1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "method_verifier-inl.h"
18 
19 #include <ostream>
20 
21 #include "android-base/stringprintf.h"
22 
23 #include "art_field-inl.h"
24 #include "art_method-inl.h"
25 #include "base/aborting.h"
26 #include "base/enums.h"
27 #include "base/leb128.h"
28 #include "base/indenter.h"
29 #include "base/logging.h"  // For VLOG.
30 #include "base/mutex-inl.h"
31 #include "base/sdk_version.h"
32 #include "base/stl_util.h"
33 #include "base/systrace.h"
34 #include "base/time_utils.h"
35 #include "base/utils.h"
36 #include "class_linker.h"
37 #include "class_root.h"
38 #include "compiler_callbacks.h"
39 #include "dex/class_accessor-inl.h"
40 #include "dex/descriptors_names.h"
41 #include "dex/dex_file-inl.h"
42 #include "dex/dex_file_exception_helpers.h"
43 #include "dex/dex_instruction-inl.h"
44 #include "dex/dex_instruction_utils.h"
45 #include "experimental_flags.h"
46 #include "gc/accounting/card_table-inl.h"
47 #include "handle_scope-inl.h"
48 #include "intern_table.h"
49 #include "mirror/class-inl.h"
50 #include "mirror/class.h"
51 #include "mirror/class_loader.h"
52 #include "mirror/dex_cache-inl.h"
53 #include "mirror/method_handle_impl.h"
54 #include "mirror/method_type.h"
55 #include "mirror/object-inl.h"
56 #include "mirror/object_array-inl.h"
57 #include "mirror/var_handle.h"
58 #include "obj_ptr-inl.h"
59 #include "reg_type-inl.h"
60 #include "register_line-inl.h"
61 #include "runtime.h"
62 #include "scoped_newline.h"
63 #include "scoped_thread_state_change-inl.h"
64 #include "stack.h"
65 #include "vdex_file.h"
66 #include "verifier/method_verifier.h"
67 #include "verifier_compiler_binding.h"
68 #include "verifier_deps.h"
69 
70 namespace art {
71 namespace verifier {
72 
73 using android::base::StringPrintf;
74 
75 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
76 
PcToRegisterLineTable(ScopedArenaAllocator & allocator)77 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
78     : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
79 
Init(RegisterTrackingMode mode,InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,ScopedArenaAllocator & allocator,RegTypeCache * reg_types)80 void PcToRegisterLineTable::Init(RegisterTrackingMode mode,
81                                  InstructionFlags* flags,
82                                  uint32_t insns_size,
83                                  uint16_t registers_size,
84                                  ScopedArenaAllocator& allocator,
85                                  RegTypeCache* reg_types) {
86   DCHECK_GT(insns_size, 0U);
87   register_lines_.resize(insns_size);
88   for (uint32_t i = 0; i < insns_size; i++) {
89     bool interesting = false;
90     switch (mode) {
91       case kTrackRegsAll:
92         interesting = flags[i].IsOpcode();
93         break;
94       case kTrackCompilerInterestPoints:
95         interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
96         break;
97       case kTrackRegsBranches:
98         interesting = flags[i].IsBranchTarget();
99         break;
100     }
101     if (interesting) {
102       register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
103     }
104   }
105 }
106 
~PcToRegisterLineTable()107 PcToRegisterLineTable::~PcToRegisterLineTable() {}
108 
109 namespace impl {
110 namespace {
111 
112 enum class CheckAccess {
113   kNo,
114   kOnResolvedClass,
115   kYes,
116 };
117 
118 enum class FieldAccessType {
119   kAccGet,
120   kAccPut
121 };
122 
123 // Instruction types that are not marked as throwing (because they normally would not), but for
124 // historical reasons may do so. These instructions cannot be marked kThrow as that would introduce
125 // a general flow that is unwanted.
126 //
127 // Note: Not implemented as Instruction::Flags value as that set is full and we'd need to increase
128 //       the struct size (making it a non-power-of-two) for a single element.
129 //
130 // Note: This should eventually be removed.
IsCompatThrow(Instruction::Code opcode)131 constexpr bool IsCompatThrow(Instruction::Code opcode) {
132   return opcode == Instruction::Code::RETURN_OBJECT || opcode == Instruction::Code::MOVE_EXCEPTION;
133 }
134 
135 template <bool kVerifierDebug>
136 class MethodVerifier final : public ::art::verifier::MethodVerifier {
137  public:
IsInstanceConstructor() const138   bool IsInstanceConstructor() const {
139     return IsConstructor() && !IsStatic();
140   }
141 
ResolveCheckedClass(dex::TypeIndex class_idx)142   const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
143       REQUIRES_SHARED(Locks::mutator_lock_) {
144     DCHECK(!HasFailures());
145     const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
146     DCHECK(!HasFailures());
147     return result;
148   }
149 
150   void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
151 
152  private:
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t method_idx,bool can_load_classes,bool allow_thread_suspension,bool allow_soft_failures,bool aot_mode,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,ArtMethod * method,uint32_t access_flags,bool need_precise_constants,bool verify_to_dump,bool fill_register_lines,uint32_t api_level)153   MethodVerifier(Thread* self,
154                  ClassLinker* class_linker,
155                  ArenaPool* arena_pool,
156                  const DexFile* dex_file,
157                  const dex::CodeItem* code_item,
158                  uint32_t method_idx,
159                  bool can_load_classes,
160                  bool allow_thread_suspension,
161                  bool allow_soft_failures,
162                  bool aot_mode,
163                  Handle<mirror::DexCache> dex_cache,
164                  Handle<mirror::ClassLoader> class_loader,
165                  const dex::ClassDef& class_def,
166                  ArtMethod* method,
167                  uint32_t access_flags,
168                  bool need_precise_constants,
169                  bool verify_to_dump,
170                  bool fill_register_lines,
171                  uint32_t api_level) REQUIRES_SHARED(Locks::mutator_lock_)
172      : art::verifier::MethodVerifier(self,
173                                      class_linker,
174                                      arena_pool,
175                                      dex_file,
176                                      code_item,
177                                      method_idx,
178                                      can_load_classes,
179                                      allow_thread_suspension,
180                                      allow_soft_failures,
181                                      aot_mode),
182        method_being_verified_(method),
183        method_access_flags_(access_flags),
184        return_type_(nullptr),
185        dex_cache_(dex_cache),
186        class_loader_(class_loader),
187        class_def_(class_def),
188        declaring_class_(nullptr),
189        interesting_dex_pc_(-1),
190        monitor_enter_dex_pcs_(nullptr),
191        need_precise_constants_(need_precise_constants),
192        verify_to_dump_(verify_to_dump),
193        allow_thread_suspension_(allow_thread_suspension),
194        is_constructor_(false),
195        fill_register_lines_(fill_register_lines),
196        api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
197   }
198 
UninstantiableError(const char * descriptor)199   void UninstantiableError(const char* descriptor) {
200     Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
201                                              << "non-instantiable klass " << descriptor;
202   }
IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)203   static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
204       REQUIRES_SHARED(Locks::mutator_lock_) {
205     return klass->IsInstantiable() || klass->IsPrimitive();
206   }
207 
208   // Is the method being verified a constructor? See the comment on the field.
IsConstructor() const209   bool IsConstructor() const {
210     return is_constructor_;
211   }
212 
213   // Is the method verified static?
IsStatic() const214   bool IsStatic() const {
215     return (method_access_flags_ & kAccStatic) != 0;
216   }
217 
218   // Adds the given string to the beginning of the last failure message.
PrependToLastFailMessage(std::string prepend)219   void PrependToLastFailMessage(std::string prepend) {
220     size_t failure_num = failure_messages_.size();
221     DCHECK_NE(failure_num, 0U);
222     std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
223     prepend += last_fail_message->str();
224     failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
225     delete last_fail_message;
226   }
227 
228   // Adds the given string to the end of the last failure message.
AppendToLastFailMessage(const std::string & append)229   void AppendToLastFailMessage(const std::string& append) {
230     size_t failure_num = failure_messages_.size();
231     DCHECK_NE(failure_num, 0U);
232     std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
233     (*last_fail_message) << append;
234   }
235 
236   /*
237    * Compute the width of the instruction at each address in the instruction stream, and store it in
238    * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
239    * table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
240    *
241    * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
242    *
243    * Performs some static checks, notably:
244    * - opcode of first instruction begins at index 0
245    * - only documented instructions may appear
246    * - each instruction follows the last
247    * - last byte of last instruction is at (code_length-1)
248    *
249    * Logs an error and returns "false" on failure.
250    */
251   bool ComputeWidthsAndCountOps();
252 
253   /*
254    * Set the "in try" flags for all instructions protected by "try" statements. Also sets the
255    * "branch target" flags for exception handlers.
256    *
257    * Call this after widths have been set in "insn_flags".
258    *
259    * Returns "false" if something in the exception table looks fishy, but we're expecting the
260    * exception table to be somewhat sane.
261    */
262   bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
263 
264   /*
265    * Perform static verification on all instructions in a method.
266    *
267    * Walks through instructions in a method calling VerifyInstruction on each.
268    */
269   template <bool kAllowRuntimeOnlyInstructions>
270   bool VerifyInstructions();
271 
272   /*
273    * Perform static verification on an instruction.
274    *
275    * As a side effect, this sets the "branch target" flags in InsnFlags.
276    *
277    * "(CF)" items are handled during code-flow analysis.
278    *
279    * v3 4.10.1
280    * - target of each jump and branch instruction must be valid
281    * - targets of switch statements must be valid
282    * - operands referencing constant pool entries must be valid
283    * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
284    * - (CF) operands of method invocation instructions must be valid
285    * - (CF) only invoke-direct can call a method starting with '<'
286    * - (CF) <clinit> must never be called explicitly
287    * - operands of instanceof, checkcast, new (and variants) must be valid
288    * - new-array[-type] limited to 255 dimensions
289    * - can't use "new" on an array class
290    * - (?) limit dimensions in multi-array creation
291    * - local variable load/store register values must be in valid range
292    *
293    * v3 4.11.1.2
294    * - branches must be within the bounds of the code array
295    * - targets of all control-flow instructions are the start of an instruction
296    * - register accesses fall within range of allocated registers
297    * - (N/A) access to constant pool must be of appropriate type
298    * - code does not end in the middle of an instruction
299    * - execution cannot fall off the end of the code
300    * - (earlier) for each exception handler, the "try" area must begin and
301    *   end at the start of an instruction (end can be at the end of the code)
302    * - (earlier) for each exception handler, the handler must start at a valid
303    *   instruction
304    */
305   template <bool kAllowRuntimeOnlyInstructions>
306   bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
307 
308   /* Ensure that the register index is valid for this code item. */
CheckRegisterIndex(uint32_t idx)309   bool CheckRegisterIndex(uint32_t idx) {
310     if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
311       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
312                                         << code_item_accessor_.RegistersSize() << ")";
313       return false;
314     }
315     return true;
316   }
317 
318   /* Ensure that the wide register index is valid for this code item. */
CheckWideRegisterIndex(uint32_t idx)319   bool CheckWideRegisterIndex(uint32_t idx) {
320     if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
321       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
322                                         << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
323       return false;
324     }
325     return true;
326   }
327 
328   // Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
329   // the call site index is in the valid range.
CheckCallSiteIndex(uint32_t idx)330   bool CheckCallSiteIndex(uint32_t idx) {
331     uint32_t limit = dex_file_->NumCallSiteIds();
332     if (UNLIKELY(idx >= limit)) {
333       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
334                                         << limit << ")";
335       return false;
336     }
337     return true;
338   }
339 
340   // Perform static checks on a field Get or set instruction. All we do here is ensure that the
341   // field index is in the valid range.
CheckFieldIndex(uint32_t idx)342   bool CheckFieldIndex(uint32_t idx) {
343     if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
344       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
345                                         << dex_file_->GetHeader().field_ids_size_ << ")";
346       return false;
347     }
348     return true;
349   }
350 
351   // Perform static checks on a method invocation instruction. All we do here is ensure that the
352   // method index is in the valid range.
CheckMethodIndex(uint32_t idx)353   bool CheckMethodIndex(uint32_t idx) {
354     if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
355       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
356                                         << dex_file_->GetHeader().method_ids_size_ << ")";
357       return false;
358     }
359     return true;
360   }
361 
362   // Perform static checks on an instruction referencing a constant method handle. All we do here
363   // is ensure that the method index is in the valid range.
CheckMethodHandleIndex(uint32_t idx)364   bool CheckMethodHandleIndex(uint32_t idx) {
365     uint32_t limit = dex_file_->NumMethodHandles();
366     if (UNLIKELY(idx >= limit)) {
367       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
368                                         << limit << ")";
369       return false;
370     }
371     return true;
372   }
373 
374   // Perform static checks on a "new-instance" instruction. Specifically, make sure the class
375   // reference isn't for an array class.
376   bool CheckNewInstance(dex::TypeIndex idx);
377 
378   // Perform static checks on a prototype indexing instruction. All we do here is ensure that the
379   // prototype index is in the valid range.
CheckPrototypeIndex(uint32_t idx)380   bool CheckPrototypeIndex(uint32_t idx) {
381     if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
382       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
383                                         << dex_file_->GetHeader().proto_ids_size_ << ")";
384       return false;
385     }
386     return true;
387   }
388 
389   /* Ensure that the string index is in the valid range. */
CheckStringIndex(uint32_t idx)390   bool CheckStringIndex(uint32_t idx) {
391     if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
392       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
393                                         << dex_file_->GetHeader().string_ids_size_ << ")";
394       return false;
395     }
396     return true;
397   }
398 
399   // Perform static checks on an instruction that takes a class constant. Ensure that the class
400   // index is in the valid range.
CheckTypeIndex(dex::TypeIndex idx)401   bool CheckTypeIndex(dex::TypeIndex idx) {
402     if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
403       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
404                                         << dex_file_->GetHeader().type_ids_size_ << ")";
405       return false;
406     }
407     return true;
408   }
409 
410   // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
411   // creating an array of arrays that causes the number of dimensions to exceed 255.
412   bool CheckNewArray(dex::TypeIndex idx);
413 
414   // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
415   bool CheckArrayData(uint32_t cur_offset);
416 
417   // Verify that the target of a branch instruction is valid. We don't expect code to jump directly
418   // into an exception handler, but it's valid to do so as long as the target isn't a
419   // "move-exception" instruction. We verify that in a later stage.
420   // The dex format forbids certain instructions from branching to themselves.
421   // Updates "insn_flags_", setting the "branch target" flag.
422   bool CheckBranchTarget(uint32_t cur_offset);
423 
424   // Verify a switch table. "cur_offset" is the offset of the switch instruction.
425   // Updates "insn_flags_", setting the "branch target" flag.
426   bool CheckSwitchTargets(uint32_t cur_offset);
427 
428   // Check the register indices used in a "vararg" instruction, such as invoke-virtual or
429   // filled-new-array.
430   // - vA holds word count (0-5), args[] have values.
431   // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
432   // takes a double is done with consecutive registers. This requires parsing the target method
433   // signature, which we will be doing later on during the code flow analysis.
CheckVarArgRegs(uint32_t vA,uint32_t arg[])434   bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
435     uint16_t registers_size = code_item_accessor_.RegistersSize();
436     for (uint32_t idx = 0; idx < vA; idx++) {
437       if (UNLIKELY(arg[idx] >= registers_size)) {
438         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
439                                           << ") in non-range invoke (>= " << registers_size << ")";
440         return false;
441       }
442     }
443 
444     return true;
445   }
446 
447   // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
448   // or filled-new-array/range.
449   // - vA holds word count, vC holds index of first reg.
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)450   bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
451     uint16_t registers_size = code_item_accessor_.RegistersSize();
452     // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
453     // integer overflow when adding them here.
454     if (UNLIKELY(vA + vC > registers_size)) {
455       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
456                                         << " in range invoke (> " << registers_size << ")";
457       return false;
458     }
459     return true;
460   }
461 
462   // Checks the method matches the expectations required to be signature polymorphic.
463   bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
464 
465   // Checks the invoked receiver matches the expectations for signature polymorphic methods.
466   bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
467 
468   // Extract the relative offset from a branch instruction.
469   // Returns "false" on failure (e.g. this isn't a branch instruction).
470   bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
471                        bool* selfOkay);
472 
473   /* Perform detailed code-flow analysis on a single method. */
474   bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
475 
476   // Set the register types for the first instruction in the method based on the method signature.
477   // This has the side-effect of validating the signature.
478   bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
479 
480   /*
481    * Perform code flow on a method.
482    *
483    * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
484    * instruction, process it (setting additional "changed" bits), and repeat until there are no
485    * more.
486    *
487    * v3 4.11.1.1
488    * - (N/A) operand stack is always the same size
489    * - operand stack [registers] contain the correct types of values
490    * - local variables [registers] contain the correct types of values
491    * - methods are invoked with the appropriate arguments
492    * - fields are assigned using values of appropriate types
493    * - opcodes have the correct type values in operand registers
494    * - there is never an uninitialized class instance in a local variable in code protected by an
495    *   exception handler (operand stack is okay, because the operand stack is discarded when an
496    *   exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
497    *   register typing]
498    *
499    * v3 4.11.1.2
500    * - execution cannot fall off the end of the code
501    *
502    * (We also do many of the items described in the "static checks" sections, because it's easier to
503    * do them here.)
504    *
505    * We need an array of RegType values, one per register, for every instruction. If the method uses
506    * monitor-enter, we need extra data for every register, and a stack for every "interesting"
507    * instruction. In theory this could become quite large -- up to several megabytes for a monster
508    * function.
509    *
510    * NOTE:
511    * The spec forbids backward branches when there's an uninitialized reference in a register. The
512    * idea is to prevent something like this:
513    *   loop:
514    *     move r1, r0
515    *     new-instance r0, MyClass
516    *     ...
517    *     if-eq rN, loop  // once
518    *   initialize r0
519    *
520    * This leaves us with two different instances, both allocated by the same instruction, but only
521    * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
522    * it by preventing backward branches. We achieve identical results without restricting code
523    * reordering by specifying that you can't execute the new-instance instruction if a register
524    * contains an uninitialized instance created by that same instruction.
525    */
526   template <bool kMonitorDexPCs>
527   bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
528 
529   /*
530    * Perform verification for a single instruction.
531    *
532    * This requires fully decoding the instruction to determine the effect it has on registers.
533    *
534    * Finds zero or more following instructions and sets the "changed" flag if execution at that
535    * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
536    * addresses. Does not set or clear any other flags in "insn_flags_".
537    */
538   bool CodeFlowVerifyInstruction(uint32_t* start_guess)
539       REQUIRES_SHARED(Locks::mutator_lock_);
540 
541   // Perform verification of a new array instruction
542   void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
543       REQUIRES_SHARED(Locks::mutator_lock_);
544 
545   // Helper to perform verification on puts of primitive type.
546   void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
547                           const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
548 
549   // Perform verification of an aget instruction. The destination register's type will be set to
550   // be that of component type of the array unless the array type is unknown, in which case a
551   // bottom type inferred from the type of instruction is used. is_primitive is false for an
552   // aget-object.
553   void VerifyAGet(const Instruction* inst, const RegType& insn_type,
554                   bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
555 
556   // Perform verification of an aput instruction.
557   void VerifyAPut(const Instruction* inst, const RegType& insn_type,
558                   bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
559 
560   // Lookup instance field and fail for resolution violations
561   ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
562       REQUIRES_SHARED(Locks::mutator_lock_);
563 
564   // Lookup static field and fail for resolution violations
565   ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
566 
567   // Perform verification of an iget/sget/iput/sput instruction.
568   template <FieldAccessType kAccType>
569   void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
570                            bool is_primitive, bool is_static)
571       REQUIRES_SHARED(Locks::mutator_lock_);
572 
573   // Resolves a class based on an index and, if C is kYes, performs access checks to ensure
574   // the referrer can access the resolved class.
575   template <CheckAccess C>
576   const RegType& ResolveClass(dex::TypeIndex class_idx)
577       REQUIRES_SHARED(Locks::mutator_lock_);
578 
579   /*
580    * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
581    * address, determine the Join of all exceptions that can land here. Fails if no matching
582    * exception handler can be found or if the Join of exception types fails.
583    */
584   const RegType& GetCaughtExceptionType()
585       REQUIRES_SHARED(Locks::mutator_lock_);
586 
587   /*
588    * Resolves a method based on an index and performs access checks to ensure
589    * the referrer can access the resolved method.
590    * Does not throw exceptions.
591    */
592   ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
593       REQUIRES_SHARED(Locks::mutator_lock_);
594 
595   /*
596    * Verify the arguments to a method. We're executing in "method", making
597    * a call to the method reference in vB.
598    *
599    * If this is a "direct" invoke, we allow calls to <init>. For calls to
600    * <init>, the first argument may be an uninitialized reference. Otherwise,
601    * calls to anything starting with '<' will be rejected, as will any
602    * uninitialized reference arguments.
603    *
604    * For non-static method calls, this will verify that the method call is
605    * appropriate for the "this" argument.
606    *
607    * The method reference is in vBBBB. The "is_range" parameter determines
608    * whether we use 0-4 "args" values or a range of registers defined by
609    * vAA and vCCCC.
610    *
611    * Widening conversions on integers and references are allowed, but
612    * narrowing conversions are not.
613    *
614    * Returns the resolved method on success, null on failure (with *failure
615    * set appropriately).
616    */
617   ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
618       REQUIRES_SHARED(Locks::mutator_lock_);
619 
620   // Similar checks to the above, but on the proto. Will be used when the method cannot be
621   // resolved.
622   void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
623                                             bool is_range)
624       REQUIRES_SHARED(Locks::mutator_lock_);
625 
626   template <class T>
627   ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
628                                                       MethodType method_type, bool is_range,
629                                                       ArtMethod* res_method)
630       REQUIRES_SHARED(Locks::mutator_lock_);
631 
632   /*
633    * Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
634    */
635   bool CheckCallSite(uint32_t call_site_idx);
636 
637   /*
638    * Verify that the target instruction is not "move-exception". It's important that the only way
639    * to execute a move-exception is as the first instruction of an exception handler.
640    * Returns "true" if all is well, "false" if the target instruction is move-exception.
641    */
CheckNotMoveException(const uint16_t * insns,int insn_idx)642   bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
643     if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
644       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
645       return false;
646     }
647     return true;
648   }
649 
650   /*
651    * Verify that the target instruction is not "move-result". It is important that we cannot
652    * branch to move-result instructions, but we have to make this a distinct check instead of
653    * adding it to CheckNotMoveException, because it is legal to continue into "move-result"
654    * instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
655    */
CheckNotMoveResult(const uint16_t * insns,int insn_idx)656   bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
657     if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
658         ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
659       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
660       return false;
661     }
662     return true;
663   }
664 
665   /*
666    * Verify that the target instruction is not "move-result" or "move-exception". This is to
667    * be used when checking branch and switch instructions, but not instructions that can
668    * continue.
669    */
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)670   bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
671     return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
672   }
673 
674   /*
675   * Control can transfer to "next_insn". Merge the registers from merge_line into the table at
676   * next_insn, and set the changed flag on the target address if any of the registers were changed.
677   * In the case of fall-through, update the merge line on a change as its the working line for the
678   * next instruction.
679   * Returns "false" if an error is encountered.
680   */
681   bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
682       REQUIRES_SHARED(Locks::mutator_lock_);
683 
684   // Return the register type for the method.
685   const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
686 
687   // Get a type representing the declaring class of the method.
GetDeclaringClass()688   const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
689     if (declaring_class_ == nullptr) {
690       const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
691       const char* descriptor
692           = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
693       if (method_being_verified_ != nullptr) {
694         ObjPtr<mirror::Class> klass = method_being_verified_->GetDeclaringClass();
695         declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
696       } else {
697         declaring_class_ = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
698       }
699     }
700     return *declaring_class_;
701   }
702 
CurrentInsnFlags()703   InstructionFlags* CurrentInsnFlags() {
704     return &GetModifiableInstructionFlags(work_insn_idx_);
705   }
706 
707   const RegType& DetermineCat1Constant(int32_t value, bool precise)
708       REQUIRES_SHARED(Locks::mutator_lock_);
709 
710   // Try to create a register type from the given class. In case a precise type is requested, but
711   // the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
712   // non-precise reference will be returned.
713   // Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
714   //       actually touched.
FromClass(const char * descriptor,ObjPtr<mirror::Class> klass,bool precise)715   const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
716       REQUIRES_SHARED(Locks::mutator_lock_) {
717     DCHECK(klass != nullptr);
718     if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
719       Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
720           << "non-instantiable klass " << descriptor;
721       precise = false;
722     }
723     return reg_types_.FromClass(descriptor, klass, precise);
724   }
725 
726   ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
727 
GetModifiableInstructionFlags(size_t index)728   ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
729     return insn_flags_[index];
730   }
731 
732   // Returns the method index of an invoke instruction.
GetMethodIdxOfInvoke(const Instruction * inst)733   uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
734       REQUIRES_SHARED(Locks::mutator_lock_) {
735     switch (inst->Opcode()) {
736       case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
737       case Instruction::INVOKE_VIRTUAL_QUICK: {
738         DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
739             << dex_file_->PrettyMethod(dex_method_idx_, true) << "@" << work_insn_idx_;
740         DCHECK(method_being_verified_ != nullptr);
741         uint16_t method_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
742         CHECK_NE(method_idx, DexFile::kDexNoIndex16);
743         return method_idx;
744       }
745       default: {
746         return inst->VRegB();
747       }
748     }
749   }
750   // Returns the field index of a field access instruction.
GetFieldIdxOfFieldAccess(const Instruction * inst,bool is_static)751   uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
752       REQUIRES_SHARED(Locks::mutator_lock_) {
753     if (is_static) {
754       return inst->VRegB_21c();
755     } else if (inst->IsQuickened()) {
756       DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
757       DCHECK(method_being_verified_ != nullptr);
758       uint16_t field_idx = method_being_verified_->GetIndexFromQuickening(work_insn_idx_);
759       CHECK_NE(field_idx, DexFile::kDexNoIndex16);
760       return field_idx;
761     } else {
762       return inst->VRegC_22c();
763     }
764   }
765 
766   // Run verification on the method. Returns true if verification completes and false if the input
767   // has an irrecoverable corruption.
768   bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
769 
770   // Dump the failures encountered by the verifier.
DumpFailures(std::ostream & os)771   std::ostream& DumpFailures(std::ostream& os) {
772     DCHECK_EQ(failures_.size(), failure_messages_.size());
773     for (const auto* stream : failure_messages_) {
774         os << stream->str() << "\n";
775     }
776     return os;
777   }
778 
779   // Dump the state of the verifier, namely each instruction, what flags are set on it, register
780   // information
Dump(std::ostream & os)781   void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
782     VariableIndentationOutputStream vios(&os);
783     Dump(&vios);
784   }
785   void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
786 
787   bool HandleMoveException(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
788 
789   ArtMethod* method_being_verified_;  // Its ArtMethod representation if known.
790   const uint32_t method_access_flags_;  // Method's access flags.
791   const RegType* return_type_;  // Lazily computed return type of the method.
792   // The dex_cache for the declaring class of the method.
793   Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
794   // The class loader for the declaring class of the method.
795   Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
796   const dex::ClassDef& class_def_;  // The class def of the declaring class of the method.
797   const RegType* declaring_class_;  // Lazily computed reg type of the method's declaring class.
798 
799   // The dex PC of a FindLocksAtDexPc request, -1 otherwise.
800   uint32_t interesting_dex_pc_;
801   // The container into which FindLocksAtDexPc should write the registers containing held locks,
802   // null if we're not doing FindLocksAtDexPc.
803   std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
804 
805 
806   // An optimization where instead of generating unique RegTypes for constants we use imprecise
807   // constants that cover a range of constants. This isn't good enough for deoptimization that
808   // avoids loading from registers in the case of a constant as the dex instruction set lost the
809   // notion of whether a value should be in a floating point or general purpose register file.
810   const bool need_precise_constants_;
811 
812   // Indicates whether we verify to dump the info. In that case we accept quickened instructions
813   // even though we might detect to be a compiler. Should only be set when running
814   // VerifyMethodAndDump.
815   const bool verify_to_dump_;
816 
817   // Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
818   // thread dumping checkpoints since we may get thread suspension at an inopportune time due to
819   // FindLocksAtDexPC, resulting in deadlocks.
820   const bool allow_thread_suspension_;
821 
822   // Whether the method seems to be a constructor. Note that this field exists as we can't trust
823   // the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
824   // correctly.
825   //
826   // Note: this flag is only valid once Verify() has started.
827   bool is_constructor_;
828 
829   // Whether to attempt to fill all register lines for (ex) debugger use.
830   bool fill_register_lines_;
831 
832   // API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
833   // Instead, unset level should correspond to max().
834   const uint32_t api_level_;
835 
836   friend class ::art::verifier::MethodVerifier;
837 
838   DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
839 };
840 
841 // Note: returns true on failure.
842 template <bool kVerifierDebug>
FailOrAbort(bool condition,const char * error_msg,uint32_t work_insn_idx)843 inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
844                                                         const char* error_msg,
845                                                         uint32_t work_insn_idx) {
846   if (kIsDebugBuild) {
847     // In a debug build, abort if the error condition is wrong. Only warn if
848     // we are already aborting (as this verification is likely run to print
849     // lock information).
850     if (LIKELY(gAborting == 0)) {
851       DCHECK(condition) << error_msg << work_insn_idx << " "
852                         << dex_file_->PrettyMethod(dex_method_idx_);
853     } else {
854       if (!condition) {
855         LOG(ERROR) << error_msg << work_insn_idx;
856         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
857         return true;
858       }
859     }
860   } else {
861     // In a non-debug build, just fail the class.
862     if (!condition) {
863       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
864       return true;
865     }
866   }
867 
868   return false;
869 }
870 
IsLargeMethod(const CodeItemDataAccessor & accessor)871 static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
872   if (!accessor.HasCodeItem()) {
873     return false;
874   }
875 
876   uint16_t registers_size = accessor.RegistersSize();
877   uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
878 
879   return registers_size * insns_size > 4*1024*1024;
880 }
881 
882 template <bool kVerifierDebug>
FindLocksAtDexPc()883 void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
884   CHECK(monitor_enter_dex_pcs_ != nullptr);
885   CHECK(code_item_accessor_.HasCodeItem());  // This only makes sense for methods with code.
886 
887   // Quick check whether there are any monitor_enter instructions before verifying.
888   for (const DexInstructionPcPair& inst : code_item_accessor_) {
889     if (inst->Opcode() == Instruction::MONITOR_ENTER) {
890       // Strictly speaking, we ought to be able to get away with doing a subset of the full method
891       // verification. In practice, the phase we want relies on data structures set up by all the
892       // earlier passes, so we just run the full method verification and bail out early when we've
893       // got what we wanted.
894       Verify();
895       return;
896     }
897   }
898 }
899 
900 template <bool kVerifierDebug>
Verify()901 bool MethodVerifier<kVerifierDebug>::Verify() {
902   // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
903   // the name.
904   const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
905   const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
906   bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
907   bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
908   bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
909   // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
910   if ((method_access_flags_ & kAccConstructor) != 0) {
911     if (!constructor_by_name) {
912       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
913             << "method is marked as constructor, but not named accordingly";
914       return false;
915     }
916     is_constructor_ = true;
917   } else if (constructor_by_name) {
918     LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
919                  << " not marked as constructor.";
920     is_constructor_ = true;
921   }
922   // If it's a constructor, check whether IsStatic() matches the name.
923   // This should have been rejected by the dex file verifier. Only do in debug build.
924   if (kIsDebugBuild) {
925     if (IsConstructor()) {
926       if (IsStatic() ^ static_constructor_by_name) {
927         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
928               << "constructor name doesn't match static flag";
929         return false;
930       }
931     }
932   }
933 
934   // Methods may only have one of public/protected/private.
935   // This should have been rejected by the dex file verifier. Only do in debug build.
936   if (kIsDebugBuild) {
937     size_t access_mod_count =
938         (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
939         (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
940         (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
941     if (access_mod_count > 1) {
942       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
943       return false;
944     }
945   }
946 
947   // If there aren't any instructions, make sure that's expected, then exit successfully.
948   if (!code_item_accessor_.HasCodeItem()) {
949     // Only native or abstract methods may not have code.
950     if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
951       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
952       return false;
953     }
954 
955     // This should have been rejected by the dex file verifier. Only do in debug build.
956     // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
957     if (kIsDebugBuild) {
958       if ((method_access_flags_ & kAccAbstract) != 0) {
959         // Abstract methods are not allowed to have the following flags.
960         static constexpr uint32_t kForbidden =
961             kAccPrivate |
962             kAccStatic |
963             kAccFinal |
964             kAccNative |
965             kAccStrict |
966             kAccSynchronized;
967         if ((method_access_flags_ & kForbidden) != 0) {
968           Fail(VERIFY_ERROR_BAD_CLASS_HARD)
969                 << "method can't be abstract and private/static/final/native/strict/synchronized";
970           return false;
971         }
972       }
973       if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
974         // Interface methods must be public and abstract (if default methods are disabled).
975         uint32_t kRequired = kAccPublic;
976         if ((method_access_flags_ & kRequired) != kRequired) {
977           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
978           return false;
979         }
980         // In addition to the above, interface methods must not be protected.
981         static constexpr uint32_t kForbidden = kAccProtected;
982         if ((method_access_flags_ & kForbidden) != 0) {
983           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
984           return false;
985         }
986       }
987       // We also don't allow constructors to be abstract or native.
988       if (IsConstructor()) {
989         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
990         return false;
991       }
992     }
993     return true;
994   }
995 
996   // This should have been rejected by the dex file verifier. Only do in debug build.
997   if (kIsDebugBuild) {
998     // When there's code, the method must not be native or abstract.
999     if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
1000       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
1001       return false;
1002     }
1003 
1004     if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
1005       // Interfaces may always have static initializers for their fields. If we are running with
1006       // default methods enabled we also allow other public, static, non-final methods to have code.
1007       // Otherwise that is the only type of method allowed.
1008       if (!(IsConstructor() && IsStatic())) {
1009         if (IsInstanceConstructor()) {
1010           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
1011           return false;
1012         } else if (method_access_flags_ & kAccFinal) {
1013           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
1014           return false;
1015         } else {
1016           uint32_t access_flag_options = kAccPublic;
1017           if (dex_file_->SupportsDefaultMethods()) {
1018             access_flag_options |= kAccPrivate;
1019           }
1020           if (!(method_access_flags_ & access_flag_options)) {
1021             Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1022                 << "interfaces may not have protected or package-private members";
1023             return false;
1024           }
1025         }
1026       }
1027     }
1028 
1029     // Instance constructors must not be synchronized.
1030     if (IsInstanceConstructor()) {
1031       static constexpr uint32_t kForbidden = kAccSynchronized;
1032       if ((method_access_flags_ & kForbidden) != 0) {
1033         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
1034         return false;
1035       }
1036     }
1037   }
1038 
1039   // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
1040   if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
1041     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
1042                                       << code_item_accessor_.InsSize()
1043                                       << " regs=" << code_item_accessor_.RegistersSize();
1044     return false;
1045   }
1046 
1047   // Allocate and initialize an array to hold instruction data.
1048   insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
1049       code_item_accessor_.InsnsSizeInCodeUnits()));
1050   DCHECK(insn_flags_ != nullptr);
1051   std::uninitialized_fill_n(insn_flags_.get(),
1052                             code_item_accessor_.InsnsSizeInCodeUnits(),
1053                             InstructionFlags());
1054   // Run through the instructions and see if the width checks out.
1055   bool result = ComputeWidthsAndCountOps();
1056   bool allow_runtime_only_instructions = !IsAotMode() || verify_to_dump_;
1057   // Flag instructions guarded by a "try" block and check exception handlers.
1058   result = result && ScanTryCatchBlocks();
1059   // Perform static instruction verification.
1060   result = result && (allow_runtime_only_instructions
1061                           ? VerifyInstructions<true>()
1062                           : VerifyInstructions<false>());
1063   // Perform code-flow analysis and return.
1064   result = result && VerifyCodeFlow();
1065 
1066   return result;
1067 }
1068 
1069 template <bool kVerifierDebug>
ComputeWidthsAndCountOps()1070 bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
1071   // We can't assume the instruction is well formed, handle the case where calculating the size
1072   // goes past the end of the code item.
1073   SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
1074   for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
1075     // In case the instruction goes past the end of the code item, make sure to not process it.
1076     SafeDexInstructionIterator next = it;
1077     ++next;
1078     if (next.IsErrorState()) {
1079       break;
1080     }
1081     Instruction::Code opcode = it->Opcode();
1082     switch (opcode) {
1083       case Instruction::APUT_OBJECT:
1084       case Instruction::CHECK_CAST:
1085         has_check_casts_ = true;
1086         break;
1087       default:
1088         break;
1089     }
1090     GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
1091   }
1092 
1093   if (it != code_item_accessor_.end()) {
1094     const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1095     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
1096                                       << it.DexPc() << " vs. " << insns_size << ")";
1097     return false;
1098   }
1099   DCHECK(GetInstructionFlags(0).IsOpcode());
1100 
1101   return true;
1102 }
1103 
1104 template <bool kVerifierDebug>
ScanTryCatchBlocks()1105 bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
1106   const uint32_t tries_size = code_item_accessor_.TriesSize();
1107   if (tries_size == 0) {
1108     return true;
1109   }
1110   const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1111   for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
1112     const uint32_t start = try_item.start_addr_;
1113     const uint32_t end = start + try_item.insn_count_;
1114     if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1115       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1116                                         << " endAddr=" << end << " (size=" << insns_size << ")";
1117       return false;
1118     }
1119     if (!GetInstructionFlags(start).IsOpcode()) {
1120       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1121           << "'try' block starts inside an instruction (" << start << ")";
1122       return false;
1123     }
1124     DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
1125     for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
1126       GetModifiableInstructionFlags(it.DexPc()).SetInTry();
1127     }
1128   }
1129   // Iterate over each of the handlers to verify target addresses.
1130   const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
1131   const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1132   ClassLinker* linker = GetClassLinker();
1133   for (uint32_t idx = 0; idx < handlers_size; idx++) {
1134     CatchHandlerIterator iterator(handlers_ptr);
1135     for (; iterator.HasNext(); iterator.Next()) {
1136       uint32_t dex_pc = iterator.GetHandlerAddress();
1137       if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1138         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1139             << "exception handler starts at bad address (" << dex_pc << ")";
1140         return false;
1141       }
1142       if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
1143         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1144             << "exception handler begins with move-result* (" << dex_pc << ")";
1145         return false;
1146       }
1147       GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
1148       // Ensure exception types are resolved so that they don't need resolution to be delivered,
1149       // unresolved exception types will be ignored by exception delivery
1150       if (iterator.GetHandlerTypeIndex().IsValid()) {
1151         ObjPtr<mirror::Class> exception_type =
1152             linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
1153         if (exception_type == nullptr) {
1154           DCHECK(self_->IsExceptionPending());
1155           self_->ClearException();
1156         }
1157       }
1158     }
1159     handlers_ptr = iterator.EndDataPointer();
1160   }
1161   return true;
1162 }
1163 
1164 template <bool kVerifierDebug>
1165 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstructions()1166 bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
1167   // Flag the start of the method as a branch target.
1168   GetModifiableInstructionFlags(0).SetBranchTarget();
1169   for (const DexInstructionPcPair& inst : code_item_accessor_) {
1170     const uint32_t dex_pc = inst.DexPc();
1171     if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
1172       DCHECK_NE(failures_.size(), 0U);
1173       return false;
1174     }
1175     // Flag some interesting instructions.
1176     if (inst->IsReturn()) {
1177       GetModifiableInstructionFlags(dex_pc).SetReturn();
1178     } else if (inst->Opcode() == Instruction::CHECK_CAST) {
1179       // The dex-to-dex compiler wants type information to elide check-casts.
1180       GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1181     }
1182   }
1183   return true;
1184 }
1185 
1186 template <bool kVerifierDebug>
1187 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstruction(const Instruction * inst,uint32_t code_offset)1188 bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
1189                                                        uint32_t code_offset) {
1190   if (Instruction::kHaveExperimentalInstructions && UNLIKELY(inst->IsExperimental())) {
1191     // Experimental instructions don't yet have verifier support implementation.
1192     // While it is possible to use them by themselves, when we try to use stable instructions
1193     // with a virtual register that was created by an experimental instruction,
1194     // the data flow analysis will fail.
1195     Fail(VERIFY_ERROR_FORCE_INTERPRETER)
1196         << "experimental instruction is not supported by verifier; skipping verification";
1197     flags_.have_pending_experimental_failure_ = true;
1198     return false;
1199   }
1200 
1201   bool result = true;
1202   switch (inst->GetVerifyTypeArgumentA()) {
1203     case Instruction::kVerifyRegA:
1204       result = result && CheckRegisterIndex(inst->VRegA());
1205       break;
1206     case Instruction::kVerifyRegAWide:
1207       result = result && CheckWideRegisterIndex(inst->VRegA());
1208       break;
1209   }
1210   switch (inst->GetVerifyTypeArgumentB()) {
1211     case Instruction::kVerifyRegB:
1212       result = result && CheckRegisterIndex(inst->VRegB());
1213       break;
1214     case Instruction::kVerifyRegBField:
1215       result = result && CheckFieldIndex(inst->VRegB());
1216       break;
1217     case Instruction::kVerifyRegBMethod:
1218       result = result && CheckMethodIndex(inst->VRegB());
1219       break;
1220     case Instruction::kVerifyRegBNewInstance:
1221       result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
1222       break;
1223     case Instruction::kVerifyRegBString:
1224       result = result && CheckStringIndex(inst->VRegB());
1225       break;
1226     case Instruction::kVerifyRegBType:
1227       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
1228       break;
1229     case Instruction::kVerifyRegBWide:
1230       result = result && CheckWideRegisterIndex(inst->VRegB());
1231       break;
1232     case Instruction::kVerifyRegBCallSite:
1233       result = result && CheckCallSiteIndex(inst->VRegB());
1234       break;
1235     case Instruction::kVerifyRegBMethodHandle:
1236       result = result && CheckMethodHandleIndex(inst->VRegB());
1237       break;
1238     case Instruction::kVerifyRegBPrototype:
1239       result = result && CheckPrototypeIndex(inst->VRegB());
1240       break;
1241   }
1242   switch (inst->GetVerifyTypeArgumentC()) {
1243     case Instruction::kVerifyRegC:
1244       result = result && CheckRegisterIndex(inst->VRegC());
1245       break;
1246     case Instruction::kVerifyRegCField:
1247       result = result && CheckFieldIndex(inst->VRegC());
1248       break;
1249     case Instruction::kVerifyRegCNewArray:
1250       result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
1251       break;
1252     case Instruction::kVerifyRegCType:
1253       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
1254       break;
1255     case Instruction::kVerifyRegCWide:
1256       result = result && CheckWideRegisterIndex(inst->VRegC());
1257       break;
1258   }
1259   switch (inst->GetVerifyTypeArgumentH()) {
1260     case Instruction::kVerifyRegHPrototype:
1261       result = result && CheckPrototypeIndex(inst->VRegH());
1262       break;
1263   }
1264   switch (inst->GetVerifyExtraFlags()) {
1265     case Instruction::kVerifyArrayData:
1266       result = result && CheckArrayData(code_offset);
1267       break;
1268     case Instruction::kVerifyBranchTarget:
1269       result = result && CheckBranchTarget(code_offset);
1270       break;
1271     case Instruction::kVerifySwitchTargets:
1272       result = result && CheckSwitchTargets(code_offset);
1273       break;
1274     case Instruction::kVerifyVarArgNonZero:
1275       // Fall-through.
1276     case Instruction::kVerifyVarArg: {
1277       // Instructions that can actually return a negative value shouldn't have this flag.
1278       uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1279       if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1280           v_a > Instruction::kMaxVarArgRegs) {
1281         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1282                                              "non-range invoke";
1283         return false;
1284       }
1285 
1286       uint32_t args[Instruction::kMaxVarArgRegs];
1287       inst->GetVarArgs(args);
1288       result = result && CheckVarArgRegs(v_a, args);
1289       break;
1290     }
1291     case Instruction::kVerifyVarArgRangeNonZero:
1292       // Fall-through.
1293     case Instruction::kVerifyVarArgRange:
1294       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1295           inst->VRegA() <= 0) {
1296         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1297                                              "range invoke";
1298         return false;
1299       }
1300       result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1301       break;
1302     case Instruction::kVerifyError:
1303       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1304       result = false;
1305       break;
1306   }
1307   if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
1308     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1309     result = false;
1310   }
1311   return result;
1312 }
1313 
1314 template <bool kVerifierDebug>
CheckNewInstance(dex::TypeIndex idx)1315 inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
1316   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1317     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1318                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1319     return false;
1320   }
1321   // We don't need the actual class, just a pointer to the class name.
1322   const char* descriptor = dex_file_->StringByTypeIdx(idx);
1323   if (UNLIKELY(descriptor[0] != 'L')) {
1324     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1325     return false;
1326   } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
1327     // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
1328     // exception is thrown when this statement is executed (compiled code would not do that).
1329     Fail(VERIFY_ERROR_INSTANTIATION);
1330   }
1331   return true;
1332 }
1333 
1334 template <bool kVerifierDebug>
CheckNewArray(dex::TypeIndex idx)1335 bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
1336   if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1337     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1338                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1339     return false;
1340   }
1341   int bracket_count = 0;
1342   const char* descriptor = dex_file_->StringByTypeIdx(idx);
1343   const char* cp = descriptor;
1344   while (*cp++ == '[') {
1345     bracket_count++;
1346   }
1347   if (UNLIKELY(bracket_count == 0)) {
1348     /* The given class must be an array type. */
1349     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1350         << "can't new-array class '" << descriptor << "' (not an array)";
1351     return false;
1352   } else if (UNLIKELY(bracket_count > 255)) {
1353     /* It is illegal to create an array of more than 255 dimensions. */
1354     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1355         << "can't new-array class '" << descriptor << "' (exceeds limit)";
1356     return false;
1357   }
1358   return true;
1359 }
1360 
1361 template <bool kVerifierDebug>
CheckArrayData(uint32_t cur_offset)1362 bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
1363   const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1364   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1365   const uint16_t* array_data;
1366   int32_t array_data_offset;
1367 
1368   DCHECK_LT(cur_offset, insn_count);
1369   /* make sure the start of the array data table is in range */
1370   array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1371   if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1372                cur_offset + array_data_offset + 2 >= insn_count)) {
1373     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1374                                       << ", data offset " << array_data_offset
1375                                       << ", count " << insn_count;
1376     return false;
1377   }
1378   /* offset to array data table is a relative branch-style offset */
1379   array_data = insns + array_data_offset;
1380   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1381   if (UNLIKELY(!IsAligned<4>(array_data))) {
1382     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1383                                       << ", data offset " << array_data_offset;
1384     return false;
1385   }
1386   // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1387   // traversing the code item linearly. It is an approximation for a by-spec padding value.
1388   if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
1389     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1390                                       << ", data offset " << array_data_offset
1391                                       << " not correctly visited, probably bad padding.";
1392     return false;
1393   }
1394 
1395   uint32_t value_width = array_data[1];
1396   uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1397   uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1398   /* make sure the end of the switch is in range */
1399   if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
1400     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1401                                       << ", data offset " << array_data_offset << ", end "
1402                                       << cur_offset + array_data_offset + table_size
1403                                       << ", count " << insn_count;
1404     return false;
1405   }
1406   return true;
1407 }
1408 
1409 template <bool kVerifierDebug>
CheckBranchTarget(uint32_t cur_offset)1410 bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
1411   int32_t offset;
1412   bool isConditional, selfOkay;
1413   if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1414     return false;
1415   }
1416   if (UNLIKELY(!selfOkay && offset == 0)) {
1417     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1418                                       << reinterpret_cast<void*>(cur_offset);
1419     return false;
1420   }
1421   // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1422   // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1423   if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
1424     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1425                                       << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1426     return false;
1427   }
1428   int32_t abs_offset = cur_offset + offset;
1429   if (UNLIKELY(abs_offset < 0 ||
1430                (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits()  ||
1431                !GetInstructionFlags(abs_offset).IsOpcode())) {
1432     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1433                                       << reinterpret_cast<void*>(abs_offset) << ") at "
1434                                       << reinterpret_cast<void*>(cur_offset);
1435     return false;
1436   }
1437   GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1438   return true;
1439 }
1440 
1441 template <bool kVerifierDebug>
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1442 bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
1443                                                      int32_t* pOffset,
1444                                                      bool* pConditional,
1445                                                      bool* selfOkay) {
1446   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1447   *pConditional = false;
1448   *selfOkay = false;
1449   switch (*insns & 0xff) {
1450     case Instruction::GOTO:
1451       *pOffset = ((int16_t) *insns) >> 8;
1452       break;
1453     case Instruction::GOTO_32:
1454       *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1455       *selfOkay = true;
1456       break;
1457     case Instruction::GOTO_16:
1458       *pOffset = (int16_t) insns[1];
1459       break;
1460     case Instruction::IF_EQ:
1461     case Instruction::IF_NE:
1462     case Instruction::IF_LT:
1463     case Instruction::IF_GE:
1464     case Instruction::IF_GT:
1465     case Instruction::IF_LE:
1466     case Instruction::IF_EQZ:
1467     case Instruction::IF_NEZ:
1468     case Instruction::IF_LTZ:
1469     case Instruction::IF_GEZ:
1470     case Instruction::IF_GTZ:
1471     case Instruction::IF_LEZ:
1472       *pOffset = (int16_t) insns[1];
1473       *pConditional = true;
1474       break;
1475     default:
1476       return false;
1477   }
1478   return true;
1479 }
1480 
1481 template <bool kVerifierDebug>
CheckSwitchTargets(uint32_t cur_offset)1482 bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
1483   const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1484   DCHECK_LT(cur_offset, insn_count);
1485   const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1486   /* make sure the start of the switch is in range */
1487   int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1488   if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1489                cur_offset + switch_offset + 2 > insn_count)) {
1490     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1491                                       << ", switch offset " << switch_offset
1492                                       << ", count " << insn_count;
1493     return false;
1494   }
1495   /* offset to switch table is a relative branch-style offset */
1496   const uint16_t* switch_insns = insns + switch_offset;
1497   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1498   if (UNLIKELY(!IsAligned<4>(switch_insns))) {
1499     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1500                                       << ", switch offset " << switch_offset;
1501     return false;
1502   }
1503   // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1504   // traversing the code item linearly. It is an approximation for a by-spec padding value.
1505   if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
1506     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1507                                       << ", switch offset " << switch_offset
1508                                       << " not correctly visited, probably bad padding.";
1509     return false;
1510   }
1511 
1512   bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1513 
1514   uint32_t switch_count = switch_insns[1];
1515   int32_t targets_offset;
1516   uint16_t expected_signature;
1517   if (is_packed_switch) {
1518     /* 0=sig, 1=count, 2/3=firstKey */
1519     targets_offset = 4;
1520     expected_signature = Instruction::kPackedSwitchSignature;
1521   } else {
1522     /* 0=sig, 1=count, 2..count*2 = keys */
1523     targets_offset = 2 + 2 * switch_count;
1524     expected_signature = Instruction::kSparseSwitchSignature;
1525   }
1526   uint32_t table_size = targets_offset + switch_count * 2;
1527   if (UNLIKELY(switch_insns[0] != expected_signature)) {
1528     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1529         << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1530                         switch_insns[0], expected_signature);
1531     return false;
1532   }
1533   /* make sure the end of the switch is in range */
1534   if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
1535     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1536                                       << ", switch offset " << switch_offset
1537                                       << ", end " << (cur_offset + switch_offset + table_size)
1538                                       << ", count " << insn_count;
1539     return false;
1540   }
1541 
1542   constexpr int32_t keys_offset = 2;
1543   if (switch_count > 1) {
1544     if (is_packed_switch) {
1545       /* for a packed switch, verify that keys do not overflow int32 */
1546       int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1547       int32_t max_first_key =
1548           std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1549       if (UNLIKELY(first_key > max_first_key)) {
1550         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1551                                           << ", switch_count=" << switch_count;
1552         return false;
1553       }
1554     } else {
1555       /* for a sparse switch, verify the keys are in ascending order */
1556       int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1557       for (uint32_t targ = 1; targ < switch_count; targ++) {
1558         int32_t key =
1559             static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1560             static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1561         if (UNLIKELY(key <= last_key)) {
1562           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1563                                             << ", this=" << key;
1564           return false;
1565         }
1566         last_key = key;
1567       }
1568     }
1569   }
1570   /* verify each switch target */
1571   for (uint32_t targ = 0; targ < switch_count; targ++) {
1572     int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1573                      static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1574     int32_t abs_offset = cur_offset + offset;
1575     if (UNLIKELY(abs_offset < 0 ||
1576                  abs_offset >= static_cast<int32_t>(insn_count) ||
1577                  !GetInstructionFlags(abs_offset).IsOpcode())) {
1578       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1579                                         << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1580                                         << reinterpret_cast<void*>(cur_offset)
1581                                         << "[" << targ << "]";
1582       return false;
1583     }
1584     GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1585   }
1586   return true;
1587 }
1588 
1589 template <bool kVerifierDebug>
VerifyCodeFlow()1590 bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
1591   const uint16_t registers_size = code_item_accessor_.RegistersSize();
1592 
1593   /* Create and initialize table holding register status */
1594   RegisterTrackingMode base_mode = IsAotMode()
1595                                        ? kTrackCompilerInterestPoints
1596                                        : kTrackRegsBranches;
1597   reg_table_.Init(fill_register_lines_ ? kTrackRegsAll : base_mode,
1598                   insn_flags_.get(),
1599                   code_item_accessor_.InsnsSizeInCodeUnits(),
1600                   registers_size,
1601                   allocator_,
1602                   GetRegTypeCache());
1603 
1604   work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1605   saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1606 
1607   /* Initialize register types of method arguments. */
1608   if (!SetTypesFromSignature()) {
1609     DCHECK_NE(failures_.size(), 0U);
1610     std::string prepend("Bad signature in ");
1611     prepend += dex_file_->PrettyMethod(dex_method_idx_);
1612     PrependToLastFailMessage(prepend);
1613     return false;
1614   }
1615   // We may have a runtime failure here, clear.
1616   flags_.have_pending_runtime_throw_failure_ = false;
1617 
1618   /* Perform code flow verification. */
1619   bool res = LIKELY(monitor_enter_dex_pcs_ == nullptr)
1620                  ? CodeFlowVerifyMethod</*kMonitorDexPCs=*/ false>()
1621                  : CodeFlowVerifyMethod</*kMonitorDexPCs=*/ true>();
1622   if (UNLIKELY(!res)) {
1623     DCHECK_NE(failures_.size(), 0U);
1624     return false;
1625   }
1626   return true;
1627 }
1628 
1629 template <bool kVerifierDebug>
Dump(VariableIndentationOutputStream * vios)1630 void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
1631   if (!code_item_accessor_.HasCodeItem()) {
1632     vios->Stream() << "Native method\n";
1633     return;
1634   }
1635   {
1636     vios->Stream() << "Register Types:\n";
1637     ScopedIndentation indent1(vios);
1638     reg_types_.Dump(vios->Stream());
1639   }
1640   vios->Stream() << "Dumping instructions and register lines:\n";
1641   ScopedIndentation indent1(vios);
1642 
1643   for (const DexInstructionPcPair& inst : code_item_accessor_) {
1644     const size_t dex_pc = inst.DexPc();
1645 
1646     // Might be asked to dump before the table is initialized.
1647     if (reg_table_.IsInitialized()) {
1648       RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1649       if (reg_line != nullptr) {
1650         vios->Stream() << reg_line->Dump(this) << "\n";
1651       }
1652     }
1653 
1654     vios->Stream()
1655         << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1656     const bool kDumpHexOfInstruction = false;
1657     if (kDumpHexOfInstruction) {
1658       vios->Stream() << inst->DumpHex(5) << " ";
1659     }
1660     vios->Stream() << inst->DumpString(dex_file_) << "\n";
1661   }
1662 }
1663 
IsPrimitiveDescriptor(char descriptor)1664 static bool IsPrimitiveDescriptor(char descriptor) {
1665   switch (descriptor) {
1666     case 'I':
1667     case 'C':
1668     case 'S':
1669     case 'B':
1670     case 'Z':
1671     case 'F':
1672     case 'D':
1673     case 'J':
1674       return true;
1675     default:
1676       return false;
1677   }
1678 }
1679 
1680 template <bool kVerifierDebug>
SetTypesFromSignature()1681 bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
1682   RegisterLine* reg_line = reg_table_.GetLine(0);
1683 
1684   // Should have been verified earlier.
1685   DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
1686 
1687   uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
1688   size_t expected_args = code_item_accessor_.InsSize();   /* long/double count as two */
1689 
1690   // Include the "this" pointer.
1691   size_t cur_arg = 0;
1692   if (!IsStatic()) {
1693     if (expected_args == 0) {
1694       // Expect at least a receiver.
1695       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1696       return false;
1697     }
1698 
1699     // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1700     // argument as uninitialized. This restricts field access until the superclass constructor is
1701     // called.
1702     const RegType& declaring_class = GetDeclaringClass();
1703     if (IsConstructor()) {
1704       if (declaring_class.IsJavaLangObject()) {
1705         // "this" is implicitly initialized.
1706         reg_line->SetThisInitialized();
1707         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1708       } else {
1709         reg_line->SetRegisterType<LockOp::kClear>(
1710             this,
1711             arg_start + cur_arg,
1712             reg_types_.UninitializedThisArgument(declaring_class));
1713       }
1714     } else {
1715       reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1716     }
1717     cur_arg++;
1718   }
1719 
1720   const dex::ProtoId& proto_id =
1721       dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1722   DexFileParameterIterator iterator(*dex_file_, proto_id);
1723 
1724   for (; iterator.HasNext(); iterator.Next()) {
1725     const char* descriptor = iterator.GetDescriptor();
1726     if (descriptor == nullptr) {
1727       LOG(FATAL) << "Null descriptor";
1728     }
1729     if (cur_arg >= expected_args) {
1730       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1731                                         << " args, found more (" << descriptor << ")";
1732       return false;
1733     }
1734     switch (descriptor[0]) {
1735       case 'L':
1736       case '[':
1737         // We assume that reference arguments are initialized. The only way it could be otherwise
1738         // (assuming the caller was verified) is if the current method is <init>, but in that case
1739         // it's effectively considered initialized the instant we reach here (in the sense that we
1740         // can return without doing anything or call virtual methods).
1741         {
1742           // Note: don't check access. No error would be thrown for declaring or passing an
1743           //       inaccessible class. Only actual accesses to fields or methods will.
1744           const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
1745           if (!reg_type.IsNonZeroReferenceTypes()) {
1746             DCHECK(HasFailures());
1747             return false;
1748           }
1749           reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
1750         }
1751         break;
1752       case 'Z':
1753         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
1754         break;
1755       case 'C':
1756         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
1757         break;
1758       case 'B':
1759         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
1760         break;
1761       case 'I':
1762         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
1763         break;
1764       case 'S':
1765         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
1766         break;
1767       case 'F':
1768         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
1769         break;
1770       case 'J':
1771       case 'D': {
1772         if (cur_arg + 1 >= expected_args) {
1773           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1774               << " args, found more (" << descriptor << ")";
1775           return false;
1776         }
1777 
1778         const RegType* lo_half;
1779         const RegType* hi_half;
1780         if (descriptor[0] == 'J') {
1781           lo_half = &reg_types_.LongLo();
1782           hi_half = &reg_types_.LongHi();
1783         } else {
1784           lo_half = &reg_types_.DoubleLo();
1785           hi_half = &reg_types_.DoubleHi();
1786         }
1787         reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1788         cur_arg++;
1789         break;
1790       }
1791       default:
1792         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1793                                           << descriptor << "'";
1794         return false;
1795     }
1796     cur_arg++;
1797   }
1798   if (cur_arg != expected_args) {
1799     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1800                                       << " arguments, found " << cur_arg;
1801     return false;
1802   }
1803   const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1804   // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1805   // format. Only major difference from the method argument format is that 'V' is supported.
1806   bool result;
1807   if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1808     result = descriptor[1] == '\0';
1809   } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1810     size_t i = 0;
1811     do {
1812       i++;
1813     } while (descriptor[i] == '[');  // process leading [
1814     if (descriptor[i] == 'L') {  // object array
1815       do {
1816         i++;  // find closing ;
1817       } while (descriptor[i] != ';' && descriptor[i] != '\0');
1818       result = descriptor[i] == ';';
1819     } else {  // primitive array
1820       result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1821     }
1822   } else if (descriptor[0] == 'L') {
1823     // could be more thorough here, but shouldn't be required
1824     size_t i = 0;
1825     do {
1826       i++;
1827     } while (descriptor[i] != ';' && descriptor[i] != '\0');
1828     result = descriptor[i] == ';';
1829   } else {
1830     result = false;
1831   }
1832   if (!result) {
1833     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1834                                       << descriptor << "'";
1835   }
1836   return result;
1837 }
1838 
1839 COLD_ATTR
HandleMonitorDexPcsWorkLine(std::vector<::art::verifier::MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,RegisterLine * work_line)1840 void HandleMonitorDexPcsWorkLine(
1841     std::vector<::art::verifier::MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
1842     RegisterLine* work_line) {
1843   monitor_enter_dex_pcs->clear();  // The new work line is more accurate than the previous one.
1844 
1845   std::map<uint32_t, ::art::verifier::MethodVerifier::DexLockInfo> depth_to_lock_info;
1846   auto collector = [&](uint32_t dex_reg, uint32_t depth) {
1847     auto insert_pair = depth_to_lock_info.emplace(
1848         depth, ::art::verifier::MethodVerifier::DexLockInfo(depth));
1849     auto it = insert_pair.first;
1850     auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
1851     DCHECK(set_insert_pair.second);
1852   };
1853   work_line->IterateRegToLockDepths(collector);
1854   for (auto& pair : depth_to_lock_info) {
1855     monitor_enter_dex_pcs->push_back(pair.second);
1856     // Map depth to dex PC.
1857     monitor_enter_dex_pcs->back().dex_pc = work_line->GetMonitorEnterDexPc(pair.second.dex_pc);
1858   }
1859 }
1860 
1861 template <bool kVerifierDebug>
1862 template <bool kMonitorDexPCs>
CodeFlowVerifyMethod()1863 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
1864   const uint16_t* insns = code_item_accessor_.Insns();
1865   const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1866 
1867   /* Begin by marking the first instruction as "changed". */
1868   GetModifiableInstructionFlags(0).SetChanged();
1869   uint32_t start_guess = 0;
1870 
1871   /* Continue until no instructions are marked "changed". */
1872   while (true) {
1873     if (allow_thread_suspension_) {
1874       self_->AllowThreadSuspension();
1875     }
1876     // Find the first marked one. Use "start_guess" as a way to find one quickly.
1877     uint32_t insn_idx = start_guess;
1878     for (; insn_idx < insns_size; insn_idx++) {
1879       if (GetInstructionFlags(insn_idx).IsChanged())
1880         break;
1881     }
1882     if (insn_idx == insns_size) {
1883       if (start_guess != 0) {
1884         /* try again, starting from the top */
1885         start_guess = 0;
1886         continue;
1887       } else {
1888         /* all flags are clear */
1889         break;
1890       }
1891     }
1892     // We carry the working set of registers from instruction to instruction. If this address can
1893     // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1894     // "changed" flags, we need to load the set of registers from the table.
1895     // Because we always prefer to continue on to the next instruction, we should never have a
1896     // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1897     // target.
1898     work_insn_idx_ = insn_idx;
1899     if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1900       work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1901     } else if (kIsDebugBuild) {
1902       /*
1903        * Sanity check: retrieve the stored register line (assuming
1904        * a full table) and make sure it actually matches.
1905        */
1906       RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1907       if (register_line != nullptr) {
1908         if (work_line_->CompareLine(register_line) != 0) {
1909           Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1910           LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
1911           LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
1912                      << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1913                      << " work_line=" << work_line_->Dump(this) << "\n"
1914                      << "  expected=" << register_line->Dump(this);
1915         }
1916       }
1917     }
1918 
1919     // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1920     // We want the state _before_ the instruction, for the case where the dex pc we're
1921     // interested in is itself a monitor-enter instruction (which is a likely place
1922     // for a thread to be suspended).
1923     if (kMonitorDexPCs && UNLIKELY(work_insn_idx_ == interesting_dex_pc_)) {
1924       HandleMonitorDexPcsWorkLine(monitor_enter_dex_pcs_, work_line_.get());
1925     }
1926 
1927     if (!CodeFlowVerifyInstruction(&start_guess)) {
1928       std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
1929       prepend += " failed to verify: ";
1930       PrependToLastFailMessage(prepend);
1931       return false;
1932     }
1933     /* Clear "changed" and mark as visited. */
1934     GetModifiableInstructionFlags(insn_idx).SetVisited();
1935     GetModifiableInstructionFlags(insn_idx).ClearChanged();
1936   }
1937 
1938   if (kVerifierDebug) {
1939     /*
1940      * Scan for dead code. There's nothing "evil" about dead code
1941      * (besides the wasted space), but it indicates a flaw somewhere
1942      * down the line, possibly in the verifier.
1943      *
1944      * If we've substituted "always throw" instructions into the stream,
1945      * we are almost certainly going to have some dead code.
1946      */
1947     int dead_start = -1;
1948 
1949     for (const DexInstructionPcPair& inst : code_item_accessor_) {
1950       const uint32_t insn_idx = inst.DexPc();
1951       /*
1952        * Switch-statement data doesn't get "visited" by scanner. It
1953        * may or may not be preceded by a padding NOP (for alignment).
1954        */
1955       if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1956           insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1957           insns[insn_idx] == Instruction::kArrayDataSignature ||
1958           (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1959            (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1960             insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1961             insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1962         GetModifiableInstructionFlags(insn_idx).SetVisited();
1963       }
1964 
1965       if (!GetInstructionFlags(insn_idx).IsVisited()) {
1966         if (dead_start < 0) {
1967           dead_start = insn_idx;
1968         }
1969       } else if (dead_start >= 0) {
1970         LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1971                         << "-" << reinterpret_cast<void*>(insn_idx - 1);
1972         dead_start = -1;
1973       }
1974     }
1975     if (dead_start >= 0) {
1976       LogVerifyInfo()
1977           << "dead code " << reinterpret_cast<void*>(dead_start)
1978           << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
1979     }
1980     // To dump the state of the verify after a method, do something like:
1981     // if (dex_file_->PrettyMethod(dex_method_idx_) ==
1982     //     "boolean java.lang.String.equals(java.lang.Object)") {
1983     //   LOG(INFO) << info_messages_.str();
1984     // }
1985   }
1986   return true;
1987 }
1988 
1989 // Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1990 // is no such field.
GetFirstFinalInstanceFieldIndex(const DexFile & dex_file,dex::TypeIndex type_idx)1991 static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, dex::TypeIndex type_idx) {
1992   const dex::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1993   DCHECK(class_def != nullptr);
1994   ClassAccessor accessor(dex_file, *class_def);
1995   for (const ClassAccessor::Field& field : accessor.GetInstanceFields()) {
1996     if (field.IsFinal()) {
1997       return field.GetIndex();
1998     }
1999   }
2000   return dex::kDexNoIndex;
2001 }
2002 
2003 // Setup a register line for the given return instruction.
2004 template <bool kVerifierDebug>
AdjustReturnLine(MethodVerifier<kVerifierDebug> * verifier,const Instruction * ret_inst,RegisterLine * line)2005 static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
2006                              const Instruction* ret_inst,
2007                              RegisterLine* line) {
2008   Instruction::Code opcode = ret_inst->Opcode();
2009 
2010   switch (opcode) {
2011     case Instruction::RETURN_VOID:
2012     case Instruction::RETURN_VOID_NO_BARRIER:
2013       if (verifier->IsInstanceConstructor()) {
2014         // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
2015         line->CheckConstructorReturn(verifier);
2016       }
2017       line->MarkAllRegistersAsConflicts(verifier);
2018       break;
2019 
2020     case Instruction::RETURN:
2021     case Instruction::RETURN_OBJECT:
2022       line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
2023       break;
2024 
2025     case Instruction::RETURN_WIDE:
2026       line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
2027       break;
2028 
2029     default:
2030       LOG(FATAL) << "Unknown return opcode " << opcode;
2031       UNREACHABLE();
2032   }
2033 }
2034 
2035 template <bool kVerifierDebug>
CodeFlowVerifyInstruction(uint32_t * start_guess)2036 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
2037   /*
2038    * Once we finish decoding the instruction, we need to figure out where
2039    * we can go from here. There are three possible ways to transfer
2040    * control to another statement:
2041    *
2042    * (1) Continue to the next instruction. Applies to all but
2043    *     unconditional branches, method returns, and exception throws.
2044    * (2) Branch to one or more possible locations. Applies to branches
2045    *     and switch statements.
2046    * (3) Exception handlers. Applies to any instruction that can
2047    *     throw an exception that is handled by an encompassing "try"
2048    *     block.
2049    *
2050    * We can also return, in which case there is no successor instruction
2051    * from this point.
2052    *
2053    * The behavior can be determined from the opcode flags.
2054    */
2055   const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
2056   const Instruction* inst = Instruction::At(insns);
2057   int opcode_flags = Instruction::FlagsOf(inst->Opcode());
2058 
2059   int32_t branch_target = 0;
2060   bool just_set_result = false;
2061   if (kVerifierDebug) {
2062     // Generate processing back trace to debug verifier
2063     LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
2064                     << work_line_->Dump(this);
2065   }
2066 
2067   /*
2068    * Make a copy of the previous register state. If the instruction
2069    * can throw an exception, we will copy/merge this into the "catch"
2070    * address rather than work_line, because we don't want the result
2071    * from the "successful" code path (e.g. a check-cast that "improves"
2072    * a type) to be visible to the exception handler.
2073    */
2074   if (((opcode_flags & Instruction::kThrow) != 0 || IsCompatThrow(inst->Opcode())) &&
2075       CurrentInsnFlags()->IsInTry()) {
2076     saved_line_->CopyFromLine(work_line_.get());
2077   } else if (kIsDebugBuild) {
2078     saved_line_->FillWithGarbage();
2079   }
2080   // Per-instruction flag, should not be set here.
2081   DCHECK(!flags_.have_pending_runtime_throw_failure_);
2082   bool exc_handler_unreachable = false;
2083 
2084 
2085   // We need to ensure the work line is consistent while performing validation. When we spot a
2086   // peephole pattern we compute a new line for either the fallthrough instruction or the
2087   // branch target.
2088   RegisterLineArenaUniquePtr branch_line;
2089   RegisterLineArenaUniquePtr fallthrough_line;
2090 
2091   switch (inst->Opcode()) {
2092     case Instruction::NOP:
2093       /*
2094        * A "pure" NOP has no effect on anything. Data tables start with
2095        * a signature that looks like a NOP; if we see one of these in
2096        * the course of executing code then we have a problem.
2097        */
2098       if (inst->VRegA_10x() != 0) {
2099         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2100       }
2101       break;
2102 
2103     case Instruction::MOVE:
2104       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2105       break;
2106     case Instruction::MOVE_FROM16:
2107       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2108       break;
2109     case Instruction::MOVE_16:
2110       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2111       break;
2112     case Instruction::MOVE_WIDE:
2113       work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2114       break;
2115     case Instruction::MOVE_WIDE_FROM16:
2116       work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2117       break;
2118     case Instruction::MOVE_WIDE_16:
2119       work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2120       break;
2121     case Instruction::MOVE_OBJECT:
2122       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2123       break;
2124     case Instruction::MOVE_OBJECT_FROM16:
2125       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2126       break;
2127     case Instruction::MOVE_OBJECT_16:
2128       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2129       break;
2130 
2131     /*
2132      * The move-result instructions copy data out of a "pseudo-register"
2133      * with the results from the last method invocation. In practice we
2134      * might want to hold the result in an actual CPU register, so the
2135      * Dalvik spec requires that these only appear immediately after an
2136      * invoke or filled-new-array.
2137      *
2138      * These calls invalidate the "result" register. (This is now
2139      * redundant with the reset done below, but it can make the debug info
2140      * easier to read in some cases.)
2141      */
2142     case Instruction::MOVE_RESULT:
2143       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2144       break;
2145     case Instruction::MOVE_RESULT_WIDE:
2146       work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2147       break;
2148     case Instruction::MOVE_RESULT_OBJECT:
2149       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2150       break;
2151 
2152     case Instruction::MOVE_EXCEPTION:
2153       if (!HandleMoveException(inst)) {
2154         exc_handler_unreachable = true;
2155       }
2156       break;
2157 
2158     case Instruction::RETURN_VOID:
2159       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2160         if (!GetMethodReturnType().IsConflict()) {
2161           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2162         }
2163       }
2164       break;
2165     case Instruction::RETURN:
2166       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2167         /* check the method signature */
2168         const RegType& return_type = GetMethodReturnType();
2169         if (!return_type.IsCategory1Types()) {
2170           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2171                                             << return_type;
2172         } else {
2173           // Compilers may generate synthetic functions that write byte values into boolean fields.
2174           // Also, it may use integer values for boolean, byte, short, and character return types.
2175           const uint32_t vregA = inst->VRegA_11x();
2176           const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2177           bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2178                           ((return_type.IsBoolean() || return_type.IsByte() ||
2179                            return_type.IsShort() || return_type.IsChar()) &&
2180                            src_type.IsInteger()));
2181           /* check the register contents */
2182           bool success =
2183               work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2184           if (!success) {
2185             AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2186           }
2187         }
2188       }
2189       break;
2190     case Instruction::RETURN_WIDE:
2191       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2192         /* check the method signature */
2193         const RegType& return_type = GetMethodReturnType();
2194         if (!return_type.IsCategory2Types()) {
2195           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2196         } else {
2197           /* check the register contents */
2198           const uint32_t vregA = inst->VRegA_11x();
2199           bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2200           if (!success) {
2201             AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2202           }
2203         }
2204       }
2205       break;
2206     case Instruction::RETURN_OBJECT:
2207       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2208         const RegType& return_type = GetMethodReturnType();
2209         if (!return_type.IsReferenceTypes()) {
2210           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2211         } else {
2212           /* return_type is the *expected* return type, not register value */
2213           DCHECK(!return_type.IsZeroOrNull());
2214           DCHECK(!return_type.IsUninitializedReference());
2215           const uint32_t vregA = inst->VRegA_11x();
2216           const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2217           // Disallow returning undefined, conflict & uninitialized values and verify that the
2218           // reference in vAA is an instance of the "return_type."
2219           if (reg_type.IsUndefined()) {
2220             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2221           } else if (reg_type.IsConflict()) {
2222             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2223           } else if (reg_type.IsUninitializedTypes()) {
2224             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2225                                               << reg_type << "'";
2226           } else if (!reg_type.IsReferenceTypes()) {
2227             // We really do expect a reference here.
2228             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2229                                               << reg_type;
2230           } else if (!return_type.IsAssignableFrom(reg_type, this)) {
2231             if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2232               Fail(api_level_ > 29u ? VERIFY_ERROR_BAD_CLASS_SOFT : VERIFY_ERROR_NO_CLASS)
2233                   << " can't resolve returned type '" << return_type << "' or '" << reg_type << "'";
2234             } else {
2235               bool soft_error = false;
2236               // Check whether arrays are involved. They will show a valid class status, even
2237               // if their components are erroneous.
2238               if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
2239                 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error);
2240                 if (soft_error) {
2241                   Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
2242                         << reg_type << " vs " << return_type;
2243                 }
2244               }
2245 
2246               if (!soft_error) {
2247                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2248                     << "', but expected from declaration '" << return_type << "'";
2249               }
2250             }
2251           }
2252         }
2253       }
2254       break;
2255 
2256       /* could be boolean, int, float, or a null reference */
2257     case Instruction::CONST_4: {
2258       int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2259       work_line_->SetRegisterType<LockOp::kClear>(
2260           this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
2261       break;
2262     }
2263     case Instruction::CONST_16: {
2264       int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2265       work_line_->SetRegisterType<LockOp::kClear>(
2266           this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
2267       break;
2268     }
2269     case Instruction::CONST: {
2270       int32_t val = inst->VRegB_31i();
2271       work_line_->SetRegisterType<LockOp::kClear>(
2272           this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
2273       break;
2274     }
2275     case Instruction::CONST_HIGH16: {
2276       int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2277       work_line_->SetRegisterType<LockOp::kClear>(
2278           this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
2279       break;
2280     }
2281       /* could be long or double; resolved upon use */
2282     case Instruction::CONST_WIDE_16: {
2283       int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2284       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2285       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2286       work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
2287       break;
2288     }
2289     case Instruction::CONST_WIDE_32: {
2290       int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2291       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2292       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2293       work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
2294       break;
2295     }
2296     case Instruction::CONST_WIDE: {
2297       int64_t val = inst->VRegB_51l();
2298       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2299       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2300       work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
2301       break;
2302     }
2303     case Instruction::CONST_WIDE_HIGH16: {
2304       int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2305       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2306       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2307       work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
2308       break;
2309     }
2310     case Instruction::CONST_STRING:
2311       work_line_->SetRegisterType<LockOp::kClear>(
2312           this, inst->VRegA_21c(), reg_types_.JavaLangString());
2313       break;
2314     case Instruction::CONST_STRING_JUMBO:
2315       work_line_->SetRegisterType<LockOp::kClear>(
2316           this, inst->VRegA_31c(), reg_types_.JavaLangString());
2317       break;
2318     case Instruction::CONST_CLASS: {
2319       // Get type from instruction if unresolved then we need an access check
2320       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2321       const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2322       // Register holds class, ie its type is class, on error it will hold Conflict.
2323       work_line_->SetRegisterType<LockOp::kClear>(
2324           this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
2325                                                          : reg_types_.JavaLangClass());
2326       break;
2327     }
2328     case Instruction::CONST_METHOD_HANDLE:
2329       work_line_->SetRegisterType<LockOp::kClear>(
2330           this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
2331       break;
2332     case Instruction::CONST_METHOD_TYPE:
2333       work_line_->SetRegisterType<LockOp::kClear>(
2334           this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
2335       break;
2336     case Instruction::MONITOR_ENTER:
2337       work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2338       // Check whether the previous instruction is a move-object with vAA as a source, creating
2339       // untracked lock aliasing.
2340       if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2341         uint32_t prev_idx = work_insn_idx_ - 1;
2342         while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2343           prev_idx--;
2344         }
2345         const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
2346         switch (prev_inst.Opcode()) {
2347           case Instruction::MOVE_OBJECT:
2348           case Instruction::MOVE_OBJECT_16:
2349           case Instruction::MOVE_OBJECT_FROM16:
2350             if (prev_inst.VRegB() == inst->VRegA_11x()) {
2351               // Redo the copy. This won't change the register types, but update the lock status
2352               // for the aliased register.
2353               work_line_->CopyRegister1(this,
2354                                         prev_inst.VRegA(),
2355                                         prev_inst.VRegB(),
2356                                         kTypeCategoryRef);
2357             }
2358             break;
2359 
2360           // Catch a case of register aliasing when two registers are linked to the same
2361           // java.lang.Class object via two consequent const-class instructions immediately
2362           // preceding monitor-enter called on one of those registers.
2363           case Instruction::CONST_CLASS: {
2364             // Get the second previous instruction.
2365             if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
2366               break;
2367             }
2368             prev_idx--;
2369             while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2370               prev_idx--;
2371             }
2372             const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
2373 
2374             // Match the pattern "const-class; const-class; monitor-enter;"
2375             if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
2376               break;
2377             }
2378 
2379             // Ensure both const-classes are called for the same type_idx.
2380             if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
2381               break;
2382             }
2383 
2384             // Update the lock status for the aliased register.
2385             if (prev_inst.VRegA() == inst->VRegA_11x()) {
2386               work_line_->CopyRegister1(this,
2387                                         prev2_inst.VRegA(),
2388                                         inst->VRegA_11x(),
2389                                         kTypeCategoryRef);
2390             } else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
2391               work_line_->CopyRegister1(this,
2392                                         prev_inst.VRegA(),
2393                                         inst->VRegA_11x(),
2394                                         kTypeCategoryRef);
2395             }
2396             break;
2397           }
2398 
2399           default:  // Other instruction types ignored.
2400             break;
2401         }
2402       }
2403       break;
2404     case Instruction::MONITOR_EXIT:
2405       /*
2406        * monitor-exit instructions are odd. They can throw exceptions,
2407        * but when they do they act as if they succeeded and the PC is
2408        * pointing to the following instruction. (This behavior goes back
2409        * to the need to handle asynchronous exceptions, a now-deprecated
2410        * feature that Dalvik doesn't support.)
2411        *
2412        * In practice we don't need to worry about this. The only
2413        * exceptions that can be thrown from monitor-exit are for a
2414        * null reference and -exit without a matching -enter. If the
2415        * structured locking checks are working, the former would have
2416        * failed on the -enter instruction, and the latter is impossible.
2417        *
2418        * This is fortunate, because issue 3221411 prevents us from
2419        * chasing the "can throw" path when monitor verification is
2420        * enabled. If we can fully verify the locking we can ignore
2421        * some catch blocks (which will show up as "dead" code when
2422        * we skip them here); if we can't, then the code path could be
2423        * "live" so we still need to check it.
2424        */
2425       opcode_flags &= ~Instruction::kThrow;
2426       work_line_->PopMonitor(this, inst->VRegA_11x());
2427       break;
2428     case Instruction::CHECK_CAST:
2429     case Instruction::INSTANCE_OF: {
2430       /*
2431        * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2432        * could be a "upcast" -- not expected, so we don't try to address it.)
2433        *
2434        * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2435        * dec_insn.vA when branching to a handler.
2436        */
2437       const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2438       const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
2439       const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
2440       if (res_type.IsConflict()) {
2441         // If this is a primitive type, fail HARD.
2442         ObjPtr<mirror::Class> klass = GetClassLinker()->LookupResolvedType(
2443             type_idx, dex_cache_.Get(), class_loader_.Get());
2444         if (klass != nullptr && klass->IsPrimitive()) {
2445           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2446               << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
2447               << GetDeclaringClass();
2448           break;
2449         }
2450 
2451         DCHECK_NE(failures_.size(), 0U);
2452         if (!is_checkcast) {
2453           work_line_->SetRegisterType<LockOp::kClear>(this,
2454                                                       inst->VRegA_22c(),
2455                                                       reg_types_.Boolean());
2456         }
2457         break;  // bad class
2458       }
2459       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2460       uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2461       const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2462       if (!res_type.IsNonZeroReferenceTypes()) {
2463         if (is_checkcast) {
2464           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2465         } else {
2466           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2467         }
2468       } else if (!orig_type.IsReferenceTypes()) {
2469         if (is_checkcast) {
2470           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2471         } else {
2472           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2473         }
2474       } else if (orig_type.IsUninitializedTypes()) {
2475         if (is_checkcast) {
2476           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2477                                             << orig_type_reg;
2478         } else {
2479           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2480                                             << orig_type_reg;
2481         }
2482       } else {
2483         if (is_checkcast) {
2484           work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
2485         } else {
2486           work_line_->SetRegisterType<LockOp::kClear>(this,
2487                                                       inst->VRegA_22c(),
2488                                                       reg_types_.Boolean());
2489         }
2490       }
2491       break;
2492     }
2493     case Instruction::ARRAY_LENGTH: {
2494       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2495       if (res_type.IsReferenceTypes()) {
2496         if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
2497           // ie not an array or null
2498           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2499         } else {
2500           work_line_->SetRegisterType<LockOp::kClear>(this,
2501                                                       inst->VRegA_12x(),
2502                                                       reg_types_.Integer());
2503         }
2504       } else {
2505         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2506       }
2507       break;
2508     }
2509     case Instruction::NEW_INSTANCE: {
2510       const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2511       if (res_type.IsConflict()) {
2512         DCHECK_NE(failures_.size(), 0U);
2513         break;  // bad class
2514       }
2515       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2516       // can't create an instance of an interface or abstract class */
2517       if (!res_type.IsInstantiableTypes()) {
2518         Fail(VERIFY_ERROR_INSTANTIATION)
2519             << "new-instance on primitive, interface or abstract class" << res_type;
2520         // Soft failure so carry on to set register type.
2521       }
2522       const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2523       // Any registers holding previous allocations from this address that have not yet been
2524       // initialized must be marked invalid.
2525       work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2526       // add the new uninitialized reference to the register state
2527       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
2528       break;
2529     }
2530     case Instruction::NEW_ARRAY:
2531       VerifyNewArray(inst, false, false);
2532       break;
2533     case Instruction::FILLED_NEW_ARRAY:
2534       VerifyNewArray(inst, true, false);
2535       just_set_result = true;  // Filled new array sets result register
2536       break;
2537     case Instruction::FILLED_NEW_ARRAY_RANGE:
2538       VerifyNewArray(inst, true, true);
2539       just_set_result = true;  // Filled new array range sets result register
2540       break;
2541     case Instruction::CMPL_FLOAT:
2542     case Instruction::CMPG_FLOAT:
2543       if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2544         break;
2545       }
2546       if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2547         break;
2548       }
2549       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2550       break;
2551     case Instruction::CMPL_DOUBLE:
2552     case Instruction::CMPG_DOUBLE:
2553       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2554                                               reg_types_.DoubleHi())) {
2555         break;
2556       }
2557       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2558                                               reg_types_.DoubleHi())) {
2559         break;
2560       }
2561       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2562       break;
2563     case Instruction::CMP_LONG:
2564       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2565                                               reg_types_.LongHi())) {
2566         break;
2567       }
2568       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2569                                               reg_types_.LongHi())) {
2570         break;
2571       }
2572       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2573       break;
2574     case Instruction::THROW: {
2575       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2576       if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
2577         if (res_type.IsUninitializedTypes()) {
2578           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2579         } else if (!res_type.IsReferenceTypes()) {
2580           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2581         } else {
2582           Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2583                 << "thrown class " << res_type << " not instanceof Throwable";
2584         }
2585       }
2586       break;
2587     }
2588     case Instruction::GOTO:
2589     case Instruction::GOTO_16:
2590     case Instruction::GOTO_32:
2591       /* no effect on or use of registers */
2592       break;
2593 
2594     case Instruction::PACKED_SWITCH:
2595     case Instruction::SPARSE_SWITCH:
2596       /* verify that vAA is an integer, or can be converted to one */
2597       work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2598       break;
2599 
2600     case Instruction::FILL_ARRAY_DATA: {
2601       /* Similar to the verification done for APUT */
2602       const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2603       /* array_type can be null if the reg type is Zero */
2604       if (!array_type.IsZeroOrNull()) {
2605         if (!array_type.IsArrayTypes()) {
2606           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2607                                             << array_type;
2608         } else if (array_type.IsUnresolvedTypes()) {
2609           // If it's an unresolved array type, it must be non-primitive.
2610           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2611                                             << array_type;
2612         } else {
2613           const RegType& component_type = reg_types_.GetComponentType(array_type,
2614                                                                       class_loader_.Get());
2615           DCHECK(!component_type.IsConflict());
2616           if (component_type.IsNonZeroReferenceTypes()) {
2617             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2618                                               << component_type;
2619           } else {
2620             // Now verify if the element width in the table matches the element width declared in
2621             // the array
2622             const uint16_t* array_data =
2623                 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2624             if (array_data[0] != Instruction::kArrayDataSignature) {
2625               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2626             } else {
2627               size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2628               // Since we don't compress the data in Dex, expect to see equal width of data stored
2629               // in the table and expected from the array class.
2630               if (array_data[1] != elem_width) {
2631                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2632                                                   << " vs " << elem_width << ")";
2633               }
2634             }
2635           }
2636         }
2637       }
2638       break;
2639     }
2640     case Instruction::IF_EQ:
2641     case Instruction::IF_NE: {
2642       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2643       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2644       bool mismatch = false;
2645       if (reg_type1.IsZeroOrNull()) {  // zero then integral or reference expected
2646         mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2647       } else if (reg_type1.IsReferenceTypes()) {  // both references?
2648         mismatch = !reg_type2.IsReferenceTypes();
2649       } else {  // both integral?
2650         mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2651       }
2652       if (mismatch) {
2653         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2654                                           << reg_type2 << ") must both be references or integral";
2655       }
2656       break;
2657     }
2658     case Instruction::IF_LT:
2659     case Instruction::IF_GE:
2660     case Instruction::IF_GT:
2661     case Instruction::IF_LE: {
2662       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2663       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2664       if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2665         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2666                                           << reg_type2 << ") must be integral";
2667       }
2668       break;
2669     }
2670     case Instruction::IF_EQZ:
2671     case Instruction::IF_NEZ: {
2672       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2673       if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2674         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2675                                           << " unexpected as arg to if-eqz/if-nez";
2676       }
2677 
2678       // Find previous instruction - its existence is a precondition to peephole optimization.
2679       if (UNLIKELY(0 == work_insn_idx_)) {
2680         break;
2681       }
2682       uint32_t instance_of_idx = work_insn_idx_ - 1;
2683       while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2684         instance_of_idx--;
2685       }
2686       // Dex index 0 must be an opcode.
2687       DCHECK(GetInstructionFlags(instance_of_idx).IsOpcode());
2688 
2689       const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
2690 
2691       /* Check for peep-hole pattern of:
2692        *    ...;
2693        *    instance-of vX, vY, T;
2694        *    ifXXX vX, label ;
2695        *    ...;
2696        * label:
2697        *    ...;
2698        * and sharpen the type of vY to be type T.
2699        * Note, this pattern can't be if:
2700        *  - if there are other branches to this branch,
2701        *  - when vX == vY.
2702        */
2703       if (!CurrentInsnFlags()->IsBranchTarget() &&
2704           (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
2705           (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
2706           (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
2707         // Check the type of the instance-of is different than that of registers type, as if they
2708         // are the same there is no work to be done here. Check that the conversion is not to or
2709         // from an unresolved type as type information is imprecise. If the instance-of is to an
2710         // interface then ignore the type information as interfaces can only be treated as Objects
2711         // and we don't want to disallow field and other operations on the object. If the value
2712         // being instance-of checked against is known null (zero) then allow the optimization as
2713         // we didn't have type information. If the merge of the instance-of type with the original
2714         // type is assignable to the original then allow optimization. This check is performed to
2715         // ensure that subsequent merges don't lose type information - such as becoming an
2716         // interface from a class that would lose information relevant to field checks.
2717         //
2718         // Note: do not do an access check. This may mark this with a runtime throw that actually
2719         //       happens at the instanceof, not the branch (and branches aren't flagged to throw).
2720         const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
2721         const RegType& cast_type = ResolveClass<CheckAccess::kNo>(
2722             dex::TypeIndex(instance_of_inst.VRegC_22c()));
2723 
2724         if (!orig_type.Equals(cast_type) &&
2725             !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2726             cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2727             !cast_type.GetClass()->IsInterface() &&
2728             (orig_type.IsZeroOrNull() ||
2729                 orig_type.IsStrictlyAssignableFrom(
2730                     cast_type.Merge(orig_type, &reg_types_, this), this))) {
2731           RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
2732                                                            allocator_,
2733                                                            GetRegTypeCache());
2734           if (inst->Opcode() == Instruction::IF_EQZ) {
2735             fallthrough_line.reset(update_line);
2736           } else {
2737             branch_line.reset(update_line);
2738           }
2739           update_line->CopyFromLine(work_line_.get());
2740           update_line->SetRegisterType<LockOp::kKeep>(this,
2741                                                       instance_of_inst.VRegB_22c(),
2742                                                       cast_type);
2743           if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2744             // See if instance-of was preceded by a move-object operation, common due to the small
2745             // register encoding space of instance-of, and propagate type information to the source
2746             // of the move-object.
2747             // Note: this is only valid if the move source was not clobbered.
2748             uint32_t move_idx = instance_of_idx - 1;
2749             while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2750               move_idx--;
2751             }
2752             DCHECK(GetInstructionFlags(move_idx).IsOpcode());
2753             auto maybe_update_fn = [&instance_of_inst, update_line, this, &cast_type](
2754                 uint16_t move_src,
2755                 uint16_t move_trg)
2756                 REQUIRES_SHARED(Locks::mutator_lock_) {
2757               if (move_trg == instance_of_inst.VRegB_22c() &&
2758                   move_src != instance_of_inst.VRegA_22c()) {
2759                 update_line->SetRegisterType<LockOp::kKeep>(this, move_src, cast_type);
2760               }
2761             };
2762             const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
2763             switch (move_inst.Opcode()) {
2764               case Instruction::MOVE_OBJECT:
2765                 maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
2766                 break;
2767               case Instruction::MOVE_OBJECT_FROM16:
2768                 maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
2769                 break;
2770               case Instruction::MOVE_OBJECT_16:
2771                 maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
2772                 break;
2773               default:
2774                 break;
2775             }
2776           }
2777         }
2778       }
2779 
2780       break;
2781     }
2782     case Instruction::IF_LTZ:
2783     case Instruction::IF_GEZ:
2784     case Instruction::IF_GTZ:
2785     case Instruction::IF_LEZ: {
2786       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2787       if (!reg_type.IsIntegralTypes()) {
2788         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2789                                           << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2790       }
2791       break;
2792     }
2793     case Instruction::AGET_BOOLEAN:
2794       VerifyAGet(inst, reg_types_.Boolean(), true);
2795       break;
2796     case Instruction::AGET_BYTE:
2797       VerifyAGet(inst, reg_types_.Byte(), true);
2798       break;
2799     case Instruction::AGET_CHAR:
2800       VerifyAGet(inst, reg_types_.Char(), true);
2801       break;
2802     case Instruction::AGET_SHORT:
2803       VerifyAGet(inst, reg_types_.Short(), true);
2804       break;
2805     case Instruction::AGET:
2806       VerifyAGet(inst, reg_types_.Integer(), true);
2807       break;
2808     case Instruction::AGET_WIDE:
2809       VerifyAGet(inst, reg_types_.LongLo(), true);
2810       break;
2811     case Instruction::AGET_OBJECT:
2812       VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2813       break;
2814 
2815     case Instruction::APUT_BOOLEAN:
2816       VerifyAPut(inst, reg_types_.Boolean(), true);
2817       break;
2818     case Instruction::APUT_BYTE:
2819       VerifyAPut(inst, reg_types_.Byte(), true);
2820       break;
2821     case Instruction::APUT_CHAR:
2822       VerifyAPut(inst, reg_types_.Char(), true);
2823       break;
2824     case Instruction::APUT_SHORT:
2825       VerifyAPut(inst, reg_types_.Short(), true);
2826       break;
2827     case Instruction::APUT:
2828       VerifyAPut(inst, reg_types_.Integer(), true);
2829       break;
2830     case Instruction::APUT_WIDE:
2831       VerifyAPut(inst, reg_types_.LongLo(), true);
2832       break;
2833     case Instruction::APUT_OBJECT:
2834       VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2835       break;
2836 
2837     case Instruction::IGET_BOOLEAN:
2838     case Instruction::IGET_BOOLEAN_QUICK:
2839       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2840       break;
2841     case Instruction::IGET_BYTE:
2842     case Instruction::IGET_BYTE_QUICK:
2843       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2844       break;
2845     case Instruction::IGET_CHAR:
2846     case Instruction::IGET_CHAR_QUICK:
2847       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2848       break;
2849     case Instruction::IGET_SHORT:
2850     case Instruction::IGET_SHORT_QUICK:
2851       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2852       break;
2853     case Instruction::IGET:
2854     case Instruction::IGET_QUICK:
2855       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2856       break;
2857     case Instruction::IGET_WIDE:
2858     case Instruction::IGET_WIDE_QUICK:
2859       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2860       break;
2861     case Instruction::IGET_OBJECT:
2862     case Instruction::IGET_OBJECT_QUICK:
2863       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2864                                                     false);
2865       break;
2866 
2867     case Instruction::IPUT_BOOLEAN:
2868     case Instruction::IPUT_BOOLEAN_QUICK:
2869       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2870       break;
2871     case Instruction::IPUT_BYTE:
2872     case Instruction::IPUT_BYTE_QUICK:
2873       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2874       break;
2875     case Instruction::IPUT_CHAR:
2876     case Instruction::IPUT_CHAR_QUICK:
2877       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2878       break;
2879     case Instruction::IPUT_SHORT:
2880     case Instruction::IPUT_SHORT_QUICK:
2881       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2882       break;
2883     case Instruction::IPUT:
2884     case Instruction::IPUT_QUICK:
2885       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2886       break;
2887     case Instruction::IPUT_WIDE:
2888     case Instruction::IPUT_WIDE_QUICK:
2889       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2890       break;
2891     case Instruction::IPUT_OBJECT:
2892     case Instruction::IPUT_OBJECT_QUICK:
2893       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2894                                                     false);
2895       break;
2896 
2897     case Instruction::SGET_BOOLEAN:
2898       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2899       break;
2900     case Instruction::SGET_BYTE:
2901       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2902       break;
2903     case Instruction::SGET_CHAR:
2904       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2905       break;
2906     case Instruction::SGET_SHORT:
2907       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2908       break;
2909     case Instruction::SGET:
2910       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2911       break;
2912     case Instruction::SGET_WIDE:
2913       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2914       break;
2915     case Instruction::SGET_OBJECT:
2916       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2917                                                     true);
2918       break;
2919 
2920     case Instruction::SPUT_BOOLEAN:
2921       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2922       break;
2923     case Instruction::SPUT_BYTE:
2924       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2925       break;
2926     case Instruction::SPUT_CHAR:
2927       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2928       break;
2929     case Instruction::SPUT_SHORT:
2930       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2931       break;
2932     case Instruction::SPUT:
2933       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2934       break;
2935     case Instruction::SPUT_WIDE:
2936       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2937       break;
2938     case Instruction::SPUT_OBJECT:
2939       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2940                                                     true);
2941       break;
2942 
2943     case Instruction::INVOKE_VIRTUAL:
2944     case Instruction::INVOKE_VIRTUAL_RANGE:
2945     case Instruction::INVOKE_SUPER:
2946     case Instruction::INVOKE_SUPER_RANGE:
2947     case Instruction::INVOKE_VIRTUAL_QUICK:
2948     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2949       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2950                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE ||
2951                        inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2952       bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2953                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2954       MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2955       ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2956       const RegType* return_type = nullptr;
2957       if (called_method != nullptr) {
2958         ObjPtr<mirror::Class> return_type_class = can_load_classes_
2959             ? called_method->ResolveReturnType()
2960             : called_method->LookupResolvedReturnType();
2961         if (return_type_class != nullptr) {
2962           return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2963                                    return_type_class,
2964                                    return_type_class->CannotBeAssignedFromOtherTypes());
2965         } else {
2966           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2967           self_->ClearException();
2968         }
2969       }
2970       if (return_type == nullptr) {
2971         uint32_t method_idx = GetMethodIdxOfInvoke(inst);
2972         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2973         dex::TypeIndex return_type_idx =
2974             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2975         const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2976         return_type = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
2977       }
2978       if (!return_type->IsLowHalf()) {
2979         work_line_->SetResultRegisterType(this, *return_type);
2980       } else {
2981         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2982       }
2983       just_set_result = true;
2984       break;
2985     }
2986     case Instruction::INVOKE_DIRECT:
2987     case Instruction::INVOKE_DIRECT_RANGE: {
2988       bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2989       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2990       const char* return_type_descriptor;
2991       bool is_constructor;
2992       const RegType* return_type = nullptr;
2993       if (called_method == nullptr) {
2994         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2995         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2996         is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2997         dex::TypeIndex return_type_idx =
2998             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2999         return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
3000       } else {
3001         is_constructor = called_method->IsConstructor();
3002         return_type_descriptor = called_method->GetReturnTypeDescriptor();
3003         ObjPtr<mirror::Class> return_type_class = can_load_classes_
3004             ? called_method->ResolveReturnType()
3005             : called_method->LookupResolvedReturnType();
3006         if (return_type_class != nullptr) {
3007           return_type = &FromClass(return_type_descriptor,
3008                                    return_type_class,
3009                                    return_type_class->CannotBeAssignedFromOtherTypes());
3010         } else {
3011           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3012           self_->ClearException();
3013         }
3014       }
3015       if (is_constructor) {
3016         /*
3017          * Some additional checks when calling a constructor. We know from the invocation arg check
3018          * that the "this" argument is an instance of called_method->klass. Now we further restrict
3019          * that to require that called_method->klass is the same as this->klass or this->super,
3020          * allowing the latter only if the "this" argument is the same as the "this" argument to
3021          * this method (which implies that we're in a constructor ourselves).
3022          */
3023         const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3024         if (this_type.IsConflict())  // failure.
3025           break;
3026 
3027         /* no null refs allowed (?) */
3028         if (this_type.IsZeroOrNull()) {
3029           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
3030           break;
3031         }
3032 
3033         /* must be in same class or in superclass */
3034         // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
3035         // TODO: re-enable constructor type verification
3036         // if (this_super_klass.IsConflict()) {
3037           // Unknown super class, fail so we re-check at runtime.
3038           // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
3039           // break;
3040         // }
3041 
3042         /* arg must be an uninitialized reference */
3043         if (!this_type.IsUninitializedTypes()) {
3044           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
3045               << this_type;
3046           break;
3047         }
3048 
3049         /*
3050          * Replace the uninitialized reference with an initialized one. We need to do this for all
3051          * registers that have the same object instance in them, not just the "this" register.
3052          */
3053         work_line_->MarkRefsAsInitialized(this, this_type);
3054       }
3055       if (return_type == nullptr) {
3056         return_type = &reg_types_.FromDescriptor(class_loader_.Get(),
3057                                                  return_type_descriptor,
3058                                                  false);
3059       }
3060       if (!return_type->IsLowHalf()) {
3061         work_line_->SetResultRegisterType(this, *return_type);
3062       } else {
3063         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
3064       }
3065       just_set_result = true;
3066       break;
3067     }
3068     case Instruction::INVOKE_STATIC:
3069     case Instruction::INVOKE_STATIC_RANGE: {
3070         bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
3071         ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
3072         const char* descriptor;
3073         if (called_method == nullptr) {
3074           uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3075           const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3076           dex::TypeIndex return_type_idx =
3077               dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3078           descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3079         } else {
3080           descriptor = called_method->GetReturnTypeDescriptor();
3081         }
3082         const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3083                                                                descriptor,
3084                                                                false);
3085         if (!return_type.IsLowHalf()) {
3086           work_line_->SetResultRegisterType(this, return_type);
3087         } else {
3088           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3089         }
3090         just_set_result = true;
3091       }
3092       break;
3093     case Instruction::INVOKE_INTERFACE:
3094     case Instruction::INVOKE_INTERFACE_RANGE: {
3095       bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3096       ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
3097       if (abs_method != nullptr) {
3098         ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
3099         if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
3100           Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
3101               << abs_method->PrettyMethod() << "'";
3102           break;
3103         }
3104       }
3105       /* Get the type of the "this" arg, which should either be a sub-interface of called
3106        * interface or Object (see comments in RegType::JoinClass).
3107        */
3108       const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3109       if (this_type.IsZeroOrNull()) {
3110         /* null pointer always passes (and always fails at runtime) */
3111       } else {
3112         if (this_type.IsUninitializedTypes()) {
3113           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
3114               << this_type;
3115           break;
3116         }
3117         // In the past we have tried to assert that "called_interface" is assignable
3118         // from "this_type.GetClass()", however, as we do an imprecise Join
3119         // (RegType::JoinClass) we don't have full information on what interfaces are
3120         // implemented by "this_type". For example, two classes may implement the same
3121         // interfaces and have a common parent that doesn't implement the interface. The
3122         // join will set "this_type" to the parent class and a test that this implements
3123         // the interface will incorrectly fail.
3124       }
3125       /*
3126        * We don't have an object instance, so we can't find the concrete method. However, all of
3127        * the type information is in the abstract method, so we're good.
3128        */
3129       const char* descriptor;
3130       if (abs_method == nullptr) {
3131         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3132         const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3133         dex::TypeIndex return_type_idx =
3134             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3135         descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3136       } else {
3137         descriptor = abs_method->GetReturnTypeDescriptor();
3138       }
3139       const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3140                                                              descriptor,
3141                                                              false);
3142       if (!return_type.IsLowHalf()) {
3143         work_line_->SetResultRegisterType(this, return_type);
3144       } else {
3145         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3146       }
3147       just_set_result = true;
3148       break;
3149     }
3150     case Instruction::INVOKE_POLYMORPHIC:
3151     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
3152       bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
3153       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
3154       if (called_method == nullptr) {
3155         // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
3156         if (failure_messages_.size() > 0) {
3157           std::string message = failure_messages_.back()->str();
3158           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
3159         } else {
3160           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
3161         }
3162         break;
3163       }
3164       if (!CheckSignaturePolymorphicMethod(called_method) ||
3165           !CheckSignaturePolymorphicReceiver(inst)) {
3166         DCHECK(HasFailures());
3167         break;
3168       }
3169       const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
3170       const dex::ProtoIndex proto_idx(vRegH);
3171       const char* return_descriptor =
3172           dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
3173       const RegType& return_type =
3174           reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3175       if (!return_type.IsLowHalf()) {
3176         work_line_->SetResultRegisterType(this, return_type);
3177       } else {
3178         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3179       }
3180       just_set_result = true;
3181       break;
3182     }
3183     case Instruction::INVOKE_CUSTOM:
3184     case Instruction::INVOKE_CUSTOM_RANGE: {
3185       // Verify registers based on method_type in the call site.
3186       bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
3187 
3188       // Step 1. Check the call site that produces the method handle for invocation
3189       const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3190       if (!CheckCallSite(call_site_idx)) {
3191         DCHECK(HasFailures());
3192         break;
3193       }
3194 
3195       // Step 2. Check the register arguments correspond to the expected arguments for the
3196       // method handle produced by step 1. The dex file verifier has checked ranges for
3197       // the first three arguments and CheckCallSite has checked the method handle type.
3198       const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
3199       const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
3200       DexFileParameterIterator param_it(*dex_file_, proto_id);
3201       // Treat method as static as it has yet to be determined.
3202       VerifyInvocationArgsFromIterator(&param_it, inst, METHOD_STATIC, is_range, nullptr);
3203       const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
3204 
3205       // Step 3. Propagate return type information
3206       const RegType& return_type =
3207           reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3208       if (!return_type.IsLowHalf()) {
3209         work_line_->SetResultRegisterType(this, return_type);
3210       } else {
3211         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3212       }
3213       just_set_result = true;
3214       break;
3215     }
3216     case Instruction::NEG_INT:
3217     case Instruction::NOT_INT:
3218       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3219       break;
3220     case Instruction::NEG_LONG:
3221     case Instruction::NOT_LONG:
3222       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3223                                    reg_types_.LongLo(), reg_types_.LongHi());
3224       break;
3225     case Instruction::NEG_FLOAT:
3226       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3227       break;
3228     case Instruction::NEG_DOUBLE:
3229       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3230                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3231       break;
3232     case Instruction::INT_TO_LONG:
3233       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3234                                      reg_types_.Integer());
3235       break;
3236     case Instruction::INT_TO_FLOAT:
3237       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3238       break;
3239     case Instruction::INT_TO_DOUBLE:
3240       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3241                                      reg_types_.Integer());
3242       break;
3243     case Instruction::LONG_TO_INT:
3244       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3245                                        reg_types_.LongLo(), reg_types_.LongHi());
3246       break;
3247     case Instruction::LONG_TO_FLOAT:
3248       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3249                                        reg_types_.LongLo(), reg_types_.LongHi());
3250       break;
3251     case Instruction::LONG_TO_DOUBLE:
3252       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3253                                    reg_types_.LongLo(), reg_types_.LongHi());
3254       break;
3255     case Instruction::FLOAT_TO_INT:
3256       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3257       break;
3258     case Instruction::FLOAT_TO_LONG:
3259       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3260                                      reg_types_.Float());
3261       break;
3262     case Instruction::FLOAT_TO_DOUBLE:
3263       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3264                                      reg_types_.Float());
3265       break;
3266     case Instruction::DOUBLE_TO_INT:
3267       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3268                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
3269       break;
3270     case Instruction::DOUBLE_TO_LONG:
3271       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3272                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3273       break;
3274     case Instruction::DOUBLE_TO_FLOAT:
3275       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3276                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
3277       break;
3278     case Instruction::INT_TO_BYTE:
3279       work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3280       break;
3281     case Instruction::INT_TO_CHAR:
3282       work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3283       break;
3284     case Instruction::INT_TO_SHORT:
3285       work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3286       break;
3287 
3288     case Instruction::ADD_INT:
3289     case Instruction::SUB_INT:
3290     case Instruction::MUL_INT:
3291     case Instruction::REM_INT:
3292     case Instruction::DIV_INT:
3293     case Instruction::SHL_INT:
3294     case Instruction::SHR_INT:
3295     case Instruction::USHR_INT:
3296       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3297                                 reg_types_.Integer(), false);
3298       break;
3299     case Instruction::AND_INT:
3300     case Instruction::OR_INT:
3301     case Instruction::XOR_INT:
3302       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3303                                 reg_types_.Integer(), true);
3304       break;
3305     case Instruction::ADD_LONG:
3306     case Instruction::SUB_LONG:
3307     case Instruction::MUL_LONG:
3308     case Instruction::DIV_LONG:
3309     case Instruction::REM_LONG:
3310     case Instruction::AND_LONG:
3311     case Instruction::OR_LONG:
3312     case Instruction::XOR_LONG:
3313       work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3314                                     reg_types_.LongLo(), reg_types_.LongHi(),
3315                                     reg_types_.LongLo(), reg_types_.LongHi());
3316       break;
3317     case Instruction::SHL_LONG:
3318     case Instruction::SHR_LONG:
3319     case Instruction::USHR_LONG:
3320       /* shift distance is Int, making these different from other binary operations */
3321       work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3322                                          reg_types_.Integer());
3323       break;
3324     case Instruction::ADD_FLOAT:
3325     case Instruction::SUB_FLOAT:
3326     case Instruction::MUL_FLOAT:
3327     case Instruction::DIV_FLOAT:
3328     case Instruction::REM_FLOAT:
3329       work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3330                                 reg_types_.Float(), false);
3331       break;
3332     case Instruction::ADD_DOUBLE:
3333     case Instruction::SUB_DOUBLE:
3334     case Instruction::MUL_DOUBLE:
3335     case Instruction::DIV_DOUBLE:
3336     case Instruction::REM_DOUBLE:
3337       work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3338                                     reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3339                                     reg_types_.DoubleLo(), reg_types_.DoubleHi());
3340       break;
3341     case Instruction::ADD_INT_2ADDR:
3342     case Instruction::SUB_INT_2ADDR:
3343     case Instruction::MUL_INT_2ADDR:
3344     case Instruction::REM_INT_2ADDR:
3345     case Instruction::SHL_INT_2ADDR:
3346     case Instruction::SHR_INT_2ADDR:
3347     case Instruction::USHR_INT_2ADDR:
3348       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3349                                      reg_types_.Integer(), false);
3350       break;
3351     case Instruction::AND_INT_2ADDR:
3352     case Instruction::OR_INT_2ADDR:
3353     case Instruction::XOR_INT_2ADDR:
3354       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3355                                      reg_types_.Integer(), true);
3356       break;
3357     case Instruction::DIV_INT_2ADDR:
3358       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3359                                      reg_types_.Integer(), false);
3360       break;
3361     case Instruction::ADD_LONG_2ADDR:
3362     case Instruction::SUB_LONG_2ADDR:
3363     case Instruction::MUL_LONG_2ADDR:
3364     case Instruction::DIV_LONG_2ADDR:
3365     case Instruction::REM_LONG_2ADDR:
3366     case Instruction::AND_LONG_2ADDR:
3367     case Instruction::OR_LONG_2ADDR:
3368     case Instruction::XOR_LONG_2ADDR:
3369       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3370                                          reg_types_.LongLo(), reg_types_.LongHi(),
3371                                          reg_types_.LongLo(), reg_types_.LongHi());
3372       break;
3373     case Instruction::SHL_LONG_2ADDR:
3374     case Instruction::SHR_LONG_2ADDR:
3375     case Instruction::USHR_LONG_2ADDR:
3376       work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3377                                               reg_types_.Integer());
3378       break;
3379     case Instruction::ADD_FLOAT_2ADDR:
3380     case Instruction::SUB_FLOAT_2ADDR:
3381     case Instruction::MUL_FLOAT_2ADDR:
3382     case Instruction::DIV_FLOAT_2ADDR:
3383     case Instruction::REM_FLOAT_2ADDR:
3384       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3385                                      reg_types_.Float(), false);
3386       break;
3387     case Instruction::ADD_DOUBLE_2ADDR:
3388     case Instruction::SUB_DOUBLE_2ADDR:
3389     case Instruction::MUL_DOUBLE_2ADDR:
3390     case Instruction::DIV_DOUBLE_2ADDR:
3391     case Instruction::REM_DOUBLE_2ADDR:
3392       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3393                                          reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
3394                                          reg_types_.DoubleLo(), reg_types_.DoubleHi());
3395       break;
3396     case Instruction::ADD_INT_LIT16:
3397     case Instruction::RSUB_INT_LIT16:
3398     case Instruction::MUL_INT_LIT16:
3399     case Instruction::DIV_INT_LIT16:
3400     case Instruction::REM_INT_LIT16:
3401       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3402                                  true);
3403       break;
3404     case Instruction::AND_INT_LIT16:
3405     case Instruction::OR_INT_LIT16:
3406     case Instruction::XOR_INT_LIT16:
3407       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3408                                  true);
3409       break;
3410     case Instruction::ADD_INT_LIT8:
3411     case Instruction::RSUB_INT_LIT8:
3412     case Instruction::MUL_INT_LIT8:
3413     case Instruction::DIV_INT_LIT8:
3414     case Instruction::REM_INT_LIT8:
3415     case Instruction::SHL_INT_LIT8:
3416     case Instruction::SHR_INT_LIT8:
3417     case Instruction::USHR_INT_LIT8:
3418       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3419                                  false);
3420       break;
3421     case Instruction::AND_INT_LIT8:
3422     case Instruction::OR_INT_LIT8:
3423     case Instruction::XOR_INT_LIT8:
3424       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3425                                  false);
3426       break;
3427 
3428     // Special instructions.
3429     case Instruction::RETURN_VOID_NO_BARRIER:
3430       if (IsConstructor() && !IsStatic()) {
3431         const RegType& declaring_class = GetDeclaringClass();
3432         if (declaring_class.IsUnresolvedReference()) {
3433           // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
3434           // manually over the underlying dex file.
3435           uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
3436               dex_file_->GetMethodId(dex_method_idx_).class_idx_);
3437           if (first_index != dex::kDexNoIndex) {
3438             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
3439                               << first_index;
3440           }
3441           break;
3442         }
3443         ObjPtr<mirror::Class> klass = declaring_class.GetClass();
3444         for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
3445           if (klass->GetInstanceField(i)->IsFinal()) {
3446             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
3447                 << klass->GetInstanceField(i)->PrettyField();
3448             break;
3449           }
3450         }
3451       }
3452       // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from
3453       // quickened opcodes (otherwise this could be a fall-through).
3454       if (!IsConstructor()) {
3455         if (!GetMethodReturnType().IsConflict()) {
3456           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
3457         }
3458       }
3459       break;
3460 
3461     /* These should never appear during verification. */
3462     case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3463     case Instruction::UNUSED_F3 ... Instruction::UNUSED_F9:
3464     case Instruction::UNUSED_79:
3465     case Instruction::UNUSED_7A:
3466       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3467       break;
3468 
3469     /*
3470      * DO NOT add a "default" clause here. Without it the compiler will
3471      * complain if an instruction is missing (which is desirable).
3472      */
3473   }  // end - switch (dec_insn.opcode)
3474 
3475   if (flags_.have_pending_hard_failure_) {
3476     if (IsAotMode()) {
3477       /* When AOT compiling, check that the last failure is a hard failure */
3478       if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3479         LOG(ERROR) << "Pending failures:";
3480         for (auto& error : failures_) {
3481           LOG(ERROR) << error;
3482         }
3483         for (auto& error_msg : failure_messages_) {
3484           LOG(ERROR) << error_msg->str();
3485         }
3486         LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3487       }
3488     }
3489     /* immediate failure, reject class */
3490     info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3491     return false;
3492   } else if (flags_.have_pending_runtime_throw_failure_) {
3493     LogVerifyInfo() << "Elevating opcode flags from " << opcode_flags << " to Throw";
3494     /* checking interpreter will throw, mark following code as unreachable */
3495     opcode_flags = Instruction::kThrow;
3496     // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3497     //       instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3498     //       very end.
3499   }
3500   /*
3501    * If we didn't just set the result register, clear it out. This ensures that you can only use
3502    * "move-result" immediately after the result is set. (We could check this statically, but it's
3503    * not expensive and it makes our debugging output cleaner.)
3504    */
3505   if (!just_set_result) {
3506     work_line_->SetResultTypeToUnknown(GetRegTypeCache());
3507   }
3508 
3509   /*
3510    * Handle "branch". Tag the branch target.
3511    *
3512    * NOTE: instructions like Instruction::EQZ provide information about the
3513    * state of the register when the branch is taken or not taken. For example,
3514    * somebody could get a reference field, check it for zero, and if the
3515    * branch is taken immediately store that register in a boolean field
3516    * since the value is known to be zero. We do not currently account for
3517    * that, and will reject the code.
3518    *
3519    * TODO: avoid re-fetching the branch target
3520    */
3521   if ((opcode_flags & Instruction::kBranch) != 0) {
3522     bool isConditional, selfOkay;
3523     if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3524       /* should never happen after static verification */
3525       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3526       return false;
3527     }
3528     DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3529     if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
3530                                            work_insn_idx_ + branch_target)) {
3531       return false;
3532     }
3533     /* update branch target, set "changed" if appropriate */
3534     if (nullptr != branch_line) {
3535       if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3536         return false;
3537       }
3538     } else {
3539       if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3540         return false;
3541       }
3542     }
3543   }
3544 
3545   /*
3546    * Handle "switch". Tag all possible branch targets.
3547    *
3548    * We've already verified that the table is structurally sound, so we
3549    * just need to walk through and tag the targets.
3550    */
3551   if ((opcode_flags & Instruction::kSwitch) != 0) {
3552     int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3553     const uint16_t* switch_insns = insns + offset_to_switch;
3554     int switch_count = switch_insns[1];
3555     int offset_to_targets, targ;
3556 
3557     if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3558       /* 0 = sig, 1 = count, 2/3 = first key */
3559       offset_to_targets = 4;
3560     } else {
3561       /* 0 = sig, 1 = count, 2..count * 2 = keys */
3562       DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3563       offset_to_targets = 2 + 2 * switch_count;
3564     }
3565 
3566     /* verify each switch target */
3567     for (targ = 0; targ < switch_count; targ++) {
3568       int offset;
3569       uint32_t abs_offset;
3570 
3571       /* offsets are 32-bit, and only partly endian-swapped */
3572       offset = switch_insns[offset_to_targets + targ * 2] |
3573          (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3574       abs_offset = work_insn_idx_ + offset;
3575       DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
3576       if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
3577         return false;
3578       }
3579       if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3580         return false;
3581       }
3582     }
3583   }
3584 
3585   /*
3586    * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3587    * "try" block when they throw, control transfers out of the method.)
3588    */
3589   if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3590     bool has_catch_all_handler = false;
3591     const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
3592     CHECK(try_item != nullptr);
3593     CatchHandlerIterator iterator(code_item_accessor_, *try_item);
3594 
3595     // Need the linker to try and resolve the handled class to check if it's Throwable.
3596     ClassLinker* linker = GetClassLinker();
3597 
3598     for (; iterator.HasNext(); iterator.Next()) {
3599       dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
3600       if (!handler_type_idx.IsValid()) {
3601         has_catch_all_handler = true;
3602       } else {
3603         // It is also a catch-all if it is java.lang.Throwable.
3604         ObjPtr<mirror::Class> klass =
3605             linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
3606         if (klass != nullptr) {
3607           if (klass == GetClassRoot<mirror::Throwable>()) {
3608             has_catch_all_handler = true;
3609           }
3610         } else {
3611           // Clear exception.
3612           DCHECK(self_->IsExceptionPending());
3613           self_->ClearException();
3614         }
3615       }
3616       /*
3617        * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3618        * "work_regs", because at runtime the exception will be thrown before the instruction
3619        * modifies any registers.
3620        */
3621       if (kVerifierDebug) {
3622         LogVerifyInfo() << "Updating exception handler 0x"
3623                         << std::hex << iterator.GetHandlerAddress();
3624       }
3625       if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3626         return false;
3627       }
3628     }
3629 
3630     /*
3631      * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3632      * instruction. This does apply to monitor-exit because of async exception handling.
3633      */
3634     if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3635       /*
3636        * The state in work_line reflects the post-execution state. If the current instruction is a
3637        * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3638        * it will do so before grabbing the lock).
3639        */
3640       if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3641         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3642             << "expected to be within a catch-all for an instruction where a monitor is held";
3643         return false;
3644       }
3645     }
3646   }
3647 
3648   /* Handle "continue". Tag the next consecutive instruction.
3649    *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3650    *        because it changes work_line_ when performing peephole optimization
3651    *        and this change should not be used in those cases.
3652    */
3653   if ((opcode_flags & Instruction::kContinue) != 0 && !exc_handler_unreachable) {
3654     DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3655     uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3656     if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
3657       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3658       return false;
3659     }
3660     // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3661     // next instruction isn't one.
3662     if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
3663       return false;
3664     }
3665     if (nullptr != fallthrough_line) {
3666       // Make workline consistent with fallthrough computed from peephole optimization.
3667       work_line_->CopyFromLine(fallthrough_line.get());
3668     }
3669     if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3670       // For returns we only care about the operand to the return, all other registers are dead.
3671       const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
3672       AdjustReturnLine(this, ret_inst, work_line_.get());
3673     }
3674     RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3675     if (next_line != nullptr) {
3676       // Merge registers into what we have for the next instruction, and set the "changed" flag if
3677       // needed. If the merge changes the state of the registers then the work line will be
3678       // updated.
3679       if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3680         return false;
3681       }
3682     } else {
3683       /*
3684        * We're not recording register data for the next instruction, so we don't know what the
3685        * prior state was. We have to assume that something has changed and re-evaluate it.
3686        */
3687       GetModifiableInstructionFlags(next_insn_idx).SetChanged();
3688     }
3689   }
3690 
3691   /* If we're returning from the method, make sure monitor stack is empty. */
3692   if ((opcode_flags & Instruction::kReturn) != 0) {
3693     work_line_->VerifyMonitorStackEmpty(this);
3694   }
3695 
3696   /*
3697    * Update start_guess. Advance to the next instruction of that's
3698    * possible, otherwise use the branch target if one was found. If
3699    * neither of those exists we're in a return or throw; leave start_guess
3700    * alone and let the caller sort it out.
3701    */
3702   if ((opcode_flags & Instruction::kContinue) != 0) {
3703     DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3704     *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3705   } else if ((opcode_flags & Instruction::kBranch) != 0) {
3706     /* we're still okay if branch_target is zero */
3707     *start_guess = work_insn_idx_ + branch_target;
3708   }
3709 
3710   DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
3711   DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3712 
3713   if (flags_.have_pending_runtime_throw_failure_) {
3714     flags_.have_any_pending_runtime_throw_failure_ = true;
3715     // Reset the pending_runtime_throw flag now.
3716     flags_.have_pending_runtime_throw_failure_ = false;
3717   }
3718 
3719   return true;
3720 }  // NOLINT(readability/fn_size)
3721 
3722 template <bool kVerifierDebug>
3723 template <CheckAccess C>
ResolveClass(dex::TypeIndex class_idx)3724 const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
3725   ClassLinker* linker = GetClassLinker();
3726   ObjPtr<mirror::Class> klass = can_load_classes_
3727       ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
3728       : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
3729   if (can_load_classes_ && klass == nullptr) {
3730     DCHECK(self_->IsExceptionPending());
3731     self_->ClearException();
3732   }
3733   const RegType* result = nullptr;
3734   if (klass != nullptr) {
3735     bool precise = klass->CannotBeAssignedFromOtherTypes();
3736     if (precise && !IsInstantiableOrPrimitive(klass)) {
3737       const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3738       UninstantiableError(descriptor);
3739       precise = false;
3740     }
3741     result = reg_types_.FindClass(klass, precise);
3742     if (result == nullptr) {
3743       const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3744       result = reg_types_.InsertClass(descriptor, klass, precise);
3745     }
3746   } else {
3747     const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3748     result = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
3749   }
3750   DCHECK(result != nullptr);
3751   if (result->IsConflict()) {
3752     const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3753     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3754         << "' in " << GetDeclaringClass();
3755     return *result;
3756   }
3757 
3758   // Record result of class resolution attempt.
3759   VerifierDeps::MaybeRecordClassResolution(*dex_file_, class_idx, klass);
3760 
3761   // If requested, check if access is allowed. Unresolved types are included in this check, as the
3762   // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
3763   // the access-checks interpreter. If result is primitive, skip the access check.
3764   //
3765   // Note: we do this for unresolved classes to trigger re-verification at runtime.
3766   if (C != CheckAccess::kNo &&
3767       result->IsNonZeroReferenceTypes() &&
3768       ((C == CheckAccess::kYes && IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP))
3769           || !result->IsUnresolvedTypes())) {
3770     const RegType& referrer = GetDeclaringClass();
3771     if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
3772         !referrer.CanAccess(*result)) {
3773       Fail(VERIFY_ERROR_ACCESS_CLASS) << "(possibly) illegal class access: '"
3774                                       << referrer << "' -> '" << *result << "'";
3775     }
3776   }
3777   return *result;
3778 }
3779 
3780 template <bool kVerifierDebug>
HandleMoveException(const Instruction * inst)3781 bool MethodVerifier<kVerifierDebug>::HandleMoveException(const Instruction* inst)  {
3782   // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
3783   // where one entrypoint to the catch block is not actually an exception path.
3784   if (work_insn_idx_ == 0) {
3785     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
3786     return true;
3787   }
3788   /*
3789    * This statement can only appear as the first instruction in an exception handler. We verify
3790    * that as part of extracting the exception type from the catch block list.
3791    */
3792   auto caught_exc_type_fn = [&]() REQUIRES_SHARED(Locks::mutator_lock_) ->
3793       std::pair<bool, const RegType*> {
3794     const RegType* common_super = nullptr;
3795     if (code_item_accessor_.TriesSize() != 0) {
3796       const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
3797       uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3798       const RegType* unresolved = nullptr;
3799       for (uint32_t i = 0; i < handlers_size; i++) {
3800         CatchHandlerIterator iterator(handlers_ptr);
3801         for (; iterator.HasNext(); iterator.Next()) {
3802           if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3803             if (!iterator.GetHandlerTypeIndex().IsValid()) {
3804               common_super = &reg_types_.JavaLangThrowable(false);
3805             } else {
3806               // Do access checks only on resolved exception classes.
3807               const RegType& exception =
3808                   ResolveClass<CheckAccess::kOnResolvedClass>(iterator.GetHandlerTypeIndex());
3809               if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
3810                 DCHECK(!exception.IsUninitializedTypes());  // Comes from dex, shouldn't be uninit.
3811                 if (exception.IsUnresolvedTypes()) {
3812                   if (unresolved == nullptr) {
3813                     unresolved = &exception;
3814                   } else {
3815                     unresolved = &unresolved->SafeMerge(exception, &reg_types_, this);
3816                   }
3817                 } else {
3818                   Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class "
3819                                                     << exception;
3820                   return std::make_pair(true, &reg_types_.Conflict());
3821                 }
3822               } else if (common_super == nullptr) {
3823                 common_super = &exception;
3824               } else if (common_super->Equals(exception)) {
3825                 // odd case, but nothing to do
3826               } else {
3827                 common_super = &common_super->Merge(exception, &reg_types_, this);
3828                 if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
3829                     *common_super, this),
3830                     "java.lang.Throwable is not assignable-from common_super at ",
3831                     work_insn_idx_)) {
3832                   break;
3833                 }
3834               }
3835             }
3836           }
3837         }
3838         handlers_ptr = iterator.EndDataPointer();
3839       }
3840       if (unresolved != nullptr) {
3841         if (!IsAotMode() && common_super == nullptr) {
3842           // This is an unreachable handler.
3843 
3844           // We need to post a failure. The compiler currently does not handle unreachable
3845           // code correctly.
3846           Fail(VERIFY_ERROR_SKIP_COMPILER, /*pending_exc=*/ false)
3847               << "Unresolved catch handler, fail for compiler";
3848 
3849           return std::make_pair(false, unresolved);
3850         }
3851         // Soft-fail, but do not handle this with a synthetic throw.
3852         Fail(VERIFY_ERROR_NO_CLASS, /*pending_exc=*/ false) << "Unresolved catch handler";
3853         if (common_super != nullptr) {
3854           unresolved = &unresolved->Merge(*common_super, &reg_types_, this);
3855         }
3856         return std::make_pair(true, unresolved);
3857       }
3858     }
3859     if (common_super == nullptr) {
3860       /* no catch blocks, or no catches with classes we can find */
3861       Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3862       return std::make_pair(true, &reg_types_.Conflict());
3863     }
3864     return std::make_pair(true, common_super);
3865   };
3866   auto result = caught_exc_type_fn();
3867   work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), *result.second);
3868   return result.first;
3869 }
3870 
3871 template <bool kVerifierDebug>
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3872 ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
3873     uint32_t dex_method_idx, MethodType method_type) {
3874   const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3875   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
3876   if (klass_type.IsConflict()) {
3877     std::string append(" in attempt to access method ");
3878     append += dex_file_->GetMethodName(method_id);
3879     AppendToLastFailMessage(append);
3880     return nullptr;
3881   }
3882   if (klass_type.IsUnresolvedTypes()) {
3883     return nullptr;  // Can't resolve Class so no more to do here
3884   }
3885   ObjPtr<mirror::Class> klass = klass_type.GetClass();
3886   const RegType& referrer = GetDeclaringClass();
3887   ClassLinker* class_linker = GetClassLinker();
3888   PointerSize pointer_size = class_linker->GetImagePointerSize();
3889 
3890   ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3891   if (res_method == nullptr) {
3892     res_method = class_linker->FindResolvedMethod(
3893         klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3894   }
3895 
3896   // Record result of method resolution attempt. The klass resolution has recorded whether
3897   // the class is an interface or not and therefore the type of the lookup performed above.
3898   // TODO: Maybe we should not record dependency if the invoke type does not match the lookup type.
3899   VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_method);
3900 
3901   bool must_fail = false;
3902   // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
3903   // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
3904   // hard to see the differences.
3905   // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
3906   // DCHECK.
3907   if (res_method == nullptr) {
3908     must_fail = true;
3909     // Try to find the method also with the other type for better error reporting below
3910     // but do not store such bogus lookup result in the DexCache or VerifierDeps.
3911     res_method = class_linker->FindIncompatibleMethod(
3912         klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3913   }
3914 
3915   if (res_method == nullptr) {
3916     Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3917                                  << klass->PrettyDescriptor() << "."
3918                                  << dex_file_->GetMethodName(method_id) << " "
3919                                  << dex_file_->GetMethodSignature(method_id);
3920     return nullptr;
3921   }
3922 
3923   // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3924   // enforce them here.
3925   if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3926     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3927                                       << res_method->PrettyMethod();
3928     return nullptr;
3929   }
3930   // Disallow any calls to class initializers.
3931   if (res_method->IsClassInitializer()) {
3932     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3933                                       << res_method->PrettyMethod();
3934     return nullptr;
3935   }
3936 
3937   // Check that interface methods are static or match interface classes.
3938   // We only allow statics if we don't have default methods enabled.
3939   //
3940   // Note: this check must be after the initializer check, as those are required to fail a class,
3941   //       while this check implies an IncompatibleClassChangeError.
3942   if (klass->IsInterface()) {
3943     // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3944     // default methods are supported for the dex file), or invoke-static.
3945     if (method_type != METHOD_INTERFACE &&
3946         method_type != METHOD_STATIC &&
3947         (!dex_file_->SupportsDefaultMethods() ||
3948          method_type != METHOD_DIRECT) &&
3949         method_type != METHOD_SUPER) {
3950       Fail(VERIFY_ERROR_CLASS_CHANGE)
3951           << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
3952           << " is in an interface class " << klass->PrettyClass();
3953       return nullptr;
3954     }
3955   } else {
3956     if (method_type == METHOD_INTERFACE) {
3957       Fail(VERIFY_ERROR_CLASS_CHANGE)
3958           << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
3959           << " is in a non-interface class " << klass->PrettyClass();
3960       return nullptr;
3961     }
3962   }
3963 
3964   // Check specifically for non-public object methods being provided for interface dispatch. This
3965   // can occur if we failed to find a method with FindInterfaceMethod but later find one with
3966   // FindClassMethod for error message use.
3967   if (method_type == METHOD_INTERFACE &&
3968       res_method->GetDeclaringClass()->IsObjectClass() &&
3969       !res_method->IsPublic()) {
3970     Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
3971                                  << dex_file_->GetMethodName(method_id) << " "
3972                                  << dex_file_->GetMethodSignature(method_id) << " resolved to "
3973                                  << "non-public object method " << res_method->PrettyMethod() << " "
3974                                  << "but non-public Object methods are excluded from interface "
3975                                  << "method resolution.";
3976     return nullptr;
3977   }
3978   // Check if access is allowed.
3979   if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3980     Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
3981                                      << res_method->PrettyMethod()
3982                                      << " from " << referrer << ")";
3983     return res_method;
3984   }
3985   // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3986   if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3987     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3988                                       << res_method->PrettyMethod();
3989     return nullptr;
3990   }
3991   // See if the method type implied by the invoke instruction matches the access flags for the
3992   // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
3993   // signature polymorphic methods supported by the run-time which are native methods with variable
3994   // arguments.
3995   if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3996       (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3997       ((method_type == METHOD_SUPER ||
3998         method_type == METHOD_VIRTUAL ||
3999         method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
4000       ((method_type == METHOD_POLYMORPHIC) &&
4001        (!res_method->IsNative() || !res_method->IsVarargs()))) {
4002     Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
4003                                        "type of " << res_method->PrettyMethod();
4004     return nullptr;
4005   }
4006   // Make sure we weren't expecting to fail.
4007   DCHECK(!must_fail) << "invoke type (" << method_type << ")"
4008                      << klass->PrettyDescriptor() << "."
4009                      << dex_file_->GetMethodName(method_id) << " "
4010                      << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
4011                      << res_method->PrettyMethod() << " without error. Initially this method was "
4012                      << "not found so we were expecting to fail for some reason.";
4013   return res_method;
4014 }
4015 
4016 template <bool kVerifierDebug>
4017 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)4018 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
4019     T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
4020   DCHECK_EQ(!is_range, inst->HasVarArgs());
4021 
4022   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
4023   // match the call to the signature. Also, we might be calling through an abstract method
4024   // definition (which doesn't have register count values).
4025   const size_t expected_args = inst->VRegA();
4026   /* caught by static verifier */
4027   DCHECK(is_range || expected_args <= 5);
4028 
4029   if (expected_args > code_item_accessor_.OutsSize()) {
4030     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
4031                                       << ") exceeds outsSize ("
4032                                       << code_item_accessor_.OutsSize() << ")";
4033     return nullptr;
4034   }
4035 
4036   /*
4037    * Check the "this" argument, which must be an instance of the class that declared the method.
4038    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
4039    * rigorous check here (which is okay since we have to do it at runtime).
4040    */
4041   if (method_type != METHOD_STATIC) {
4042     const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
4043     if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
4044       CHECK(flags_.have_pending_hard_failure_);
4045       return nullptr;
4046     }
4047     bool is_init = false;
4048     if (actual_arg_type.IsUninitializedTypes()) {
4049       if (res_method) {
4050         if (!res_method->IsConstructor()) {
4051           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4052           return nullptr;
4053         }
4054       } else {
4055         // Check whether the name of the called method is "<init>"
4056         const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4057         if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
4058           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4059           return nullptr;
4060         }
4061       }
4062       is_init = true;
4063     }
4064     const RegType& adjusted_type = is_init
4065                                        ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
4066                                        : actual_arg_type;
4067     if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
4068       const RegType* res_method_class;
4069       // Miranda methods have the declaring interface as their declaring class, not the abstract
4070       // class. It would be wrong to use this for the type check (interface type checks are
4071       // postponed to runtime).
4072       if (res_method != nullptr && !res_method->IsMiranda()) {
4073         ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
4074         std::string temp;
4075         res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
4076                                       klass->CannotBeAssignedFromOtherTypes());
4077       } else {
4078         const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4079         const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4080         res_method_class = &reg_types_.FromDescriptor(
4081             class_loader_.Get(),
4082             dex_file_->StringByTypeIdx(class_idx),
4083             false);
4084       }
4085       if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
4086         Fail(adjusted_type.IsUnresolvedTypes()
4087                  ? VERIFY_ERROR_NO_CLASS
4088                  : VERIFY_ERROR_BAD_CLASS_SOFT)
4089             << "'this' argument '" << actual_arg_type << "' not instance of '"
4090             << *res_method_class << "'";
4091         // Continue on soft failures. We need to find possible hard failures to avoid problems in
4092         // the compiler.
4093         if (flags_.have_pending_hard_failure_) {
4094           return nullptr;
4095         }
4096       }
4097     }
4098   }
4099 
4100   uint32_t arg[5];
4101   if (!is_range) {
4102     inst->GetVarArgs(arg);
4103   }
4104   uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
4105   for ( ; it->HasNext(); it->Next()) {
4106     if (sig_registers >= expected_args) {
4107       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
4108           " argument registers, method signature has " << sig_registers + 1 << " or more";
4109       return nullptr;
4110     }
4111 
4112     const char* param_descriptor = it->GetDescriptor();
4113 
4114     if (param_descriptor == nullptr) {
4115       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
4116           "component";
4117       return nullptr;
4118     }
4119 
4120     const RegType& reg_type = reg_types_.FromDescriptor(class_loader_.Get(),
4121                                                         param_descriptor,
4122                                                         false);
4123     uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
4124         arg[sig_registers];
4125     if (reg_type.IsIntegralTypes()) {
4126       const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
4127       if (!src_type.IsIntegralTypes()) {
4128         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
4129             << " but expected " << reg_type;
4130         return nullptr;
4131       }
4132     } else {
4133       if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
4134         // Continue on soft failures. We need to find possible hard failures to avoid problems in
4135         // the compiler.
4136         if (flags_.have_pending_hard_failure_) {
4137           return nullptr;
4138         }
4139       } else if (reg_type.IsLongOrDoubleTypes()) {
4140         // Check that registers are consecutive (for non-range invokes). Invokes are the only
4141         // instructions not specifying register pairs by the first component, but require them
4142         // nonetheless. Only check when there's an actual register in the parameters. If there's
4143         // none, this will fail below.
4144         if (!is_range && sig_registers + 1 < expected_args) {
4145           uint32_t second_reg = arg[sig_registers + 1];
4146           if (second_reg != get_reg + 1) {
4147             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
4148                 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
4149                 << second_reg << ".";
4150             return nullptr;
4151           }
4152         }
4153       }
4154     }
4155     sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
4156   }
4157   if (expected_args != sig_registers) {
4158     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4159         " argument registers, method signature has " << sig_registers;
4160     return nullptr;
4161   }
4162   return res_method;
4163 }
4164 
4165 template <bool kVerifierDebug>
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)4166 void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4167                                                                           MethodType method_type,
4168                                                                           bool is_range) {
4169   // As the method may not have been resolved, make this static check against what we expect.
4170   // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4171   // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4172   const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4173   DexFileParameterIterator it(*dex_file_,
4174                               dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4175   VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
4176 }
4177 
4178 template <bool kVerifierDebug>
CheckCallSite(uint32_t call_site_idx)4179 bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
4180   if (call_site_idx >= dex_file_->NumCallSiteIds()) {
4181     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
4182                                       << " >= " << dex_file_->NumCallSiteIds();
4183     return false;
4184   }
4185 
4186   CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
4187   // Check essential arguments are provided. The dex file verifier has verified indices of the
4188   // main values (method handle, name, method_type).
4189   static const size_t kRequiredArguments = 3;
4190   if (it.Size() < kRequiredArguments) {
4191     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4192                                       << " has too few arguments: "
4193                                       << it.Size() << " < " << kRequiredArguments;
4194     return false;
4195   }
4196 
4197   std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
4198       { { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
4199         { EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
4200         { EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
4201       };
4202   uint32_t index[kRequiredArguments];
4203 
4204   // Check arguments have expected types and are within permitted ranges.
4205   for (size_t i = 0; i < kRequiredArguments; ++i) {
4206     if (it.GetValueType() != type_and_max[i].first) {
4207       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4208                                         << " argument " << i << " has wrong type "
4209                                         << it.GetValueType() << "!=" << type_and_max[i].first;
4210       return false;
4211     }
4212     index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
4213     if (index[i] >= type_and_max[i].second) {
4214       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4215                                         << " argument " << i << " bad index "
4216                                         << index[i] << " >= " << type_and_max[i].second;
4217       return false;
4218     }
4219     it.Next();
4220   }
4221 
4222   // Check method handle kind is valid.
4223   const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
4224   if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
4225     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4226                                       << " argument 0 method handle type is not InvokeStatic: "
4227                                       << mh.method_handle_type_;
4228     return false;
4229   }
4230   return true;
4231 }
4232 
4233 class MethodParamListDescriptorIterator {
4234  public:
MethodParamListDescriptorIterator(ArtMethod * res_method)4235   explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4236       res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4237       params_size_(params_ == nullptr ? 0 : params_->Size()) {
4238   }
4239 
HasNext()4240   bool HasNext() {
4241     return pos_ < params_size_;
4242   }
4243 
Next()4244   void Next() {
4245     ++pos_;
4246   }
4247 
GetDescriptor()4248   const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
4249     return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4250   }
4251 
4252  private:
4253   ArtMethod* res_method_;
4254   size_t pos_;
4255   const dex::TypeList* params_;
4256   const size_t params_size_;
4257 };
4258 
4259 template <bool kVerifierDebug>
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range)4260 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
4261     const Instruction* inst, MethodType method_type, bool is_range) {
4262   // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4263   // we're making.
4264   const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4265   ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4266   if (res_method == nullptr) {  // error or class is unresolved
4267     // Check what we can statically.
4268     if (!flags_.have_pending_hard_failure_) {
4269       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4270     }
4271     return nullptr;
4272   }
4273 
4274   // If we're using invoke-super(method), make sure that the executing method's class' superclass
4275   // has a vtable entry for the target method. Or the target is on a interface.
4276   if (method_type == METHOD_SUPER) {
4277     dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4278     const RegType& reference_type = reg_types_.FromDescriptor(
4279         class_loader_.Get(),
4280         dex_file_->StringByTypeIdx(class_idx),
4281         false);
4282     if (reference_type.IsUnresolvedTypes()) {
4283       Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
4284       return nullptr;
4285     }
4286     if (reference_type.GetClass()->IsInterface()) {
4287       if (!GetDeclaringClass().HasClass()) {
4288         Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4289                                     << "interface invoke-super";
4290         return nullptr;
4291       } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
4292         Fail(VERIFY_ERROR_CLASS_CHANGE)
4293             << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
4294             << " in method "
4295             << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
4296             << dex_file_->PrettyMethod(method_idx) << " references "
4297             << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
4298         return nullptr;
4299       }
4300     } else {
4301       const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
4302       if (super.IsUnresolvedTypes()) {
4303         Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4304                                     << dex_file_->PrettyMethod(dex_method_idx_)
4305                                     << " to super " << res_method->PrettyMethod();
4306         return nullptr;
4307       }
4308       if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
4309           (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4310         Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4311                                     << dex_file_->PrettyMethod(dex_method_idx_)
4312                                     << " to super " << super
4313                                     << "." << res_method->GetName()
4314                                     << res_method->GetSignature();
4315         return nullptr;
4316       }
4317     }
4318   }
4319 
4320   if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
4321     // Process the signature of the calling site that is invoking the method handle.
4322     dex::ProtoIndex proto_idx(inst->VRegH());
4323     DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
4324     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4325   } else {
4326     // Process the target method's signature.
4327     MethodParamListDescriptorIterator it(res_method);
4328     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4329   }
4330 }
4331 
4332 template <bool kVerifierDebug>
CheckSignaturePolymorphicMethod(ArtMethod * method)4333 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
4334   ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
4335   const char* method_name = method->GetName();
4336 
4337   const char* expected_return_descriptor;
4338   ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4339   if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
4340     expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
4341   } else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
4342     expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
4343   } else {
4344     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4345         << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
4346     return false;
4347   }
4348 
4349   if (expected_return_descriptor == nullptr) {
4350     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4351         << "Signature polymorphic method name invalid: " << method_name;
4352     return false;
4353   }
4354 
4355   const dex::TypeList* types = method->GetParameterTypeList();
4356   if (types->Size() != 1) {
4357     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4358         << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
4359     return false;
4360   }
4361 
4362   const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
4363   const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
4364   if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
4365     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4366         << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
4367     return false;
4368   }
4369 
4370   const char* return_descriptor = method->GetReturnTypeDescriptor();
4371   if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
4372     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4373         << "Signature polymorphic method has unexpected return type: " << return_descriptor
4374         << " != " << expected_return_descriptor;
4375     return false;
4376   }
4377 
4378   return true;
4379 }
4380 
4381 template <bool kVerifierDebug>
CheckSignaturePolymorphicReceiver(const Instruction * inst)4382 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
4383   const RegType& this_type = work_line_->GetInvocationThis(this, inst);
4384   if (this_type.IsZeroOrNull()) {
4385     /* null pointer always passes (and always fails at run time) */
4386     return true;
4387   } else if (!this_type.IsNonZeroReferenceTypes()) {
4388     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4389         << "invoke-polymorphic receiver is not a reference: "
4390         << this_type;
4391     return false;
4392   } else if (this_type.IsUninitializedReference()) {
4393     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4394         << "invoke-polymorphic receiver is uninitialized: "
4395         << this_type;
4396     return false;
4397   } else if (!this_type.HasClass()) {
4398     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4399         << "invoke-polymorphic receiver has no class: "
4400         << this_type;
4401     return false;
4402   } else {
4403     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4404     if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
4405         !this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
4406       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4407           << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
4408           << this_type;
4409       return false;
4410     }
4411   }
4412   return true;
4413 }
4414 
4415 template <bool kVerifierDebug>
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)4416 void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
4417                                                     bool is_filled,
4418                                                     bool is_range) {
4419   dex::TypeIndex type_idx;
4420   if (!is_filled) {
4421     DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4422     type_idx = dex::TypeIndex(inst->VRegC_22c());
4423   } else if (!is_range) {
4424     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4425     type_idx = dex::TypeIndex(inst->VRegB_35c());
4426   } else {
4427     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4428     type_idx = dex::TypeIndex(inst->VRegB_3rc());
4429   }
4430   const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
4431   if (res_type.IsConflict()) {  // bad class
4432     DCHECK_NE(failures_.size(), 0U);
4433   } else {
4434     // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4435     if (!res_type.IsArrayTypes()) {
4436       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4437     } else if (!is_filled) {
4438       /* make sure "size" register is valid type */
4439       work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4440       /* set register type to array class */
4441       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4442       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
4443     } else {
4444       DCHECK(!res_type.IsUnresolvedMergedReference());
4445       // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4446       // the list and fail. It's legal, if silly, for arg_count to be zero.
4447       const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_.Get());
4448       uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4449       uint32_t arg[5];
4450       if (!is_range) {
4451         inst->GetVarArgs(arg);
4452       }
4453       for (size_t ui = 0; ui < arg_count; ui++) {
4454         uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4455         if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
4456           work_line_->SetResultRegisterType(this, reg_types_.Conflict());
4457           return;
4458         }
4459       }
4460       // filled-array result goes into "result" register
4461       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4462       work_line_->SetResultRegisterType(this, precise_type);
4463     }
4464   }
4465 }
4466 
4467 template <bool kVerifierDebug>
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)4468 void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
4469                                                 const RegType& insn_type,
4470                                                 bool is_primitive) {
4471   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4472   if (!index_type.IsArrayIndexTypes()) {
4473     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4474   } else {
4475     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4476     if (array_type.IsZeroOrNull()) {
4477       // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4478       // instruction type.
4479       if (!is_primitive) {
4480         work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Null());
4481       } else if (insn_type.IsInteger()) {
4482         // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
4483         // We cannot use 'insn_type' as it could be a float array or an int array.
4484         work_line_->SetRegisterType<LockOp::kClear>(
4485             this, inst->VRegA_23x(), DetermineCat1Constant(1, need_precise_constants_));
4486       } else if (insn_type.IsCategory1Types()) {
4487         // Category 1
4488         // The 'insn_type' is exactly the type we need.
4489         work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), insn_type);
4490       } else {
4491         // Category 2
4492         work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
4493                                         reg_types_.FromCat2ConstLo(0, false),
4494                                         reg_types_.FromCat2ConstHi(0, false));
4495       }
4496     } else if (!array_type.IsArrayTypes()) {
4497       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4498     } else if (array_type.IsUnresolvedMergedReference()) {
4499       // Unresolved array types must be reference array types.
4500       if (is_primitive) {
4501         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4502                     << " source for category 1 aget";
4503       } else {
4504         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4505             << " because of missing class";
4506         // Approximate with java.lang.Object[].
4507         work_line_->SetRegisterType<LockOp::kClear>(this,
4508                                                     inst->VRegA_23x(),
4509                                                     reg_types_.JavaLangObject(false));
4510       }
4511     } else {
4512       /* verify the class */
4513       const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4514       if (!component_type.IsReferenceTypes() && !is_primitive) {
4515         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4516             << " source for aget-object";
4517       } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4518         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4519             << " source for category 1 aget";
4520       } else if (is_primitive && !insn_type.Equals(component_type) &&
4521                  !((insn_type.IsInteger() && component_type.IsFloat()) ||
4522                  (insn_type.IsLong() && component_type.IsDouble()))) {
4523         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4524             << " incompatible with aget of type " << insn_type;
4525       } else {
4526         // Use knowledge of the field type which is stronger than the type inferred from the
4527         // instruction, which can't differentiate object types and ints from floats, longs from
4528         // doubles.
4529         if (!component_type.IsLowHalf()) {
4530           work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
4531         } else {
4532           work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
4533                                           component_type.HighHalf(&reg_types_));
4534         }
4535       }
4536     }
4537   }
4538 }
4539 
4540 template <bool kVerifierDebug>
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)4541 void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
4542                                                         const RegType& insn_type,
4543                                                         const uint32_t vregA) {
4544   // Primitive assignability rules are weaker than regular assignability rules.
4545   bool instruction_compatible;
4546   bool value_compatible;
4547   const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4548   if (target_type.IsIntegralTypes()) {
4549     instruction_compatible = target_type.Equals(insn_type);
4550     value_compatible = value_type.IsIntegralTypes();
4551   } else if (target_type.IsFloat()) {
4552     instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
4553     value_compatible = value_type.IsFloatTypes();
4554   } else if (target_type.IsLong()) {
4555     instruction_compatible = insn_type.IsLong();
4556     // Additional register check: this is not checked statically (as part of VerifyInstructions),
4557     // as target_type depends on the resolved type of the field.
4558     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4559       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4560       value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4561     } else {
4562       value_compatible = false;
4563     }
4564   } else if (target_type.IsDouble()) {
4565     instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
4566     // Additional register check: this is not checked statically (as part of VerifyInstructions),
4567     // as target_type depends on the resolved type of the field.
4568     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4569       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4570       value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4571     } else {
4572       value_compatible = false;
4573     }
4574   } else {
4575     instruction_compatible = false;  // reference with primitive store
4576     value_compatible = false;  // unused
4577   }
4578   if (!instruction_compatible) {
4579     // This is a global failure rather than a class change failure as the instructions and
4580     // the descriptors for the type should have been consistent within the same file at
4581     // compile time.
4582     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4583         << "' but expected type '" << target_type << "'";
4584     return;
4585   }
4586   if (!value_compatible) {
4587     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4588         << " of type " << value_type << " but expected " << target_type << " for put";
4589     return;
4590   }
4591 }
4592 
4593 template <bool kVerifierDebug>
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)4594 void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
4595                                                 const RegType& insn_type,
4596                                                 bool is_primitive) {
4597   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4598   if (!index_type.IsArrayIndexTypes()) {
4599     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4600   } else {
4601     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4602     if (array_type.IsZeroOrNull()) {
4603       // Null array type; this code path will fail at runtime.
4604       // Still check that the given value matches the instruction's type.
4605       // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4606       //       and fits multiple register types.
4607       const RegType* modified_reg_type = &insn_type;
4608       if ((modified_reg_type == &reg_types_.Integer()) ||
4609           (modified_reg_type == &reg_types_.LongLo())) {
4610         // May be integer or float | long or double. Overwrite insn_type accordingly.
4611         const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4612         if (modified_reg_type == &reg_types_.Integer()) {
4613           if (&value_type == &reg_types_.Float()) {
4614             modified_reg_type = &value_type;
4615           }
4616         } else {
4617           if (&value_type == &reg_types_.DoubleLo()) {
4618             modified_reg_type = &value_type;
4619           }
4620         }
4621       }
4622       work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4623     } else if (!array_type.IsArrayTypes()) {
4624       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4625     } else if (array_type.IsUnresolvedMergedReference()) {
4626       // Unresolved array types must be reference array types.
4627       if (is_primitive) {
4628         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4629                                           << "' but unresolved type '" << array_type << "'";
4630       } else {
4631         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4632                                     << " because of missing class";
4633       }
4634     } else {
4635       const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4636       const uint32_t vregA = inst->VRegA_23x();
4637       if (is_primitive) {
4638         VerifyPrimitivePut(component_type, insn_type, vregA);
4639       } else {
4640         if (!component_type.IsReferenceTypes()) {
4641           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4642               << " source for aput-object";
4643         } else {
4644           // The instruction agrees with the type of array, confirm the value to be stored does too
4645           // Note: we use the instruction type (rather than the component type) for aput-object as
4646           // incompatible classes will be caught at runtime as an array store exception
4647           work_line_->VerifyRegisterType(this, vregA, insn_type);
4648         }
4649       }
4650     }
4651   }
4652 }
4653 
4654 template <bool kVerifierDebug>
GetStaticField(int field_idx)4655 ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
4656   const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4657   // Check access to class
4658   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4659   if (klass_type.IsConflict()) {  // bad class
4660     AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4661                                          field_idx, dex_file_->GetFieldName(field_id),
4662                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4663     return nullptr;
4664   }
4665   if (klass_type.IsUnresolvedTypes()) {
4666     // Accessibility checks depend on resolved fields.
4667     DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4668            !failures_.empty() ||
4669            IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4670 
4671     return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
4672   }
4673   ClassLinker* class_linker = GetClassLinker();
4674   ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4675 
4676   // Record result of the field resolution attempt.
4677   VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
4678 
4679   if (field == nullptr) {
4680     VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4681               << dex_file_->GetFieldName(field_id) << ") in "
4682               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4683     DCHECK(self_->IsExceptionPending());
4684     self_->ClearException();
4685     return nullptr;
4686   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4687                                                   field->GetAccessFlags())) {
4688     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
4689                                     << " from " << GetDeclaringClass();
4690     return nullptr;
4691   } else if (!field->IsStatic()) {
4692     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
4693     return nullptr;
4694   }
4695   return field;
4696 }
4697 
4698 template <bool kVerifierDebug>
GetInstanceField(const RegType & obj_type,int field_idx)4699 ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
4700   if (!obj_type.IsZeroOrNull() && !obj_type.IsReferenceTypes()) {
4701     // Trying to read a field from something that isn't a reference.
4702     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4703         << "non-reference type " << obj_type;
4704     return nullptr;
4705   }
4706   const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4707   // Check access to class.
4708   const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4709   if (klass_type.IsConflict()) {
4710     AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4711                                          field_idx, dex_file_->GetFieldName(field_id),
4712                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4713     return nullptr;
4714   }
4715   if (klass_type.IsUnresolvedTypes()) {
4716     // Accessibility checks depend on resolved fields.
4717     DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4718            !failures_.empty() ||
4719            IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4720 
4721     return nullptr;  // Can't resolve Class so no more to do here
4722   }
4723   ClassLinker* class_linker = GetClassLinker();
4724   ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4725 
4726   // Record result of the field resolution attempt.
4727   VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
4728 
4729   if (field == nullptr) {
4730     VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4731               << dex_file_->GetFieldName(field_id) << ") in "
4732               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4733     DCHECK(self_->IsExceptionPending());
4734     self_->ClearException();
4735     return nullptr;
4736   } else if (obj_type.IsZeroOrNull()) {
4737     // Cannot infer and check type, however, access will cause null pointer exception.
4738     // Fall through into a few last soft failure checks below.
4739   } else {
4740     std::string temp;
4741     ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
4742     const RegType& field_klass =
4743         FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4744     if (obj_type.IsUninitializedTypes()) {
4745       // Field accesses through uninitialized references are only allowable for constructors where
4746       // the field is declared in this class.
4747       // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4748       //       appear in constructors.
4749       if (!obj_type.IsUninitializedThisReference() ||
4750           !IsConstructor() ||
4751           !field_klass.Equals(GetDeclaringClass())) {
4752         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
4753                                           << " of a not fully initialized object within the context"
4754                                           << " of " << dex_file_->PrettyMethod(dex_method_idx_);
4755         return nullptr;
4756       }
4757     } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
4758       // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4759       // of C1. For resolution to occur the declared class of the field must be compatible with
4760       // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4761       VerifyError type;
4762       bool is_aot = IsAotMode();
4763       if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4764         // Compiler & unresolved types involved, retry at runtime.
4765         type = VerifyError::VERIFY_ERROR_NO_CLASS;
4766       } else {
4767         // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4768         // and still missing classes. This is a hard failure.
4769         type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4770       }
4771       Fail(type) << "cannot access instance field " << field->PrettyField()
4772                  << " from object of type " << obj_type;
4773       return nullptr;
4774     }
4775   }
4776 
4777   // Few last soft failure checks.
4778   if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4779                                            field->GetAccessFlags())) {
4780     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
4781                                     << " from " << GetDeclaringClass();
4782     return nullptr;
4783   } else if (field->IsStatic()) {
4784     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
4785                                     << " to not be static";
4786     return nullptr;
4787   }
4788 
4789   return field;
4790 }
4791 
4792 template <bool kVerifierDebug>
4793 template <FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)4794 void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
4795                                                          const RegType& insn_type,
4796                                                          bool is_primitive,
4797                                                          bool is_static) {
4798   uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
4799   ArtField* field;
4800   if (is_static) {
4801     field = GetStaticField(field_idx);
4802   } else {
4803     const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4804 
4805     // One is not allowed to access fields on uninitialized references, except to write to
4806     // fields in the constructor (before calling another constructor).
4807     // GetInstanceField does an assignability check which will fail for uninitialized types.
4808     // We thus modify the type if the uninitialized reference is a "this" reference (this also
4809     // checks at the same time that we're verifying a constructor).
4810     bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4811                          object_type.IsUninitializedThisReference();
4812     const RegType& adjusted_type = should_adjust
4813                                        ? GetRegTypeCache()->FromUninitialized(object_type)
4814                                        : object_type;
4815     field = GetInstanceField(adjusted_type, field_idx);
4816     if (UNLIKELY(flags_.have_pending_hard_failure_)) {
4817       return;
4818     }
4819     if (should_adjust) {
4820       if (field == nullptr) {
4821         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
4822                                           << "to the superclass being initialized in "
4823                                           << dex_file_->PrettyMethod(dex_method_idx_);
4824       } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4825         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
4826                                           << field->PrettyField() << " of a not fully initialized "
4827                                           << "object within the context of "
4828                                           << dex_file_->PrettyMethod(dex_method_idx_);
4829         return;
4830       }
4831     }
4832   }
4833   const RegType* field_type = nullptr;
4834   if (field != nullptr) {
4835     if (kAccType == FieldAccessType::kAccPut) {
4836       if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4837         Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
4838                                         << " from other class " << GetDeclaringClass();
4839         // Keep hunting for possible hard fails.
4840       }
4841     }
4842 
4843     ObjPtr<mirror::Class> field_type_class =
4844         can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
4845     if (field_type_class != nullptr) {
4846       field_type = &FromClass(field->GetTypeDescriptor(),
4847                               field_type_class,
4848                               field_type_class->CannotBeAssignedFromOtherTypes());
4849     } else {
4850       DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4851       self_->ClearException();
4852     }
4853   } else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
4854     // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
4855     // redo verification at runtime as the field may be final, unless the field id shows it's in
4856     // the same class.
4857     //
4858     // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
4859     // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
4860     // to the access-checks interpreter.
4861     //
4862     // Note: see b/34966607. This and above may be changed in the future.
4863     if (kAccType == FieldAccessType::kAccPut) {
4864       const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4865       const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4866       const RegType* field_class_type = &reg_types_.FromDescriptor(class_loader_.Get(),
4867                                                                    field_class_descriptor,
4868                                                                    false);
4869       if (!field_class_type->Equals(GetDeclaringClass())) {
4870         Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
4871                                         << field_class_descriptor
4872                                         << "."
4873                                         << dex_file_->GetFieldName(field_id)
4874                                         << " from other class "
4875                                         << GetDeclaringClass();
4876       }
4877     }
4878   }
4879   if (field_type == nullptr) {
4880     const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4881     const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4882     field_type = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
4883   }
4884   DCHECK(field_type != nullptr);
4885   const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4886   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4887                 "Unexpected third access type");
4888   if (kAccType == FieldAccessType::kAccPut) {
4889     // sput or iput.
4890     if (is_primitive) {
4891       VerifyPrimitivePut(*field_type, insn_type, vregA);
4892     } else {
4893       if (!insn_type.IsAssignableFrom(*field_type, this)) {
4894         // If the field type is not a reference, this is a global failure rather than
4895         // a class change failure as the instructions and the descriptors for the type
4896         // should have been consistent within the same file at compile time.
4897         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4898                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
4899         Fail(error) << "expected field " << ArtField::PrettyField(field)
4900                     << " to be compatible with type '" << insn_type
4901                     << "' but found type '" << *field_type
4902                     << "' in put-object";
4903         return;
4904       }
4905       work_line_->VerifyRegisterType(this, vregA, *field_type);
4906     }
4907   } else if (kAccType == FieldAccessType::kAccGet) {
4908     // sget or iget.
4909     if (is_primitive) {
4910       if (field_type->Equals(insn_type) ||
4911           (field_type->IsFloat() && insn_type.IsInteger()) ||
4912           (field_type->IsDouble() && insn_type.IsLong())) {
4913         // expected that read is of the correct primitive type or that int reads are reading
4914         // floats or long reads are reading doubles
4915       } else {
4916         // This is a global failure rather than a class change failure as the instructions and
4917         // the descriptors for the type should have been consistent within the same file at
4918         // compile time
4919         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4920                                           << " to be of type '" << insn_type
4921                                           << "' but found type '" << *field_type << "' in get";
4922         return;
4923       }
4924     } else {
4925       if (!insn_type.IsAssignableFrom(*field_type, this)) {
4926         // If the field type is not a reference, this is a global failure rather than
4927         // a class change failure as the instructions and the descriptors for the type
4928         // should have been consistent within the same file at compile time.
4929         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4930                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
4931         Fail(error) << "expected field " << ArtField::PrettyField(field)
4932                     << " to be compatible with type '" << insn_type
4933                     << "' but found type '" << *field_type
4934                     << "' in get-object";
4935         if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
4936           work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
4937         }
4938         return;
4939       }
4940     }
4941     if (!field_type->IsLowHalf()) {
4942       work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
4943     } else {
4944       work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4945     }
4946   } else {
4947     LOG(FATAL) << "Unexpected case.";
4948   }
4949 }
4950 
4951 template <bool kVerifierDebug>
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4952 bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
4953                                                      RegisterLine* merge_line,
4954                                                      bool update_merge_line) {
4955   bool changed = true;
4956   RegisterLine* target_line = reg_table_.GetLine(next_insn);
4957   if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
4958     /*
4959      * We haven't processed this instruction before, and we haven't touched the registers here, so
4960      * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4961      * only way a register can transition out of "unknown", so this is not just an optimization.)
4962      */
4963     target_line->CopyFromLine(merge_line);
4964     if (GetInstructionFlags(next_insn).IsReturn()) {
4965       // Verify that the monitor stack is empty on return.
4966       merge_line->VerifyMonitorStackEmpty(this);
4967 
4968       // For returns we only care about the operand to the return, all other registers are dead.
4969       // Initialize them as conflicts so they don't add to GC and deoptimization information.
4970       const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
4971       AdjustReturnLine(this, ret_inst, target_line);
4972       // Directly bail if a hard failure was found.
4973       if (flags_.have_pending_hard_failure_) {
4974         return false;
4975       }
4976     }
4977   } else {
4978     RegisterLineArenaUniquePtr copy;
4979     if (kVerifierDebug) {
4980       copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
4981       copy->CopyFromLine(target_line);
4982     }
4983     changed = target_line->MergeRegisters(this, merge_line);
4984     if (flags_.have_pending_hard_failure_) {
4985       return false;
4986     }
4987     if (kVerifierDebug && changed) {
4988       LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4989                       << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4990                       << copy->Dump(this) << "  MERGE\n"
4991                       << merge_line->Dump(this) << "  ==\n"
4992                       << target_line->Dump(this);
4993     }
4994     if (update_merge_line && changed) {
4995       merge_line->CopyFromLine(target_line);
4996     }
4997   }
4998   if (changed) {
4999     GetModifiableInstructionFlags(next_insn).SetChanged();
5000   }
5001   return true;
5002 }
5003 
5004 template <bool kVerifierDebug>
GetMethodReturnType()5005 const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
5006   if (return_type_ == nullptr) {
5007     if (method_being_verified_ != nullptr) {
5008       ObjPtr<mirror::Class> return_type_class = can_load_classes_
5009           ? method_being_verified_->ResolveReturnType()
5010           : method_being_verified_->LookupResolvedReturnType();
5011       if (return_type_class != nullptr) {
5012         return_type_ = &FromClass(method_being_verified_->GetReturnTypeDescriptor(),
5013                                   return_type_class,
5014                                   return_type_class->CannotBeAssignedFromOtherTypes());
5015       } else {
5016         DCHECK(!can_load_classes_ || self_->IsExceptionPending());
5017         self_->ClearException();
5018       }
5019     }
5020     if (return_type_ == nullptr) {
5021       const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
5022       const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
5023       dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
5024       const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
5025       return_type_ = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
5026     }
5027   }
5028   return *return_type_;
5029 }
5030 
5031 template <bool kVerifierDebug>
DetermineCat1Constant(int32_t value,bool precise)5032 const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value, bool precise) {
5033   if (precise) {
5034     // Precise constant type.
5035     return reg_types_.FromCat1Const(value, true);
5036   } else {
5037     // Imprecise constant type.
5038     if (value < -32768) {
5039       return reg_types_.IntConstant();
5040     } else if (value < -128) {
5041       return reg_types_.ShortConstant();
5042     } else if (value < 0) {
5043       return reg_types_.ByteConstant();
5044     } else if (value == 0) {
5045       return reg_types_.Zero();
5046     } else if (value == 1) {
5047       return reg_types_.One();
5048     } else if (value < 128) {
5049       return reg_types_.PosByteConstant();
5050     } else if (value < 32768) {
5051       return reg_types_.PosShortConstant();
5052     } else if (value < 65536) {
5053       return reg_types_.CharConstant();
5054     } else {
5055       return reg_types_.IntConstant();
5056     }
5057   }
5058 }
5059 
5060 }  // namespace
5061 }  // namespace impl
5062 
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t dex_method_idx,bool can_load_classes,bool allow_thread_suspension,bool allow_soft_failures,bool aot_mode)5063 MethodVerifier::MethodVerifier(Thread* self,
5064                                ClassLinker* class_linker,
5065                                ArenaPool* arena_pool,
5066                                const DexFile* dex_file,
5067                                const dex::CodeItem* code_item,
5068                                uint32_t dex_method_idx,
5069                                bool can_load_classes,
5070                                bool allow_thread_suspension,
5071                                bool allow_soft_failures,
5072                                bool aot_mode)
5073     : self_(self),
5074       arena_stack_(arena_pool),
5075       allocator_(&arena_stack_),
5076       reg_types_(class_linker, can_load_classes, allocator_, allow_thread_suspension),
5077       reg_table_(allocator_),
5078       work_insn_idx_(dex::kDexNoIndex),
5079       dex_method_idx_(dex_method_idx),
5080       dex_file_(dex_file),
5081       code_item_accessor_(*dex_file, code_item),
5082       // TODO: make it designated initialization when we compile as C++20.
5083       flags_({false, false, false, false, aot_mode}),
5084       encountered_failure_types_(0),
5085       can_load_classes_(can_load_classes),
5086       allow_soft_failures_(allow_soft_failures),
5087       has_check_casts_(false),
5088       class_linker_(class_linker),
5089       link_(nullptr) {
5090   self->PushVerifier(this);
5091 }
5092 
~MethodVerifier()5093 MethodVerifier::~MethodVerifier() {
5094   Thread::Current()->PopVerifier(this);
5095   STLDeleteElements(&failure_messages_);
5096 }
5097 
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,VerifierCallback * verifier_callback,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5098 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5099                                                          ClassLinker* class_linker,
5100                                                          ArenaPool* arena_pool,
5101                                                          uint32_t method_idx,
5102                                                          const DexFile* dex_file,
5103                                                          Handle<mirror::DexCache> dex_cache,
5104                                                          Handle<mirror::ClassLoader> class_loader,
5105                                                          const dex::ClassDef& class_def,
5106                                                          const dex::CodeItem* code_item,
5107                                                          ArtMethod* method,
5108                                                          uint32_t method_access_flags,
5109                                                          CompilerCallbacks* callbacks,
5110                                                          VerifierCallback* verifier_callback,
5111                                                          bool allow_soft_failures,
5112                                                          HardFailLogMode log_level,
5113                                                          bool need_precise_constants,
5114                                                          uint32_t api_level,
5115                                                          bool aot_mode,
5116                                                          std::string* hard_failure_msg) {
5117   if (VLOG_IS_ON(verifier_debug)) {
5118     return VerifyMethod<true>(self,
5119                               class_linker,
5120                               arena_pool,
5121                               method_idx,
5122                               dex_file,
5123                               dex_cache,
5124                               class_loader,
5125                               class_def,
5126                               code_item,
5127                               method,
5128                               method_access_flags,
5129                               callbacks,
5130                               verifier_callback,
5131                               allow_soft_failures,
5132                               log_level,
5133                               need_precise_constants,
5134                               api_level,
5135                               aot_mode,
5136                               hard_failure_msg);
5137   } else {
5138     return VerifyMethod<false>(self,
5139                                class_linker,
5140                                arena_pool,
5141                                method_idx,
5142                                dex_file,
5143                                dex_cache,
5144                                class_loader,
5145                                class_def,
5146                                code_item,
5147                                method,
5148                                method_access_flags,
5149                                callbacks,
5150                                verifier_callback,
5151                                allow_soft_failures,
5152                                log_level,
5153                                need_precise_constants,
5154                                api_level,
5155                                aot_mode,
5156                                hard_failure_msg);
5157   }
5158 }
5159 
5160 // Return whether the runtime knows how to execute a method without needing to
5161 // re-verify it at runtime (and therefore save on first use of the class). We
5162 // currently only support it for access checks, where the runtime will mark the
5163 // methods as needing access checks and have the interpreter execute with them.
5164 // The AOT/JIT compiled code is not affected.
CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types)5165 static inline bool CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types) {
5166   constexpr uint32_t unresolved_mask =
5167       verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS |
5168       verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD |
5169       verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD;
5170   return (encountered_failure_types & (~unresolved_mask)) == 0;
5171 }
5172 
5173 template <bool kVerifierDebug>
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,VerifierCallback * verifier_callback,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5174 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5175                                                          ClassLinker* class_linker,
5176                                                          ArenaPool* arena_pool,
5177                                                          uint32_t method_idx,
5178                                                          const DexFile* dex_file,
5179                                                          Handle<mirror::DexCache> dex_cache,
5180                                                          Handle<mirror::ClassLoader> class_loader,
5181                                                          const dex::ClassDef& class_def,
5182                                                          const dex::CodeItem* code_item,
5183                                                          ArtMethod* method,
5184                                                          uint32_t method_access_flags,
5185                                                          CompilerCallbacks* callbacks,
5186                                                          VerifierCallback* verifier_callback,
5187                                                          bool allow_soft_failures,
5188                                                          HardFailLogMode log_level,
5189                                                          bool need_precise_constants,
5190                                                          uint32_t api_level,
5191                                                          bool aot_mode,
5192                                                          std::string* hard_failure_msg) {
5193   MethodVerifier::FailureData result;
5194   uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
5195 
5196   impl::MethodVerifier<kVerifierDebug> verifier(self,
5197                                                 class_linker,
5198                                                 arena_pool,
5199                                                 dex_file,
5200                                                 code_item,
5201                                                 method_idx,
5202                                                 /* can_load_classes= */ true,
5203                                                 /* allow_thread_suspension= */ true,
5204                                                 allow_soft_failures,
5205                                                 aot_mode,
5206                                                 dex_cache,
5207                                                 class_loader,
5208                                                 class_def,
5209                                                 method,
5210                                                 method_access_flags,
5211                                                 need_precise_constants,
5212                                                 /* verify to dump */ false,
5213                                                 /* fill_register_lines= */ false,
5214                                                 api_level);
5215   if (verifier.Verify()) {
5216     // Verification completed, however failures may be pending that didn't cause the verification
5217     // to hard fail.
5218     CHECK(!verifier.flags_.have_pending_hard_failure_);
5219 
5220     if (code_item != nullptr && callbacks != nullptr) {
5221       // Let the interested party know that the method was verified.
5222       callbacks->MethodVerified(&verifier);
5223     }
5224 
5225     bool set_dont_compile = false;
5226     if (verifier.failures_.size() != 0) {
5227       if (VLOG_IS_ON(verifier)) {
5228         verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
5229                                                     << dex_file->PrettyMethod(method_idx) << "\n");
5230       }
5231       if (kVerifierDebug) {
5232         LOG(INFO) << verifier.info_messages_.str();
5233         verifier.Dump(LOG_STREAM(INFO));
5234       }
5235       if (CanRuntimeHandleVerificationFailure(verifier.encountered_failure_types_)) {
5236         result.kind = FailureKind::kAccessChecksFailure;
5237       } else {
5238         result.kind = FailureKind::kSoftFailure;
5239       }
5240       if (method != nullptr &&
5241           !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
5242         set_dont_compile = true;
5243       }
5244     }
5245     if (method != nullptr) {
5246       if (verifier.HasInstructionThatWillThrow()) {
5247         set_dont_compile = true;
5248         if (aot_mode && (callbacks != nullptr) && !callbacks->IsBootImage()) {
5249           // When compiling apps, make HasInstructionThatWillThrow a soft error to trigger
5250           // re-verification at runtime.
5251           // The dead code after the throw is not verified and might be invalid. This may cause
5252           // the JIT compiler to crash since it assumes that all the code is valid.
5253           //
5254           // There's a strong assumption that the entire boot image is verified and all its dex
5255           // code is valid (even the dead and unverified one). As such this is done only for apps.
5256           // (CompilerDriver DCHECKs in VerifyClassVisitor that methods from boot image are
5257           // fully verified).
5258           result.kind = FailureKind::kSoftFailure;
5259         }
5260       }
5261       bool must_count_locks = false;
5262       if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
5263         must_count_locks = true;
5264       }
5265       verifier_callback->SetDontCompile(method, set_dont_compile);
5266       verifier_callback->SetMustCountLocks(method, must_count_locks);
5267     }
5268   } else {
5269     // Bad method data.
5270     CHECK_NE(verifier.failures_.size(), 0U);
5271 
5272     if (UNLIKELY(verifier.flags_.have_pending_experimental_failure_)) {
5273       // Failed due to being forced into interpreter. This is ok because
5274       // we just want to skip verification.
5275       result.kind = FailureKind::kSoftFailure;
5276     } else {
5277       CHECK(verifier.flags_.have_pending_hard_failure_);
5278       if (VLOG_IS_ON(verifier)) {
5279         log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
5280       }
5281       if (log_level >= HardFailLogMode::kLogVerbose) {
5282         LogSeverity severity;
5283         switch (log_level) {
5284           case HardFailLogMode::kLogVerbose:
5285             severity = LogSeverity::VERBOSE;
5286             break;
5287           case HardFailLogMode::kLogWarning:
5288             severity = LogSeverity::WARNING;
5289             break;
5290           case HardFailLogMode::kLogInternalFatal:
5291             severity = LogSeverity::FATAL_WITHOUT_ABORT;
5292             break;
5293           default:
5294             LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
5295             UNREACHABLE();
5296         }
5297         verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
5298                                                    << dex_file->PrettyMethod(method_idx)
5299                                                    << "\n");
5300       }
5301       if (hard_failure_msg != nullptr) {
5302         CHECK(!verifier.failure_messages_.empty());
5303         *hard_failure_msg =
5304             verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
5305       }
5306       result.kind = FailureKind::kHardFailure;
5307 
5308       if (callbacks != nullptr) {
5309         // Let the interested party know that we failed the class.
5310         ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def));
5311         callbacks->ClassRejected(ref);
5312       }
5313     }
5314     if (kVerifierDebug || VLOG_IS_ON(verifier)) {
5315       LOG(ERROR) << verifier.info_messages_.str();
5316       verifier.Dump(LOG_STREAM(ERROR));
5317     }
5318     // Under verifier-debug, dump the complete log into the error message.
5319     if (kVerifierDebug && hard_failure_msg != nullptr) {
5320       hard_failure_msg->append("\n");
5321       hard_failure_msg->append(verifier.info_messages_.str());
5322       hard_failure_msg->append("\n");
5323       std::ostringstream oss;
5324       verifier.Dump(oss);
5325       hard_failure_msg->append(oss.str());
5326     }
5327   }
5328   if (kTimeVerifyMethod) {
5329     uint64_t duration_ns = NanoTime() - start_ns;
5330     if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
5331       double bytecodes_per_second =
5332           verifier.code_item_accessor_.InsnsSizeInCodeUnits() / (duration_ns * 1e-9);
5333       LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
5334                    << " took " << PrettyDuration(duration_ns)
5335                    << (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "")
5336                    << " (" << StringPrintf("%.2f", bytecodes_per_second) << " bytecodes/s)"
5337                    << " (" << verifier.allocator_.ApproximatePeakBytes()
5338                    << "B approximate peak alloc)";
5339     }
5340   }
5341   result.types = verifier.encountered_failure_types_;
5342   return result;
5343 }
5344 
CalculateVerificationInfo(Thread * self,ArtMethod * method,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)5345 MethodVerifier* MethodVerifier::CalculateVerificationInfo(
5346       Thread* self,
5347       ArtMethod* method,
5348       Handle<mirror::DexCache> dex_cache,
5349       Handle<mirror::ClassLoader> class_loader) {
5350   std::unique_ptr<impl::MethodVerifier<false>> verifier(
5351       new impl::MethodVerifier<false>(self,
5352                                       Runtime::Current()->GetClassLinker(),
5353                                       Runtime::Current()->GetArenaPool(),
5354                                       method->GetDexFile(),
5355                                       method->GetCodeItem(),
5356                                       method->GetDexMethodIndex(),
5357                                       /* can_load_classes= */ false,
5358                                       /* allow_thread_suspension= */ false,
5359                                       /* allow_soft_failures= */ true,
5360                                       Runtime::Current()->IsAotCompiler(),
5361                                       dex_cache,
5362                                       class_loader,
5363                                       *method->GetDeclaringClass()->GetClassDef(),
5364                                       method,
5365                                       method->GetAccessFlags(),
5366                                       /* need_precise_constants= */ true,
5367                                       /* verify_to_dump= */ false,
5368                                       /* fill_register_lines= */ true,
5369                                       // Just use the verifier at the current skd-version.
5370                                       // This might affect what soft-verifier errors are reported.
5371                                       // Callers can then filter out relevant errors if needed.
5372                                       Runtime::Current()->GetTargetSdkVersion()));
5373   verifier->Verify();
5374   if (VLOG_IS_ON(verifier)) {
5375     verifier->DumpFailures(VLOG_STREAM(verifier));
5376     VLOG(verifier) << verifier->info_messages_.str();
5377     verifier->Dump(VLOG_STREAM(verifier));
5378   }
5379   if (verifier->flags_.have_pending_hard_failure_) {
5380     return nullptr;
5381   } else {
5382     return verifier.release();
5383   }
5384 }
5385 
VerifyMethodAndDump(Thread * self,VariableIndentationOutputStream * vios,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,uint32_t api_level)5386 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
5387                                                     VariableIndentationOutputStream* vios,
5388                                                     uint32_t dex_method_idx,
5389                                                     const DexFile* dex_file,
5390                                                     Handle<mirror::DexCache> dex_cache,
5391                                                     Handle<mirror::ClassLoader> class_loader,
5392                                                     const dex::ClassDef& class_def,
5393                                                     const dex::CodeItem* code_item,
5394                                                     ArtMethod* method,
5395                                                     uint32_t method_access_flags,
5396                                                     uint32_t api_level) {
5397   impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
5398       self,
5399       Runtime::Current()->GetClassLinker(),
5400       Runtime::Current()->GetArenaPool(),
5401       dex_file,
5402       code_item,
5403       dex_method_idx,
5404       /* can_load_classes= */ true,
5405       /* allow_thread_suspension= */ true,
5406       /* allow_soft_failures= */ true,
5407       Runtime::Current()->IsAotCompiler(),
5408       dex_cache,
5409       class_loader,
5410       class_def,
5411       method,
5412       method_access_flags,
5413       /* need_precise_constants= */ true,
5414       /* verify_to_dump= */ true,
5415       /* fill_register_lines= */ false,
5416       api_level);
5417   verifier->Verify();
5418   verifier->DumpFailures(vios->Stream());
5419   vios->Stream() << verifier->info_messages_.str();
5420   // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
5421   // and querying any info is dangerous/can abort.
5422   if (verifier->flags_.have_pending_hard_failure_) {
5423     delete verifier;
5424     return nullptr;
5425   } else {
5426     verifier->Dump(vios);
5427     return verifier;
5428   }
5429 }
5430 
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,uint32_t api_level)5431 void MethodVerifier::FindLocksAtDexPc(
5432     ArtMethod* m,
5433     uint32_t dex_pc,
5434     std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
5435     uint32_t api_level) {
5436   StackHandleScope<2> hs(Thread::Current());
5437   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
5438   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
5439   impl::MethodVerifier<false> verifier(hs.Self(),
5440                                        Runtime::Current()->GetClassLinker(),
5441                                        Runtime::Current()->GetArenaPool(),
5442                                        m->GetDexFile(),
5443                                        m->GetCodeItem(),
5444                                        m->GetDexMethodIndex(),
5445                                        /* can_load_classes= */ false,
5446                                        /* allow_thread_suspension= */ false,
5447                                        /* allow_soft_failures= */ true,
5448                                        Runtime::Current()->IsAotCompiler(),
5449                                        dex_cache,
5450                                        class_loader,
5451                                        m->GetClassDef(),
5452                                        m,
5453                                        m->GetAccessFlags(),
5454                                        /* need_precise_constants= */ false,
5455                                        /* verify_to_dump= */ false,
5456                                        /* fill_register_lines= */ false,
5457                                        api_level);
5458   verifier.interesting_dex_pc_ = dex_pc;
5459   verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
5460   verifier.FindLocksAtDexPc();
5461 }
5462 
CreateVerifier(Thread * self,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_idx,ArtMethod * method,uint32_t access_flags,bool can_load_classes,bool allow_soft_failures,bool need_precise_constants,bool verify_to_dump,bool allow_thread_suspension,uint32_t api_level)5463 MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
5464                                                const DexFile* dex_file,
5465                                                Handle<mirror::DexCache> dex_cache,
5466                                                Handle<mirror::ClassLoader> class_loader,
5467                                                const dex::ClassDef& class_def,
5468                                                const dex::CodeItem* code_item,
5469                                                uint32_t method_idx,
5470                                                ArtMethod* method,
5471                                                uint32_t access_flags,
5472                                                bool can_load_classes,
5473                                                bool allow_soft_failures,
5474                                                bool need_precise_constants,
5475                                                bool verify_to_dump,
5476                                                bool allow_thread_suspension,
5477                                                uint32_t api_level) {
5478   return new impl::MethodVerifier<false>(self,
5479                                          Runtime::Current()->GetClassLinker(),
5480                                          Runtime::Current()->GetArenaPool(),
5481                                          dex_file,
5482                                          code_item,
5483                                          method_idx,
5484                                          can_load_classes,
5485                                          allow_thread_suspension,
5486                                          allow_soft_failures,
5487                                          Runtime::Current()->IsAotCompiler(),
5488                                          dex_cache,
5489                                          class_loader,
5490                                          class_def,
5491                                          method,
5492                                          access_flags,
5493                                          need_precise_constants,
5494                                          verify_to_dump,
5495                                          /* fill_register_lines= */ false,
5496                                          api_level);
5497 }
5498 
Init(ClassLinker * class_linker)5499 void MethodVerifier::Init(ClassLinker* class_linker) {
5500   art::verifier::RegTypeCache::Init(class_linker);
5501 }
5502 
Shutdown()5503 void MethodVerifier::Shutdown() {
5504   verifier::RegTypeCache::ShutDown();
5505 }
5506 
VisitStaticRoots(RootVisitor * visitor)5507 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
5508   RegTypeCache::VisitStaticRoots(visitor);
5509 }
5510 
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)5511 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
5512   reg_types_.VisitRoots(visitor, root_info);
5513 }
5514 
Fail(VerifyError error,bool pending_exc)5515 std::ostream& MethodVerifier::Fail(VerifyError error, bool pending_exc) {
5516   // Mark the error type as encountered.
5517   encountered_failure_types_ |= static_cast<uint32_t>(error);
5518 
5519   if (pending_exc) {
5520     switch (error) {
5521       case VERIFY_ERROR_NO_CLASS:
5522       case VERIFY_ERROR_NO_FIELD:
5523       case VERIFY_ERROR_NO_METHOD:
5524       case VERIFY_ERROR_ACCESS_CLASS:
5525       case VERIFY_ERROR_ACCESS_FIELD:
5526       case VERIFY_ERROR_ACCESS_METHOD:
5527       case VERIFY_ERROR_INSTANTIATION:
5528       case VERIFY_ERROR_CLASS_CHANGE:
5529       case VERIFY_ERROR_FORCE_INTERPRETER:
5530       case VERIFY_ERROR_LOCKING:
5531         if (IsAotMode() || !can_load_classes_) {
5532           if (error != VERIFY_ERROR_ACCESS_CLASS &&
5533               error != VERIFY_ERROR_ACCESS_FIELD &&
5534               error != VERIFY_ERROR_ACCESS_METHOD) {
5535             // If we're optimistically running verification at compile time, turn NO_xxx,
5536             // class change and instantiation errors into soft verification errors so that we
5537             // re-verify at runtime. We may fail to find or to agree on access because of not yet
5538             // available class loaders, or class loaders that will differ at runtime. In these
5539             // cases, we don't want to affect the soundness of the code being compiled. Instead, the
5540             // generated code runs "slow paths" that dynamically perform the verification and cause
5541             // the behavior to be that akin to an interpreter.
5542             error = VERIFY_ERROR_BAD_CLASS_SOFT;
5543           }
5544         } else {
5545           // If we fail again at runtime, mark that this instruction would throw and force this
5546           // method to be executed using the interpreter with checks.
5547           flags_.have_pending_runtime_throw_failure_ = true;
5548         }
5549         // How to handle runtime failures for instructions that are not flagged kThrow.
5550         //
5551         // The verifier may fail before we touch any instruction, for the signature of a method. So
5552         // add a check.
5553         if (work_insn_idx_ < dex::kDexNoIndex) {
5554           const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
5555           Instruction::Code opcode = inst.Opcode();
5556           if ((Instruction::FlagsOf(opcode) & Instruction::kThrow) == 0 &&
5557               !impl::IsCompatThrow(opcode) &&
5558               GetInstructionFlags(work_insn_idx_).IsInTry()) {
5559             if (Runtime::Current()->IsVerifierMissingKThrowFatal()) {
5560               LOG(FATAL) << "Unexpected throw: " << std::hex << work_insn_idx_ << " " << opcode;
5561               UNREACHABLE();
5562             }
5563             // We need to save the work_line if the instruction wasn't throwing before. Otherwise
5564             // we'll try to merge garbage.
5565             // Note: this assumes that Fail is called before we do any work_line modifications.
5566             saved_line_->CopyFromLine(work_line_.get());
5567           }
5568         }
5569         break;
5570 
5571         // Indication that verification should be retried at runtime.
5572       case VERIFY_ERROR_BAD_CLASS_SOFT:
5573         if (!allow_soft_failures_) {
5574           flags_.have_pending_hard_failure_ = true;
5575         }
5576         break;
5577 
5578         // Hard verification failures at compile time will still fail at runtime, so the class is
5579         // marked as rejected to prevent it from being compiled.
5580       case VERIFY_ERROR_BAD_CLASS_HARD: {
5581         flags_.have_pending_hard_failure_ = true;
5582         break;
5583       }
5584 
5585       case VERIFY_ERROR_SKIP_COMPILER:
5586         // Nothing to do, just remember the failure type.
5587         break;
5588     }
5589   } else if (kIsDebugBuild) {
5590     CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_SOFT);
5591     CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_HARD);
5592   }
5593 
5594   failures_.push_back(error);
5595   std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
5596                                     work_insn_idx_));
5597   std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
5598   failure_messages_.push_back(failure_message);
5599   return *failure_message;
5600 }
5601 
LogVerifyInfo()5602 ScopedNewLine MethodVerifier::LogVerifyInfo() {
5603   ScopedNewLine ret{info_messages_};
5604   ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
5605       << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
5606   return ret;
5607 }
5608 
FailureKindMax(FailureKind fk1,FailureKind fk2)5609 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
5610   static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
5611                     && FailureKind::kSoftFailure < FailureKind::kHardFailure,
5612                 "Unexpected FailureKind order");
5613   return std::max(fk1, fk2);
5614 }
5615 
Merge(const MethodVerifier::FailureData & fd)5616 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
5617   kind = FailureKindMax(kind, fd.kind);
5618   types |= fd.types;
5619 }
5620 
5621 }  // namespace verifier
5622 }  // namespace art
5623