1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <memory>
25 #include <numeric>
26 #include <unordered_set>
27 #include <vector>
28
29 #include "art_field-inl.h"
30 #include "art_method-inl.h"
31 #include "base/callee_save_type.h"
32 #include "base/enums.h"
33 #include "base/globals.h"
34 #include "base/logging.h" // For VLOG.
35 #include "base/stl_util.h"
36 #include "base/unix_file/fd_file.h"
37 #include "class_linker-inl.h"
38 #include "class_root.h"
39 #include "compiled_method.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "elf_file.h"
45 #include "entrypoints/entrypoint_utils-inl.h"
46 #include "gc/accounting/card_table-inl.h"
47 #include "gc/accounting/heap_bitmap.h"
48 #include "gc/accounting/space_bitmap-inl.h"
49 #include "gc/collector/concurrent_copying.h"
50 #include "gc/heap-visit-objects-inl.h"
51 #include "gc/heap.h"
52 #include "gc/space/large_object_space.h"
53 #include "gc/space/region_space.h"
54 #include "gc/space/space-inl.h"
55 #include "gc/verification.h"
56 #include "handle_scope-inl.h"
57 #include "image-inl.h"
58 #include "imt_conflict_table.h"
59 #include "intern_table-inl.h"
60 #include "jni/jni_internal.h"
61 #include "linear_alloc.h"
62 #include "lock_word.h"
63 #include "mirror/array-inl.h"
64 #include "mirror/class-inl.h"
65 #include "mirror/class_ext-inl.h"
66 #include "mirror/class_loader.h"
67 #include "mirror/dex_cache-inl.h"
68 #include "mirror/dex_cache.h"
69 #include "mirror/executable.h"
70 #include "mirror/method.h"
71 #include "mirror/object-inl.h"
72 #include "mirror/object-refvisitor-inl.h"
73 #include "mirror/object_array-alloc-inl.h"
74 #include "mirror/object_array-inl.h"
75 #include "mirror/string-inl.h"
76 #include "oat.h"
77 #include "oat_file.h"
78 #include "oat_file_manager.h"
79 #include "optimizing/intrinsic_objects.h"
80 #include "runtime.h"
81 #include "scoped_thread_state_change-inl.h"
82 #include "subtype_check.h"
83 #include "utils/dex_cache_arrays_layout-inl.h"
84 #include "well_known_classes.h"
85
86 using ::art::mirror::Class;
87 using ::art::mirror::DexCache;
88 using ::art::mirror::Object;
89 using ::art::mirror::ObjectArray;
90 using ::art::mirror::String;
91
92 namespace art {
93 namespace linker {
94
MaybeCompressData(ArrayRef<const uint8_t> source,ImageHeader::StorageMode image_storage_mode,std::vector<uint8_t> * storage)95 static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
96 ImageHeader::StorageMode image_storage_mode,
97 /*out*/ std::vector<uint8_t>* storage) {
98 const uint64_t compress_start_time = NanoTime();
99
100 switch (image_storage_mode) {
101 case ImageHeader::kStorageModeLZ4: {
102 storage->resize(LZ4_compressBound(source.size()));
103 size_t data_size = LZ4_compress_default(
104 reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
105 reinterpret_cast<char*>(storage->data()),
106 source.size(),
107 storage->size());
108 storage->resize(data_size);
109 break;
110 }
111 case ImageHeader::kStorageModeLZ4HC: {
112 // Bound is same as non HC.
113 storage->resize(LZ4_compressBound(source.size()));
114 size_t data_size = LZ4_compress_HC(
115 reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
116 reinterpret_cast<char*>(storage->data()),
117 source.size(),
118 storage->size(),
119 LZ4HC_CLEVEL_MAX);
120 storage->resize(data_size);
121 break;
122 }
123 case ImageHeader::kStorageModeUncompressed: {
124 return source;
125 }
126 default: {
127 LOG(FATAL) << "Unsupported";
128 UNREACHABLE();
129 }
130 }
131
132 DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
133 image_storage_mode == ImageHeader::kStorageModeLZ4HC);
134 VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in "
135 << PrettyDuration(NanoTime() - compress_start_time);
136 if (kIsDebugBuild) {
137 std::vector<uint8_t> decompressed(source.size());
138 const size_t decompressed_size = LZ4_decompress_safe(
139 reinterpret_cast<char*>(storage->data()),
140 reinterpret_cast<char*>(decompressed.data()),
141 storage->size(),
142 decompressed.size());
143 CHECK_EQ(decompressed_size, decompressed.size());
144 CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
145 }
146 return ArrayRef<const uint8_t>(*storage);
147 }
148
149 // Separate objects into multiple bins to optimize dirty memory use.
150 static constexpr bool kBinObjects = true;
151
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)152 ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
153 Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
154 ClassLinker* class_linker = runtime->GetClassLinker();
155 // The objects used for the Integer.valueOf() intrinsic must remain live even if references
156 // to them are removed using reflection. Image roots are not accessible through reflection,
157 // so the array we construct here shall keep them alive.
158 StackHandleScope<1> hs(self);
159 Handle<mirror::ObjectArray<mirror::Object>> integer_cache =
160 hs.NewHandle(IntrinsicObjects::LookupIntegerCache(self, class_linker));
161 size_t live_objects_size =
162 enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
163 ((integer_cache != nullptr) ? (/* cache */ 1u + integer_cache->GetLength()) : 0u);
164 ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
165 mirror::ObjectArray<mirror::Object>::Alloc(
166 self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
167 int32_t index = 0u;
168 auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
169 ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
170 DCHECK_EQ(index, enum_cast<int32_t>(entry));
171 live_objects->Set</*kTransacrionActive=*/ false>(index, value);
172 ++index;
173 };
174 set_entry(ImageHeader::kOomeWhenThrowingException,
175 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
176 set_entry(ImageHeader::kOomeWhenThrowingOome,
177 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
178 set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
179 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
180 set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
181 set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
182
183 DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
184 if (integer_cache != nullptr) {
185 live_objects->Set(index++, integer_cache.Get());
186 for (int32_t i = 0, length = integer_cache->GetLength(); i != length; ++i) {
187 live_objects->Set(index++, integer_cache->Get(i));
188 }
189 }
190 CHECK_EQ(index, live_objects->GetLength());
191
192 if (kIsDebugBuild && integer_cache != nullptr) {
193 CHECK_EQ(integer_cache.Get(), IntrinsicObjects::GetIntegerValueOfCache(live_objects));
194 for (int32_t i = 0, len = integer_cache->GetLength(); i != len; ++i) {
195 CHECK_EQ(integer_cache->GetWithoutChecks(i),
196 IntrinsicObjects::GetIntegerValueOfObject(live_objects, i));
197 }
198 }
199 return live_objects;
200 }
201
GetAppClassLoader() const202 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
203 REQUIRES_SHARED(Locks::mutator_lock_) {
204 return compiler_options_.IsAppImage()
205 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
206 : nullptr;
207 }
208
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const209 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
210 // For boot image, we keep all dex caches.
211 if (compiler_options_.IsBootImage()) {
212 return true;
213 }
214 // Dex caches already in the boot image do not belong to the image being written.
215 if (IsInBootImage(dex_cache.Ptr())) {
216 return false;
217 }
218 // Dex caches for the boot class path components that are not part of the boot image
219 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
220 // include them in the app image.
221 if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
222 return false;
223 }
224 return true;
225 }
226
ClearDexFileCookies()227 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
228 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
229 DCHECK(obj != nullptr);
230 Class* klass = obj->GetClass();
231 if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
232 ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
233 // Null out the cookie to enable determinism. b/34090128
234 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
235 }
236 };
237 Runtime::Current()->GetHeap()->VisitObjects(visitor);
238 }
239
PrepareImageAddressSpace(bool preload_dex_caches,TimingLogger * timings)240 bool ImageWriter::PrepareImageAddressSpace(bool preload_dex_caches, TimingLogger* timings) {
241 target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
242
243 Thread* const self = Thread::Current();
244
245 gc::Heap* const heap = Runtime::Current()->GetHeap();
246 {
247 ScopedObjectAccess soa(self);
248 {
249 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
250 PruneNonImageClasses(); // Remove junk
251 }
252
253 if (compiler_options_.IsAppImage()) {
254 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
255 // Clear dex file cookies for app images to enable app image determinism. This is required
256 // since the cookie field contains long pointers to DexFiles which are not deterministic.
257 // b/34090128
258 ClearDexFileCookies();
259 }
260 }
261
262 {
263 TimingLogger::ScopedTiming t("CollectGarbage", timings);
264 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
265 }
266
267 if (kIsDebugBuild) {
268 ScopedObjectAccess soa(self);
269 CheckNonImageClassesRemoved();
270 }
271
272 {
273 // All remaining weak interns are referenced. Promote them to strong interns. Whether a
274 // string was strongly or weakly interned, we shall make it strongly interned in the image.
275 TimingLogger::ScopedTiming t("PromoteInterns", timings);
276 ScopedObjectAccess soa(self);
277 Runtime::Current()->GetInternTable()->PromoteWeakToStrong();
278 }
279
280 if (preload_dex_caches) {
281 TimingLogger::ScopedTiming t("PreloadDexCaches", timings);
282 // Preload deterministic contents to the dex cache arrays we're going to write.
283 ScopedObjectAccess soa(self);
284 ObjPtr<mirror::ClassLoader> class_loader = GetAppClassLoader();
285 std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
286 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
287 if (!IsImageDexCache(dex_cache)) {
288 continue; // Boot image DexCache is not written to the app image.
289 }
290 PreloadDexCache(dex_cache, class_loader);
291 }
292 }
293
294 {
295 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
296 ScopedObjectAccess soa(self);
297 CalculateNewObjectOffsets();
298 }
299
300 // Obtain class count for debugging purposes
301 if (VLOG_IS_ON(compiler) && compiler_options_.IsAppImage()) {
302 ScopedObjectAccess soa(self);
303
304 size_t app_image_class_count = 0;
305
306 for (ImageInfo& info : image_infos_) {
307 info.class_table_->Visit([&](ObjPtr<mirror::Class> klass)
308 REQUIRES_SHARED(Locks::mutator_lock_) {
309 if (!IsInBootImage(klass.Ptr())) {
310 ++app_image_class_count;
311 }
312
313 // Indicate that we would like to continue visiting classes.
314 return true;
315 });
316 }
317
318 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << app_image_class_count;
319 }
320
321 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
322 // bin size sums being calculated.
323 TimingLogger::ScopedTiming t("AllocMemory", timings);
324 return AllocMemory();
325 }
326
CopyMetadata()327 void ImageWriter::CopyMetadata() {
328 DCHECK(compiler_options_.IsAppImage());
329 CHECK_EQ(image_infos_.size(), 1u);
330
331 const ImageInfo& image_info = image_infos_.back();
332 std::vector<ImageSection> image_sections = image_info.CreateImageSections().second;
333
334 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
335 image_info.image_.Begin() +
336 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
337
338 std::copy(image_info.string_reference_offsets_.begin(),
339 image_info.string_reference_offsets_.end(),
340 sfo_section_base);
341 }
342
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const343 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
344 return referred_obj != nullptr &&
345 !IsInBootImage(referred_obj.Ptr()) &&
346 referred_obj->IsString() &&
347 referred_obj == Runtime::Current()->GetInternTable()->LookupStrong(
348 Thread::Current(), referred_obj->AsString());
349 }
350
351 // Helper class that erases the image file if it isn't properly flushed and closed.
352 class ImageWriter::ImageFileGuard {
353 public:
354 ImageFileGuard() noexcept = default;
355 ImageFileGuard(ImageFileGuard&& other) noexcept = default;
356 ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default;
357
~ImageFileGuard()358 ~ImageFileGuard() {
359 if (image_file_ != nullptr) {
360 // Failure, erase the image file.
361 image_file_->Erase();
362 }
363 }
364
reset(File * image_file)365 void reset(File* image_file) {
366 image_file_.reset(image_file);
367 }
368
operator ==(std::nullptr_t)369 bool operator==(std::nullptr_t) {
370 return image_file_ == nullptr;
371 }
372
operator !=(std::nullptr_t)373 bool operator!=(std::nullptr_t) {
374 return image_file_ != nullptr;
375 }
376
operator ->() const377 File* operator->() const {
378 return image_file_.get();
379 }
380
WriteHeaderAndClose(const std::string & image_filename,const ImageHeader * image_header)381 bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) {
382 // The header is uncompressed since it contains whether the image is compressed or not.
383 if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) {
384 PLOG(ERROR) << "Failed to write image file header " << image_filename;
385 return false;
386 }
387
388 // FlushCloseOrErase() takes care of erasing, so the destructor does not need
389 // to do that whether the FlushCloseOrErase() succeeds or fails.
390 std::unique_ptr<File> image_file = std::move(image_file_);
391 if (image_file->FlushCloseOrErase() != 0) {
392 PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
393 return false;
394 }
395
396 return true;
397 }
398
399 private:
400 std::unique_ptr<File> image_file_;
401 };
402
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)403 bool ImageWriter::Write(int image_fd,
404 const std::vector<std::string>& image_filenames,
405 size_t component_count) {
406 // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
407 // oat_filenames.
408 CHECK(!image_filenames.empty());
409 if (image_fd != kInvalidFd) {
410 CHECK_EQ(image_filenames.size(), 1u);
411 }
412 DCHECK(!oat_filenames_.empty());
413 CHECK_EQ(image_filenames.size(), oat_filenames_.size());
414
415 Thread* const self = Thread::Current();
416 {
417 ScopedObjectAccess soa(self);
418 for (size_t i = 0; i < oat_filenames_.size(); ++i) {
419 CreateHeader(i, component_count);
420 CopyAndFixupNativeData(i);
421 }
422 }
423
424 {
425 // TODO: heap validation can't handle these fix up passes.
426 ScopedObjectAccess soa(self);
427 Runtime::Current()->GetHeap()->DisableObjectValidation();
428 CopyAndFixupObjects();
429 }
430
431 if (compiler_options_.IsAppImage()) {
432 CopyMetadata();
433 }
434
435 // Primary image header shall be written last for two reasons. First, this ensures
436 // that we shall not end up with a valid primary image and invalid secondary image.
437 // Second, its checksum shall include the checksums of the secondary images (XORed).
438 // This way only the primary image checksum needs to be checked to determine whether
439 // any of the images or oat files are out of date. (Oat file checksums are included
440 // in the image checksum calculation.)
441 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
442 ImageFileGuard primary_image_file;
443 for (size_t i = 0; i < image_filenames.size(); ++i) {
444 const std::string& image_filename = image_filenames[i];
445 ImageInfo& image_info = GetImageInfo(i);
446 ImageFileGuard image_file;
447 if (image_fd != kInvalidFd) {
448 // Ignore image_filename, it is supplied only for better diagnostic.
449 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
450 // Empty the file in case it already exists.
451 if (image_file != nullptr) {
452 TEMP_FAILURE_RETRY(image_file->SetLength(0));
453 TEMP_FAILURE_RETRY(image_file->Flush());
454 }
455 } else {
456 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
457 }
458
459 if (image_file == nullptr) {
460 LOG(ERROR) << "Failed to open image file " << image_filename;
461 return false;
462 }
463
464 // Make file world readable if we have created it, i.e. when not passed as file descriptor.
465 if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
466 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
467 return false;
468 }
469
470 // Image data size excludes the bitmap and the header.
471 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
472
473 // Block sources (from the image).
474 const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed;
475 std::vector<std::pair<uint32_t, uint32_t>> block_sources;
476 std::vector<ImageHeader::Block> blocks;
477
478 // Add a set of solid blocks such that no block is larger than the maximum size. A solid block
479 // is a block that must be decompressed all at once.
480 auto add_blocks = [&](uint32_t offset, uint32_t size) {
481 while (size != 0u) {
482 const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize());
483 block_sources.emplace_back(offset, cur_size);
484 offset += cur_size;
485 size -= cur_size;
486 }
487 };
488
489 add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader));
490
491 // Checksum of compressed image data and header.
492 uint32_t image_checksum = adler32(0L, Z_NULL, 0);
493 image_checksum = adler32(image_checksum,
494 reinterpret_cast<const uint8_t*>(image_header),
495 sizeof(ImageHeader));
496 // Copy and compress blocks.
497 size_t out_offset = sizeof(ImageHeader);
498 for (const std::pair<uint32_t, uint32_t> block : block_sources) {
499 ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first,
500 block.second);
501 std::vector<uint8_t> compressed_data;
502 ArrayRef<const uint8_t> image_data =
503 MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data);
504
505 if (!is_compressed) {
506 // For uncompressed, preserve alignment since the image will be directly mapped.
507 out_offset = block.first;
508 }
509
510 // Fill in the compressed location of the block.
511 blocks.emplace_back(ImageHeader::Block(
512 image_storage_mode_,
513 /*data_offset=*/ out_offset,
514 /*data_size=*/ image_data.size(),
515 /*image_offset=*/ block.first,
516 /*image_size=*/ block.second));
517
518 // Write out the image + fields + methods.
519 if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
520 PLOG(ERROR) << "Failed to write image file data " << image_filename;
521 image_file->Erase();
522 return false;
523 }
524 out_offset += image_data.size();
525 image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
526 }
527
528 // Write the block metadata directly after the image sections.
529 // Note: This is not part of the mapped image and is not preserved after decompressing, it's
530 // only used for image loading. For this reason, only write it out for compressed images.
531 if (is_compressed) {
532 // Align up since the compressed data is not necessarily aligned.
533 out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
534 CHECK(!blocks.empty());
535 const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
536 if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
537 PLOG(ERROR) << "Failed to write image blocks " << image_filename;
538 image_file->Erase();
539 return false;
540 }
541 image_header->blocks_offset_ = out_offset;
542 image_header->blocks_count_ = blocks.size();
543 out_offset += blocks_bytes;
544 }
545
546 // Data size includes everything except the bitmap.
547 image_header->data_size_ = out_offset - sizeof(ImageHeader);
548
549 // Update and write the bitmap section. Note that the bitmap section is relative to the
550 // possibly compressed image.
551 ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
552 // Align up since data size may be unaligned if the image is compressed.
553 out_offset = RoundUp(out_offset, kPageSize);
554 bitmap_section = ImageSection(out_offset, bitmap_section.Size());
555
556 if (!image_file->PwriteFully(image_info.image_bitmap_.Begin(),
557 bitmap_section.Size(),
558 bitmap_section.Offset())) {
559 PLOG(ERROR) << "Failed to write image file bitmap " << image_filename;
560 return false;
561 }
562
563 int err = image_file->Flush();
564 if (err < 0) {
565 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
566 return false;
567 }
568
569 // Calculate the image checksum of the remaining data.
570 image_checksum = adler32(image_checksum,
571 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
572 bitmap_section.Size());
573 image_header->SetImageChecksum(image_checksum);
574
575 if (VLOG_IS_ON(compiler)) {
576 const size_t separately_written_section_size = bitmap_section.Size();
577 const size_t total_uncompressed_size = image_info.image_size_ +
578 separately_written_section_size;
579 const size_t total_compressed_size = out_offset + separately_written_section_size;
580
581 VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size;
582 if (total_uncompressed_size != total_compressed_size) {
583 VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size;
584 }
585 }
586
587 CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
588 << "Bitmap should be at the end of the file";
589
590 // Write header last in case the compiler gets killed in the middle of image writing.
591 // We do not want to have a corrupted image with a valid header.
592 // Delay the writing of the primary image header until after writing secondary images.
593 if (i == 0u) {
594 primary_image_file = std::move(image_file);
595 } else {
596 if (!image_file.WriteHeaderAndClose(image_filename, image_header)) {
597 return false;
598 }
599 // Update the primary image checksum with the secondary image checksum.
600 primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum);
601 }
602 }
603 DCHECK(primary_image_file != nullptr);
604 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) {
605 return false;
606 }
607
608 return true;
609 }
610
GetImageOffset(mirror::Object * object,size_t oat_index) const611 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
612 BinSlot bin_slot = GetImageBinSlot(object, oat_index);
613 const ImageInfo& image_info = GetImageInfo(oat_index);
614 size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
615 DCHECK_LT(offset, image_info.image_end_);
616 return offset;
617 }
618
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)619 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
620 DCHECK(object != nullptr);
621 DCHECK(!IsImageBinSlotAssigned(object));
622
623 // Before we stomp over the lock word, save the hash code for later.
624 LockWord lw(object->GetLockWord(false));
625 switch (lw.GetState()) {
626 case LockWord::kFatLocked:
627 FALLTHROUGH_INTENDED;
628 case LockWord::kThinLocked: {
629 std::ostringstream oss;
630 bool thin = (lw.GetState() == LockWord::kThinLocked);
631 oss << (thin ? "Thin" : "Fat")
632 << " locked object " << object << "(" << object->PrettyTypeOf()
633 << ") found during object copy";
634 if (thin) {
635 oss << ". Lock owner:" << lw.ThinLockOwner();
636 }
637 LOG(FATAL) << oss.str();
638 UNREACHABLE();
639 }
640 case LockWord::kUnlocked:
641 // No hash, don't need to save it.
642 break;
643 case LockWord::kHashCode:
644 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
645 saved_hashcode_map_.emplace(object, lw.GetHashCode());
646 break;
647 default:
648 LOG(FATAL) << "Unreachable.";
649 UNREACHABLE();
650 }
651 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
652 /*as_volatile=*/ false);
653 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
654 DCHECK(IsImageBinSlotAssigned(object));
655 }
656
PrepareDexCacheArraySlots()657 void ImageWriter::PrepareDexCacheArraySlots() {
658 // Prepare dex cache array starts based on the ordering specified in the CompilerOptions.
659 // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
660 // when AssignImageBinSlot() assigns their indexes out or order.
661 for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
662 auto it = dex_file_oat_index_map_.find(dex_file);
663 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
664 ImageInfo& image_info = GetImageInfo(it->second);
665 image_info.dex_cache_array_starts_.Put(
666 dex_file, image_info.GetBinSlotSize(Bin::kDexCacheArray));
667 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
668 image_info.IncrementBinSlotSize(Bin::kDexCacheArray, layout.Size());
669 }
670
671 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
672 Thread* const self = Thread::Current();
673 ReaderMutexLock mu(self, *Locks::dex_lock_);
674 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
675 ObjPtr<mirror::DexCache> dex_cache =
676 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
677 if (dex_cache == nullptr || !IsImageDexCache(dex_cache)) {
678 continue;
679 }
680 const DexFile* dex_file = dex_cache->GetDexFile();
681 CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
682 << "Dex cache should have been pruned " << dex_file->GetLocation()
683 << "; possibly in class path";
684 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
685 // Empty dex files will not have a "valid" DexCacheArraysLayout.
686 if (dex_file->NumTypeIds() + dex_file->NumStringIds() + dex_file->NumMethodIds() +
687 dex_file->NumFieldIds() + dex_file->NumProtoIds() + dex_file->NumCallSiteIds() != 0) {
688 DCHECK(layout.Valid());
689 }
690 size_t oat_index = GetOatIndexForDexFile(dex_file);
691 ImageInfo& image_info = GetImageInfo(oat_index);
692 uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
693 DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
694 AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
695 start + layout.TypesOffset(),
696 oat_index);
697 DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
698 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
699 start + layout.MethodsOffset(),
700 oat_index);
701 DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
702 AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
703 start + layout.FieldsOffset(),
704 oat_index);
705 DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
706 AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), oat_index);
707
708 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(),
709 start + layout.MethodTypesOffset(),
710 oat_index);
711 AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(),
712 start + layout.CallSitesOffset(),
713 oat_index);
714
715 // Preresolved strings aren't part of the special layout.
716 GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
717 if (preresolved_strings != nullptr) {
718 DCHECK(!IsInBootImage(preresolved_strings));
719 // Add the array to the metadata section.
720 const size_t count = dex_cache->NumPreResolvedStrings();
721 auto bin = BinTypeForNativeRelocationType(NativeObjectRelocationType::kGcRootPointer);
722 for (size_t i = 0; i < count; ++i) {
723 native_object_relocations_.emplace(&preresolved_strings[i],
724 NativeObjectRelocation { oat_index,
725 image_info.GetBinSlotSize(bin),
726 NativeObjectRelocationType::kGcRootPointer });
727 image_info.IncrementBinSlotSize(bin, sizeof(GcRoot<mirror::Object>));
728 }
729 }
730 }
731 }
732
AddDexCacheArrayRelocation(void * array,size_t offset,size_t oat_index)733 void ImageWriter::AddDexCacheArrayRelocation(void* array,
734 size_t offset,
735 size_t oat_index) {
736 if (array != nullptr) {
737 DCHECK(!IsInBootImage(array));
738 native_object_relocations_.emplace(array,
739 NativeObjectRelocation { oat_index, offset, NativeObjectRelocationType::kDexCacheArray });
740 }
741 }
742
AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr)743 void ImageWriter::AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr) {
744 DCHECK(arr != nullptr);
745 if (kIsDebugBuild) {
746 for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
747 ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
748 if (method != nullptr && !method->IsRuntimeMethod()) {
749 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
750 CHECK(klass == nullptr || KeepClass(klass))
751 << Class::PrettyClass(klass) << " should be a kept class";
752 }
753 }
754 }
755 // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
756 // ArtMethods.
757 pointer_arrays_.emplace(arr.Ptr(), Bin::kArtMethodClean);
758 }
759
AssignImageBinSlot(mirror::Object * object,size_t oat_index)760 ImageWriter::Bin ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
761 DCHECK(object != nullptr);
762 size_t object_size = object->SizeOf();
763
764 // The magic happens here. We segregate objects into different bins based
765 // on how likely they are to get dirty at runtime.
766 //
767 // Likely-to-dirty objects get packed together into the same bin so that
768 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
769 // maximized.
770 //
771 // This means more pages will stay either clean or shared dirty (with zygote) and
772 // the app will use less of its own (private) memory.
773 Bin bin = Bin::kRegular;
774
775 if (kBinObjects) {
776 //
777 // Changing the bin of an object is purely a memory-use tuning.
778 // It has no change on runtime correctness.
779 //
780 // Memory analysis has determined that the following types of objects get dirtied
781 // the most:
782 //
783 // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
784 // a fixed layout which helps improve generated code (using PC-relative addressing),
785 // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
786 // Since these arrays are huge, most pages do not overlap other objects and it's not
787 // really important where they are for the clean/dirty separation. Due to their
788 // special PC-relative addressing, we arbitrarily keep them at the end.
789 // * Class'es which are verified [their clinit runs only at runtime]
790 // - classes in general [because their static fields get overwritten]
791 // - initialized classes with all-final statics are unlikely to be ever dirty,
792 // so bin them separately
793 // * Art Methods that are:
794 // - native [their native entry point is not looked up until runtime]
795 // - have declaring classes that aren't initialized
796 // [their interpreter/quick entry points are trampolines until the class
797 // becomes initialized]
798 //
799 // We also assume the following objects get dirtied either never or extremely rarely:
800 // * Strings (they are immutable)
801 // * Art methods that aren't native and have initialized declared classes
802 //
803 // We assume that "regular" bin objects are highly unlikely to become dirtied,
804 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
805 //
806 if (object->IsClass()) {
807 bin = Bin::kClassVerified;
808 ObjPtr<mirror::Class> klass = object->AsClass();
809
810 // Add non-embedded vtable to the pointer array table if there is one.
811 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable();
812 if (vtable != nullptr) {
813 AddMethodPointerArray(vtable);
814 }
815 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable();
816 if (iftable != nullptr) {
817 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
818 if (iftable->GetMethodArrayCount(i) > 0) {
819 AddMethodPointerArray(iftable->GetMethodArray(i));
820 }
821 }
822 }
823
824 // Move known dirty objects into their own sections. This includes:
825 // - classes with dirty static fields.
826 if (dirty_image_objects_ != nullptr &&
827 dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) {
828 bin = Bin::kKnownDirty;
829 } else if (klass->GetStatus() == ClassStatus::kVisiblyInitialized) {
830 bin = Bin::kClassInitialized;
831
832 // If the class's static fields are all final, put it into a separate bin
833 // since it's very likely it will stay clean.
834 uint32_t num_static_fields = klass->NumStaticFields();
835 if (num_static_fields == 0) {
836 bin = Bin::kClassInitializedFinalStatics;
837 } else {
838 // Maybe all the statics are final?
839 bool all_final = true;
840 for (uint32_t i = 0; i < num_static_fields; ++i) {
841 ArtField* field = klass->GetStaticField(i);
842 if (!field->IsFinal()) {
843 all_final = false;
844 break;
845 }
846 }
847
848 if (all_final) {
849 bin = Bin::kClassInitializedFinalStatics;
850 }
851 }
852 }
853 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
854 bin = Bin::kString; // Strings are almost always immutable (except for object header).
855 } else if (object->GetClass<kVerifyNone>() == GetClassRoot<mirror::Object>()) {
856 // Instance of java lang object, probably a lock object. This means it will be dirty when we
857 // synchronize on it.
858 bin = Bin::kMiscDirty;
859 } else if (object->IsDexCache()) {
860 // Dex file field becomes dirty when the image is loaded.
861 bin = Bin::kMiscDirty;
862 }
863 // else bin = kBinRegular
864 }
865
866 // Assign the oat index too.
867 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
868 oat_index_map_.emplace(object, oat_index);
869
870 ImageInfo& image_info = GetImageInfo(oat_index);
871
872 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
873 // How many bytes the current bin is at (aligned).
874 size_t current_offset = image_info.GetBinSlotSize(bin);
875 // Move the current bin size up to accommodate the object we just assigned a bin slot.
876 image_info.IncrementBinSlotSize(bin, offset_delta);
877
878 BinSlot new_bin_slot(bin, current_offset);
879 SetImageBinSlot(object, new_bin_slot);
880
881 image_info.IncrementBinSlotCount(bin, 1u);
882
883 // Grow the image closer to the end by the object we just assigned.
884 image_info.image_end_ += offset_delta;
885
886 return bin;
887 }
888
WillMethodBeDirty(ArtMethod * m) const889 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
890 if (m->IsNative()) {
891 return true;
892 }
893 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass();
894 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
895 return declaring_class == nullptr ||
896 declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
897 }
898
IsImageBinSlotAssigned(mirror::Object * object) const899 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
900 DCHECK(object != nullptr);
901
902 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
903 // If it's in some other state, then we haven't yet assigned an image bin slot.
904 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
905 return false;
906 } else if (kIsDebugBuild) {
907 LockWord lock_word = object->GetLockWord(false);
908 size_t offset = lock_word.ForwardingAddress();
909 BinSlot bin_slot(offset);
910 size_t oat_index = GetOatIndex(object);
911 const ImageInfo& image_info = GetImageInfo(oat_index);
912 DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
913 << "bin slot offset should not exceed the size of that bin";
914 }
915 return true;
916 }
917
GetImageBinSlot(mirror::Object * object,size_t oat_index) const918 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
919 DCHECK(object != nullptr);
920 DCHECK(IsImageBinSlotAssigned(object));
921
922 LockWord lock_word = object->GetLockWord(false);
923 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
924 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
925
926 BinSlot bin_slot(static_cast<uint32_t>(offset));
927 DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
928
929 return bin_slot;
930 }
931
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)932 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
933 size_t oat_index,
934 size_t new_offset) {
935 BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
936 DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
937 BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
938 object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
939 /*as_volatile=*/ false);
940 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
941 DCHECK(IsImageBinSlotAssigned(object));
942 }
943
AllocMemory()944 bool ImageWriter::AllocMemory() {
945 for (ImageInfo& image_info : image_infos_) {
946 const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
947
948 std::string error_msg;
949 image_info.image_ = MemMap::MapAnonymous("image writer image",
950 length,
951 PROT_READ | PROT_WRITE,
952 /*low_4gb=*/ false,
953 &error_msg);
954 if (UNLIKELY(!image_info.image_.IsValid())) {
955 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
956 return false;
957 }
958
959 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
960 CHECK_LE(image_info.image_end_, length);
961 image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
962 "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize));
963 if (!image_info.image_bitmap_.IsValid()) {
964 LOG(ERROR) << "Failed to allocate memory for image bitmap";
965 return false;
966 }
967 }
968 return true;
969 }
970
IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)971 static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
972 REQUIRES_SHARED(Locks::mutator_lock_) {
973 return klass->GetClassLoader() == nullptr;
974 }
975
IsBootClassLoaderNonImageClass(mirror::Class * klass)976 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
977 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
978 }
979
980 // This visitor follows the references of an instance, recursively then prune this class
981 // if a type of any field is pruned.
982 class ImageWriter::PruneObjectReferenceVisitor {
983 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,std::unordered_set<mirror::Object * > * visited,bool * result)984 PruneObjectReferenceVisitor(ImageWriter* image_writer,
985 bool* early_exit,
986 std::unordered_set<mirror::Object*>* visited,
987 bool* result)
988 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
989
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const990 ALWAYS_INLINE void VisitRootIfNonNull(
991 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
992 REQUIRES_SHARED(Locks::mutator_lock_) { }
993
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const994 ALWAYS_INLINE void VisitRoot(
995 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
996 REQUIRES_SHARED(Locks::mutator_lock_) { }
997
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const998 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
999 MemberOffset offset,
1000 bool is_static ATTRIBUTE_UNUSED) const
1001 REQUIRES_SHARED(Locks::mutator_lock_) {
1002 mirror::Object* ref =
1003 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1004 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
1005 return;
1006 }
1007
1008 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1009 Runtime::Current()->GetClassLinker()->GetClassRoots();
1010 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
1011 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
1012 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
1013 // Prune all classes using reflection because the content they held will not be fixup.
1014 *result_ = true;
1015 }
1016
1017 if (ref->IsClass()) {
1018 *result_ = *result_ ||
1019 image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
1020 } else {
1021 // Record the object visited in case of circular reference.
1022 visited_->emplace(ref);
1023 *result_ = *result_ ||
1024 image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
1025 ref->VisitReferences(*this, *this);
1026 // Clean up before exit for next call of this function.
1027 visited_->erase(ref);
1028 }
1029 }
1030
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1031 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1032 ObjPtr<mirror::Reference> ref) const
1033 REQUIRES_SHARED(Locks::mutator_lock_) {
1034 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1035 }
1036
1037 private:
1038 ImageWriter* image_writer_;
1039 bool* early_exit_;
1040 std::unordered_set<mirror::Object*>* visited_;
1041 bool* const result_;
1042 };
1043
1044
PruneImageClass(ObjPtr<mirror::Class> klass)1045 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
1046 bool early_exit = false;
1047 std::unordered_set<mirror::Object*> visited;
1048 return PruneImageClassInternal(klass, &early_exit, &visited);
1049 }
1050
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,std::unordered_set<mirror::Object * > * visited)1051 bool ImageWriter::PruneImageClassInternal(
1052 ObjPtr<mirror::Class> klass,
1053 bool* early_exit,
1054 std::unordered_set<mirror::Object*>* visited) {
1055 DCHECK(early_exit != nullptr);
1056 DCHECK(visited != nullptr);
1057 DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
1058 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
1059 return false;
1060 }
1061 auto found = prune_class_memo_.find(klass.Ptr());
1062 if (found != prune_class_memo_.end()) {
1063 // Already computed, return the found value.
1064 return found->second;
1065 }
1066 // Circular dependencies, return false but do not store the result in the memoization table.
1067 if (visited->find(klass.Ptr()) != visited->end()) {
1068 *early_exit = true;
1069 return false;
1070 }
1071 visited->emplace(klass.Ptr());
1072 bool result = IsBootClassLoaderClass(klass);
1073 std::string temp;
1074 // Prune if not an image class, this handles any broken sets of image classes such as having a
1075 // class in the set but not it's superclass.
1076 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
1077 bool my_early_exit = false; // Only for ourselves, ignore caller.
1078 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
1079 // app image.
1080 if (klass->IsErroneous()) {
1081 result = true;
1082 } else {
1083 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
1084 CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
1085 }
1086 if (!result) {
1087 // Check interfaces since these wont be visited through VisitReferences.)
1088 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
1089 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
1090 result = result || PruneImageClassInternal(if_table->GetInterface(i),
1091 &my_early_exit,
1092 visited);
1093 }
1094 }
1095 if (klass->IsObjectArrayClass()) {
1096 result = result || PruneImageClassInternal(klass->GetComponentType(),
1097 &my_early_exit,
1098 visited);
1099 }
1100 // Check static fields and their classes.
1101 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
1102 size_t num_static_fields = klass->NumReferenceStaticFields();
1103 // Presumably GC can happen when we are cross compiling, it should not cause performance
1104 // problems to do pointer size logic.
1105 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
1106 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1107 for (size_t i = 0u; i < num_static_fields; ++i) {
1108 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
1109 if (ref != nullptr) {
1110 if (ref->IsClass()) {
1111 result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
1112 } else {
1113 mirror::Class* type = ref->GetClass();
1114 result = result || PruneImageClassInternal(type, &my_early_exit, visited);
1115 if (!result) {
1116 // For non-class case, also go through all the types mentioned by it's fields'
1117 // references recursively to decide whether to keep this class.
1118 bool tmp = false;
1119 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
1120 ref->VisitReferences(visitor, visitor);
1121 result = result || tmp;
1122 }
1123 }
1124 }
1125 field_offset = MemberOffset(field_offset.Uint32Value() +
1126 sizeof(mirror::HeapReference<mirror::Object>));
1127 }
1128 }
1129 result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
1130 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1131 // are from uses-library if there is no profile. b/30688277
1132 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1133 if (dex_cache != nullptr) {
1134 result = result ||
1135 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1136 }
1137 // Erase the element we stored earlier since we are exiting the function.
1138 auto it = visited->find(klass.Ptr());
1139 DCHECK(it != visited->end());
1140 visited->erase(it);
1141 // Only store result if it is true or none of the calls early exited due to circular
1142 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1143 // a child call and we can remember the result.
1144 if (result == true || !my_early_exit || visited->empty()) {
1145 prune_class_memo_[klass.Ptr()] = result;
1146 }
1147 *early_exit |= my_early_exit;
1148 return result;
1149 }
1150
KeepClass(ObjPtr<mirror::Class> klass)1151 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1152 if (klass == nullptr) {
1153 return false;
1154 }
1155 if (IsInBootImage(klass.Ptr())) {
1156 // Already in boot image, return true.
1157 DCHECK(!compiler_options_.IsBootImage());
1158 return true;
1159 }
1160 std::string temp;
1161 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1162 return false;
1163 }
1164 if (compiler_options_.IsAppImage()) {
1165 // For app images, we need to prune classes that
1166 // are defined by the boot class path we're compiling against but not in
1167 // the boot image spaces since these may have already been loaded at
1168 // run time when this image is loaded. Keep classes in the boot image
1169 // spaces we're compiling against since we don't want to re-resolve these.
1170 return !PruneImageClass(klass);
1171 }
1172 return true;
1173 }
1174
1175 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1176 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1177 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1178 : image_writer_(image_writer),
1179 class_loader_(class_loader),
1180 classes_to_prune_(),
1181 defined_class_count_(0u) { }
1182
operator ()(ObjPtr<mirror::Class> klass)1183 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1184 if (!image_writer_->KeepClass(klass.Ptr())) {
1185 classes_to_prune_.insert(klass.Ptr());
1186 if (klass->GetClassLoader() == class_loader_) {
1187 ++defined_class_count_;
1188 }
1189 }
1190 return true;
1191 }
1192
Prune()1193 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1194 ClassTable* class_table =
1195 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1196 for (mirror::Class* klass : classes_to_prune_) {
1197 std::string storage;
1198 const char* descriptor = klass->GetDescriptor(&storage);
1199 bool result = class_table->Remove(descriptor);
1200 DCHECK(result);
1201 DCHECK(!class_table->Remove(descriptor)) << descriptor;
1202 }
1203 return defined_class_count_;
1204 }
1205
1206 private:
1207 ImageWriter* const image_writer_;
1208 const ObjPtr<mirror::ClassLoader> class_loader_;
1209 std::unordered_set<mirror::Class*> classes_to_prune_;
1210 size_t defined_class_count_;
1211 };
1212
1213 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1214 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1215 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1216 : image_writer_(image_writer), removed_class_count_(0) {}
1217
Visit(ObjPtr<mirror::ClassLoader> class_loader)1218 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1219 REQUIRES_SHARED(Locks::mutator_lock_) {
1220 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1221 ClassTable* class_table =
1222 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1223 class_table->Visit(classes_visitor);
1224 removed_class_count_ += classes_visitor.Prune();
1225 }
1226
GetRemovedClassCount() const1227 size_t GetRemovedClassCount() const {
1228 return removed_class_count_;
1229 }
1230
1231 private:
1232 ImageWriter* const image_writer_;
1233 size_t removed_class_count_;
1234 };
1235
VisitClassLoaders(ClassLoaderVisitor * visitor)1236 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1237 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1238 visitor->Visit(nullptr); // Visit boot class loader.
1239 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1240 }
1241
ClearDexCache(ObjPtr<mirror::DexCache> dex_cache)1242 void ImageWriter::ClearDexCache(ObjPtr<mirror::DexCache> dex_cache) {
1243 // Clear methods.
1244 mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1245 for (size_t slot_idx = 0, num = dex_cache->NumResolvedMethods(); slot_idx != num; ++slot_idx) {
1246 auto pair =
1247 mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1248 if (pair.object != nullptr) {
1249 dex_cache->ClearResolvedMethod(pair.index, target_ptr_size_);
1250 }
1251 }
1252 // Clear fields.
1253 mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1254 for (size_t slot_idx = 0, num = dex_cache->NumResolvedFields(); slot_idx != num; ++slot_idx) {
1255 auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1256 if (pair.object != nullptr) {
1257 dex_cache->ClearResolvedField(pair.index, target_ptr_size_);
1258 }
1259 }
1260 // Clear types.
1261 for (size_t slot_idx = 0, num = dex_cache->NumResolvedTypes(); slot_idx != num; ++slot_idx) {
1262 mirror::TypeDexCachePair pair =
1263 dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1264 if (!pair.object.IsNull()) {
1265 dex_cache->ClearResolvedType(dex::TypeIndex(pair.index));
1266 }
1267 }
1268 // Clear strings.
1269 for (size_t slot_idx = 0, num = dex_cache->NumStrings(); slot_idx != num; ++slot_idx) {
1270 mirror::StringDexCachePair pair =
1271 dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
1272 if (!pair.object.IsNull()) {
1273 dex_cache->ClearString(dex::StringIndex(pair.index));
1274 }
1275 }
1276 }
1277
PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1278 void ImageWriter::PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,
1279 ObjPtr<mirror::ClassLoader> class_loader) {
1280 // To ensure deterministic contents of the hash-based arrays, each slot shall contain
1281 // the candidate with the lowest index. As we're processing entries in increasing index
1282 // order, this means trying to look up the entry for the current index if the slot is
1283 // empty or if it contains a higher index.
1284
1285 Runtime* runtime = Runtime::Current();
1286 ClassLinker* class_linker = runtime->GetClassLinker();
1287 const DexFile& dex_file = *dex_cache->GetDexFile();
1288 // Preload the methods array and make the contents deterministic.
1289 mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1290 dex::TypeIndex last_class_idx; // Initialized to invalid index.
1291 ObjPtr<mirror::Class> last_class = nullptr;
1292 for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) {
1293 uint32_t slot_idx = dex_cache->MethodSlotIndex(i);
1294 auto pair =
1295 mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1296 uint32_t stored_index = pair.index;
1297 ArtMethod* method = pair.object;
1298 if (method != nullptr && i > stored_index) {
1299 continue; // Already checked.
1300 }
1301 // Check if the referenced class is in the image. Note that we want to check the referenced
1302 // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1303 // results in resolving the referenced class and that can for example throw OOME.
1304 const dex::MethodId& method_id = dex_file.GetMethodId(i);
1305 if (method_id.class_idx_ != last_class_idx) {
1306 last_class_idx = method_id.class_idx_;
1307 last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1308 }
1309 if (method == nullptr || i < stored_index) {
1310 if (last_class != nullptr) {
1311 // Try to resolve the method with the class linker, which will insert
1312 // it into the dex cache if successful.
1313 method = class_linker->FindResolvedMethod(last_class, dex_cache, class_loader, i);
1314 DCHECK(method == nullptr || dex_cache->GetResolvedMethod(i, target_ptr_size_) == method);
1315 }
1316 } else {
1317 DCHECK_EQ(i, stored_index);
1318 DCHECK(last_class != nullptr);
1319 }
1320 }
1321 // Preload the fields array and make the contents deterministic.
1322 mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1323 last_class_idx = dex::TypeIndex(); // Initialized to invalid index.
1324 last_class = nullptr;
1325 for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) {
1326 uint32_t slot_idx = dex_cache->FieldSlotIndex(i);
1327 auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1328 uint32_t stored_index = pair.index;
1329 ArtField* field = pair.object;
1330 if (field != nullptr && i > stored_index) {
1331 continue; // Already checked.
1332 }
1333 // Check if the referenced class is in the image. Note that we want to check the referenced
1334 // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1335 // results in resolving the referenced class and that can for example throw OOME.
1336 const dex::FieldId& field_id = dex_file.GetFieldId(i);
1337 if (field_id.class_idx_ != last_class_idx) {
1338 last_class_idx = field_id.class_idx_;
1339 last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1340 if (last_class != nullptr && !KeepClass(last_class)) {
1341 last_class = nullptr;
1342 }
1343 }
1344 if (field == nullptr || i < stored_index) {
1345 if (last_class != nullptr) {
1346 // Try to resolve the field with the class linker, which will insert
1347 // it into the dex cache if successful.
1348 field = class_linker->FindResolvedFieldJLS(last_class, dex_cache, class_loader, i);
1349 DCHECK(field == nullptr || dex_cache->GetResolvedField(i, target_ptr_size_) == field);
1350 }
1351 } else {
1352 DCHECK_EQ(i, stored_index);
1353 DCHECK(last_class != nullptr);
1354 }
1355 }
1356 // Preload the types array and make the contents deterministic.
1357 // This is done after fields and methods as their lookup can touch the types array.
1358 for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) {
1359 dex::TypeIndex type_idx(i);
1360 uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
1361 mirror::TypeDexCachePair pair =
1362 dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1363 uint32_t stored_index = pair.index;
1364 ObjPtr<mirror::Class> klass = pair.object.Read();
1365 if (klass == nullptr || i < stored_index) {
1366 klass = class_linker->LookupResolvedType(type_idx, dex_cache, class_loader);
1367 DCHECK(klass == nullptr || dex_cache->GetResolvedType(type_idx) == klass);
1368 }
1369 }
1370 // Preload the strings array and make the contents deterministic.
1371 for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) {
1372 dex::StringIndex string_idx(i);
1373 uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
1374 mirror::StringDexCachePair pair =
1375 dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
1376 uint32_t stored_index = pair.index;
1377 ObjPtr<mirror::String> string = pair.object.Read();
1378 if (string == nullptr || i < stored_index) {
1379 string = class_linker->LookupString(string_idx, dex_cache);
1380 DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string);
1381 }
1382 }
1383 }
1384
PruneNonImageClasses()1385 void ImageWriter::PruneNonImageClasses() {
1386 Runtime* runtime = Runtime::Current();
1387 ClassLinker* class_linker = runtime->GetClassLinker();
1388 Thread* self = Thread::Current();
1389 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1390
1391 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1392 // sure the other ones don't get unloaded before the OatWriter runs.
1393 class_linker->VisitClassTables(
1394 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1395 table->RemoveStrongRoots(
1396 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1397 ObjPtr<mirror::Object> obj = root.Read();
1398 if (obj->IsDexCache()) {
1399 // Return true if the dex file is not one of the ones in the map.
1400 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1401 dex_file_oat_index_map_.end();
1402 }
1403 // Return false to avoid removing.
1404 return false;
1405 });
1406 });
1407
1408 // Remove the undesired classes from the class roots.
1409 {
1410 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1411 VisitClassLoaders(&class_loader_visitor);
1412 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1413 }
1414
1415 // Completely clear DexCaches. They shall be re-filled in PreloadDexCaches if requested.
1416 std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1417 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1418 ClearDexCache(dex_cache);
1419 }
1420
1421 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1422 class_linker->DropFindArrayClassCache();
1423
1424 // Clear to save RAM.
1425 prune_class_memo_.clear();
1426 }
1427
FindDexCaches(Thread * self)1428 std::vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1429 std::vector<ObjPtr<mirror::DexCache>> dex_caches;
1430 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1431 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1432 dex_caches.reserve(class_linker->GetDexCachesData().size());
1433 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1434 if (self->IsJWeakCleared(data.weak_root)) {
1435 continue;
1436 }
1437 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1438 }
1439 return dex_caches;
1440 }
1441
CheckNonImageClassesRemoved()1442 void ImageWriter::CheckNonImageClassesRemoved() {
1443 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1444 if (obj->IsClass() && !IsInBootImage(obj)) {
1445 ObjPtr<Class> klass = obj->AsClass();
1446 if (!KeepClass(klass)) {
1447 DumpImageClasses();
1448 CHECK(KeepClass(klass))
1449 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1450 }
1451 }
1452 };
1453 gc::Heap* heap = Runtime::Current()->GetHeap();
1454 heap->VisitObjects(visitor);
1455 }
1456
DumpImageClasses()1457 void ImageWriter::DumpImageClasses() {
1458 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1459 LOG(INFO) << " " << image_class;
1460 }
1461 }
1462
CollectDexCaches(Thread * self,size_t oat_index) const1463 ObjPtr<mirror::ObjectArray<mirror::Object>> ImageWriter::CollectDexCaches(Thread* self,
1464 size_t oat_index) const {
1465 std::unordered_set<const DexFile*> image_dex_files;
1466 for (auto& pair : dex_file_oat_index_map_) {
1467 const DexFile* image_dex_file = pair.first;
1468 size_t image_oat_index = pair.second;
1469 if (oat_index == image_oat_index) {
1470 image_dex_files.insert(image_dex_file);
1471 }
1472 }
1473
1474 // build an Object[] of all the DexCaches used in the source_space_.
1475 // Since we can't hold the dex lock when allocating the dex_caches
1476 // ObjectArray, we lock the dex lock twice, first to get the number
1477 // of dex caches first and then lock it again to copy the dex
1478 // caches. We check that the number of dex caches does not change.
1479 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1480 size_t dex_cache_count = 0;
1481 {
1482 ReaderMutexLock mu(self, *Locks::dex_lock_);
1483 // Count number of dex caches not in the boot image.
1484 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1485 ObjPtr<mirror::DexCache> dex_cache =
1486 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1487 if (dex_cache == nullptr) {
1488 continue;
1489 }
1490 const DexFile* dex_file = dex_cache->GetDexFile();
1491 if (IsImageDexCache(dex_cache)) {
1492 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1493 }
1494 }
1495 }
1496 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1497 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_count);
1498 CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
1499 {
1500 ReaderMutexLock mu(self, *Locks::dex_lock_);
1501 size_t non_image_dex_caches = 0;
1502 // Re-count number of non image dex caches.
1503 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1504 ObjPtr<mirror::DexCache> dex_cache =
1505 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1506 if (dex_cache == nullptr) {
1507 continue;
1508 }
1509 const DexFile* dex_file = dex_cache->GetDexFile();
1510 if (IsImageDexCache(dex_cache)) {
1511 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1512 }
1513 }
1514 CHECK_EQ(dex_cache_count, non_image_dex_caches)
1515 << "The number of non-image dex caches changed.";
1516 size_t i = 0;
1517 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1518 ObjPtr<mirror::DexCache> dex_cache =
1519 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1520 if (dex_cache == nullptr) {
1521 continue;
1522 }
1523 const DexFile* dex_file = dex_cache->GetDexFile();
1524 if (IsImageDexCache(dex_cache) &&
1525 image_dex_files.find(dex_file) != image_dex_files.end()) {
1526 dex_caches->Set<false>(i, dex_cache.Ptr());
1527 ++i;
1528 }
1529 }
1530 }
1531 return dex_caches;
1532 }
1533
CreateImageRoots(size_t oat_index,Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const1534 ObjPtr<ObjectArray<Object>> ImageWriter::CreateImageRoots(
1535 size_t oat_index,
1536 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const {
1537 Runtime* runtime = Runtime::Current();
1538 ClassLinker* class_linker = runtime->GetClassLinker();
1539 Thread* self = Thread::Current();
1540 StackHandleScope<2> hs(self);
1541
1542 Handle<ObjectArray<Object>> dex_caches(hs.NewHandle(CollectDexCaches(self, oat_index)));
1543
1544 // build an Object[] of the roots needed to restore the runtime
1545 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1546 Handle<ObjectArray<Object>> image_roots(hs.NewHandle(ObjectArray<Object>::Alloc(
1547 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size)));
1548 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1549 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1550 if (!compiler_options_.IsAppImage()) {
1551 DCHECK(boot_image_live_objects != nullptr);
1552 image_roots->Set<false>(ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1553 } else {
1554 DCHECK(boot_image_live_objects == nullptr);
1555 image_roots->Set<false>(ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1556 }
1557 for (int32_t i = 0; i != image_roots_size; ++i) {
1558 CHECK(image_roots->Get(i) != nullptr);
1559 }
1560 return image_roots.Get();
1561 }
1562
RecordNativeRelocations(ObjPtr<mirror::Object> obj,size_t oat_index)1563 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Object> obj, size_t oat_index) {
1564 if (obj->IsString()) {
1565 ObjPtr<mirror::String> str = obj->AsString();
1566 InternTable* intern_table = Runtime::Current()->GetInternTable();
1567 Thread* const self = Thread::Current();
1568 if (intern_table->LookupStrong(self, str) == str) {
1569 DCHECK(std::none_of(image_infos_.begin(),
1570 image_infos_.end(),
1571 [=](ImageInfo& info) REQUIRES_SHARED(Locks::mutator_lock_) {
1572 return info.intern_table_->LookupStrong(self, str) != nullptr;
1573 }));
1574 ObjPtr<mirror::String> interned =
1575 GetImageInfo(oat_index).intern_table_->InternStrongImageString(str);
1576 DCHECK_EQ(interned, obj);
1577 }
1578 } else if (obj->IsDexCache()) {
1579 DCHECK_EQ(oat_index, GetOatIndexForDexFile(obj->AsDexCache()->GetDexFile()));
1580 } else if (obj->IsClass()) {
1581 // Visit and assign offsets for fields and field arrays.
1582 ObjPtr<mirror::Class> as_klass = obj->AsClass();
1583 DCHECK_EQ(oat_index, GetOatIndexForClass(as_klass));
1584 DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus();
1585 if (compiler_options_.IsAppImage()) {
1586 // Extra sanity, no boot loader classes should be left!
1587 CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass();
1588 }
1589 LengthPrefixedArray<ArtField>* fields[] = {
1590 as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1591 };
1592 ImageInfo& image_info = GetImageInfo(oat_index);
1593 if (!compiler_options_.IsAppImage()) {
1594 // Note: Avoid locking to prevent lock order violations from root visiting;
1595 // image_info.class_table_ is only accessed from the image writer.
1596 image_info.class_table_->InsertWithoutLocks(as_klass);
1597 }
1598 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1599 // Total array length including header.
1600 if (cur_fields != nullptr) {
1601 const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1602 // Forward the entire array at once.
1603 auto it = native_object_relocations_.find(cur_fields);
1604 CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1605 << " already forwarded";
1606 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1607 DCHECK(!IsInBootImage(cur_fields));
1608 native_object_relocations_.emplace(
1609 cur_fields,
1610 NativeObjectRelocation {
1611 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1612 });
1613 offset += header_size;
1614 // Forward individual fields so that we can quickly find where they belong.
1615 for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1616 // Need to forward arrays separate of fields.
1617 ArtField* field = &cur_fields->At(i);
1618 auto it2 = native_object_relocations_.find(field);
1619 CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1620 << " already assigned " << field->PrettyField() << " static=" << field->IsStatic();
1621 DCHECK(!IsInBootImage(field));
1622 native_object_relocations_.emplace(
1623 field,
1624 NativeObjectRelocation { oat_index,
1625 offset,
1626 NativeObjectRelocationType::kArtField });
1627 offset += sizeof(ArtField);
1628 }
1629 image_info.IncrementBinSlotSize(
1630 Bin::kArtField, header_size + cur_fields->size() * sizeof(ArtField));
1631 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1632 }
1633 }
1634 // Visit and assign offsets for methods.
1635 size_t num_methods = as_klass->NumMethods();
1636 if (num_methods != 0) {
1637 bool any_dirty = false;
1638 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1639 if (WillMethodBeDirty(&m)) {
1640 any_dirty = true;
1641 break;
1642 }
1643 }
1644 NativeObjectRelocationType type = any_dirty
1645 ? NativeObjectRelocationType::kArtMethodDirty
1646 : NativeObjectRelocationType::kArtMethodClean;
1647 Bin bin_type = BinTypeForNativeRelocationType(type);
1648 // Forward the entire array at once, but header first.
1649 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1650 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1651 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1652 method_size,
1653 method_alignment);
1654 LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1655 auto it = native_object_relocations_.find(array);
1656 CHECK(it == native_object_relocations_.end())
1657 << "Method array " << array << " already forwarded";
1658 size_t offset = image_info.GetBinSlotSize(bin_type);
1659 DCHECK(!IsInBootImage(array));
1660 native_object_relocations_.emplace(array,
1661 NativeObjectRelocation {
1662 oat_index,
1663 offset,
1664 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1665 : NativeObjectRelocationType::kArtMethodArrayClean });
1666 image_info.IncrementBinSlotSize(bin_type, header_size);
1667 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1668 AssignMethodOffset(&m, type, oat_index);
1669 }
1670 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1671 }
1672 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1673 // live.
1674 if (as_klass->ShouldHaveImt()) {
1675 ImTable* imt = as_klass->GetImt(target_ptr_size_);
1676 if (TryAssignImTableOffset(imt, oat_index)) {
1677 // Since imt's can be shared only do this the first time to not double count imt method
1678 // fixups.
1679 for (size_t i = 0; i < ImTable::kSize; ++i) {
1680 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1681 DCHECK(imt_method != nullptr);
1682 if (imt_method->IsRuntimeMethod() &&
1683 !IsInBootImage(imt_method) &&
1684 !NativeRelocationAssigned(imt_method)) {
1685 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1686 }
1687 }
1688 }
1689 }
1690 } else if (obj->IsClassLoader()) {
1691 // Register the class loader if it has a class table.
1692 // The fake boot class loader should not get registered.
1693 ObjPtr<mirror::ClassLoader> class_loader = obj->AsClassLoader();
1694 if (class_loader->GetClassTable() != nullptr) {
1695 DCHECK(compiler_options_.IsAppImage());
1696 if (class_loader == GetAppClassLoader()) {
1697 ImageInfo& image_info = GetImageInfo(oat_index);
1698 // Note: Avoid locking to prevent lock order violations from root visiting;
1699 // image_info.class_table_ table is only accessed from the image writer
1700 // and class_loader->GetClassTable() is iterated but not modified.
1701 image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable());
1702 }
1703 }
1704 }
1705 }
1706
NativeRelocationAssigned(void * ptr) const1707 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1708 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1709 }
1710
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1711 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1712 // No offset, or already assigned.
1713 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1714 return false;
1715 }
1716 // If the method is a conflict method we also want to assign the conflict table offset.
1717 ImageInfo& image_info = GetImageInfo(oat_index);
1718 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1719 native_object_relocations_.emplace(
1720 imt,
1721 NativeObjectRelocation {
1722 oat_index,
1723 image_info.GetBinSlotSize(Bin::kImTable),
1724 NativeObjectRelocationType::kIMTable});
1725 image_info.IncrementBinSlotSize(Bin::kImTable, size);
1726 return true;
1727 }
1728
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1729 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1730 // No offset, or already assigned.
1731 if (table == nullptr || NativeRelocationAssigned(table)) {
1732 return;
1733 }
1734 CHECK(!IsInBootImage(table));
1735 // If the method is a conflict method we also want to assign the conflict table offset.
1736 ImageInfo& image_info = GetImageInfo(oat_index);
1737 const size_t size = table->ComputeSize(target_ptr_size_);
1738 native_object_relocations_.emplace(
1739 table,
1740 NativeObjectRelocation {
1741 oat_index,
1742 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1743 NativeObjectRelocationType::kIMTConflictTable});
1744 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1745 }
1746
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1747 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1748 NativeObjectRelocationType type,
1749 size_t oat_index) {
1750 DCHECK(!IsInBootImage(method));
1751 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1752 << ArtMethod::PrettyMethod(method);
1753 if (method->IsRuntimeMethod()) {
1754 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1755 }
1756 ImageInfo& image_info = GetImageInfo(oat_index);
1757 Bin bin_type = BinTypeForNativeRelocationType(type);
1758 size_t offset = image_info.GetBinSlotSize(bin_type);
1759 native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1760 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1761 }
1762
1763 class ImageWriter::LayoutHelper {
1764 public:
LayoutHelper(ImageWriter * image_writer)1765 explicit LayoutHelper(ImageWriter* image_writer)
1766 : image_writer_(image_writer) {
1767 bin_objects_.resize(image_writer_->image_infos_.size());
1768 for (auto& inner : bin_objects_) {
1769 inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1770 }
1771 }
1772
1773 void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1774 void ProcessRoots(VariableSizedHandleScope* handles) REQUIRES_SHARED(Locks::mutator_lock_);
1775
1776 void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1777
1778 void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1779
1780 void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1781
1782 /*
1783 * Collects the string reference info necessary for loading app images.
1784 *
1785 * Because AppImages may contain interned strings that must be deduplicated
1786 * with previously interned strings when loading the app image, we need to
1787 * visit references to these strings and update them to point to the correct
1788 * string. To speed up the visiting of references at load time we include
1789 * a list of offsets to string references in the AppImage.
1790 */
1791 void CollectStringReferenceInfo(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1792
1793 private:
1794 class CollectClassesVisitor;
1795 class CollectRootsVisitor;
1796 class CollectStringReferenceVisitor;
1797 class VisitReferencesVisitor;
1798
1799 using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1800
1801 void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1802 REQUIRES_SHARED(Locks::mutator_lock_);
1803 bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1804 REQUIRES_SHARED(Locks::mutator_lock_);
1805
1806 ImageWriter* const image_writer_;
1807
1808 // Work list of <object, oat_index> for objects. Everything in the queue must already be
1809 // assigned a bin slot.
1810 WorkQueue work_queue_;
1811
1812 // Objects for individual bins. Indexed by `oat_index` and `bin`.
1813 // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1814 dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1815 };
1816
1817 class ImageWriter::LayoutHelper::CollectClassesVisitor : public ClassVisitor {
1818 public:
CollectClassesVisitor(ImageWriter * image_writer)1819 explicit CollectClassesVisitor(ImageWriter* image_writer)
1820 : image_writer_(image_writer),
1821 dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1822
operator ()(ObjPtr<mirror::Class> klass)1823 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1824 if (!image_writer_->IsInBootImage(klass.Ptr())) {
1825 ObjPtr<mirror::Class> component_type = klass;
1826 size_t dimension = 0u;
1827 while (component_type->IsArrayClass()) {
1828 ++dimension;
1829 component_type = component_type->GetComponentType();
1830 }
1831 DCHECK(!component_type->IsProxyClass());
1832 size_t dex_file_index;
1833 uint32_t class_def_index = 0u;
1834 if (UNLIKELY(component_type->IsPrimitive())) {
1835 DCHECK(image_writer_->compiler_options_.IsBootImage());
1836 dex_file_index = 0u;
1837 class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1838 } else {
1839 auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1840 DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1841 dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
1842 class_def_index = component_type->GetDexClassDefIndex();
1843 }
1844 klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1845 }
1846 return true;
1847 }
1848
SortAndReleaseClasses()1849 WorkQueue SortAndReleaseClasses()
1850 REQUIRES_SHARED(Locks::mutator_lock_) {
1851 std::sort(klasses_.begin(), klasses_.end());
1852
1853 WorkQueue result;
1854 size_t last_dex_file_index = static_cast<size_t>(-1);
1855 size_t last_oat_index = static_cast<size_t>(-1);
1856 for (const ClassEntry& entry : klasses_) {
1857 if (last_dex_file_index != entry.dex_file_index) {
1858 if (UNLIKELY(entry.dex_file_index == 0u)) {
1859 last_oat_index = GetDefaultOatIndex(); // Primitive type.
1860 } else {
1861 uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
1862 last_oat_index = image_writer_->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1863 }
1864 last_dex_file_index = entry.dex_file_index;
1865 }
1866 result.emplace_back(entry.klass, last_oat_index);
1867 }
1868 klasses_.clear();
1869 return result;
1870 }
1871
1872 private:
1873 struct ClassEntry {
1874 ObjPtr<mirror::Class> klass;
1875 // We shall sort classes by dex file, class def index and array dimension.
1876 size_t dex_file_index;
1877 uint32_t class_def_index;
1878 size_t dimension;
1879
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1880 bool operator<(const ClassEntry& other) const {
1881 return std::tie(dex_file_index, class_def_index, dimension) <
1882 std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1883 }
1884 };
1885
1886 ImageWriter* const image_writer_;
1887 ArrayRef<const DexFile* const> dex_files_;
1888 std::deque<ClassEntry> klasses_;
1889 };
1890
1891 class ImageWriter::LayoutHelper::CollectRootsVisitor {
1892 public:
1893 CollectRootsVisitor() = default;
1894
ReleaseRoots()1895 std::vector<ObjPtr<mirror::Object>> ReleaseRoots() {
1896 std::vector<ObjPtr<mirror::Object>> roots;
1897 roots.swap(roots_);
1898 return roots;
1899 }
1900
VisitRootIfNonNull(StackReference<mirror::Object> * ref)1901 void VisitRootIfNonNull(StackReference<mirror::Object>* ref) {
1902 if (!ref->IsNull()) {
1903 roots_.push_back(ref->AsMirrorPtr());
1904 }
1905 }
1906
1907 private:
1908 std::vector<ObjPtr<mirror::Object>> roots_;
1909 };
1910
1911 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1912 public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,std::vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1913 explicit CollectStringReferenceVisitor(
1914 const ImageWriter* image_writer,
1915 size_t oat_index,
1916 std::vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1917 ObjPtr<mirror::Object> current_obj)
1918 : image_writer_(image_writer),
1919 oat_index_(oat_index),
1920 string_reference_offsets_(string_reference_offsets),
1921 current_obj_(current_obj) {}
1922
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1923 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1924 REQUIRES_SHARED(Locks::mutator_lock_) {
1925 if (!root->IsNull()) {
1926 VisitRoot(root);
1927 }
1928 }
1929
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1930 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1931 REQUIRES_SHARED(Locks::mutator_lock_) {
1932 // Only dex caches have native String roots. These are collected separately.
1933 DCHECK(current_obj_->IsDexCache() ||
1934 !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1935 << mirror::Object::PrettyTypeOf(current_obj_);
1936 }
1937
1938 // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static ATTRIBUTE_UNUSED) const1939 void operator() (ObjPtr<mirror::Object> obj,
1940 MemberOffset member_offset,
1941 bool is_static ATTRIBUTE_UNUSED) const
1942 REQUIRES_SHARED(Locks::mutator_lock_) {
1943 ObjPtr<mirror::Object> referred_obj =
1944 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1945
1946 if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1947 size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1948 string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1949 }
1950 }
1951
1952 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1953 void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1954 ObjPtr<mirror::Reference> ref) const
1955 REQUIRES_SHARED(Locks::mutator_lock_) {
1956 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1957 }
1958
1959 private:
1960 const ImageWriter* const image_writer_;
1961 const size_t oat_index_;
1962 std::vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1963 const ObjPtr<mirror::Object> current_obj_;
1964 };
1965
1966 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1967 public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1968 VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1969 : helper_(helper), oat_index_(oat_index) {}
1970
1971 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1972 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1973 REQUIRES_SHARED(Locks::mutator_lock_) {
1974 if (!root->IsNull()) {
1975 VisitRoot(root);
1976 }
1977 }
1978
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1979 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1980 REQUIRES_SHARED(Locks::mutator_lock_) {
1981 root->Assign(VisitReference(root->AsMirrorPtr()));
1982 }
1983
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1984 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
1985 MemberOffset offset,
1986 bool is_static ATTRIBUTE_UNUSED) const
1987 REQUIRES_SHARED(Locks::mutator_lock_) {
1988 mirror::Object* ref =
1989 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1990 obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
1991 }
1992
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1993 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1994 ObjPtr<mirror::Reference> ref) const
1995 REQUIRES_SHARED(Locks::mutator_lock_) {
1996 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1997 }
1998
1999 private:
VisitReference(mirror::Object * ref) const2000 mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
2001 if (helper_->TryAssignBinSlot(ref, oat_index_)) {
2002 // Remember how many objects we're adding at the front of the queue as we want
2003 // to reverse that range to process these references in the order of addition.
2004 helper_->work_queue_.emplace_front(ref, oat_index_);
2005 }
2006 if (ClassLinker::kAppImageMayContainStrings &&
2007 helper_->image_writer_->compiler_options_.IsAppImage() &&
2008 helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
2009 helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
2010 }
2011 return ref;
2012 }
2013
2014 LayoutHelper* const helper_;
2015 const size_t oat_index_;
2016 };
2017
ProcessDexFileObjects(Thread * self)2018 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
2019 Runtime* runtime = Runtime::Current();
2020 ClassLinker* class_linker = runtime->GetClassLinker();
2021
2022 // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
2023 // Note: If we decide to implement a profile-guided layout, this is the place to do so.
2024
2025 // Get initial work queue with the image classes and assign their bin slots.
2026 CollectClassesVisitor visitor(image_writer_);
2027 class_linker->VisitClasses(&visitor);
2028 DCHECK(work_queue_.empty());
2029 work_queue_ = visitor.SortAndReleaseClasses();
2030 for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
2031 DCHECK(entry.first->IsClass());
2032 bool assigned = TryAssignBinSlot(entry.first, entry.second);
2033 DCHECK(assigned);
2034 }
2035
2036 // Assign bin slots to strings and dex caches.
2037 for (const DexFile* dex_file : image_writer_->compiler_options_.GetDexFilesForOatFile()) {
2038 auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
2039 DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2040 const size_t oat_index = it->second;
2041 // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
2042 InternTable* const intern_table = runtime->GetInternTable();
2043 for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
2044 uint32_t utf16_length;
2045 const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
2046 &utf16_length);
2047 ObjPtr<mirror::String> string = intern_table->LookupStrong(self, utf16_length, utf8_data);
2048 if (string != nullptr && !image_writer_->IsInBootImage(string.Ptr())) {
2049 // Try to assign bin slot to this string but do not add it to the work list.
2050 // The only reference in a String is its class, processed above for the boot image.
2051 bool assigned = TryAssignBinSlot(string, oat_index);
2052 DCHECK(assigned ||
2053 // We could have seen the same string in an earlier dex file.
2054 dex_file != image_writer_->compiler_options_.GetDexFilesForOatFile().front());
2055 }
2056 }
2057 // Assign bin slot to this file's dex cache and add it to the end of the work queue.
2058 ObjPtr<mirror::DexCache> dex_cache = class_linker->FindDexCache(self, *dex_file);
2059 DCHECK(dex_cache != nullptr);
2060 bool assigned = TryAssignBinSlot(dex_cache, oat_index);
2061 DCHECK(assigned);
2062 work_queue_.emplace_back(dex_cache, oat_index);
2063 }
2064
2065 // Since classes and dex caches have been assigned to their bins, when we process a class
2066 // we do not follow through the class references or dex caches, so we correctly process
2067 // only objects actually belonging to that class before taking a new class from the queue.
2068 // If multiple class statics reference the same object (directly or indirectly), the object
2069 // is treated as belonging to the first encountered referencing class.
2070 ProcessWorkQueue();
2071 }
2072
ProcessRoots(VariableSizedHandleScope * handles)2073 void ImageWriter::LayoutHelper::ProcessRoots(VariableSizedHandleScope* handles) {
2074 // Assing bin slots to the image objects referenced by `handles`, add them to the work queue
2075 // and process the work queue. These objects are the image roots and boot image live objects
2076 // and they reference other objects needed for the image, for example the array of dex cache
2077 // references, or the pre-allocated exceptions for the boot image.
2078 DCHECK(work_queue_.empty());
2079 CollectRootsVisitor visitor;
2080 handles->VisitRoots(visitor);
2081 for (ObjPtr<mirror::Object> root : visitor.ReleaseRoots()) {
2082 if (TryAssignBinSlot(root, GetDefaultOatIndex())) {
2083 work_queue_.emplace_back(root, GetDefaultOatIndex());
2084 }
2085 }
2086 ProcessWorkQueue();
2087 }
2088
ProcessWorkQueue()2089 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
2090 while (!work_queue_.empty()) {
2091 std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
2092 work_queue_.pop_front();
2093 VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
2094 }
2095 }
2096
VerifyImageBinSlotsAssigned()2097 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2098 std::vector<mirror::Object*> carveout;
2099 if (image_writer_->compiler_options_.IsAppImage()) {
2100 // Exclude boot class path dex caches that are not part of the boot image.
2101 // Also exclude their locations if they have not been visited through another path.
2102 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2103 Thread* self = Thread::Current();
2104 ReaderMutexLock mu(self, *Locks::dex_lock_);
2105 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
2106 ObjPtr<mirror::DexCache> dex_cache =
2107 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
2108 if (dex_cache == nullptr ||
2109 image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2110 ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2111 dex_cache->GetDexFile())) {
2112 continue;
2113 }
2114 CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2115 carveout.push_back(dex_cache.Ptr());
2116 ObjPtr<mirror::String> location = dex_cache->GetLocation();
2117 if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2118 carveout.push_back(location.Ptr());
2119 }
2120 }
2121 }
2122
2123 std::vector<mirror::Object*> missed_objects;
2124 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2125 REQUIRES_SHARED(Locks::mutator_lock_) {
2126 if (!image_writer_->IsInBootImage(obj)) {
2127 if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2128 // Ignore the `carveout` objects.
2129 if (ContainsElement(carveout, obj)) {
2130 return;
2131 }
2132 // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2133 // the app class loader.
2134 if (obj->IsFinalizerReferenceInstance()) {
2135 ArtField* ref_field =
2136 obj->GetClass()->FindInstanceField("referent", "Ljava/lang/Object;");
2137 CHECK(ref_field != nullptr);
2138 ObjPtr<mirror::Object> ref = ref_field->GetObject(obj);
2139 CHECK(ref != nullptr);
2140 CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2141 ObjPtr<mirror::Class> klass = ref->GetClass();
2142 CHECK(klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile));
2143 // Note: The app class loader is used only for checking against the runtime
2144 // class loader, the dex file cookie is cleared and therefore we do not need
2145 // to run the finalizer even if we implement app image objects collection.
2146 ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
2147 CHECK(field->GetObject(ref) == nullptr);
2148 return;
2149 }
2150 if (obj->IsString()) {
2151 // Ignore interned strings. These may come from reflection interning method names.
2152 // TODO: Make dex file strings weak interns and GC them before writing the image.
2153 Runtime* runtime = Runtime::Current();
2154 ObjPtr<mirror::String> interned =
2155 runtime->GetInternTable()->LookupStrong(Thread::Current(), obj->AsString());
2156 if (interned == obj) {
2157 return;
2158 }
2159 }
2160 missed_objects.push_back(obj);
2161 }
2162 }
2163 };
2164 Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2165 if (!missed_objects.empty()) {
2166 const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2167 size_t num_missed_objects = missed_objects.size();
2168 size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
2169 ArrayRef<mirror::Object*> missed_objects_head =
2170 ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2171 for (mirror::Object* obj : missed_objects_head) {
2172 LOG(ERROR) << "Image object without assigned bin slot: "
2173 << mirror::Object::PrettyTypeOf(obj) << " " << obj
2174 << " " << v->FirstPathFromRootSet(obj);
2175 }
2176 LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2177 }
2178 }
2179
FinalizeBinSlotOffsets()2180 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2181 // Calculate bin slot offsets and adjust for region padding if needed.
2182 const size_t region_size = image_writer_->region_size_;
2183 const size_t num_image_infos = image_writer_->image_infos_.size();
2184 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2185 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2186 size_t bin_offset = image_writer_->image_objects_offset_begin_;
2187
2188 for (size_t i = 0; i != kNumberOfBins; ++i) {
2189 Bin bin = enum_cast<Bin>(i);
2190 switch (bin) {
2191 case Bin::kArtMethodClean:
2192 case Bin::kArtMethodDirty: {
2193 bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2194 break;
2195 }
2196 case Bin::kDexCacheArray:
2197 bin_offset =
2198 RoundUp(bin_offset, DexCacheArraysLayout::Alignment(image_writer_->target_ptr_size_));
2199 break;
2200 case Bin::kImTable:
2201 case Bin::kIMTConflictTable: {
2202 bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2203 break;
2204 }
2205 default: {
2206 // Normal alignment.
2207 }
2208 }
2209 image_info.bin_slot_offsets_[i] = bin_offset;
2210
2211 // If the bin is for mirror objects, we may need to add region padding and update offsets.
2212 if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2213 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2214 size_t remaining_space =
2215 RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2216 // Exercise the loop below in debug builds to get coverage.
2217 if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2218 // The bin crosses a region boundary. Add padding if needed.
2219 size_t object_offset = 0u;
2220 size_t padding = 0u;
2221 for (mirror::Object* object : bin_objects_[oat_index][i]) {
2222 BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2223 DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2224 DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2225 size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2226
2227 auto add_padding = [&](bool tail_region) {
2228 DCHECK_NE(remaining_space, 0u);
2229 DCHECK_LT(remaining_space, region_size);
2230 DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2231 // TODO When copying to heap regions, leave the tail region padding zero-filled.
2232 if (!tail_region || true) {
2233 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2234 }
2235 image_info.bin_slot_sizes_[i] += remaining_space;
2236 padding += remaining_space;
2237 object_offset += remaining_space;
2238 remaining_space = region_size;
2239 };
2240 if (object_size > remaining_space) {
2241 // Padding needed if we're not at region boundary (with a multi-region object).
2242 if (remaining_space != region_size) {
2243 // TODO: Instead of adding padding, we should consider reordering the bins
2244 // or objects to reduce wasted space.
2245 add_padding(/*tail_region=*/ false);
2246 }
2247 DCHECK_EQ(remaining_space, region_size);
2248 // For huge objects, adjust the remaining space to hold the object and some more.
2249 if (object_size > region_size) {
2250 remaining_space = RoundUp(object_size + 1u, region_size);
2251 }
2252 } else if (remaining_space == object_size) {
2253 // Move to the next region, no padding needed.
2254 remaining_space += region_size;
2255 }
2256 DCHECK_GT(remaining_space, object_size);
2257 remaining_space -= object_size;
2258 image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2259 object_offset += object_size;
2260 // Add padding to the tail region of huge objects if not region-aligned.
2261 if (object_size > region_size && remaining_space != region_size) {
2262 DCHECK(!IsAlignedParam(object_size, region_size));
2263 add_padding(/*tail_region=*/ true);
2264 }
2265 }
2266 image_writer_->region_alignment_wasted_ += padding;
2267 image_info.image_end_ += padding;
2268 }
2269 }
2270 bin_offset += image_info.bin_slot_sizes_[i];
2271 }
2272 // NOTE: There may be additional padding between the bin slots and the intern table.
2273 DCHECK_EQ(
2274 image_info.image_end_,
2275 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2276 }
2277
2278 VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2279 }
2280
CollectStringReferenceInfo(Thread * self)2281 void ImageWriter::LayoutHelper::CollectStringReferenceInfo(Thread* self) {
2282 size_t managed_string_refs = 0u;
2283 size_t total_string_refs = 0u;
2284
2285 const size_t num_image_infos = image_writer_->image_infos_.size();
2286 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2287 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2288 DCHECK(image_info.string_reference_offsets_.empty());
2289 image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2290
2291 for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2292 for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2293 CollectStringReferenceVisitor visitor(image_writer_,
2294 oat_index,
2295 &image_info.string_reference_offsets_,
2296 obj);
2297 /*
2298 * References to managed strings can occur either in the managed heap or in
2299 * native memory regions. Information about managed references is collected
2300 * by the CollectStringReferenceVisitor and directly added to the image info.
2301 *
2302 * Native references to managed strings can only occur through DexCache
2303 * objects. This is verified by the visitor in debug mode and the references
2304 * are collected separately below.
2305 */
2306 obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2307 kVerifyNone,
2308 kWithoutReadBarrier>(visitor, visitor);
2309 }
2310 }
2311
2312 managed_string_refs += image_info.string_reference_offsets_.size();
2313
2314 // Collect dex cache string arrays.
2315 for (const DexFile* dex_file : image_writer_->compiler_options_.GetDexFilesForOatFile()) {
2316 if (image_writer_->GetOatIndexForDexFile(dex_file) == oat_index) {
2317 ObjPtr<mirror::DexCache> dex_cache =
2318 Runtime::Current()->GetClassLinker()->FindDexCache(self, *dex_file);
2319 DCHECK(dex_cache != nullptr);
2320 size_t base_offset = image_writer_->GetImageOffset(dex_cache.Ptr(), oat_index);
2321
2322 // Visit all string cache entries.
2323 mirror::StringDexCacheType* strings = dex_cache->GetStrings();
2324 const size_t num_strings = dex_cache->NumStrings();
2325 for (uint32_t index = 0; index != num_strings; ++index) {
2326 ObjPtr<mirror::String> referred_string = strings[index].load().object.Read();
2327 if (image_writer_->IsInternedAppImageStringReference(referred_string)) {
2328 image_info.string_reference_offsets_.emplace_back(
2329 SetDexCacheStringNativeRefTag(base_offset), index);
2330 }
2331 }
2332
2333 // Visit all pre-resolved string entries.
2334 GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
2335 const size_t num_pre_resolved_strings = dex_cache->NumPreResolvedStrings();
2336 for (uint32_t index = 0; index != num_pre_resolved_strings; ++index) {
2337 ObjPtr<mirror::String> referred_string = preresolved_strings[index].Read();
2338 if (image_writer_->IsInternedAppImageStringReference(referred_string)) {
2339 image_info.string_reference_offsets_.emplace_back(
2340 SetDexCachePreResolvedStringNativeRefTag(base_offset), index);
2341 }
2342 }
2343 }
2344 }
2345
2346 total_string_refs += image_info.string_reference_offsets_.size();
2347
2348 // Check that we collected the same number of string references as we saw in the previous pass.
2349 CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2350 }
2351
2352 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs
2353 << " (managed: " << managed_string_refs
2354 << ", native: " << (total_string_refs - managed_string_refs) << ")";
2355 }
2356
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2357 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2358 size_t old_work_queue_size = work_queue_.size();
2359 VisitReferencesVisitor visitor(this, oat_index);
2360 // Walk references and assign bin slots for them.
2361 obj->VisitReferences</*kVisitNativeRoots=*/ true, kVerifyNone, kWithoutReadBarrier>(
2362 visitor,
2363 visitor);
2364 // Put the added references in the queue in the order in which they were added.
2365 // The visitor just pushes them to the front as it visits them.
2366 DCHECK_LE(old_work_queue_size, work_queue_.size());
2367 size_t num_added = work_queue_.size() - old_work_queue_size;
2368 std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2369 }
2370
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2371 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2372 if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2373 // Object is null or already in the image, there is no work to do.
2374 return false;
2375 }
2376 bool assigned = false;
2377 if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2378 image_writer_->RecordNativeRelocations(obj, oat_index);
2379 Bin bin = image_writer_->AssignImageBinSlot(obj.Ptr(), oat_index);
2380 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(obj.Ptr());
2381 assigned = true;
2382 }
2383 return assigned;
2384 }
2385
GetBootImageLiveObjects()2386 static ObjPtr<ObjectArray<Object>> GetBootImageLiveObjects() REQUIRES_SHARED(Locks::mutator_lock_) {
2387 gc::Heap* heap = Runtime::Current()->GetHeap();
2388 DCHECK(!heap->GetBootImageSpaces().empty());
2389 const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
2390 return ObjPtr<ObjectArray<Object>>::DownCast(
2391 primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects));
2392 }
2393
CalculateNewObjectOffsets()2394 void ImageWriter::CalculateNewObjectOffsets() {
2395 Thread* const self = Thread::Current();
2396 Runtime* const runtime = Runtime::Current();
2397 VariableSizedHandleScope handles(self);
2398 MutableHandle<ObjectArray<Object>> boot_image_live_objects = handles.NewHandle(
2399 compiler_options_.IsBootImage()
2400 ? AllocateBootImageLiveObjects(self, runtime)
2401 : (compiler_options_.IsBootImageExtension() ? GetBootImageLiveObjects() : nullptr));
2402 std::vector<Handle<ObjectArray<Object>>> image_roots;
2403 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
2404 image_roots.push_back(handles.NewHandle(CreateImageRoots(i, boot_image_live_objects)));
2405 }
2406
2407 gc::Heap* const heap = runtime->GetHeap();
2408
2409 // Leave space for the header, but do not write it yet, we need to
2410 // know where image_roots is going to end up
2411 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2412
2413 // Write the image runtime methods.
2414 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2415 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2416 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2417 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2418 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2419 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2420 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2421 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2422 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2423 image_methods_[ImageHeader::kSaveEverythingMethod] =
2424 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2425 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2426 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2427 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2428 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2429 // Visit image methods first to have the main runtime methods in the first image.
2430 for (auto* m : image_methods_) {
2431 CHECK(m != nullptr);
2432 CHECK(m->IsRuntimeMethod());
2433 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2434 << "Trampolines should be in boot image";
2435 if (!IsInBootImage(m)) {
2436 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2437 }
2438 }
2439
2440 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2441 // this lock while holding other locks may cause lock order violations.
2442 {
2443 auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2444 Monitor::Deflate(Thread::Current(), obj);
2445 };
2446 heap->VisitObjects(deflate_monitor);
2447 }
2448
2449 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2450 // We can now assign a BitSlot to each object and store it in its lockword.
2451
2452 LayoutHelper layout_helper(this);
2453 layout_helper.ProcessDexFileObjects(self);
2454 layout_helper.ProcessRoots(&handles);
2455
2456 // Verify that all objects have assigned image bin slots.
2457 layout_helper.VerifyImageBinSlotsAssigned();
2458
2459 // Calculate size of the dex cache arrays slot and prepare offsets.
2460 PrepareDexCacheArraySlots();
2461
2462 // Calculate the sizes of the intern tables, class tables, and fixup tables.
2463 for (ImageInfo& image_info : image_infos_) {
2464 // Calculate how big the intern table will be after being serialized.
2465 InternTable* const intern_table = image_info.intern_table_.get();
2466 CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
2467 if (intern_table->StrongSize() != 0u) {
2468 image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
2469 }
2470
2471 // Calculate the size of the class table.
2472 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2473 DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u);
2474 if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) {
2475 image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
2476 }
2477 }
2478
2479 // Finalize bin slot offsets. This may add padding for regions.
2480 layout_helper.FinalizeBinSlotOffsets();
2481
2482 // Collect string reference info for app images.
2483 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2484 layout_helper.CollectStringReferenceInfo(self);
2485 }
2486
2487 // Calculate image offsets.
2488 size_t image_offset = 0;
2489 for (ImageInfo& image_info : image_infos_) {
2490 image_info.image_begin_ = global_image_begin_ + image_offset;
2491 image_info.image_offset_ = image_offset;
2492 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
2493 // There should be no gaps until the next image.
2494 image_offset += image_info.image_size_;
2495 }
2496
2497 size_t i = 0;
2498 for (ImageInfo& image_info : image_infos_) {
2499 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
2500 i++;
2501 }
2502
2503 // Update the native relocations by adding their bin sums.
2504 for (auto& pair : native_object_relocations_) {
2505 NativeObjectRelocation& relocation = pair.second;
2506 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2507 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2508 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2509 }
2510
2511 // Remember the boot image live objects as raw pointer. No GC can happen anymore.
2512 boot_image_live_objects_ = boot_image_live_objects.Get();
2513 }
2514
CreateImageSections() const2515 std::pair<size_t, std::vector<ImageSection>> ImageWriter::ImageInfo::CreateImageSections() const {
2516 std::vector<ImageSection> sections(ImageHeader::kSectionCount);
2517
2518 // Do not round up any sections here that are represented by the bins since it
2519 // will break offsets.
2520
2521 /*
2522 * Objects section
2523 */
2524 sections[ImageHeader::kSectionObjects] =
2525 ImageSection(0u, image_end_);
2526
2527 /*
2528 * Field section
2529 */
2530 sections[ImageHeader::kSectionArtFields] =
2531 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2532
2533 /*
2534 * Method section
2535 */
2536 sections[ImageHeader::kSectionArtMethods] =
2537 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2538 GetBinSlotSize(Bin::kArtMethodClean) +
2539 GetBinSlotSize(Bin::kArtMethodDirty));
2540
2541 /*
2542 * IMT section
2543 */
2544 sections[ImageHeader::kSectionImTables] =
2545 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2546
2547 /*
2548 * Conflict Tables section
2549 */
2550 sections[ImageHeader::kSectionIMTConflictTables] =
2551 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2552
2553 /*
2554 * Runtime Methods section
2555 */
2556 sections[ImageHeader::kSectionRuntimeMethods] =
2557 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2558
2559 /*
2560 * DexCache Arrays section.
2561 */
2562 const ImageSection& dex_cache_arrays_section =
2563 sections[ImageHeader::kSectionDexCacheArrays] =
2564 ImageSection(GetBinSlotOffset(Bin::kDexCacheArray),
2565 GetBinSlotSize(Bin::kDexCacheArray));
2566
2567 /*
2568 * Interned Strings section
2569 */
2570
2571 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2572 size_t cur_pos = RoundUp(dex_cache_arrays_section.End(), sizeof(uint64_t));
2573
2574 const ImageSection& interned_strings_section =
2575 sections[ImageHeader::kSectionInternedStrings] =
2576 ImageSection(cur_pos, intern_table_bytes_);
2577
2578 /*
2579 * Class Table section
2580 */
2581
2582 // Obtain the new position and round it up to the appropriate alignment.
2583 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2584
2585 const ImageSection& class_table_section =
2586 sections[ImageHeader::kSectionClassTable] =
2587 ImageSection(cur_pos, class_table_bytes_);
2588
2589 /*
2590 * String Field Offsets section
2591 */
2592
2593 // Round up to the alignment of the offsets we are going to store.
2594 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2595
2596 // The size of string_reference_offsets_ can't be used here because it hasn't
2597 // been filled with AppImageReferenceOffsetInfo objects yet. The
2598 // num_string_references_ value is calculated separately, before we can
2599 // compute the actual offsets.
2600 const ImageSection& string_reference_offsets =
2601 sections[ImageHeader::kSectionStringReferenceOffsets] =
2602 ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2603
2604 /*
2605 * Metadata section.
2606 */
2607
2608 // Round up to the alignment of the offsets we are going to store.
2609 cur_pos = RoundUp(string_reference_offsets.End(),
2610 mirror::DexCache::PreResolvedStringsAlignment());
2611
2612 const ImageSection& metadata_section =
2613 sections[ImageHeader::kSectionMetadata] =
2614 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2615
2616 // Return the number of bytes described by these sections, and the sections
2617 // themselves.
2618 return make_pair(metadata_section.End(), std::move(sections));
2619 }
2620
CreateHeader(size_t oat_index,size_t component_count)2621 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2622 ImageInfo& image_info = GetImageInfo(oat_index);
2623 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2624 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2625 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2626
2627 uint32_t image_reservation_size = image_info.image_size_;
2628 DCHECK_ALIGNED(image_reservation_size, kPageSize);
2629 uint32_t current_component_count = 1u;
2630 if (compiler_options_.IsAppImage()) {
2631 DCHECK_EQ(oat_index, 0u);
2632 DCHECK_EQ(component_count, current_component_count);
2633 } else {
2634 DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2635 << image_infos_.size() << " " << component_count;
2636 if (oat_index == 0u) {
2637 const ImageInfo& last_info = image_infos_.back();
2638 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2639 DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
2640 image_reservation_size =
2641 dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
2642 current_component_count = component_count;
2643 } else {
2644 image_reservation_size = 0u;
2645 current_component_count = 0u;
2646 }
2647 }
2648
2649 // Compute boot image checksums for the primary component, leave as 0 otherwise.
2650 uint32_t boot_image_components = 0u;
2651 uint32_t boot_image_checksums = 0u;
2652 if (oat_index == 0u) {
2653 const std::vector<gc::space::ImageSpace*>& image_spaces =
2654 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2655 DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2656 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2657 const ImageHeader& header = image_spaces[i]->GetImageHeader();
2658 boot_image_components += header.GetComponentCount();
2659 boot_image_checksums ^= header.GetImageChecksum();
2660 DCHECK_LE(header.GetImageSpaceCount(), size - i);
2661 i += header.GetImageSpaceCount();
2662 }
2663 }
2664
2665 // Create the image sections.
2666 auto section_info_pair = image_info.CreateImageSections();
2667 const size_t image_end = section_info_pair.first;
2668 std::vector<ImageSection>& sections = section_info_pair.second;
2669
2670 // Finally bitmap section.
2671 const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2672 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2673 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
2674 if (VLOG_IS_ON(compiler)) {
2675 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2676 size_t idx = 0;
2677 for (const ImageSection& section : sections) {
2678 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2679 ++idx;
2680 }
2681 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2682 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2683 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2684 << " Image offset=" << image_info.image_offset_ << std::dec;
2685 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2686 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2687 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2688 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2689 }
2690
2691 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2692 // image.
2693 new (image_info.image_.Begin()) ImageHeader(
2694 image_reservation_size,
2695 current_component_count,
2696 PointerToLowMemUInt32(image_info.image_begin_),
2697 image_end,
2698 sections.data(),
2699 image_info.image_roots_address_,
2700 image_info.oat_checksum_,
2701 PointerToLowMemUInt32(oat_file_begin),
2702 PointerToLowMemUInt32(image_info.oat_data_begin_),
2703 PointerToLowMemUInt32(oat_data_end),
2704 PointerToLowMemUInt32(oat_file_end),
2705 boot_image_begin_,
2706 boot_image_size_,
2707 boot_image_components,
2708 boot_image_checksums,
2709 static_cast<uint32_t>(target_ptr_size_));
2710 }
2711
GetImageMethodAddress(ArtMethod * method)2712 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2713 NativeObjectRelocation relocation = GetNativeRelocation(method);
2714 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2715 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2716 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2717 }
2718
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2719 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2720 DCHECK(compiler_options_.IsBootImage());
2721 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2722 case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
2723 const uint8_t* base_address =
2724 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2725 MemberOffset data_offset =
2726 IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
2727 return base_address + data_offset.Uint32Value();
2728 }
2729 case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
2730 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2731 ObjPtr<mirror::Object> value =
2732 IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
2733 return GetImageAddress(value.Ptr());
2734 }
2735 }
2736 LOG(FATAL) << "UNREACHABLE";
2737 UNREACHABLE();
2738 }
2739
2740
2741 class ImageWriter::FixupRootVisitor : public RootVisitor {
2742 public:
FixupRootVisitor(ImageWriter * image_writer)2743 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2744 }
2745
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)2746 void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
2747 size_t count ATTRIBUTE_UNUSED,
2748 const RootInfo& info ATTRIBUTE_UNUSED)
2749 override REQUIRES_SHARED(Locks::mutator_lock_) {
2750 LOG(FATAL) << "Unsupported";
2751 }
2752
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2753 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2754 size_t count,
2755 const RootInfo& info ATTRIBUTE_UNUSED)
2756 override REQUIRES_SHARED(Locks::mutator_lock_) {
2757 for (size_t i = 0; i < count; ++i) {
2758 // Copy the reference. Since we do not have the address for recording the relocation,
2759 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2760 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2761 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2762 }
2763 }
2764
2765 private:
2766 ImageWriter* const image_writer_;
2767 };
2768
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2769 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2770 for (size_t i = 0; i < ImTable::kSize; ++i) {
2771 ArtMethod* method = orig->Get(i, target_ptr_size_);
2772 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2773 CopyAndFixupPointer(address, method);
2774 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2775 }
2776 }
2777
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2778 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2779 const size_t count = orig->NumEntries(target_ptr_size_);
2780 for (size_t i = 0; i < count; ++i) {
2781 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2782 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2783 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2784 CopyAndFixupPointer(
2785 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2786 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2787 NativeLocationInImage(interface_method));
2788 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2789 NativeLocationInImage(implementation_method));
2790 }
2791 }
2792
CopyAndFixupNativeData(size_t oat_index)2793 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2794 const ImageInfo& image_info = GetImageInfo(oat_index);
2795 // Copy ArtFields and methods to their locations and update the array for convenience.
2796 for (auto& pair : native_object_relocations_) {
2797 NativeObjectRelocation& relocation = pair.second;
2798 // Only work with fields and methods that are in the current oat file.
2799 if (relocation.oat_index != oat_index) {
2800 continue;
2801 }
2802 auto* dest = image_info.image_.Begin() + relocation.offset;
2803 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2804 DCHECK(!IsInBootImage(pair.first));
2805 switch (relocation.type) {
2806 case NativeObjectRelocationType::kArtField: {
2807 memcpy(dest, pair.first, sizeof(ArtField));
2808 CopyAndFixupReference(
2809 reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(),
2810 reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass());
2811 break;
2812 }
2813 case NativeObjectRelocationType::kRuntimeMethod:
2814 case NativeObjectRelocationType::kArtMethodClean:
2815 case NativeObjectRelocationType::kArtMethodDirty: {
2816 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2817 reinterpret_cast<ArtMethod*>(dest),
2818 oat_index);
2819 break;
2820 }
2821 // For arrays, copy just the header since the elements will get copied by their corresponding
2822 // relocations.
2823 case NativeObjectRelocationType::kArtFieldArray: {
2824 memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
2825 break;
2826 }
2827 case NativeObjectRelocationType::kArtMethodArrayClean:
2828 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2829 size_t size = ArtMethod::Size(target_ptr_size_);
2830 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2831 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2832 // Clear padding to avoid non-deterministic data in the image.
2833 // Historical note: We also did that to placate Valgrind.
2834 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2835 break;
2836 }
2837 case NativeObjectRelocationType::kDexCacheArray:
2838 // Nothing to copy here, everything is done in FixupDexCache().
2839 break;
2840 case NativeObjectRelocationType::kIMTable: {
2841 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2842 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2843 CopyAndFixupImTable(orig_imt, dest_imt);
2844 break;
2845 }
2846 case NativeObjectRelocationType::kIMTConflictTable: {
2847 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2848 CopyAndFixupImtConflictTable(
2849 orig_table,
2850 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2851 break;
2852 }
2853 case NativeObjectRelocationType::kGcRootPointer: {
2854 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
2855 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
2856 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
2857 break;
2858 }
2859 }
2860 }
2861 // Fixup the image method roots.
2862 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
2863 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2864 ArtMethod* method = image_methods_[i];
2865 CHECK(method != nullptr);
2866 CopyAndFixupPointer(
2867 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
2868 }
2869 FixupRootVisitor root_visitor(this);
2870
2871 // Write the intern table into the image.
2872 if (image_info.intern_table_bytes_ > 0) {
2873 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
2874 InternTable* const intern_table = image_info.intern_table_.get();
2875 uint8_t* const intern_table_memory_ptr =
2876 image_info.image_.Begin() + intern_table_section.Offset();
2877 const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
2878 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2879 // Fixup the pointers in the newly written intern table to contain image addresses.
2880 InternTable temp_intern_table;
2881 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
2882 // that the VisitRoots() will update the memory directly rather than the copies.
2883 // This also relies on visit roots not doing any verification which could fail after we update
2884 // the roots to be the image addresses.
2885 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
2886 VoidFunctor(),
2887 /*is_boot_image=*/ false);
2888 CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
2889 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2890 // Record relocations. (The root visitor does not get to see the slot addresses.)
2891 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
2892 DCHECK(!temp_intern_table.strong_interns_.tables_.empty());
2893 DCHECK(!temp_intern_table.strong_interns_.tables_[0].Empty()); // Inserted at the beginning.
2894 }
2895 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2896 // class loaders. Writing multiple class tables into the image is currently unsupported.
2897 if (image_info.class_table_bytes_ > 0u) {
2898 const ImageSection& class_table_section = image_header->GetClassTableSection();
2899 uint8_t* const class_table_memory_ptr =
2900 image_info.image_.Begin() + class_table_section.Offset();
2901 Thread* self = Thread::Current();
2902 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2903
2904 ClassTable* table = image_info.class_table_.get();
2905 CHECK(table != nullptr);
2906 const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
2907 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2908 // Fixup the pointers in the newly written class table to contain image addresses. See
2909 // above comment for intern tables.
2910 ClassTable temp_class_table;
2911 temp_class_table.ReadFromMemory(class_table_memory_ptr);
2912 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(),
2913 table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses());
2914 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2915 temp_class_table.VisitRoots(visitor);
2916 // Record relocations. (The root visitor does not get to see the slot addresses.)
2917 // Note that the low bits in the slots contain bits of the descriptors' hash codes
2918 // but the relocation works fine for these "adjusted" references.
2919 ReaderMutexLock lock(self, temp_class_table.lock_);
2920 DCHECK(!temp_class_table.classes_.empty());
2921 DCHECK(!temp_class_table.classes_[0].empty()); // The ClassSet was inserted at the beginning.
2922 }
2923 }
2924
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,Bin array_type)2925 void ImageWriter::FixupPointerArray(mirror::Object* dst,
2926 mirror::PointerArray* arr,
2927 Bin array_type) {
2928 CHECK(arr->IsIntArray() || arr->IsLongArray()) << arr->GetClass()->PrettyClass() << " " << arr;
2929 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2930 const size_t num_elements = arr->GetLength();
2931 CopyAndFixupReference(
2932 dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), arr->GetClass());
2933 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2934 for (size_t i = 0, count = num_elements; i < count; ++i) {
2935 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2936 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2937 auto it = native_object_relocations_.find(elem);
2938 if (UNLIKELY(it == native_object_relocations_.end())) {
2939 if (it->second.IsArtMethodRelocation()) {
2940 auto* method = reinterpret_cast<ArtMethod*>(elem);
2941 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2942 << method << " idx=" << i << "/" << num_elements << " with declaring class "
2943 << Class::PrettyClass(method->GetDeclaringClass());
2944 } else {
2945 CHECK_EQ(array_type, Bin::kArtField);
2946 auto* field = reinterpret_cast<ArtField*>(elem);
2947 LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ "
2948 << field << " idx=" << i << "/" << num_elements << " with declaring class "
2949 << Class::PrettyClass(field->GetDeclaringClass());
2950 }
2951 UNREACHABLE();
2952 }
2953 }
2954 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2955 }
2956 }
2957
CopyAndFixupObject(Object * obj)2958 void ImageWriter::CopyAndFixupObject(Object* obj) {
2959 if (!IsImageBinSlotAssigned(obj)) {
2960 return;
2961 }
2962 size_t oat_index = GetOatIndex(obj);
2963 size_t offset = GetImageOffset(obj, oat_index);
2964 ImageInfo& image_info = GetImageInfo(oat_index);
2965 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
2966 DCHECK_LT(offset, image_info.image_end_);
2967 const auto* src = reinterpret_cast<const uint8_t*>(obj);
2968
2969 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
2970
2971 const size_t n = obj->SizeOf();
2972
2973 if (kIsDebugBuild && region_size_ != 0u) {
2974 const size_t offset_after_header = offset - sizeof(ImageHeader);
2975 const size_t next_region = RoundUp(offset_after_header, region_size_);
2976 if (offset_after_header != next_region) {
2977 // If the object is not on a region bondary, it must not be cross region.
2978 CHECK_LT(offset_after_header, next_region)
2979 << "offset_after_header=" << offset_after_header << " size=" << n;
2980 CHECK_LE(offset_after_header + n, next_region)
2981 << "offset_after_header=" << offset_after_header << " size=" << n;
2982 }
2983 }
2984 DCHECK_LE(offset + n, image_info.image_.Size());
2985 memcpy(dst, src, n);
2986
2987 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
2988 // word.
2989 const auto it = saved_hashcode_map_.find(obj);
2990 dst->SetLockWord(it != saved_hashcode_map_.end() ?
2991 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
2992 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2993 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
2994 // safe since we mark all of the objects that may reference non immune objects as gray.
2995 CHECK(dst->AtomicSetMarkBit(0, 1));
2996 }
2997 FixupObject(obj, dst);
2998 }
2999
3000 // Rewrite all the references in the copied object to point to their image address equivalent
3001 class ImageWriter::FixupVisitor {
3002 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3003 FixupVisitor(ImageWriter* image_writer, Object* copy)
3004 : image_writer_(image_writer), copy_(copy) {
3005 }
3006
3007 // Ignore class roots since we don't have a way to map them to the destination. These are handled
3008 // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3009 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3010 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3011 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3012
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3013 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3014 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3015 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
3016 // Copy the reference and record the fixup if necessary.
3017 image_writer_->CopyAndFixupReference(
3018 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3019 }
3020
3021 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const3022 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3023 ObjPtr<mirror::Reference> ref) const
3024 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3025 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3026 }
3027
3028 protected:
3029 ImageWriter* const image_writer_;
3030 mirror::Object* const copy_;
3031 };
3032
CopyAndFixupObjects()3033 void ImageWriter::CopyAndFixupObjects() {
3034 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3035 DCHECK(obj != nullptr);
3036 CopyAndFixupObject(obj);
3037 };
3038 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3039 // Fill the padding objects since they are required for in order traversal of the image space.
3040 for (ImageInfo& image_info : image_infos_) {
3041 for (const size_t start_offset : image_info.padding_offsets_) {
3042 const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3043 size_t remaining_space =
3044 RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3045 DCHECK_NE(remaining_space, 0u);
3046 DCHECK_LT(remaining_space, region_size_);
3047 Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3048 ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3049 DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3050 Object* end = dst + remaining_space / object_class->GetObjectSize();
3051 Class* image_object_class = GetImageAddress(object_class.Ptr());
3052 while (dst != end) {
3053 dst->SetClass<kVerifyNone>(image_object_class);
3054 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3055 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3056 ++dst;
3057 }
3058 }
3059 }
3060 // We no longer need the hashcode map, values have already been copied to target objects.
3061 saved_hashcode_map_.clear();
3062 }
3063
3064 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3065 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3066 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3067 : FixupVisitor(image_writer, copy) {}
3068
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3069 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3070 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3071 DCHECK(obj->IsClass());
3072 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3073 }
3074
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const3075 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3076 ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
3077 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3078 LOG(FATAL) << "Reference not expected here.";
3079 }
3080 };
3081
GetNativeRelocation(void * obj)3082 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3083 DCHECK(obj != nullptr);
3084 DCHECK(!IsInBootImage(obj));
3085 auto it = native_object_relocations_.find(obj);
3086 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3087 << Runtime::Current()->GetHeap()->DumpSpaces();
3088 return it->second;
3089 }
3090
3091 template <typename T>
PrettyPrint(T * ptr)3092 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3093 std::ostringstream oss;
3094 oss << ptr;
3095 return oss.str();
3096 }
3097
3098 template <>
PrettyPrint(ArtMethod * method)3099 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3100 return ArtMethod::PrettyMethod(method);
3101 }
3102
3103 template <typename T>
NativeLocationInImage(T * obj)3104 T* ImageWriter::NativeLocationInImage(T* obj) {
3105 if (obj == nullptr || IsInBootImage(obj)) {
3106 return obj;
3107 } else {
3108 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3109 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3110 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3111 }
3112 }
3113
3114 template <typename T>
NativeCopyLocation(T * obj)3115 T* ImageWriter::NativeCopyLocation(T* obj) {
3116 const NativeObjectRelocation relocation = GetNativeRelocation(obj);
3117 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3118 return reinterpret_cast<T*>(image_info.image_.Begin() + relocation.offset);
3119 }
3120
3121 class ImageWriter::NativeLocationVisitor {
3122 public:
NativeLocationVisitor(ImageWriter * image_writer)3123 explicit NativeLocationVisitor(ImageWriter* image_writer)
3124 : image_writer_(image_writer) {}
3125
3126 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3127 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3128 if (ptr != nullptr) {
3129 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3130 }
3131 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3132 // with the value we return here. We should try to avoid the duplicate work.
3133 return image_writer_->NativeLocationInImage(ptr);
3134 }
3135
3136 private:
3137 ImageWriter* const image_writer_;
3138 };
3139
FixupClass(mirror::Class * orig,mirror::Class * copy)3140 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3141 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3142 FixupClassVisitor visitor(this, copy);
3143 ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
3144
3145 if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3146 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3147 // values to the parent of that class.
3148 //
3149 // Every time this happens, the parent class has to mutate to increment
3150 // the "Next" value.
3151 //
3152 // If any of these parents are in the boot image, the changes [in the parents]
3153 // would be lost when the app image is reloaded.
3154 //
3155 // To prevent newly loaded classes (not in the app image) from being reassigned
3156 // the same bitstring value as an existing app image class, uninitialize
3157 // all the classes in the app image.
3158 //
3159 // On startup, the class linker will then re-initialize all the app
3160 // image bitstrings. See also ClassLinker::AddImageSpace.
3161 //
3162 // FIXME: Deal with boot image extensions.
3163 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3164 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3165 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3166 }
3167
3168 // Remove the clinitThreadId. This is required for image determinism.
3169 copy->SetClinitThreadId(static_cast<pid_t>(0));
3170 // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3171 // resolved and the class will therefore be re-verified at runtime.
3172 if (orig->ShouldVerifyAtRuntime()) {
3173 copy->SetStatusInternal(ClassStatus::kResolved);
3174 }
3175 }
3176
FixupObject(Object * orig,Object * copy)3177 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3178 DCHECK(orig != nullptr);
3179 DCHECK(copy != nullptr);
3180 if (kUseBakerReadBarrier) {
3181 orig->AssertReadBarrierState();
3182 }
3183 if (orig->IsIntArray() || orig->IsLongArray()) {
3184 // Is this a native pointer array?
3185 auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
3186 if (it != pointer_arrays_.end()) {
3187 // Should only need to fixup every pointer array exactly once.
3188 FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), it->second);
3189 pointer_arrays_.erase(it);
3190 return;
3191 }
3192 }
3193 if (orig->IsClass()) {
3194 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3195 } else {
3196 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3197 Runtime::Current()->GetClassLinker()->GetClassRoots();
3198 ObjPtr<mirror::Class> klass = orig->GetClass();
3199 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
3200 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
3201 // Need to go update the ArtMethod.
3202 auto* dest = down_cast<mirror::Executable*>(copy);
3203 auto* src = down_cast<mirror::Executable*>(orig);
3204 ArtMethod* src_method = src->GetArtMethod();
3205 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3206 } else if (klass == GetClassRoot<mirror::DexCache>(class_roots)) {
3207 FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
3208 } else if (klass->IsClassLoaderClass()) {
3209 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3210 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3211 // ClassLoader.
3212 copy_loader->SetClassTable(nullptr);
3213 // Also set allocator to null to be safe. The allocator is created when we create the class
3214 // table. We also never expect to unload things in the image since they are held live as
3215 // roots.
3216 copy_loader->SetAllocator(nullptr);
3217 }
3218 FixupVisitor visitor(this, copy);
3219 orig->VisitReferences(visitor, visitor);
3220 }
3221 }
3222
3223 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>> * orig_array,std::atomic<mirror::DexCachePair<T>> * new_array,uint32_t array_index)3224 void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* orig_array,
3225 std::atomic<mirror::DexCachePair<T>>* new_array,
3226 uint32_t array_index) {
3227 static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
3228 "Size check for removing std::atomic<>.");
3229 mirror::DexCachePair<T>* orig_pair =
3230 reinterpret_cast<mirror::DexCachePair<T>*>(&orig_array[array_index]);
3231 mirror::DexCachePair<T>* new_pair =
3232 reinterpret_cast<mirror::DexCachePair<T>*>(&new_array[array_index]);
3233 CopyAndFixupReference(
3234 new_pair->object.AddressWithoutBarrier(), orig_pair->object.Read());
3235 new_pair->index = orig_pair->index;
3236 }
3237
3238 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>> * orig_array,std::atomic<mirror::NativeDexCachePair<T>> * new_array,uint32_t array_index)3239 void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* orig_array,
3240 std::atomic<mirror::NativeDexCachePair<T>>* new_array,
3241 uint32_t array_index) {
3242 static_assert(
3243 sizeof(std::atomic<mirror::NativeDexCachePair<T>>) == sizeof(mirror::NativeDexCachePair<T>),
3244 "Size check for removing std::atomic<>.");
3245 if (target_ptr_size_ == PointerSize::k64) {
3246 DexCache::ConversionPair64* orig_pair =
3247 reinterpret_cast<DexCache::ConversionPair64*>(orig_array) + array_index;
3248 DexCache::ConversionPair64* new_pair =
3249 reinterpret_cast<DexCache::ConversionPair64*>(new_array) + array_index;
3250 *new_pair = *orig_pair; // Copy original value and index.
3251 if (orig_pair->first != 0u) {
3252 CopyAndFixupPointer(
3253 reinterpret_cast<void**>(&new_pair->first), reinterpret_cast64<void*>(orig_pair->first));
3254 }
3255 } else {
3256 DexCache::ConversionPair32* orig_pair =
3257 reinterpret_cast<DexCache::ConversionPair32*>(orig_array) + array_index;
3258 DexCache::ConversionPair32* new_pair =
3259 reinterpret_cast<DexCache::ConversionPair32*>(new_array) + array_index;
3260 *new_pair = *orig_pair; // Copy original value and index.
3261 if (orig_pair->first != 0u) {
3262 CopyAndFixupPointer(
3263 reinterpret_cast<void**>(&new_pair->first), reinterpret_cast32<void*>(orig_pair->first));
3264 }
3265 }
3266 }
3267
FixupDexCacheArrayEntry(GcRoot<mirror::CallSite> * orig_array,GcRoot<mirror::CallSite> * new_array,uint32_t array_index)3268 void ImageWriter::FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* orig_array,
3269 GcRoot<mirror::CallSite>* new_array,
3270 uint32_t array_index) {
3271 CopyAndFixupReference(
3272 new_array[array_index].AddressWithoutBarrier(), orig_array[array_index].Read());
3273 }
3274
3275 template <typename EntryType>
FixupDexCacheArray(DexCache * orig_dex_cache,DexCache * copy_dex_cache,MemberOffset array_offset,uint32_t size)3276 void ImageWriter::FixupDexCacheArray(DexCache* orig_dex_cache,
3277 DexCache* copy_dex_cache,
3278 MemberOffset array_offset,
3279 uint32_t size) {
3280 EntryType* orig_array = orig_dex_cache->GetFieldPtr64<EntryType*>(array_offset);
3281 DCHECK_EQ(orig_array != nullptr, size != 0u);
3282 if (orig_array != nullptr) {
3283 // Though the DexCache array fields are usually treated as native pointers, we clear
3284 // the top 32 bits for 32-bit targets.
3285 CopyAndFixupPointer(copy_dex_cache, array_offset, orig_array, PointerSize::k64);
3286 EntryType* new_array = NativeCopyLocation(orig_array);
3287 for (uint32_t i = 0; i != size; ++i) {
3288 FixupDexCacheArrayEntry(orig_array, new_array, i);
3289 }
3290 }
3291 }
3292
FixupDexCache(DexCache * orig_dex_cache,DexCache * copy_dex_cache)3293 void ImageWriter::FixupDexCache(DexCache* orig_dex_cache, DexCache* copy_dex_cache) {
3294 FixupDexCacheArray<mirror::StringDexCacheType>(orig_dex_cache,
3295 copy_dex_cache,
3296 DexCache::StringsOffset(),
3297 orig_dex_cache->NumStrings());
3298 FixupDexCacheArray<mirror::TypeDexCacheType>(orig_dex_cache,
3299 copy_dex_cache,
3300 DexCache::ResolvedTypesOffset(),
3301 orig_dex_cache->NumResolvedTypes());
3302 FixupDexCacheArray<mirror::MethodDexCacheType>(orig_dex_cache,
3303 copy_dex_cache,
3304 DexCache::ResolvedMethodsOffset(),
3305 orig_dex_cache->NumResolvedMethods());
3306 FixupDexCacheArray<mirror::FieldDexCacheType>(orig_dex_cache,
3307 copy_dex_cache,
3308 DexCache::ResolvedFieldsOffset(),
3309 orig_dex_cache->NumResolvedFields());
3310 FixupDexCacheArray<mirror::MethodTypeDexCacheType>(orig_dex_cache,
3311 copy_dex_cache,
3312 DexCache::ResolvedMethodTypesOffset(),
3313 orig_dex_cache->NumResolvedMethodTypes());
3314 FixupDexCacheArray<GcRoot<mirror::CallSite>>(orig_dex_cache,
3315 copy_dex_cache,
3316 DexCache::ResolvedCallSitesOffset(),
3317 orig_dex_cache->NumResolvedCallSites());
3318 if (orig_dex_cache->GetPreResolvedStrings() != nullptr) {
3319 CopyAndFixupPointer(copy_dex_cache,
3320 DexCache::PreResolvedStringsOffset(),
3321 orig_dex_cache->GetPreResolvedStrings(),
3322 PointerSize::k64);
3323 }
3324
3325 // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
3326 // compiler pointers in here will make the output non-deterministic.
3327 copy_dex_cache->SetDexFile(nullptr);
3328 }
3329
GetOatAddress(StubType type) const3330 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3331 DCHECK_LE(type, StubType::kLast);
3332 // If we are compiling a boot image extension or app image,
3333 // we need to use the stubs of the primary boot image.
3334 if (!compiler_options_.IsBootImage()) {
3335 // Use the current image pointers.
3336 const std::vector<gc::space::ImageSpace*>& image_spaces =
3337 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3338 DCHECK(!image_spaces.empty());
3339 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3340 CHECK(oat_file != nullptr);
3341 const OatHeader& header = oat_file->GetOatHeader();
3342 switch (type) {
3343 // TODO: We could maybe clean this up if we stored them in an array in the oat header.
3344 case StubType::kQuickGenericJNITrampoline:
3345 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
3346 case StubType::kJNIDlsymLookupTrampoline:
3347 return static_cast<const uint8_t*>(header.GetJniDlsymLookupTrampoline());
3348 case StubType::kJNIDlsymLookupCriticalTrampoline:
3349 return static_cast<const uint8_t*>(header.GetJniDlsymLookupCriticalTrampoline());
3350 case StubType::kQuickIMTConflictTrampoline:
3351 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
3352 case StubType::kQuickResolutionTrampoline:
3353 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
3354 case StubType::kQuickToInterpreterBridge:
3355 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
3356 default:
3357 UNREACHABLE();
3358 }
3359 }
3360 const ImageInfo& primary_image_info = GetImageInfo(0);
3361 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3362 }
3363
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3364 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3365 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3366 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3367 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3368 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3369 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3370
3371 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3372 // trampoline.
3373
3374 // Quick entrypoint:
3375 const void* quick_oat_entry_point =
3376 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3377 const uint8_t* quick_code;
3378
3379 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass().Ptr()))) {
3380 DCHECK(method->IsCopied());
3381 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3382 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3383 } else {
3384 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3385 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3386 }
3387
3388 if (quick_code == nullptr) {
3389 // If we don't have code, use generic jni / interpreter bridge.
3390 // Both perform class initialization check if needed.
3391 quick_code = method->IsNative()
3392 ? GetOatAddress(StubType::kQuickGenericJNITrampoline)
3393 : GetOatAddress(StubType::kQuickToInterpreterBridge);
3394 } else if (NeedsClinitCheckBeforeCall(method) &&
3395 !method->GetDeclaringClass()->IsVisiblyInitialized()) {
3396 // If we do have code but the method needs a class initialization check before calling
3397 // that code, install the resolution stub that will perform the check.
3398 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3399 }
3400 return quick_code;
3401 }
3402
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3403 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3404 ArtMethod* copy,
3405 size_t oat_index) {
3406 if (orig->IsAbstract()) {
3407 // Ignore the single-implementation info for abstract method.
3408 // Do this on orig instead of copy, otherwise there is a crash due to methods
3409 // are copied before classes.
3410 // TODO: handle fixup of single-implementation method for abstract method.
3411 orig->SetHasSingleImplementation(false);
3412 orig->SetSingleImplementation(
3413 nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3414 }
3415
3416 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3417
3418 CopyAndFixupReference(
3419 copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
3420
3421 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3422 // oat_begin_
3423
3424 // The resolution method has a special trampoline to call.
3425 Runtime* runtime = Runtime::Current();
3426 const void* quick_code;
3427 if (orig->IsRuntimeMethod()) {
3428 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3429 if (orig_table != nullptr) {
3430 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3431 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3432 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3433 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3434 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3435 } else {
3436 bool found_one = false;
3437 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3438 auto idx = static_cast<CalleeSaveType>(i);
3439 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3440 found_one = true;
3441 break;
3442 }
3443 }
3444 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3445 CHECK(copy->IsRuntimeMethod());
3446 CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
3447 quick_code = nullptr;
3448 }
3449 } else {
3450 // We assume all methods have code. If they don't currently then we set them to the use the
3451 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3452 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3453 if (UNLIKELY(!orig->IsInvokable())) {
3454 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3455 } else {
3456 const ImageInfo& image_info = image_infos_[oat_index];
3457 quick_code = GetQuickCode(orig, image_info);
3458
3459 // JNI entrypoint:
3460 if (orig->IsNative()) {
3461 // The native method's pointer is set to a stub to lookup via dlsym.
3462 // Note this is not the code_ pointer, that is handled above.
3463 StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3464 : StubType::kJNIDlsymLookupTrampoline;
3465 copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3466 } else {
3467 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3468 }
3469 }
3470 }
3471 if (quick_code != nullptr) {
3472 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3473 }
3474 }
3475
GetBinSizeSum(Bin up_to) const3476 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3477 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3478 return std::accumulate(&bin_slot_sizes_[0],
3479 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3480 /*init*/ static_cast<size_t>(0));
3481 }
3482
BinSlot(uint32_t lockword)3483 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3484 // These values may need to get updated if more bins are added to the enum Bin
3485 static_assert(kBinBits == 3, "wrong number of bin bits");
3486 static_assert(kBinShift == 27, "wrong number of shift");
3487 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3488
3489 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3490 DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3491 }
3492
BinSlot(Bin bin,uint32_t index)3493 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3494 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3495 DCHECK_EQ(index, GetOffset());
3496 }
3497
GetBin() const3498 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3499 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3500 }
3501
GetOffset() const3502 uint32_t ImageWriter::BinSlot::GetOffset() const {
3503 return lockword_ & ~kBinMask;
3504 }
3505
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3506 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3507 switch (type) {
3508 case NativeObjectRelocationType::kArtField:
3509 case NativeObjectRelocationType::kArtFieldArray:
3510 return Bin::kArtField;
3511 case NativeObjectRelocationType::kArtMethodClean:
3512 case NativeObjectRelocationType::kArtMethodArrayClean:
3513 return Bin::kArtMethodClean;
3514 case NativeObjectRelocationType::kArtMethodDirty:
3515 case NativeObjectRelocationType::kArtMethodArrayDirty:
3516 return Bin::kArtMethodDirty;
3517 case NativeObjectRelocationType::kDexCacheArray:
3518 return Bin::kDexCacheArray;
3519 case NativeObjectRelocationType::kRuntimeMethod:
3520 return Bin::kRuntimeMethod;
3521 case NativeObjectRelocationType::kIMTable:
3522 return Bin::kImTable;
3523 case NativeObjectRelocationType::kIMTConflictTable:
3524 return Bin::kIMTConflictTable;
3525 case NativeObjectRelocationType::kGcRootPointer:
3526 return Bin::kMetadata;
3527 }
3528 UNREACHABLE();
3529 }
3530
GetOatIndex(mirror::Object * obj) const3531 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3532 if (!IsMultiImage()) {
3533 return GetDefaultOatIndex();
3534 }
3535 auto it = oat_index_map_.find(obj);
3536 DCHECK(it != oat_index_map_.end()) << obj;
3537 return it->second;
3538 }
3539
GetOatIndexForDexFile(const DexFile * dex_file) const3540 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3541 if (!IsMultiImage()) {
3542 return GetDefaultOatIndex();
3543 }
3544 auto it = dex_file_oat_index_map_.find(dex_file);
3545 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3546 return it->second;
3547 }
3548
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3549 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3550 while (klass->IsArrayClass()) {
3551 klass = klass->GetComponentType();
3552 }
3553 if (UNLIKELY(klass->IsPrimitive())) {
3554 DCHECK(klass->GetDexCache() == nullptr);
3555 return GetDefaultOatIndex();
3556 } else {
3557 DCHECK(klass->GetDexCache() != nullptr);
3558 return GetOatIndexForDexFile(&klass->GetDexFile());
3559 }
3560 }
3561
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3562 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3563 size_t oat_loaded_size,
3564 size_t oat_data_offset,
3565 size_t oat_data_size) {
3566 DCHECK_GE(oat_loaded_size, oat_data_offset);
3567 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3568
3569 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3570 DCHECK(images_end != nullptr); // Image space must be ready.
3571 for (const ImageInfo& info : image_infos_) {
3572 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3573 }
3574
3575 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3576 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3577 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3578 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3579 cur_image_info.oat_size_ = oat_data_size;
3580
3581 if (compiler_options_.IsAppImage()) {
3582 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3583 return;
3584 }
3585
3586 // Update the oat_offset of the next image info.
3587 if (oat_index + 1u != oat_filenames_.size()) {
3588 // There is a following one.
3589 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3590 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3591 }
3592 }
3593
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3594 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3595 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3596 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3597
3598 if (oat_index == GetDefaultOatIndex()) {
3599 // Primary oat file, read the trampolines.
3600 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3601 oat_header.GetJniDlsymLookupTrampolineOffset());
3602 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3603 oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3604 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3605 oat_header.GetQuickGenericJniTrampolineOffset());
3606 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3607 oat_header.GetQuickImtConflictTrampolineOffset());
3608 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3609 oat_header.GetQuickResolutionTrampolineOffset());
3610 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3611 oat_header.GetQuickToInterpreterBridgeOffset());
3612 }
3613 }
3614
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const std::unordered_map<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const HashSet<std::string> * dirty_image_objects)3615 ImageWriter::ImageWriter(
3616 const CompilerOptions& compiler_options,
3617 uintptr_t image_begin,
3618 ImageHeader::StorageMode image_storage_mode,
3619 const std::vector<std::string>& oat_filenames,
3620 const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map,
3621 jobject class_loader,
3622 const HashSet<std::string>* dirty_image_objects)
3623 : compiler_options_(compiler_options),
3624 boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3625 boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3626 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3627 image_objects_offset_begin_(0),
3628 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3629 image_infos_(oat_filenames.size()),
3630 dirty_methods_(0u),
3631 clean_methods_(0u),
3632 app_class_loader_(class_loader),
3633 boot_image_live_objects_(nullptr),
3634 image_storage_mode_(image_storage_mode),
3635 oat_filenames_(oat_filenames),
3636 dex_file_oat_index_map_(dex_file_oat_index_map),
3637 dirty_image_objects_(dirty_image_objects) {
3638 DCHECK(compiler_options.IsBootImage() ||
3639 compiler_options.IsBootImageExtension() ||
3640 compiler_options.IsAppImage());
3641 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3642 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3643 CHECK_NE(image_begin, 0U);
3644 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3645 CHECK_EQ(compiler_options.IsBootImage(),
3646 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3647 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3648 if (compiler_options_.IsAppImage()) {
3649 // Make sure objects are not crossing region boundaries for app images.
3650 region_size_ = gc::space::RegionSpace::kRegionSize;
3651 }
3652 }
3653
ImageInfo()3654 ImageWriter::ImageInfo::ImageInfo()
3655 : intern_table_(new InternTable),
3656 class_table_(new ClassTable) {}
3657
3658 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3659 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3660 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3661 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3662 "DestType must be a Compressed-/HeapReference<Object>.");
3663 dest->Assign(GetImageAddress(src.Ptr()));
3664 }
3665
CopyAndFixupPointer(void ** target,void * value,PointerSize pointer_size)3666 void ImageWriter::CopyAndFixupPointer(void** target, void* value, PointerSize pointer_size) {
3667 void* new_value = NativeLocationInImage(value);
3668 if (pointer_size == PointerSize::k32) {
3669 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3670 } else {
3671 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3672 }
3673 DCHECK(value != nullptr);
3674 }
3675
CopyAndFixupPointer(void ** target,void * value)3676 void ImageWriter::CopyAndFixupPointer(void** target, void* value)
3677 REQUIRES_SHARED(Locks::mutator_lock_) {
3678 CopyAndFixupPointer(target, value, target_ptr_size_);
3679 }
3680
CopyAndFixupPointer(void * object,MemberOffset offset,void * value,PointerSize pointer_size)3681 void ImageWriter::CopyAndFixupPointer(
3682 void* object, MemberOffset offset, void* value, PointerSize pointer_size) {
3683 void** target =
3684 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3685 return CopyAndFixupPointer(target, value, pointer_size);
3686 }
3687
CopyAndFixupPointer(void * object,MemberOffset offset,void * value)3688 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, void* value) {
3689 return CopyAndFixupPointer(object, offset, value, target_ptr_size_);
3690 }
3691
3692 } // namespace linker
3693 } // namespace art
3694