL) << "Failed precondition: CanGenerateLastValue()";
337 }
338 return last_value;
339 }
340
Replace(HInstruction * instruction,HInstruction * fetch,HInstruction * replacement)341 void InductionVarRange::Replace(HInstruction* instruction,
342 HInstruction* fetch,
343 HInstruction* replacement) {
344 for (HLoopInformation* lp = instruction->GetBlock()->GetLoopInformation(); // closest enveloping loop
345 lp != nullptr;
346 lp = lp->GetPreHeader()->GetLoopInformation()) {
347 // Update instruction's information.
348 ReplaceInduction(induction_analysis_->LookupInfo(lp, instruction), fetch, replacement);
349 // Update loop's trip-count information.
350 ReplaceInduction(induction_analysis_->LookupInfo(lp, GetLoopControl(lp)), fetch, replacement);
351 }
352 }
353
IsFinite(HLoopInformation * loop,int64_t * trip_count) const354 bool InductionVarRange::IsFinite(HLoopInformation* loop, /*out*/ int64_t* trip_count) const {
355 bool is_constant_unused = false;
356 return CheckForFiniteAndConstantProps(loop, &is_constant_unused, trip_count);
357 }
358
HasKnownTripCount(HLoopInformation * loop,int64_t * trip_count) const359 bool InductionVarRange::HasKnownTripCount(HLoopInformation* loop,
360 /*out*/ int64_t* trip_count) const {
361 bool is_constant = false;
362 CheckForFiniteAndConstantProps(loop, &is_constant, trip_count);
363 return is_constant;
364 }
365
IsUnitStride(HInstruction * context,HInstruction * instruction,HGraph * graph,HInstruction ** offset) const366 bool InductionVarRange::IsUnitStride(HInstruction* context,
367 HInstruction* instruction,
368 HGraph* graph,
369 /*out*/ HInstruction** offset) const {
370 HLoopInformation* loop = nullptr;
371 HInductionVarAnalysis::InductionInfo* info = nullptr;
372 HInductionVarAnalysis::InductionInfo* trip = nullptr;
373 if (HasInductionInfo(context, instruction, &loop, &info, &trip)) {
374 if (info->induction_class == HInductionVarAnalysis::kLinear &&
375 !HInductionVarAnalysis::IsNarrowingLinear(info)) {
376 int64_t stride_value = 0;
377 if (IsConstant(info->op_a, kExact, &stride_value) && stride_value == 1) {
378 int64_t off_value = 0;
379 if (IsConstant(info->op_b, kExact, &off_value)) {
380 *offset = graph->GetConstant(info->op_b->type, off_value);
381 } else if (info->op_b->operation == HInductionVarAnalysis::kFetch) {
382 *offset = info->op_b->fetch;
383 } else {
384 return false;
385 }
386 return true;
387 }
388 }
389 }
390 return false;
391 }
392
GenerateTripCount(HLoopInformation * loop,HGraph * graph,HBasicBlock * block)393 HInstruction* InductionVarRange::GenerateTripCount(HLoopInformation* loop,
394 HGraph* graph,
395 HBasicBlock* block) {
396 HInductionVarAnalysis::InductionInfo *trip =
397 induction_analysis_->LookupInfo(loop, GetLoopControl(loop));
398 if (trip != nullptr && !IsUnsafeTripCount(trip)) {
399 HInstruction* taken_test = nullptr;
400 HInstruction* trip_expr = nullptr;
401 if (IsBodyTripCount(trip)) {
402 if (!GenerateCode(trip->op_b, nullptr, graph, block, &taken_test, false, false)) {
403 return nullptr;
404 }
405 }
406 if (GenerateCode(trip->op_a, nullptr, graph, block, &trip_expr, false, false)) {
407 if (taken_test != nullptr) {
408 HInstruction* zero = graph->GetConstant(trip->type, 0);
409 ArenaAllocator* allocator = graph->GetAllocator();
410 trip_expr = Insert(block, new (allocator) HSelect(taken_test, trip_expr, zero, kNoDexPc));
411 }
412 return trip_expr;
413 }
414 }
415 return nullptr;
416 }
417
418 //
419 // Private class methods.
420 //
421
CheckForFiniteAndConstantProps(HLoopInformation * loop,bool * is_constant,int64_t * trip_count) const422 bool InductionVarRange::CheckForFiniteAndConstantProps(HLoopInformation* loop,
423 /*out*/ bool* is_constant,
424 /*out*/ int64_t* trip_count) const {
425 HInductionVarAnalysis::InductionInfo *trip =
426 induction_analysis_->LookupInfo(loop, GetLoopControl(loop));
427 if (trip != nullptr && !IsUnsafeTripCount(trip)) {
428 *is_constant = IsConstant(trip->op_a, kExact, trip_count);
429 return true;
430 }
431 return false;
432 }
433
IsConstant(HInductionVarAnalysis::InductionInfo * info,ConstantRequest request,int64_t * value) const434 bool InductionVarRange::IsConstant(HInductionVarAnalysis::InductionInfo* info,
435 ConstantRequest request,
436 /*out*/ int64_t* value) const {
437 if (info != nullptr) {
438 // A direct 32-bit or 64-bit constant fetch. This immediately satisfies
439 // any of the three requests (kExact, kAtMost, and KAtLeast).
440 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
441 info->operation == HInductionVarAnalysis::kFetch) {
442 if (IsInt64AndGet(info->fetch, value)) {
443 return true;
444 }
445 }
446 // Try range analysis on the invariant, only accept a proper range
447 // to avoid arithmetic wrap-around anomalies.
448 Value min_val = GetVal(info, nullptr, /* in_body= */ true, /* is_min= */ true);
449 Value max_val = GetVal(info, nullptr, /* in_body= */ true, /* is_min= */ false);
450 if (IsConstantValue(min_val) &&
451 IsConstantValue(max_val) && min_val.b_constant <= max_val.b_constant) {
452 if ((request == kExact && min_val.b_constant == max_val.b_constant) || request == kAtMost) {
453 *value = max_val.b_constant;
454 return true;
455 } else if (request == kAtLeast) {
456 *value = min_val.b_constant;
457 return true;
458 }
459 }
460 }
461 return false;
462 }
463
HasInductionInfo(HInstruction * context,HInstruction * instruction,HLoopInformation ** loop,HInductionVarAnalysis::InductionInfo ** info,HInductionVarAnalysis::InductionInfo ** trip) const464 bool InductionVarRange::HasInductionInfo(
465 HInstruction* context,
466 HInstruction* instruction,
467 /*out*/ HLoopInformation** loop,
468 /*out*/ HInductionVarAnalysis::InductionInfo** info,
469 /*out*/ HInductionVarAnalysis::InductionInfo** trip) const {
470 DCHECK(context != nullptr);
471 DCHECK(context->GetBlock() != nullptr);
472 HLoopInformation* lp = context->GetBlock()->GetLoopInformation(); // closest enveloping loop
473 if (lp != nullptr) {
474 HInductionVarAnalysis::InductionInfo* i = induction_analysis_->LookupInfo(lp, instruction);
475 if (i != nullptr) {
476 *loop = lp;
477 *info = i;
478 *trip = induction_analysis_->LookupInfo(lp, GetLoopControl(lp));
479 return true;
480 }
481 }
482 return false;
483 }
484
IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo * trip) const485 bool InductionVarRange::IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
486 if (trip != nullptr) {
487 // Both bounds that define a trip-count are well-behaved if they either are not defined
488 // in any loop, or are contained in a proper interval. This allows finding the min/max
489 // of an expression by chasing outward.
490 InductionVarRange range(induction_analysis_);
491 HInductionVarAnalysis::InductionInfo* lower = trip->op_b->op_a;
492 HInductionVarAnalysis::InductionInfo* upper = trip->op_b->op_b;
493 int64_t not_used = 0;
494 return (!HasFetchInLoop(lower) || range.IsConstant(lower, kAtLeast, ¬_used)) &&
495 (!HasFetchInLoop(upper) || range.IsConstant(upper, kAtLeast, ¬_used));
496 }
497 return true;
498 }
499
HasFetchInLoop(HInductionVarAnalysis::InductionInfo * info) const500 bool InductionVarRange::HasFetchInLoop(HInductionVarAnalysis::InductionInfo* info) const {
501 if (info != nullptr) {
502 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
503 info->operation == HInductionVarAnalysis::kFetch) {
504 return info->fetch->GetBlock()->GetLoopInformation() != nullptr;
505 }
506 return HasFetchInLoop(info->op_a) || HasFetchInLoop(info->op_b);
507 }
508 return false;
509 }
510
NeedsTripCount(HInductionVarAnalysis::InductionInfo * info,int64_t * stride_value) const511 bool InductionVarRange::NeedsTripCount(HInductionVarAnalysis::InductionInfo* info,
512 int64_t* stride_value) const {
513 if (info != nullptr) {
514 if (info->induction_class == HInductionVarAnalysis::kLinear) {
515 return IsConstant(info->op_a, kExact, stride_value);
516 } else if (info->induction_class == HInductionVarAnalysis::kPolynomial) {
517 return NeedsTripCount(info->op_a, stride_value);
518 } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) {
519 return NeedsTripCount(info->op_b, stride_value);
520 }
521 }
522 return false;
523 }
524
IsBodyTripCount(HInductionVarAnalysis::InductionInfo * trip) const525 bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
526 if (trip != nullptr) {
527 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
528 return trip->operation == HInductionVarAnalysis::kTripCountInBody ||
529 trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe;
530 }
531 }
532 return false;
533 }
534
IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo * trip) const535 bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
536 if (trip != nullptr) {
537 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
538 return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe ||
539 trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe;
540 }
541 }
542 return false;
543 }
544
GetLinear(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const545 InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::InductionInfo* info,
546 HInductionVarAnalysis::InductionInfo* trip,
547 bool in_body,
548 bool is_min) const {
549 DCHECK(info != nullptr);
550 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kLinear);
551 // Detect common situation where an offset inside the trip-count cancels out during range
552 // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding
553 // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information
554 // with intermediate results that only incorporate single instructions.
555 if (trip != nullptr) {
556 HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a;
557 if (trip_expr->type == info->type && trip_expr->operation == HInductionVarAnalysis::kSub) {
558 int64_t stride_value = 0;
559 if (IsConstant(info->op_a, kExact, &stride_value)) {
560 if (!is_min && stride_value == 1) {
561 // Test original trip's negative operand (trip_expr->op_b) against offset of induction.
562 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) {
563 // Analyze cancelled trip with just the positive operand (trip_expr->op_a).
564 HInductionVarAnalysis::InductionInfo cancelled_trip(
565 trip->induction_class,
566 trip->operation,
567 trip_expr->op_a,
568 trip->op_b,
569 nullptr,
570 trip->type);
571 return GetVal(&cancelled_trip, trip, in_body, is_min);
572 }
573 } else if (is_min && stride_value == -1) {
574 // Test original trip's positive operand (trip_expr->op_a) against offset of induction.
575 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) {
576 // Analyze cancelled trip with just the negative operand (trip_expr->op_b).
577 HInductionVarAnalysis::InductionInfo neg(
578 HInductionVarAnalysis::kInvariant,
579 HInductionVarAnalysis::kNeg,
580 nullptr,
581 trip_expr->op_b,
582 nullptr,
583 trip->type);
584 HInductionVarAnalysis::InductionInfo cancelled_trip(
585 trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type);
586 return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min));
587 }
588 }
589 }
590 }
591 }
592 // General rule of linear induction a * i + b, for normalized 0 <= i < TC.
593 return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min),
594 GetVal(info->op_b, trip, in_body, is_min));
595 }
596
GetPolynomial(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const597 InductionVarRange::Value InductionVarRange::GetPolynomial(HInductionVarAnalysis::InductionInfo* info,
598 HInductionVarAnalysis::InductionInfo* trip,
599 bool in_body,
600 bool is_min) const {
601 DCHECK(info != nullptr);
602 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
603 int64_t a = 0;
604 int64_t b = 0;
605 if (IsConstant(info->op_a->op_a, kExact, &a) && CanLongValueFitIntoInt(a) && a >= 0 &&
606 IsConstant(info->op_a->op_b, kExact, &b) && CanLongValueFitIntoInt(b) && b >= 0) {
607 // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for
608 // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
609 Value c = GetVal(info->op_b, trip, in_body, is_min);
610 if (is_min) {
611 return c;
612 } else {
613 Value m = GetVal(trip, trip, in_body, is_min);
614 Value t = DivValue(MulValue(m, SubValue(m, Value(1))), Value(2));
615 Value x = MulValue(Value(a), t);
616 Value y = MulValue(Value(b), m);
617 return AddValue(AddValue(x, y), c);
618 }
619 }
620 return Value();
621 }
622
GetGeometric(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const623 InductionVarRange::Value InductionVarRange::GetGeometric(HInductionVarAnalysis::InductionInfo* info,
624 HInductionVarAnalysis::InductionInfo* trip,
625 bool in_body,
626 bool is_min) const {
627 DCHECK(info != nullptr);
628 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
629 int64_t a = 0;
630 int64_t f = 0;
631 if (IsConstant(info->op_a, kExact, &a) &&
632 CanLongValueFitIntoInt(a) &&
633 IsInt64AndGet(info->fetch, &f) && f >= 1) {
634 // Conservative bounds on a * f^-i + b with f >= 1 can be computed without
635 // trip count. Other forms would require a much more elaborate evaluation.
636 const bool is_min_a = a >= 0 ? is_min : !is_min;
637 if (info->operation == HInductionVarAnalysis::kDiv) {
638 Value b = GetVal(info->op_b, trip, in_body, is_min);
639 return is_min_a ? b : AddValue(Value(a), b);
640 }
641 }
642 return Value();
643 }
644
GetFetch(HInstruction * instruction,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const645 InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction,
646 HInductionVarAnalysis::InductionInfo* trip,
647 bool in_body,
648 bool is_min) const {
649 // Special case when chasing constants: single instruction that denotes trip count in the
650 // loop-body is minimal 1 and maximal, with safe trip-count, max int,
651 if (chase_hint_ == nullptr && in_body && trip != nullptr && instruction == trip->op_a->fetch) {
652 if (is_min) {
653 return Value(1);
654 } else if (!instruction->IsConstant() && !IsUnsafeTripCount(trip)) {
655 return Value(std::numeric_limits<int32_t>::max());
656 }
657 }
658 // Unless at a constant or hint, chase the instruction a bit deeper into the HIR tree, so that
659 // it becomes more likely range analysis will compare the same instructions as terminal nodes.
660 int64_t value;
661 if (IsInt64AndGet(instruction, &value) && CanLongValueFitIntoInt(value)) {
662 // Proper constant reveals best information.
663 return Value(static_cast<int32_t>(value));
664 } else if (instruction == chase_hint_) {
665 // At hint, fetch is represented by itself.
666 return Value(instruction, 1, 0);
667 } else if (instruction->IsAdd()) {
668 // Incorporate suitable constants in the chased value.
669 if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
670 return AddValue(Value(static_cast<int32_t>(value)),
671 GetFetch(instruction->InputAt(1), trip, in_body, is_min));
672 } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
673 return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min),
674 Value(static_cast<int32_t>(value)));
675 }
676 } else if (instruction->IsSub()) {
677 // Incorporate suitable constants in the chased value.
678 if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
679 return SubValue(Value(static_cast<int32_t>(value)),
680 GetFetch(instruction->InputAt(1), trip, in_body, !is_min));
681 } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
682 return SubValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min),
683 Value(static_cast<int32_t>(value)));
684 }
685 } else if (instruction->IsArrayLength()) {
686 // Exploit length properties when chasing constants or chase into a new array declaration.
687 if (chase_hint_ == nullptr) {
688 return is_min ? Value(0) : Value(std::numeric_limits<int32_t>::max());
689 } else if (instruction->InputAt(0)->IsNewArray()) {
690 return GetFetch(instruction->InputAt(0)->AsNewArray()->GetLength(), trip, in_body, is_min);
691 }
692 } else if (instruction->IsTypeConversion()) {
693 // Since analysis is 32-bit (or narrower), chase beyond widening along the path.
694 // For example, this discovers the length in: for (long i = 0; i < a.length; i++);
695 if (instruction->AsTypeConversion()->GetInputType() == DataType::Type::kInt32 &&
696 instruction->AsTypeConversion()->GetResultType() == DataType::Type::kInt64) {
697 return GetFetch(instruction->InputAt(0), trip, in_body, is_min);
698 }
699 }
700 // Chase an invariant fetch that is defined by an outer loop if the trip-count used
701 // so far is well-behaved in both bounds and the next trip-count is safe.
702 // Example:
703 // for (int i = 0; i <= 100; i++) // safe
704 // for (int j = 0; j <= i; j++) // well-behaved
705 // j is in range [0, i ] (if i is chase hint)
706 // or in range [0, 100] (otherwise)
707 HLoopInformation* next_loop = nullptr;
708 HInductionVarAnalysis::InductionInfo* next_info = nullptr;
709 HInductionVarAnalysis::InductionInfo* next_trip = nullptr;
710 bool next_in_body = true; // inner loop is always in body of outer loop
711 if (HasInductionInfo(instruction, instruction, &next_loop, &next_info, &next_trip) &&
712 IsWellBehavedTripCount(trip) &&
713 !IsUnsafeTripCount(next_trip)) {
714 return GetVal(next_info, next_trip, next_in_body, is_min);
715 }
716 // Fetch is represented by itself.
717 return Value(instruction, 1, 0);
718 }
719
GetVal(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const720 InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info,
721 HInductionVarAnalysis::InductionInfo* trip,
722 bool in_body,
723 bool is_min) const {
724 if (info != nullptr) {
725 switch (info->induction_class) {
726 case HInductionVarAnalysis::kInvariant:
727 // Invariants.
728 switch (info->operation) {
729 case HInductionVarAnalysis::kAdd:
730 return AddValue(GetVal(info->op_a, trip, in_body, is_min),
731 GetVal(info->op_b, trip, in_body, is_min));
732 case HInductionVarAnalysis::kSub: // second reversed!
733 return SubValue(GetVal(info->op_a, trip, in_body, is_min),
734 GetVal(info->op_b, trip, in_body, !is_min));
735 case HInductionVarAnalysis::kNeg: // second reversed!
736 return SubValue(Value(0),
737 GetVal(info->op_b, trip, in_body, !is_min));
738 case HInductionVarAnalysis::kMul:
739 return GetMul(info->op_a, info->op_b, trip, in_body, is_min);
740 case HInductionVarAnalysis::kDiv:
741 return GetDiv(info->op_a, info->op_b, trip, in_body, is_min);
742 case HInductionVarAnalysis::kRem:
743 return GetRem(info->op_a, info->op_b);
744 case HInductionVarAnalysis::kXor:
745 return GetXor(info->op_a, info->op_b);
746 case HInductionVarAnalysis::kFetch:
747 return GetFetch(info->fetch, trip, in_body, is_min);
748 case HInductionVarAnalysis::kTripCountInLoop:
749 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
750 if (!in_body && !is_min) { // one extra!
751 return GetVal(info->op_a, trip, in_body, is_min);
752 }
753 FALLTHROUGH_INTENDED;
754 case HInductionVarAnalysis::kTripCountInBody:
755 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
756 if (is_min) {
757 return Value(0);
758 } else if (in_body) {
759 return SubValue(GetVal(info->op_a, trip, in_body, is_min), Value(1));
760 }
761 break;
762 default:
763 break;
764 }
765 break;
766 case HInductionVarAnalysis::kLinear:
767 return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type);
768 case HInductionVarAnalysis::kPolynomial:
769 return GetPolynomial(info, trip, in_body, is_min);
770 case HInductionVarAnalysis::kGeometric:
771 return GetGeometric(info, trip, in_body, is_min);
772 case HInductionVarAnalysis::kWrapAround:
773 case HInductionVarAnalysis::kPeriodic:
774 return MergeVal(GetVal(info->op_a, trip, in_body, is_min),
775 GetVal(info->op_b, trip, in_body, is_min), is_min);
776 }
777 }
778 return Value();
779 }
780
GetMul(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const781 InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1,
782 HInductionVarAnalysis::InductionInfo* info2,
783 HInductionVarAnalysis::InductionInfo* trip,
784 bool in_body,
785 bool is_min) const {
786 // Constant times range.
787 int64_t value = 0;
788 if (IsConstant(info1, kExact, &value)) {
789 return MulRangeAndConstant(value, info2, trip, in_body, is_min);
790 } else if (IsConstant(info2, kExact, &value)) {
791 return MulRangeAndConstant(value, info1, trip, in_body, is_min);
792 }
793 // Interval ranges.
794 Value v1_min = GetVal(info1, trip, in_body, /* is_min= */ true);
795 Value v1_max = GetVal(info1, trip, in_body, /* is_min= */ false);
796 Value v2_min = GetVal(info2, trip, in_body, /* is_min= */ true);
797 Value v2_max = GetVal(info2, trip, in_body, /* is_min= */ false);
798 // Positive range vs. positive or negative range.
799 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
800 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
801 return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max);
802 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
803 return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max);
804 }
805 }
806 // Negative range vs. positive or negative range.
807 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
808 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
809 return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min);
810 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
811 return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min);
812 }
813 }
814 return Value();
815 }
816
GetDiv(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const817 InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1,
818 HInductionVarAnalysis::InductionInfo* info2,
819 HInductionVarAnalysis::InductionInfo* trip,
820 bool in_body,
821 bool is_min) const {
822 // Range divided by constant.
823 int64_t value = 0;
824 if (IsConstant(info2, kExact, &value)) {
825 return DivRangeAndConstant(value, info1, trip, in_body, is_min);
826 }
827 // Interval ranges.
828 Value v1_min = GetVal(info1, trip, in_body, /* is_min= */ true);
829 Value v1_max = GetVal(info1, trip, in_body, /* is_min= */ false);
830 Value v2_min = GetVal(info2, trip, in_body, /* is_min= */ true);
831 Value v2_max = GetVal(info2, trip, in_body, /* is_min= */ false);
832 // Positive range vs. positive or negative range.
833 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
834 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
835 return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min);
836 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
837 return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min);
838 }
839 }
840 // Negative range vs. positive or negative range.
841 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
842 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
843 return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max);
844 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
845 return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max);
846 }
847 }
848 return Value();
849 }
850
GetRem(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2) const851 InductionVarRange::Value InductionVarRange::GetRem(
852 HInductionVarAnalysis::InductionInfo* info1,
853 HInductionVarAnalysis::InductionInfo* info2) const {
854 int64_t v1 = 0;
855 int64_t v2 = 0;
856 // Only accept exact values.
857 if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2) && v2 != 0) {
858 int64_t value = v1 % v2;
859 if (CanLongValueFitIntoInt(value)) {
860 return Value(static_cast<int32_t>(value));
861 }
862 }
863 return Value();
864 }
865
GetXor(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2) const866 InductionVarRange::Value InductionVarRange::GetXor(
867 HInductionVarAnalysis::InductionInfo* info1,
868 HInductionVarAnalysis::InductionInfo* info2) const {
869 int64_t v1 = 0;
870 int64_t v2 = 0;
871 // Only accept exact values.
872 if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2)) {
873 int64_t value = v1 ^ v2;
874 if (CanLongValueFitIntoInt(value)) {
875 return Value(static_cast<int32_t>(value));
876 }
877 }
878 return Value();
879 }
880
MulRangeAndConstant(int64_t value,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const881 InductionVarRange::Value InductionVarRange::MulRangeAndConstant(
882 int64_t value,
883 HInductionVarAnalysis::InductionInfo* info,
884 HInductionVarAnalysis::InductionInfo* trip,
885 bool in_body,
886 bool is_min) const {
887 if (CanLongValueFitIntoInt(value)) {
888 Value c(static_cast<int32_t>(value));
889 return MulValue(GetVal(info, trip, in_body, is_min == value >= 0), c);
890 }
891 return Value();
892 }
893
DivRangeAndConstant(int64_t value,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const894 InductionVarRange::Value InductionVarRange::DivRangeAndConstant(
895 int64_t value,
896 HInductionVarAnalysis::InductionInfo* info,
897 HInductionVarAnalysis::InductionInfo* trip,
898 bool in_body,
899 bool is_min) const {
900 if (CanLongValueFitIntoInt(value)) {
901 Value c(static_cast<int32_t>(value));
902 return DivValue(GetVal(info, trip, in_body, is_min == value >= 0), c);
903 }
904 return Value();
905 }
906
AddValue(Value v1,Value v2) const907 InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const {
908 if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) {
909 int32_t b = v1.b_constant + v2.b_constant;
910 if (v1.a_constant == 0) {
911 return Value(v2.instruction, v2.a_constant, b);
912 } else if (v2.a_constant == 0) {
913 return Value(v1.instruction, v1.a_constant, b);
914 } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
915 return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
916 }
917 }
918 return Value();
919 }
920
SubValue(Value v1,Value v2) const921 InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const {
922 if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) {
923 int32_t b = v1.b_constant - v2.b_constant;
924 if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
925 return Value(v2.instruction, -v2.a_constant, b);
926 } else if (v2.a_constant == 0) {
927 return Value(v1.instruction, v1.a_constant, b);
928 } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
929 return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
930 }
931 }
932 return Value();
933 }
934
MulValue(Value v1,Value v2) const935 InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const {
936 if (v1.is_known && v2.is_known) {
937 if (v1.a_constant == 0) {
938 if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
939 return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
940 }
941 } else if (v2.a_constant == 0) {
942 if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
943 return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
944 }
945 }
946 }
947 return Value();
948 }
949
DivValue(Value v1,Value v2) const950 InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const {
951 if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) {
952 if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
953 return Value(v1.b_constant / v2.b_constant);
954 }
955 }
956 return Value();
957 }
958
MergeVal(Value v1,Value v2,bool is_min) const959 InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const {
960 if (v1.is_known && v2.is_known) {
961 if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
962 return Value(v1.instruction, v1.a_constant,
963 is_min ? std::min(v1.b_constant, v2.b_constant)
964 : std::max(v1.b_constant, v2.b_constant));
965 }
966 }
967 return Value();
968 }
969
GenerateRangeOrLastValue(HInstruction * context,HInstruction * instruction,bool is_last_value,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper,HInstruction ** taken_test,int64_t * stride_value,bool * needs_finite_test,bool * needs_taken_test) const970 bool InductionVarRange::GenerateRangeOrLastValue(HInstruction* context,
971 HInstruction* instruction,
972 bool is_last_value,
973 HGraph* graph,
974 HBasicBlock* block,
975 /*out*/HInstruction** lower,
976 /*out*/HInstruction** upper,
977 /*out*/HInstruction** taken_test,
978 /*out*/int64_t* stride_value,
979 /*out*/bool* needs_finite_test,
980 /*out*/bool* needs_taken_test) const {
981 HLoopInformation* loop = nullptr;
982 HInductionVarAnalysis::InductionInfo* info = nullptr;
983 HInductionVarAnalysis::InductionInfo* trip = nullptr;
984 if (!HasInductionInfo(context, instruction, &loop, &info, &trip) || trip == nullptr) {
985 return false; // codegen needs all information, including tripcount
986 }
987 // Determine what tests are needed. A finite test is needed if the evaluation code uses the
988 // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot"
989 // the computed range). A taken test is needed for any unknown trip-count, even if evaluation
990 // code does not use the trip-count explicitly (since there could be an implicit relation
991 // between e.g. an invariant subscript and a not-taken condition).
992 bool in_body = context->GetBlock() != loop->GetHeader();
993 *stride_value = 0;
994 *needs_finite_test = NeedsTripCount(info, stride_value) && IsUnsafeTripCount(trip);
995 *needs_taken_test = IsBodyTripCount(trip);
996 // Handle last value request.
997 if (is_last_value) {
998 DCHECK(!in_body);
999 switch (info->induction_class) {
1000 case HInductionVarAnalysis::kLinear:
1001 if (*stride_value > 0) {
1002 lower = nullptr;
1003 } else {
1004 upper = nullptr;
1005 }
1006 break;
1007 case HInductionVarAnalysis::kPolynomial:
1008 return GenerateLastValuePolynomial(info, trip, graph, block, lower);
1009 case HInductionVarAnalysis::kGeometric:
1010 return GenerateLastValueGeometric(info, trip, graph, block, lower);
1011 case HInductionVarAnalysis::kWrapAround:
1012 return GenerateLastValueWrapAround(info, trip, graph, block, lower);
1013 case HInductionVarAnalysis::kPeriodic:
1014 return GenerateLastValuePeriodic(info, trip, graph, block, lower, needs_taken_test);
1015 default:
1016 return false;
1017 }
1018 }
1019 // Code generation for taken test: generate the code when requested or otherwise analyze
1020 // if code generation is feasible when taken test is needed.
1021 if (taken_test != nullptr) {
1022 return GenerateCode(trip->op_b, nullptr, graph, block, taken_test, in_body, /* is_min= */ false);
1023 } else if (*needs_taken_test) {
1024 if (!GenerateCode(
1025 trip->op_b, nullptr, nullptr, nullptr, nullptr, in_body, /* is_min= */ false)) {
1026 return false;
1027 }
1028 }
1029 // Code generation for lower and upper.
1030 return
1031 // Success on lower if invariant (not set), or code can be generated.
1032 ((info->induction_class == HInductionVarAnalysis::kInvariant) ||
1033 GenerateCode(info, trip, graph, block, lower, in_body, /* is_min= */ true)) &&
1034 // And success on upper.
1035 GenerateCode(info, trip, graph, block, upper, in_body, /* is_min= */ false);
1036 }
1037
GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1038 bool InductionVarRange::GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info,
1039 HInductionVarAnalysis::InductionInfo* trip,
1040 HGraph* graph,
1041 HBasicBlock* block,
1042 /*out*/HInstruction** result) const {
1043 DCHECK(info != nullptr);
1044 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
1045 // Detect known coefficients and trip count (always taken).
1046 int64_t a = 0;
1047 int64_t b = 0;
1048 int64_t m = 0;
1049 if (IsConstant(info->op_a->op_a, kExact, &a) &&
1050 IsConstant(info->op_a->op_b, kExact, &b) &&
1051 IsConstant(trip->op_a, kExact, &m) && m >= 1) {
1052 // Evaluate bounds on sum_i=0^m-1(a * i + b) + c for known
1053 // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
1054 HInstruction* c = nullptr;
1055 if (GenerateCode(info->op_b, nullptr, graph, block, graph ? &c : nullptr, false, false)) {
1056 if (graph != nullptr) {
1057 DataType::Type type = info->type;
1058 int64_t sum = a * ((m * (m - 1)) / 2) + b * m;
1059 if (type != DataType::Type::kInt64) {
1060 sum = static_cast<int32_t>(sum); // okay to truncate
1061 }
1062 *result =
1063 Insert(block, new (graph->GetAllocator()) HAdd(type, graph->GetConstant(type, sum), c));
1064 }
1065 return true;
1066 }
1067 }
1068 return false;
1069 }
1070
GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1071 bool InductionVarRange::GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info,
1072 HInductionVarAnalysis::InductionInfo* trip,
1073 HGraph* graph,
1074 HBasicBlock* block,
1075 /*out*/HInstruction** result) const {
1076 DCHECK(info != nullptr);
1077 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
1078 // Detect known base and trip count (always taken).
1079 int64_t f = 0;
1080 int64_t m = 0;
1081 if (IsInt64AndGet(info->fetch, &f) && f >= 1 && IsConstant(trip->op_a, kExact, &m) && m >= 1) {
1082 HInstruction* opa = nullptr;
1083 HInstruction* opb = nullptr;
1084 if (GenerateCode(info->op_a, nullptr, graph, block, &opa, false, false) &&
1085 GenerateCode(info->op_b, nullptr, graph, block, &opb, false, false)) {
1086 if (graph != nullptr) {
1087 DataType::Type type = info->type;
1088 // Compute f ^ m for known maximum index value m.
1089 bool overflow = false;
1090 int64_t fpow = IntPow(f, m, &overflow);
1091 if (info->operation == HInductionVarAnalysis::kDiv) {
1092 // For division, any overflow truncates to zero.
1093 if (overflow || (type != DataType::Type::kInt64 && !CanLongValueFitIntoInt(fpow))) {
1094 fpow = 0;
1095 }
1096 } else if (type != DataType::Type::kInt64) {
1097 // For multiplication, okay to truncate to required precision.
1098 DCHECK(info->operation == HInductionVarAnalysis::kMul);
1099 fpow = static_cast<int32_t>(fpow);
1100 }
1101 // Generate code.
1102 if (fpow == 0) {
1103 // Special case: repeated mul/div always yields zero.
1104 *result = graph->GetConstant(type, 0);
1105 } else {
1106 // Last value: a * f ^ m + b or a * f ^ -m + b.
1107 HInstruction* e = nullptr;
1108 ArenaAllocator* allocator = graph->GetAllocator();
1109 if (info->operation == HInductionVarAnalysis::kMul) {
1110 e = new (allocator) HMul(type, opa, graph->GetConstant(type, fpow));
1111 } else {
1112 e = new (allocator) HDiv(type, opa, graph->GetConstant(type, fpow), kNoDexPc);
1113 }
1114 *result = Insert(block, new (allocator) HAdd(type, Insert(block, e), opb));
1115 }
1116 }
1117 return true;
1118 }
1119 }
1120 return false;
1121 }
1122
GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1123 bool InductionVarRange::GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info,
1124 HInductionVarAnalysis::InductionInfo* trip,
1125 HGraph* graph,
1126 HBasicBlock* block,
1127 /*out*/HInstruction** result) const {
1128 DCHECK(info != nullptr);
1129 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kWrapAround);
1130 // Count depth.
1131 int32_t depth = 0;
1132 for (; info->induction_class == HInductionVarAnalysis::kWrapAround;
1133 info = info->op_b, ++depth) {}
1134 // Handle wrap(x, wrap(.., y)) if trip count reaches an invariant at end.
1135 // TODO: generalize, but be careful to adjust the terminal.
1136 int64_t m = 0;
1137 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
1138 IsConstant(trip->op_a, kExact, &m) && m >= depth) {
1139 return GenerateCode(info, nullptr, graph, block, result, false, false);
1140 }
1141 return false;
1142 }
1143
GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool * needs_taken_test) const1144 bool InductionVarRange::GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info,
1145 HInductionVarAnalysis::InductionInfo* trip,
1146 HGraph* graph,
1147 HBasicBlock* block,
1148 /*out*/HInstruction** result,
1149 /*out*/bool* needs_taken_test) const {
1150 DCHECK(info != nullptr);
1151 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPeriodic);
1152 // Count period and detect all-invariants.
1153 int64_t period = 1;
1154 bool all_invariants = true;
1155 HInductionVarAnalysis::InductionInfo* p = info;
1156 for (; p->induction_class == HInductionVarAnalysis::kPeriodic; p = p->op_b, ++period) {
1157 DCHECK_EQ(p->op_a->induction_class, HInductionVarAnalysis::kInvariant);
1158 if (p->op_a->operation != HInductionVarAnalysis::kFetch) {
1159 all_invariants = false;
1160 }
1161 }
1162 DCHECK_EQ(p->induction_class, HInductionVarAnalysis::kInvariant);
1163 if (p->operation != HInductionVarAnalysis::kFetch) {
1164 all_invariants = false;
1165 }
1166 // Don't rely on FP arithmetic to be precise, unless the full period
1167 // consist of pre-computed expressions only.
1168 if (info->type == DataType::Type::kFloat32 || info->type == DataType::Type::kFloat64) {
1169 if (!all_invariants) {
1170 return false;
1171 }
1172 }
1173 // Handle any periodic(x, periodic(.., y)) for known maximum index value m.
1174 int64_t m = 0;
1175 if (IsConstant(trip->op_a, kExact, &m) && m >= 1) {
1176 int64_t li = m % period;
1177 for (int64_t i = 0; i < li; info = info->op_b, i++) {}
1178 if (info->induction_class == HInductionVarAnalysis::kPeriodic) {
1179 info = info->op_a;
1180 }
1181 return GenerateCode(info, nullptr, graph, block, result, false, false);
1182 }
1183 // Handle periodic(x, y) using even/odd-select on trip count. Enter trip count expression
1184 // directly to obtain the maximum index value t even if taken test is needed.
1185 HInstruction* x = nullptr;
1186 HInstruction* y = nullptr;
1187 HInstruction* t = nullptr;
1188 if (period == 2 &&
1189 GenerateCode(info->op_a, nullptr, graph, block, graph ? &x : nullptr, false, false) &&
1190 GenerateCode(info->op_b, nullptr, graph, block, graph ? &y : nullptr, false, false) &&
1191 GenerateCode(trip->op_a, nullptr, graph, block, graph ? &t : nullptr, false, false)) {
1192 // During actual code generation (graph != nullptr), generate is_even ? x : y.
1193 if (graph != nullptr) {
1194 DataType::Type type = trip->type;
1195 ArenaAllocator* allocator = graph->GetAllocator();
1196 HInstruction* msk =
1197 Insert(block, new (allocator) HAnd(type, t, graph->GetConstant(type, 1)));
1198 HInstruction* is_even =
1199 Insert(block, new (allocator) HEqual(msk, graph->GetConstant(type, 0), kNoDexPc));
1200 *result = Insert(block, new (graph->GetAllocator()) HSelect(is_even, x, y, kNoDexPc));
1201 }
1202 // Guard select with taken test if needed.
1203 if (*needs_taken_test) {
1204 HInstruction* is_taken = nullptr;
1205 if (GenerateCode(trip->op_b, nullptr, graph, block, graph ? &is_taken : nullptr, false, false)) {
1206 if (graph != nullptr) {
1207 ArenaAllocator* allocator = graph->GetAllocator();
1208 *result = Insert(block, new (allocator) HSelect(is_taken, *result, x, kNoDexPc));
1209 }
1210 *needs_taken_test = false; // taken care of
1211 } else {
1212 return false;
1213 }
1214 }
1215 return true;
1216 }
1217 return false;
1218 }
1219
GenerateCode(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool in_body,bool is_min) const1220 bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info,
1221 HInductionVarAnalysis::InductionInfo* trip,
1222 HGraph* graph, // when set, code is generated
1223 HBasicBlock* block,
1224 /*out*/HInstruction** result,
1225 bool in_body,
1226 bool is_min) const {
1227 if (info != nullptr) {
1228 // If during codegen, the result is not needed (nullptr), simply return success.
1229 if (graph != nullptr && result == nullptr) {
1230 return true;
1231 }
1232 // Handle current operation.
1233 DataType::Type type = info->type;
1234 HInstruction* opa = nullptr;
1235 HInstruction* opb = nullptr;
1236 switch (info->induction_class) {
1237 case HInductionVarAnalysis::kInvariant:
1238 // Invariants (note that since invariants only have other invariants as
1239 // sub expressions, viz. no induction, there is no need to adjust is_min).
1240 switch (info->operation) {
1241 case HInductionVarAnalysis::kAdd:
1242 case HInductionVarAnalysis::kSub:
1243 case HInductionVarAnalysis::kMul:
1244 case HInductionVarAnalysis::kDiv:
1245 case HInductionVarAnalysis::kRem:
1246 case HInductionVarAnalysis::kXor:
1247 case HInductionVarAnalysis::kLT:
1248 case HInductionVarAnalysis::kLE:
1249 case HInductionVarAnalysis::kGT:
1250 case HInductionVarAnalysis::kGE:
1251 if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
1252 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
1253 if (graph != nullptr) {
1254 HInstruction* operation = nullptr;
1255 switch (info->operation) {
1256 case HInductionVarAnalysis::kAdd:
1257 operation = new (graph->GetAllocator()) HAdd(type, opa, opb); break;
1258 case HInductionVarAnalysis::kSub:
1259 operation = new (graph->GetAllocator()) HSub(type, opa, opb); break;
1260 case HInductionVarAnalysis::kMul:
1261 operation = new (graph->GetAllocator()) HMul(type, opa, opb, kNoDexPc); break;
1262 case HInductionVarAnalysis::kDiv:
1263 operation = new (graph->GetAllocator()) HDiv(type, opa, opb, kNoDexPc); break;
1264 case HInductionVarAnalysis::kRem:
1265 operation = new (graph->GetAllocator()) HRem(type, opa, opb, kNoDexPc); break;
1266 case HInductionVarAnalysis::kXor:
1267 operation = new (graph->GetAllocator()) HXor(type, opa, opb); break;
1268 case HInductionVarAnalysis::kLT:
1269 operation = new (graph->GetAllocator()) HLessThan(opa, opb); break;
1270 case HInductionVarAnalysis::kLE:
1271 operation = new (graph->GetAllocator()) HLessThanOrEqual(opa, opb); break;
1272 case HInductionVarAnalysis::kGT:
1273 operation = new (graph->GetAllocator()) HGreaterThan(opa, opb); break;
1274 case HInductionVarAnalysis::kGE:
1275 operation = new (graph->GetAllocator()) HGreaterThanOrEqual(opa, opb); break;
1276 default:
1277 LOG(FATAL) << "unknown operation";
1278 }
1279 *result = Insert(block, operation);
1280 }
1281 return true;
1282 }
1283 break;
1284 case HInductionVarAnalysis::kNeg:
1285 if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
1286 if (graph != nullptr) {
1287 *result = Insert(block, new (graph->GetAllocator()) HNeg(type, opb));
1288 }
1289 return true;
1290 }
1291 break;
1292 case HInductionVarAnalysis::kFetch:
1293 if (graph != nullptr) {
1294 *result = info->fetch; // already in HIR
1295 }
1296 return true;
1297 case HInductionVarAnalysis::kTripCountInLoop:
1298 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
1299 if (!in_body && !is_min) { // one extra!
1300 return GenerateCode(info->op_a, trip, graph, block, result, in_body, is_min);
1301 }
1302 FALLTHROUGH_INTENDED;
1303 case HInductionVarAnalysis::kTripCountInBody:
1304 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
1305 if (is_min) {
1306 if (graph != nullptr) {
1307 *result = graph->GetConstant(type, 0);
1308 }
1309 return true;
1310 } else if (in_body) {
1311 if (GenerateCode(info->op_a, trip, graph, block, &opb, in_body, is_min)) {
1312 if (graph != nullptr) {
1313 ArenaAllocator* allocator = graph->GetAllocator();
1314 *result =
1315 Insert(block, new (allocator) HSub(type, opb, graph->GetConstant(type, 1)));
1316 }
1317 return true;
1318 }
1319 }
1320 break;
1321 case HInductionVarAnalysis::kNop:
1322 LOG(FATAL) << "unexpected invariant nop";
1323 } // switch invariant operation
1324 break;
1325 case HInductionVarAnalysis::kLinear: {
1326 // Linear induction a * i + b, for normalized 0 <= i < TC. For ranges, this should
1327 // be restricted to a unit stride to avoid arithmetic wrap-around situations that
1328 // are harder to guard against. For a last value, requesting min/max based on any
1329 // known stride yields right value. Always avoid any narrowing linear induction or
1330 // any type mismatch between the linear induction and the trip count expression.
1331 // TODO: careful runtime type conversions could generalize this latter restriction.
1332 if (!HInductionVarAnalysis::IsNarrowingLinear(info) && trip->type == type) {
1333 int64_t stride_value = 0;
1334 if (IsConstant(info->op_a, kExact, &stride_value) &&
1335 CanLongValueFitIntoInt(stride_value)) {
1336 const bool is_min_a = stride_value >= 0 ? is_min : !is_min;
1337 if (GenerateCode(trip, trip, graph, block, &opa, in_body, is_min_a) &&
1338 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
1339 if (graph != nullptr) {
1340 ArenaAllocator* allocator = graph->GetAllocator();
1341 HInstruction* oper;
1342 if (stride_value == 1) {
1343 oper = new (allocator) HAdd(type, opa, opb);
1344 } else if (stride_value == -1) {
1345 oper = new (graph->GetAllocator()) HSub(type, opb, opa);
1346 } else {
1347 HInstruction* mul =
1348 new (allocator) HMul(type, graph->GetConstant(type, stride_value), opa);
1349 oper = new (allocator) HAdd(type, Insert(block, mul), opb);
1350 }
1351 *result = Insert(block, oper);
1352 }
1353 return true;
1354 }
1355 }
1356 }
1357 break;
1358 }
1359 case HInductionVarAnalysis::kPolynomial:
1360 case HInductionVarAnalysis::kGeometric:
1361 break;
1362 case HInductionVarAnalysis::kWrapAround:
1363 case HInductionVarAnalysis::kPeriodic: {
1364 // Wrap-around and periodic inductions are restricted to constants only, so that extreme
1365 // values are easy to test at runtime without complications of arithmetic wrap-around.
1366 Value extreme = GetVal(info, trip, in_body, is_min);
1367 if (IsConstantValue(extreme)) {
1368 if (graph != nullptr) {
1369 *result = graph->GetConstant(type, extreme.b_constant);
1370 }
1371 return true;
1372 }
1373 break;
1374 }
1375 } // switch induction class
1376 }
1377 return false;
1378 }
1379
ReplaceInduction(HInductionVarAnalysis::InductionInfo * info,HInstruction * fetch,HInstruction * replacement)1380 void InductionVarRange::ReplaceInduction(HInductionVarAnalysis::InductionInfo* info,
1381 HInstruction* fetch,
1382 HInstruction* replacement) {
1383 if (info != nullptr) {
1384 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
1385 info->operation == HInductionVarAnalysis::kFetch &&
1386 info->fetch == fetch) {
1387 info->fetch = replacement;
1388 }
1389 ReplaceInduction(info->op_a, fetch, replacement);
1390 ReplaceInduction(info->op_b, fetch, replacement);
1391 }
1392 }
1393
1394 } // namespace art
1395