1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <limits>
20 #include "android-base/thread_annotations.h"
21 #if defined(__BIONIC__) || defined(__GLIBC__)
22 #include <malloc.h> // For mallinfo()
23 #endif
24 #include <memory>
25 #include <vector>
26
27 #include "android-base/stringprintf.h"
28
29 #include "allocation_listener.h"
30 #include "art_field-inl.h"
31 #include "backtrace_helper.h"
32 #include "base/allocator.h"
33 #include "base/arena_allocator.h"
34 #include "base/dumpable.h"
35 #include "base/file_utils.h"
36 #include "base/histogram-inl.h"
37 #include "base/logging.h" // For VLOG.
38 #include "base/memory_tool.h"
39 #include "base/mutex.h"
40 #include "base/os.h"
41 #include "base/stl_util.h"
42 #include "base/systrace.h"
43 #include "base/time_utils.h"
44 #include "base/utils.h"
45 #include "class_root.h"
46 #include "common_throws.h"
47 #include "debugger.h"
48 #include "dex/dex_file-inl.h"
49 #include "entrypoints/quick/quick_alloc_entrypoints.h"
50 #include "gc/accounting/card_table-inl.h"
51 #include "gc/accounting/heap_bitmap-inl.h"
52 #include "gc/accounting/mod_union_table-inl.h"
53 #include "gc/accounting/read_barrier_table.h"
54 #include "gc/accounting/remembered_set.h"
55 #include "gc/accounting/space_bitmap-inl.h"
56 #include "gc/collector/concurrent_copying.h"
57 #include "gc/collector/mark_sweep.h"
58 #include "gc/collector/partial_mark_sweep.h"
59 #include "gc/collector/semi_space.h"
60 #include "gc/collector/sticky_mark_sweep.h"
61 #include "gc/racing_check.h"
62 #include "gc/reference_processor.h"
63 #include "gc/scoped_gc_critical_section.h"
64 #include "gc/space/bump_pointer_space.h"
65 #include "gc/space/dlmalloc_space-inl.h"
66 #include "gc/space/image_space.h"
67 #include "gc/space/large_object_space.h"
68 #include "gc/space/region_space.h"
69 #include "gc/space/rosalloc_space-inl.h"
70 #include "gc/space/space-inl.h"
71 #include "gc/space/zygote_space.h"
72 #include "gc/task_processor.h"
73 #include "gc/verification.h"
74 #include "gc_pause_listener.h"
75 #include "gc_root.h"
76 #include "handle_scope-inl.h"
77 #include "heap-inl.h"
78 #include "heap-visit-objects-inl.h"
79 #include "image.h"
80 #include "intern_table.h"
81 #include "jit/jit.h"
82 #include "jit/jit_code_cache.h"
83 #include "jni/java_vm_ext.h"
84 #include "mirror/class-inl.h"
85 #include "mirror/executable-inl.h"
86 #include "mirror/field.h"
87 #include "mirror/method_handle_impl.h"
88 #include "mirror/object-inl.h"
89 #include "mirror/object-refvisitor-inl.h"
90 #include "mirror/object_array-inl.h"
91 #include "mirror/reference-inl.h"
92 #include "mirror/var_handle.h"
93 #include "nativehelper/scoped_local_ref.h"
94 #include "obj_ptr-inl.h"
95 #include "reflection.h"
96 #include "runtime.h"
97 #include "scoped_thread_state_change-inl.h"
98 #include "thread_list.h"
99 #include "verify_object-inl.h"
100 #include "well_known_classes.h"
101
102 namespace art {
103
104 namespace gc {
105
106 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
107
108 // Minimum amount of remaining bytes before a concurrent GC is triggered.
109 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
110 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
111 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
112 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
113 // threads (lower pauses, use less memory bandwidth).
GetStickyGcThroughputAdjustment(bool use_generational_cc)114 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
115 return use_generational_cc ? 0.5 : 1.0;
116 }
117 // Whether or not we compact the zygote in PreZygoteFork.
118 static constexpr bool kCompactZygote = kMovingCollector;
119 // How many reserve entries are at the end of the allocation stack, these are only needed if the
120 // allocation stack overflows.
121 static constexpr size_t kAllocationStackReserveSize = 1024;
122 // Default mark stack size in bytes.
123 static const size_t kDefaultMarkStackSize = 64 * KB;
124 // Define space name.
125 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
126 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
127 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
128 static const char* kNonMovingSpaceName = "non moving space";
129 static const char* kZygoteSpaceName = "zygote space";
130 static constexpr bool kGCALotMode = false;
131 // GC alot mode uses a small allocation stack to stress test a lot of GC.
132 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
133 sizeof(mirror::HeapReference<mirror::Object>);
134 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
135 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
136 sizeof(mirror::HeapReference<mirror::Object>);
137 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
138 sizeof(mirror::HeapReference<mirror::Object>);
139
140 // For deterministic compilation, we need the heap to be at a well-known address.
141 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
142 // Dump the rosalloc stats on SIGQUIT.
143 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
144
145 static const char* kRegionSpaceName = "main space (region space)";
146
147 // If true, we log all GCs in the both the foreground and background. Used for debugging.
148 static constexpr bool kLogAllGCs = false;
149
150 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
151 // allocate with relaxed ergonomics for that long.
152 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
153
154 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
155 // 300 MB (0x12c00000) - (default non-moving space capacity).
156 uint8_t* const Heap::kPreferredAllocSpaceBegin =
157 reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
158 #else
159 #ifdef __ANDROID__
160 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
161 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
162 #else
163 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
164 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
165 #endif
166 #endif
167
CareAboutPauseTimes()168 static inline bool CareAboutPauseTimes() {
169 return Runtime::Current()->InJankPerceptibleProcessState();
170 }
171
VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace * > & image_spaces)172 static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
173 uint32_t boot_image_size = 0u;
174 for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
175 const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
176 uint32_t reservation_size = image_header.GetImageReservationSize();
177 uint32_t image_count = image_header.GetImageSpaceCount();
178
179 CHECK_NE(image_count, 0u);
180 CHECK_LE(image_count, num_spaces - i);
181 CHECK_NE(reservation_size, 0u);
182 for (size_t j = 1u; j != image_count; ++j) {
183 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
184 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
185 }
186
187 // Check the start of the heap.
188 CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
189 // Check contiguous layout of images and oat files.
190 const uint8_t* current_heap = image_spaces[i]->Begin();
191 const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
192 for (size_t j = 0u; j != image_count; ++j) {
193 const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
194 CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
195 CHECK_EQ(current_oat, current_header.GetOatFileBegin());
196 current_heap += RoundUp(current_header.GetImageSize(), kPageSize);
197 CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
198 current_oat = current_header.GetOatFileEnd();
199 }
200 // Check that oat files start at the end of images.
201 CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
202 // Check that the reservation size equals the size of images and oat files.
203 CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
204
205 boot_image_size += reservation_size;
206 i += image_count;
207 }
208 }
209
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t stop_for_native_allocs,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_cc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc,space::ImageSpaceLoadingOrder image_space_loading_order)210 Heap::Heap(size_t initial_size,
211 size_t growth_limit,
212 size_t min_free,
213 size_t max_free,
214 double target_utilization,
215 double foreground_heap_growth_multiplier,
216 size_t stop_for_native_allocs,
217 size_t capacity,
218 size_t non_moving_space_capacity,
219 const std::vector<std::string>& boot_class_path,
220 const std::vector<std::string>& boot_class_path_locations,
221 const std::string& image_file_name,
222 const InstructionSet image_instruction_set,
223 CollectorType foreground_collector_type,
224 CollectorType background_collector_type,
225 space::LargeObjectSpaceType large_object_space_type,
226 size_t large_object_threshold,
227 size_t parallel_gc_threads,
228 size_t conc_gc_threads,
229 bool low_memory_mode,
230 size_t long_pause_log_threshold,
231 size_t long_gc_log_threshold,
232 bool ignore_target_footprint,
233 bool use_tlab,
234 bool verify_pre_gc_heap,
235 bool verify_pre_sweeping_heap,
236 bool verify_post_gc_heap,
237 bool verify_pre_gc_rosalloc,
238 bool verify_pre_sweeping_rosalloc,
239 bool verify_post_gc_rosalloc,
240 bool gc_stress_mode,
241 bool measure_gc_performance,
242 bool use_homogeneous_space_compaction_for_oom,
243 bool use_generational_cc,
244 uint64_t min_interval_homogeneous_space_compaction_by_oom,
245 bool dump_region_info_before_gc,
246 bool dump_region_info_after_gc,
247 space::ImageSpaceLoadingOrder image_space_loading_order)
248 : non_moving_space_(nullptr),
249 rosalloc_space_(nullptr),
250 dlmalloc_space_(nullptr),
251 main_space_(nullptr),
252 collector_type_(kCollectorTypeNone),
253 foreground_collector_type_(foreground_collector_type),
254 background_collector_type_(background_collector_type),
255 desired_collector_type_(foreground_collector_type_),
256 pending_task_lock_(nullptr),
257 parallel_gc_threads_(parallel_gc_threads),
258 conc_gc_threads_(conc_gc_threads),
259 low_memory_mode_(low_memory_mode),
260 long_pause_log_threshold_(long_pause_log_threshold),
261 long_gc_log_threshold_(long_gc_log_threshold),
262 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
263 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
264 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
265 pre_gc_weighted_allocated_bytes_(0.0),
266 post_gc_weighted_allocated_bytes_(0.0),
267 ignore_target_footprint_(ignore_target_footprint),
268 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
269 zygote_space_(nullptr),
270 large_object_threshold_(large_object_threshold),
271 disable_thread_flip_count_(0),
272 thread_flip_running_(false),
273 collector_type_running_(kCollectorTypeNone),
274 last_gc_cause_(kGcCauseNone),
275 thread_running_gc_(nullptr),
276 last_gc_type_(collector::kGcTypeNone),
277 next_gc_type_(collector::kGcTypePartial),
278 capacity_(capacity),
279 growth_limit_(growth_limit),
280 target_footprint_(initial_size),
281 // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
282 // this one.
283 process_state_update_lock_("process state update lock", kPostMonitorLock),
284 min_foreground_target_footprint_(0),
285 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
286 total_bytes_freed_ever_(0),
287 total_objects_freed_ever_(0),
288 num_bytes_allocated_(0),
289 native_bytes_registered_(0),
290 old_native_bytes_allocated_(0),
291 native_objects_notified_(0),
292 num_bytes_freed_revoke_(0),
293 verify_missing_card_marks_(false),
294 verify_system_weaks_(false),
295 verify_pre_gc_heap_(verify_pre_gc_heap),
296 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
297 verify_post_gc_heap_(verify_post_gc_heap),
298 verify_mod_union_table_(false),
299 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
300 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
301 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
302 gc_stress_mode_(gc_stress_mode),
303 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
304 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
305 * verification is enabled, we limit the size of allocation stacks to speed up their
306 * searching.
307 */
308 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
309 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
310 kDefaultAllocationStackSize),
311 current_allocator_(kAllocatorTypeDlMalloc),
312 current_non_moving_allocator_(kAllocatorTypeNonMoving),
313 bump_pointer_space_(nullptr),
314 temp_space_(nullptr),
315 region_space_(nullptr),
316 min_free_(min_free),
317 max_free_(max_free),
318 target_utilization_(target_utilization),
319 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
320 stop_for_native_allocs_(stop_for_native_allocs),
321 total_wait_time_(0),
322 verify_object_mode_(kVerifyObjectModeDisabled),
323 disable_moving_gc_count_(0),
324 semi_space_collector_(nullptr),
325 active_concurrent_copying_collector_(nullptr),
326 young_concurrent_copying_collector_(nullptr),
327 concurrent_copying_collector_(nullptr),
328 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
329 use_tlab_(use_tlab),
330 main_space_backup_(nullptr),
331 min_interval_homogeneous_space_compaction_by_oom_(
332 min_interval_homogeneous_space_compaction_by_oom),
333 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
334 pending_collector_transition_(nullptr),
335 pending_heap_trim_(nullptr),
336 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
337 use_generational_cc_(use_generational_cc),
338 running_collection_is_blocking_(false),
339 blocking_gc_count_(0U),
340 blocking_gc_time_(0U),
341 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
342 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
343 gc_count_last_window_(0U),
344 blocking_gc_count_last_window_(0U),
345 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
346 blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
347 kGcCountRateMaxBucketCount),
348 alloc_tracking_enabled_(false),
349 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
350 backtrace_lock_(nullptr),
351 seen_backtrace_count_(0u),
352 unique_backtrace_count_(0u),
353 gc_disabled_for_shutdown_(false),
354 dump_region_info_before_gc_(dump_region_info_before_gc),
355 dump_region_info_after_gc_(dump_region_info_after_gc),
356 boot_image_spaces_(),
357 boot_images_start_address_(0u),
358 boot_images_size_(0u) {
359 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
360 LOG(INFO) << "Heap() entering";
361 }
362 if (kUseReadBarrier) {
363 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
364 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
365 } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
366 CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
367 << "Changing from " << foreground_collector_type_ << " to "
368 << background_collector_type_ << " (or visa versa) is not supported.";
369 }
370 verification_.reset(new Verification(this));
371 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
372 ScopedTrace trace(__FUNCTION__);
373 Runtime* const runtime = Runtime::Current();
374 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
375 // entrypoints.
376 const bool is_zygote = runtime->IsZygote();
377 if (!is_zygote) {
378 // Background compaction is currently not supported for command line runs.
379 if (background_collector_type_ != foreground_collector_type_) {
380 VLOG(heap) << "Disabling background compaction for non zygote";
381 background_collector_type_ = foreground_collector_type_;
382 }
383 }
384 ChangeCollector(desired_collector_type_);
385 live_bitmap_.reset(new accounting::HeapBitmap(this));
386 mark_bitmap_.reset(new accounting::HeapBitmap(this));
387
388 // We don't have hspace compaction enabled with CC.
389 if (foreground_collector_type_ == kCollectorTypeCC) {
390 use_homogeneous_space_compaction_for_oom_ = false;
391 }
392 bool support_homogeneous_space_compaction =
393 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
394 use_homogeneous_space_compaction_for_oom_;
395 // We may use the same space the main space for the non moving space if we don't need to compact
396 // from the main space.
397 // This is not the case if we support homogeneous compaction or have a moving background
398 // collector type.
399 bool separate_non_moving_space = is_zygote ||
400 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
401 IsMovingGc(background_collector_type_);
402
403 // Requested begin for the alloc space, to follow the mapped image and oat files
404 uint8_t* request_begin = nullptr;
405 // Calculate the extra space required after the boot image, see allocations below.
406 size_t heap_reservation_size = 0u;
407 if (separate_non_moving_space) {
408 heap_reservation_size = non_moving_space_capacity;
409 } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
410 heap_reservation_size = capacity_;
411 }
412 heap_reservation_size = RoundUp(heap_reservation_size, kPageSize);
413 // Load image space(s).
414 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
415 MemMap heap_reservation;
416 if (space::ImageSpace::LoadBootImage(boot_class_path,
417 boot_class_path_locations,
418 image_file_name,
419 image_instruction_set,
420 image_space_loading_order,
421 runtime->ShouldRelocate(),
422 /*executable=*/ !runtime->IsAotCompiler(),
423 is_zygote,
424 heap_reservation_size,
425 &boot_image_spaces,
426 &heap_reservation)) {
427 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
428 DCHECK(!boot_image_spaces.empty());
429 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
430 DCHECK(!heap_reservation.IsValid() || request_begin == heap_reservation.Begin())
431 << "request_begin=" << static_cast<const void*>(request_begin)
432 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
433 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
434 boot_image_spaces_.push_back(space.get());
435 AddSpace(space.release());
436 }
437 boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
438 uint32_t boot_images_end =
439 PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
440 boot_images_size_ = boot_images_end - boot_images_start_address_;
441 if (kIsDebugBuild) {
442 VerifyBootImagesContiguity(boot_image_spaces_);
443 }
444 } else {
445 if (foreground_collector_type_ == kCollectorTypeCC) {
446 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
447 // when there's no image (dex2oat for target).
448 request_begin = kPreferredAllocSpaceBegin;
449 }
450 // Gross hack to make dex2oat deterministic.
451 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
452 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
453 // b/26849108
454 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
455 }
456 }
457
458 /*
459 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
460 +- nonmoving space (non_moving_space_capacity)+-
461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
462 +-????????????????????????????????????????????+-
463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
464 +-main alloc space / bump space 1 (capacity_) +-
465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
466 +-????????????????????????????????????????????+-
467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
468 +-main alloc space2 / bump space 2 (capacity_)+-
469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
470 */
471
472 MemMap main_mem_map_1;
473 MemMap main_mem_map_2;
474
475 std::string error_str;
476 MemMap non_moving_space_mem_map;
477 if (separate_non_moving_space) {
478 ScopedTrace trace2("Create separate non moving space");
479 // If we are the zygote, the non moving space becomes the zygote space when we run
480 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
481 // rename the mem map later.
482 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
483 // Reserve the non moving mem map before the other two since it needs to be at a specific
484 // address.
485 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
486 if (heap_reservation.IsValid()) {
487 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
488 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
489 } else {
490 non_moving_space_mem_map = MapAnonymousPreferredAddress(
491 space_name, request_begin, non_moving_space_capacity, &error_str);
492 }
493 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
494 DCHECK(!heap_reservation.IsValid());
495 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
496 request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
497 }
498 // Attempt to create 2 mem maps at or after the requested begin.
499 if (foreground_collector_type_ != kCollectorTypeCC) {
500 ScopedTrace trace2("Create main mem map");
501 if (separate_non_moving_space || !is_zygote) {
502 main_mem_map_1 = MapAnonymousPreferredAddress(
503 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
504 } else {
505 // If no separate non-moving space and we are the zygote, the main space must come right after
506 // the image space to avoid a gap. This is required since we want the zygote space to be
507 // adjacent to the image space.
508 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
509 main_mem_map_1 = MemMap::MapAnonymous(
510 kMemMapSpaceName[0],
511 request_begin,
512 capacity_,
513 PROT_READ | PROT_WRITE,
514 /* low_4gb= */ true,
515 /* reuse= */ false,
516 heap_reservation.IsValid() ? &heap_reservation : nullptr,
517 &error_str);
518 }
519 CHECK(main_mem_map_1.IsValid()) << error_str;
520 DCHECK(!heap_reservation.IsValid());
521 }
522 if (support_homogeneous_space_compaction ||
523 background_collector_type_ == kCollectorTypeSS ||
524 foreground_collector_type_ == kCollectorTypeSS) {
525 ScopedTrace trace2("Create main mem map 2");
526 main_mem_map_2 = MapAnonymousPreferredAddress(
527 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
528 CHECK(main_mem_map_2.IsValid()) << error_str;
529 }
530
531 // Create the non moving space first so that bitmaps don't take up the address range.
532 if (separate_non_moving_space) {
533 ScopedTrace trace2("Add non moving space");
534 // Non moving space is always dlmalloc since we currently don't have support for multiple
535 // active rosalloc spaces.
536 const size_t size = non_moving_space_mem_map.Size();
537 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
538 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
539 "zygote / non moving space",
540 kDefaultStartingSize,
541 initial_size,
542 size,
543 size,
544 /* can_move_objects= */ false);
545 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
546 << non_moving_space_mem_map_begin;
547 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
548 AddSpace(non_moving_space_);
549 }
550 // Create other spaces based on whether or not we have a moving GC.
551 if (foreground_collector_type_ == kCollectorTypeCC) {
552 CHECK(separate_non_moving_space);
553 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
554 MemMap region_space_mem_map =
555 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
556 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
557 region_space_ = space::RegionSpace::Create(
558 kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
559 AddSpace(region_space_);
560 } else if (IsMovingGc(foreground_collector_type_)) {
561 // Create bump pointer spaces.
562 // We only to create the bump pointer if the foreground collector is a compacting GC.
563 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
564 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
565 std::move(main_mem_map_1));
566 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
567 AddSpace(bump_pointer_space_);
568 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
569 std::move(main_mem_map_2));
570 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
571 AddSpace(temp_space_);
572 CHECK(separate_non_moving_space);
573 } else {
574 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
575 CHECK(main_space_ != nullptr);
576 AddSpace(main_space_);
577 if (!separate_non_moving_space) {
578 non_moving_space_ = main_space_;
579 CHECK(!non_moving_space_->CanMoveObjects());
580 }
581 if (main_mem_map_2.IsValid()) {
582 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
583 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
584 initial_size,
585 growth_limit_,
586 capacity_,
587 name,
588 /* can_move_objects= */ true));
589 CHECK(main_space_backup_.get() != nullptr);
590 // Add the space so its accounted for in the heap_begin and heap_end.
591 AddSpace(main_space_backup_.get());
592 }
593 }
594 CHECK(non_moving_space_ != nullptr);
595 CHECK(!non_moving_space_->CanMoveObjects());
596 // Allocate the large object space.
597 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
598 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
599 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
600 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
601 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
602 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
603 } else {
604 // Disable the large object space by making the cutoff excessively large.
605 large_object_threshold_ = std::numeric_limits<size_t>::max();
606 large_object_space_ = nullptr;
607 }
608 if (large_object_space_ != nullptr) {
609 AddSpace(large_object_space_);
610 }
611 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
612 CHECK(!continuous_spaces_.empty());
613 // Relies on the spaces being sorted.
614 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
615 uint8_t* heap_end = continuous_spaces_.back()->Limit();
616 size_t heap_capacity = heap_end - heap_begin;
617 // Remove the main backup space since it slows down the GC to have unused extra spaces.
618 // TODO: Avoid needing to do this.
619 if (main_space_backup_.get() != nullptr) {
620 RemoveSpace(main_space_backup_.get());
621 }
622 // Allocate the card table.
623 // We currently don't support dynamically resizing the card table.
624 // Since we don't know where in the low_4gb the app image will be located, make the card table
625 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
626 UNUSED(heap_capacity);
627 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
628 // reserved by the kernel.
629 static constexpr size_t kMinHeapAddress = 4 * KB;
630 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
631 4 * GB - kMinHeapAddress));
632 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
633 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
634 rb_table_.reset(new accounting::ReadBarrierTable());
635 DCHECK(rb_table_->IsAllCleared());
636 }
637 if (HasBootImageSpace()) {
638 // Don't add the image mod union table if we are running without an image, this can crash if
639 // we use the CardCache implementation.
640 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
641 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
642 "Image mod-union table", this, image_space);
643 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
644 AddModUnionTable(mod_union_table);
645 }
646 }
647 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
648 accounting::RememberedSet* non_moving_space_rem_set =
649 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
650 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
651 AddRememberedSet(non_moving_space_rem_set);
652 }
653 // TODO: Count objects in the image space here?
654 num_bytes_allocated_.store(0, std::memory_order_relaxed);
655 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
656 kDefaultMarkStackSize));
657 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
658 allocation_stack_.reset(accounting::ObjectStack::Create(
659 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
660 live_stack_.reset(accounting::ObjectStack::Create(
661 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
662 // It's still too early to take a lock because there are no threads yet, but we can create locks
663 // now. We don't create it earlier to make it clear that you can't use locks during heap
664 // initialization.
665 gc_complete_lock_ = new Mutex("GC complete lock");
666 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
667 *gc_complete_lock_));
668
669 thread_flip_lock_ = new Mutex("GC thread flip lock");
670 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
671 *thread_flip_lock_));
672 task_processor_.reset(new TaskProcessor());
673 reference_processor_.reset(new ReferenceProcessor());
674 pending_task_lock_ = new Mutex("Pending task lock");
675 if (ignore_target_footprint_) {
676 SetIdealFootprint(std::numeric_limits<size_t>::max());
677 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
678 }
679 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
680 // Create our garbage collectors.
681 for (size_t i = 0; i < 2; ++i) {
682 const bool concurrent = i != 0;
683 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
684 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
685 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
686 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
687 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
688 }
689 }
690 if (kMovingCollector) {
691 if (MayUseCollector(kCollectorTypeSS) ||
692 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
693 use_homogeneous_space_compaction_for_oom_) {
694 semi_space_collector_ = new collector::SemiSpace(this);
695 garbage_collectors_.push_back(semi_space_collector_);
696 }
697 if (MayUseCollector(kCollectorTypeCC)) {
698 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
699 /*young_gen=*/false,
700 use_generational_cc_,
701 "",
702 measure_gc_performance);
703 if (use_generational_cc_) {
704 young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
705 this,
706 /*young_gen=*/true,
707 use_generational_cc_,
708 "young",
709 measure_gc_performance);
710 }
711 active_concurrent_copying_collector_ = concurrent_copying_collector_;
712 DCHECK(region_space_ != nullptr);
713 concurrent_copying_collector_->SetRegionSpace(region_space_);
714 if (use_generational_cc_) {
715 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
716 // At this point, non-moving space should be created.
717 DCHECK(non_moving_space_ != nullptr);
718 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
719 }
720 garbage_collectors_.push_back(concurrent_copying_collector_);
721 if (use_generational_cc_) {
722 garbage_collectors_.push_back(young_concurrent_copying_collector_);
723 }
724 }
725 }
726 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
727 (is_zygote || separate_non_moving_space)) {
728 // Check that there's no gap between the image space and the non moving space so that the
729 // immune region won't break (eg. due to a large object allocated in the gap). This is only
730 // required when we're the zygote.
731 // Space with smallest Begin().
732 space::ImageSpace* first_space = nullptr;
733 for (space::ImageSpace* space : boot_image_spaces_) {
734 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
735 first_space = space;
736 }
737 }
738 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
739 if (!no_gap) {
740 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
741 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
742 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
743 }
744 }
745 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
746 if (gc_stress_mode_) {
747 backtrace_lock_ = new Mutex("GC complete lock");
748 }
749 if (is_running_on_memory_tool_ || gc_stress_mode_) {
750 instrumentation->InstrumentQuickAllocEntryPoints();
751 }
752 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
753 LOG(INFO) << "Heap() exiting";
754 }
755 }
756
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)757 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
758 uint8_t* request_begin,
759 size_t capacity,
760 std::string* out_error_str) {
761 while (true) {
762 MemMap map = MemMap::MapAnonymous(name,
763 request_begin,
764 capacity,
765 PROT_READ | PROT_WRITE,
766 /*low_4gb=*/ true,
767 /*reuse=*/ false,
768 /*reservation=*/ nullptr,
769 out_error_str);
770 if (map.IsValid() || request_begin == nullptr) {
771 return map;
772 }
773 // Retry a second time with no specified request begin.
774 request_begin = nullptr;
775 }
776 }
777
MayUseCollector(CollectorType type) const778 bool Heap::MayUseCollector(CollectorType type) const {
779 return foreground_collector_type_ == type || background_collector_type_ == type;
780 }
781
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)782 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
783 size_t initial_size,
784 size_t growth_limit,
785 size_t capacity,
786 const char* name,
787 bool can_move_objects) {
788 space::MallocSpace* malloc_space = nullptr;
789 if (kUseRosAlloc) {
790 // Create rosalloc space.
791 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
792 name,
793 kDefaultStartingSize,
794 initial_size,
795 growth_limit,
796 capacity,
797 low_memory_mode_,
798 can_move_objects);
799 } else {
800 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
801 name,
802 kDefaultStartingSize,
803 initial_size,
804 growth_limit,
805 capacity,
806 can_move_objects);
807 }
808 if (collector::SemiSpace::kUseRememberedSet) {
809 accounting::RememberedSet* rem_set =
810 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
811 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
812 AddRememberedSet(rem_set);
813 }
814 CHECK(malloc_space != nullptr) << "Failed to create " << name;
815 malloc_space->SetFootprintLimit(malloc_space->Capacity());
816 return malloc_space;
817 }
818
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)819 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
820 size_t initial_size,
821 size_t growth_limit,
822 size_t capacity) {
823 // Is background compaction is enabled?
824 bool can_move_objects = IsMovingGc(background_collector_type_) !=
825 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
826 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
827 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
828 // from the main space to the zygote space. If background compaction is enabled, always pass in
829 // that we can move objets.
830 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
831 // After the zygote we want this to be false if we don't have background compaction enabled so
832 // that getting primitive array elements is faster.
833 can_move_objects = !HasZygoteSpace();
834 }
835 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
836 RemoveRememberedSet(main_space_);
837 }
838 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
839 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
840 initial_size,
841 growth_limit,
842 capacity, name,
843 can_move_objects);
844 SetSpaceAsDefault(main_space_);
845 VLOG(heap) << "Created main space " << main_space_;
846 }
847
ChangeAllocator(AllocatorType allocator)848 void Heap::ChangeAllocator(AllocatorType allocator) {
849 if (current_allocator_ != allocator) {
850 // These two allocators are only used internally and don't have any entrypoints.
851 CHECK_NE(allocator, kAllocatorTypeLOS);
852 CHECK_NE(allocator, kAllocatorTypeNonMoving);
853 current_allocator_ = allocator;
854 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
855 SetQuickAllocEntryPointsAllocator(current_allocator_);
856 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
857 }
858 }
859
IsCompilingBoot() const860 bool Heap::IsCompilingBoot() const {
861 if (!Runtime::Current()->IsAotCompiler()) {
862 return false;
863 }
864 ScopedObjectAccess soa(Thread::Current());
865 for (const auto& space : continuous_spaces_) {
866 if (space->IsImageSpace() || space->IsZygoteSpace()) {
867 return false;
868 }
869 }
870 return true;
871 }
872
IncrementDisableMovingGC(Thread * self)873 void Heap::IncrementDisableMovingGC(Thread* self) {
874 // Need to do this holding the lock to prevent races where the GC is about to run / running when
875 // we attempt to disable it.
876 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
877 MutexLock mu(self, *gc_complete_lock_);
878 ++disable_moving_gc_count_;
879 if (IsMovingGc(collector_type_running_)) {
880 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
881 }
882 }
883
DecrementDisableMovingGC(Thread * self)884 void Heap::DecrementDisableMovingGC(Thread* self) {
885 MutexLock mu(self, *gc_complete_lock_);
886 CHECK_GT(disable_moving_gc_count_, 0U);
887 --disable_moving_gc_count_;
888 }
889
IncrementDisableThreadFlip(Thread * self)890 void Heap::IncrementDisableThreadFlip(Thread* self) {
891 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
892 CHECK(kUseReadBarrier);
893 bool is_nested = self->GetDisableThreadFlipCount() > 0;
894 self->IncrementDisableThreadFlipCount();
895 if (is_nested) {
896 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
897 // counter. The global counter is incremented only once for a thread for the outermost enter.
898 return;
899 }
900 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
901 MutexLock mu(self, *thread_flip_lock_);
902 thread_flip_cond_->CheckSafeToWait(self);
903 bool has_waited = false;
904 uint64_t wait_start = NanoTime();
905 if (thread_flip_running_) {
906 ScopedTrace trace("IncrementDisableThreadFlip");
907 while (thread_flip_running_) {
908 has_waited = true;
909 thread_flip_cond_->Wait(self);
910 }
911 }
912 ++disable_thread_flip_count_;
913 if (has_waited) {
914 uint64_t wait_time = NanoTime() - wait_start;
915 total_wait_time_ += wait_time;
916 if (wait_time > long_pause_log_threshold_) {
917 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
918 }
919 }
920 }
921
DecrementDisableThreadFlip(Thread * self)922 void Heap::DecrementDisableThreadFlip(Thread* self) {
923 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
924 // the GC waiting before doing a thread flip.
925 CHECK(kUseReadBarrier);
926 self->DecrementDisableThreadFlipCount();
927 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
928 if (!is_outermost) {
929 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
930 // The global counter is decremented only once for a thread for the outermost exit.
931 return;
932 }
933 MutexLock mu(self, *thread_flip_lock_);
934 CHECK_GT(disable_thread_flip_count_, 0U);
935 --disable_thread_flip_count_;
936 if (disable_thread_flip_count_ == 0) {
937 // Potentially notify the GC thread blocking to begin a thread flip.
938 thread_flip_cond_->Broadcast(self);
939 }
940 }
941
ThreadFlipBegin(Thread * self)942 void Heap::ThreadFlipBegin(Thread* self) {
943 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
944 // > 0, block. Otherwise, go ahead.
945 CHECK(kUseReadBarrier);
946 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
947 MutexLock mu(self, *thread_flip_lock_);
948 thread_flip_cond_->CheckSafeToWait(self);
949 bool has_waited = false;
950 uint64_t wait_start = NanoTime();
951 CHECK(!thread_flip_running_);
952 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
953 // GC. This like a writer preference of a reader-writer lock.
954 thread_flip_running_ = true;
955 while (disable_thread_flip_count_ > 0) {
956 has_waited = true;
957 thread_flip_cond_->Wait(self);
958 }
959 if (has_waited) {
960 uint64_t wait_time = NanoTime() - wait_start;
961 total_wait_time_ += wait_time;
962 if (wait_time > long_pause_log_threshold_) {
963 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
964 }
965 }
966 }
967
ThreadFlipEnd(Thread * self)968 void Heap::ThreadFlipEnd(Thread* self) {
969 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
970 // waiting before doing a JNI critical.
971 CHECK(kUseReadBarrier);
972 MutexLock mu(self, *thread_flip_lock_);
973 CHECK(thread_flip_running_);
974 thread_flip_running_ = false;
975 // Potentially notify mutator threads blocking to enter a JNI critical section.
976 thread_flip_cond_->Broadcast(self);
977 }
978
GrowHeapOnJankPerceptibleSwitch()979 void Heap::GrowHeapOnJankPerceptibleSwitch() {
980 MutexLock mu(Thread::Current(), process_state_update_lock_);
981 size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
982 if (orig_target_footprint < min_foreground_target_footprint_) {
983 target_footprint_.compare_exchange_strong(orig_target_footprint,
984 min_foreground_target_footprint_,
985 std::memory_order_relaxed);
986 }
987 min_foreground_target_footprint_ = 0;
988 }
989
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)990 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
991 if (old_process_state != new_process_state) {
992 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
993 if (jank_perceptible) {
994 // Transition back to foreground right away to prevent jank.
995 RequestCollectorTransition(foreground_collector_type_, 0);
996 GrowHeapOnJankPerceptibleSwitch();
997 } else {
998 // Don't delay for debug builds since we may want to stress test the GC.
999 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
1000 // special handling which does a homogenous space compaction once but then doesn't transition
1001 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
1002 // transition the collector.
1003 RequestCollectorTransition(background_collector_type_,
1004 kStressCollectorTransition
1005 ? 0
1006 : kCollectorTransitionWait);
1007 }
1008 }
1009 }
1010
CreateThreadPool()1011 void Heap::CreateThreadPool() {
1012 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1013 if (num_threads != 0) {
1014 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
1015 }
1016 }
1017
MarkAllocStackAsLive(accounting::ObjectStack * stack)1018 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1019 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1020 space::ContinuousSpace* space2 = non_moving_space_;
1021 // TODO: Generalize this to n bitmaps?
1022 CHECK(space1 != nullptr);
1023 CHECK(space2 != nullptr);
1024 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1025 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1026 stack);
1027 }
1028
DeleteThreadPool()1029 void Heap::DeleteThreadPool() {
1030 thread_pool_.reset(nullptr);
1031 }
1032
AddSpace(space::Space * space)1033 void Heap::AddSpace(space::Space* space) {
1034 CHECK(space != nullptr);
1035 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1036 if (space->IsContinuousSpace()) {
1037 DCHECK(!space->IsDiscontinuousSpace());
1038 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1039 // Continuous spaces don't necessarily have bitmaps.
1040 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1041 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1042 // The region space bitmap is not added since VisitObjects visits the region space objects with
1043 // special handling.
1044 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1045 CHECK(mark_bitmap != nullptr);
1046 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1047 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1048 }
1049 continuous_spaces_.push_back(continuous_space);
1050 // Ensure that spaces remain sorted in increasing order of start address.
1051 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1052 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1053 return a->Begin() < b->Begin();
1054 });
1055 } else {
1056 CHECK(space->IsDiscontinuousSpace());
1057 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1058 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1059 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1060 discontinuous_spaces_.push_back(discontinuous_space);
1061 }
1062 if (space->IsAllocSpace()) {
1063 alloc_spaces_.push_back(space->AsAllocSpace());
1064 }
1065 }
1066
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1067 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1068 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1069 if (continuous_space->IsDlMallocSpace()) {
1070 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1071 } else if (continuous_space->IsRosAllocSpace()) {
1072 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1073 }
1074 }
1075
RemoveSpace(space::Space * space)1076 void Heap::RemoveSpace(space::Space* space) {
1077 DCHECK(space != nullptr);
1078 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1079 if (space->IsContinuousSpace()) {
1080 DCHECK(!space->IsDiscontinuousSpace());
1081 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1082 // Continuous spaces don't necessarily have bitmaps.
1083 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1084 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1085 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1086 DCHECK(mark_bitmap != nullptr);
1087 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1088 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1089 }
1090 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1091 DCHECK(it != continuous_spaces_.end());
1092 continuous_spaces_.erase(it);
1093 } else {
1094 DCHECK(space->IsDiscontinuousSpace());
1095 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1096 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1097 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1098 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1099 discontinuous_space);
1100 DCHECK(it != discontinuous_spaces_.end());
1101 discontinuous_spaces_.erase(it);
1102 }
1103 if (space->IsAllocSpace()) {
1104 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1105 DCHECK(it != alloc_spaces_.end());
1106 alloc_spaces_.erase(it);
1107 }
1108 }
1109
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1110 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1111 uint64_t current_process_cpu_time) const {
1112 uint64_t bytes_allocated = GetBytesAllocated();
1113 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1114 return weight * bytes_allocated;
1115 }
1116
CalculatePreGcWeightedAllocatedBytes()1117 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1118 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1119 pre_gc_weighted_allocated_bytes_ +=
1120 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1121 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1122 }
1123
CalculatePostGcWeightedAllocatedBytes()1124 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1125 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1126 post_gc_weighted_allocated_bytes_ +=
1127 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1128 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1129 }
1130
GetTotalGcCpuTime()1131 uint64_t Heap::GetTotalGcCpuTime() {
1132 uint64_t sum = 0;
1133 for (auto* collector : garbage_collectors_) {
1134 sum += collector->GetTotalCpuTime();
1135 }
1136 return sum;
1137 }
1138
DumpGcPerformanceInfo(std::ostream & os)1139 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1140 // Dump cumulative timings.
1141 os << "Dumping cumulative Gc timings\n";
1142 uint64_t total_duration = 0;
1143 // Dump cumulative loggers for each GC type.
1144 uint64_t total_paused_time = 0;
1145 for (auto* collector : garbage_collectors_) {
1146 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1147 total_paused_time += collector->GetTotalPausedTimeNs();
1148 collector->DumpPerformanceInfo(os);
1149 }
1150 if (total_duration != 0) {
1151 const double total_seconds = total_duration / 1.0e9;
1152 const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
1153 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1154 os << "Mean GC size throughput: "
1155 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
1156 << " per cpu-time: "
1157 << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
1158 os << "Mean GC object throughput: "
1159 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1160 }
1161 uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1162 os << "Total number of allocations " << total_objects_allocated << "\n";
1163 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1164 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1165 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1166 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1167 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1168 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1169 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1170 if (HasZygoteSpace()) {
1171 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1172 }
1173 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1174 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1175 os << "Total GC count: " << GetGcCount() << "\n";
1176 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1177 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1178 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1179
1180 {
1181 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1182 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1183 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1184 gc_count_rate_histogram_.DumpBins(os);
1185 os << "\n";
1186 }
1187 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1188 os << "Histogram of blocking GC count per "
1189 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1190 blocking_gc_count_rate_histogram_.DumpBins(os);
1191 os << "\n";
1192 }
1193 }
1194
1195 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1196 rosalloc_space_->DumpStats(os);
1197 }
1198
1199 os << "Native bytes total: " << GetNativeBytes()
1200 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1201
1202 os << "Total native bytes at last GC: "
1203 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1204
1205 BaseMutex::DumpAll(os);
1206 }
1207
ResetGcPerformanceInfo()1208 void Heap::ResetGcPerformanceInfo() {
1209 for (auto* collector : garbage_collectors_) {
1210 collector->ResetMeasurements();
1211 }
1212
1213 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1214
1215 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1216 pre_gc_weighted_allocated_bytes_ = 0u;
1217
1218 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1219 post_gc_weighted_allocated_bytes_ = 0u;
1220
1221 total_bytes_freed_ever_.store(0);
1222 total_objects_freed_ever_.store(0);
1223 total_wait_time_ = 0;
1224 blocking_gc_count_ = 0;
1225 blocking_gc_time_ = 0;
1226 gc_count_last_window_ = 0;
1227 blocking_gc_count_last_window_ = 0;
1228 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1229 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1230 {
1231 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1232 gc_count_rate_histogram_.Reset();
1233 blocking_gc_count_rate_histogram_.Reset();
1234 }
1235 }
1236
GetGcCount() const1237 uint64_t Heap::GetGcCount() const {
1238 uint64_t gc_count = 0U;
1239 for (auto* collector : garbage_collectors_) {
1240 gc_count += collector->GetCumulativeTimings().GetIterations();
1241 }
1242 return gc_count;
1243 }
1244
GetGcTime() const1245 uint64_t Heap::GetGcTime() const {
1246 uint64_t gc_time = 0U;
1247 for (auto* collector : garbage_collectors_) {
1248 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1249 }
1250 return gc_time;
1251 }
1252
GetBlockingGcCount() const1253 uint64_t Heap::GetBlockingGcCount() const {
1254 return blocking_gc_count_;
1255 }
1256
GetBlockingGcTime() const1257 uint64_t Heap::GetBlockingGcTime() const {
1258 return blocking_gc_time_;
1259 }
1260
DumpGcCountRateHistogram(std::ostream & os) const1261 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1262 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1263 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1264 gc_count_rate_histogram_.DumpBins(os);
1265 }
1266 }
1267
DumpBlockingGcCountRateHistogram(std::ostream & os) const1268 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1269 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1270 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1271 blocking_gc_count_rate_histogram_.DumpBins(os);
1272 }
1273 }
1274
1275 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1276 static inline AllocationListener* GetAndOverwriteAllocationListener(
1277 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1278 return storage->exchange(new_value);
1279 }
1280
~Heap()1281 Heap::~Heap() {
1282 VLOG(heap) << "Starting ~Heap()";
1283 STLDeleteElements(&garbage_collectors_);
1284 // If we don't reset then the mark stack complains in its destructor.
1285 allocation_stack_->Reset();
1286 allocation_records_.reset();
1287 live_stack_->Reset();
1288 STLDeleteValues(&mod_union_tables_);
1289 STLDeleteValues(&remembered_sets_);
1290 STLDeleteElements(&continuous_spaces_);
1291 STLDeleteElements(&discontinuous_spaces_);
1292 delete gc_complete_lock_;
1293 delete thread_flip_lock_;
1294 delete pending_task_lock_;
1295 delete backtrace_lock_;
1296 uint64_t unique_count = unique_backtrace_count_.load();
1297 uint64_t seen_count = seen_backtrace_count_.load();
1298 if (unique_count != 0 || seen_count != 0) {
1299 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1300 }
1301 VLOG(heap) << "Finished ~Heap()";
1302 }
1303
1304
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1305 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1306 for (const auto& space : continuous_spaces_) {
1307 if (space->Contains(addr)) {
1308 return space;
1309 }
1310 }
1311 return nullptr;
1312 }
1313
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1314 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1315 bool fail_ok) const {
1316 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1317 if (space != nullptr) {
1318 return space;
1319 }
1320 if (!fail_ok) {
1321 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1322 }
1323 return nullptr;
1324 }
1325
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1326 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1327 bool fail_ok) const {
1328 for (const auto& space : discontinuous_spaces_) {
1329 if (space->Contains(obj.Ptr())) {
1330 return space;
1331 }
1332 }
1333 if (!fail_ok) {
1334 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1335 }
1336 return nullptr;
1337 }
1338
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1339 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1340 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1341 if (result != nullptr) {
1342 return result;
1343 }
1344 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1345 }
1346
FindSpaceFromAddress(const void * addr) const1347 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1348 for (const auto& space : continuous_spaces_) {
1349 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1350 return space;
1351 }
1352 }
1353 for (const auto& space : discontinuous_spaces_) {
1354 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1355 return space;
1356 }
1357 }
1358 return nullptr;
1359 }
1360
DumpSpaceNameFromAddress(const void * addr) const1361 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1362 space::Space* space = FindSpaceFromAddress(addr);
1363 return (space != nullptr) ? space->GetName() : "no space";
1364 }
1365
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1366 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1367 // If we're in a stack overflow, do not create a new exception. It would require running the
1368 // constructor, which will of course still be in a stack overflow.
1369 if (self->IsHandlingStackOverflow()) {
1370 self->SetException(
1371 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1372 return;
1373 }
1374
1375 std::ostringstream oss;
1376 size_t total_bytes_free = GetFreeMemory();
1377 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1378 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1379 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1380 << ", growth limit "
1381 << growth_limit_;
1382 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1383 if (total_bytes_free >= byte_count) {
1384 space::AllocSpace* space = nullptr;
1385 if (allocator_type == kAllocatorTypeNonMoving) {
1386 space = non_moving_space_;
1387 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1388 allocator_type == kAllocatorTypeDlMalloc) {
1389 space = main_space_;
1390 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1391 allocator_type == kAllocatorTypeTLAB) {
1392 space = bump_pointer_space_;
1393 } else if (allocator_type == kAllocatorTypeRegion ||
1394 allocator_type == kAllocatorTypeRegionTLAB) {
1395 space = region_space_;
1396 }
1397 if (space != nullptr) {
1398 space->LogFragmentationAllocFailure(oss, byte_count);
1399 }
1400 }
1401 self->ThrowOutOfMemoryError(oss.str().c_str());
1402 }
1403
DoPendingCollectorTransition()1404 void Heap::DoPendingCollectorTransition() {
1405 CollectorType desired_collector_type = desired_collector_type_;
1406 // Launch homogeneous space compaction if it is desired.
1407 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1408 if (!CareAboutPauseTimes()) {
1409 PerformHomogeneousSpaceCompact();
1410 } else {
1411 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1412 }
1413 } else if (desired_collector_type == kCollectorTypeCCBackground) {
1414 DCHECK(kUseReadBarrier);
1415 if (!CareAboutPauseTimes()) {
1416 // Invoke CC full compaction.
1417 CollectGarbageInternal(collector::kGcTypeFull,
1418 kGcCauseCollectorTransition,
1419 /*clear_soft_references=*/false);
1420 } else {
1421 VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
1422 }
1423 } else {
1424 CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
1425 }
1426 }
1427
Trim(Thread * self)1428 void Heap::Trim(Thread* self) {
1429 Runtime* const runtime = Runtime::Current();
1430 if (!CareAboutPauseTimes()) {
1431 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1432 // about pauses.
1433 ScopedTrace trace("Deflating monitors");
1434 // Avoid race conditions on the lock word for CC.
1435 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1436 ScopedSuspendAll ssa(__FUNCTION__);
1437 uint64_t start_time = NanoTime();
1438 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1439 VLOG(heap) << "Deflating " << count << " monitors took "
1440 << PrettyDuration(NanoTime() - start_time);
1441 }
1442 TrimIndirectReferenceTables(self);
1443 TrimSpaces(self);
1444 // Trim arenas that may have been used by JIT or verifier.
1445 runtime->GetArenaPool()->TrimMaps();
1446 }
1447
1448 class TrimIndirectReferenceTableClosure : public Closure {
1449 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1450 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1451 }
Run(Thread * thread)1452 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1453 thread->GetJniEnv()->TrimLocals();
1454 // If thread is a running mutator, then act on behalf of the trim thread.
1455 // See the code in ThreadList::RunCheckpoint.
1456 barrier_->Pass(Thread::Current());
1457 }
1458
1459 private:
1460 Barrier* const barrier_;
1461 };
1462
TrimIndirectReferenceTables(Thread * self)1463 void Heap::TrimIndirectReferenceTables(Thread* self) {
1464 ScopedObjectAccess soa(self);
1465 ScopedTrace trace(__PRETTY_FUNCTION__);
1466 JavaVMExt* vm = soa.Vm();
1467 // Trim globals indirect reference table.
1468 vm->TrimGlobals();
1469 // Trim locals indirect reference tables.
1470 Barrier barrier(0);
1471 TrimIndirectReferenceTableClosure closure(&barrier);
1472 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1473 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1474 if (barrier_count != 0) {
1475 barrier.Increment(self, barrier_count);
1476 }
1477 }
1478
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1479 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1480 // Need to do this before acquiring the locks since we don't want to get suspended while
1481 // holding any locks.
1482 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1483 MutexLock mu(self, *gc_complete_lock_);
1484 // Ensure there is only one GC at a time.
1485 WaitForGcToCompleteLocked(cause, self);
1486 collector_type_running_ = collector_type;
1487 last_gc_cause_ = cause;
1488 thread_running_gc_ = self;
1489 }
1490
TrimSpaces(Thread * self)1491 void Heap::TrimSpaces(Thread* self) {
1492 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1493 // trimming.
1494 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1495 ScopedTrace trace(__PRETTY_FUNCTION__);
1496 const uint64_t start_ns = NanoTime();
1497 // Trim the managed spaces.
1498 uint64_t total_alloc_space_allocated = 0;
1499 uint64_t total_alloc_space_size = 0;
1500 uint64_t managed_reclaimed = 0;
1501 {
1502 ScopedObjectAccess soa(self);
1503 for (const auto& space : continuous_spaces_) {
1504 if (space->IsMallocSpace()) {
1505 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1506 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1507 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1508 // for a long period of time.
1509 managed_reclaimed += malloc_space->Trim();
1510 }
1511 total_alloc_space_size += malloc_space->Size();
1512 }
1513 }
1514 }
1515 total_alloc_space_allocated = GetBytesAllocated();
1516 if (large_object_space_ != nullptr) {
1517 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1518 }
1519 if (bump_pointer_space_ != nullptr) {
1520 total_alloc_space_allocated -= bump_pointer_space_->Size();
1521 }
1522 if (region_space_ != nullptr) {
1523 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1524 }
1525 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1526 static_cast<float>(total_alloc_space_size);
1527 uint64_t gc_heap_end_ns = NanoTime();
1528 // We never move things in the native heap, so we can finish the GC at this point.
1529 FinishGC(self, collector::kGcTypeNone);
1530
1531 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1532 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1533 << static_cast<int>(100 * managed_utilization) << "%.";
1534 }
1535
IsValidObjectAddress(const void * addr) const1536 bool Heap::IsValidObjectAddress(const void* addr) const {
1537 if (addr == nullptr) {
1538 return true;
1539 }
1540 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1541 }
1542
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1543 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1544 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1545 }
1546
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1547 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1548 bool search_allocation_stack,
1549 bool search_live_stack,
1550 bool sorted) {
1551 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1552 return false;
1553 }
1554 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1555 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1556 if (obj == klass) {
1557 // This case happens for java.lang.Class.
1558 return true;
1559 }
1560 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1561 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1562 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1563 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1564 return temp_space_->Contains(obj.Ptr());
1565 }
1566 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1567 return true;
1568 }
1569 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1570 space::DiscontinuousSpace* d_space = nullptr;
1571 if (c_space != nullptr) {
1572 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1573 return true;
1574 }
1575 } else {
1576 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1577 if (d_space != nullptr) {
1578 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1579 return true;
1580 }
1581 }
1582 }
1583 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1584 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1585 if (i > 0) {
1586 NanoSleep(MsToNs(10));
1587 }
1588 if (search_allocation_stack) {
1589 if (sorted) {
1590 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1591 return true;
1592 }
1593 } else if (allocation_stack_->Contains(obj.Ptr())) {
1594 return true;
1595 }
1596 }
1597
1598 if (search_live_stack) {
1599 if (sorted) {
1600 if (live_stack_->ContainsSorted(obj.Ptr())) {
1601 return true;
1602 }
1603 } else if (live_stack_->Contains(obj.Ptr())) {
1604 return true;
1605 }
1606 }
1607 }
1608 // We need to check the bitmaps again since there is a race where we mark something as live and
1609 // then clear the stack containing it.
1610 if (c_space != nullptr) {
1611 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1612 return true;
1613 }
1614 } else {
1615 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1616 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1617 return true;
1618 }
1619 }
1620 return false;
1621 }
1622
DumpSpaces() const1623 std::string Heap::DumpSpaces() const {
1624 std::ostringstream oss;
1625 DumpSpaces(oss);
1626 return oss.str();
1627 }
1628
DumpSpaces(std::ostream & stream) const1629 void Heap::DumpSpaces(std::ostream& stream) const {
1630 for (const auto& space : continuous_spaces_) {
1631 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1632 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1633 stream << space << " " << *space << "\n";
1634 if (live_bitmap != nullptr) {
1635 stream << live_bitmap << " " << *live_bitmap << "\n";
1636 }
1637 if (mark_bitmap != nullptr) {
1638 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1639 }
1640 }
1641 for (const auto& space : discontinuous_spaces_) {
1642 stream << space << " " << *space << "\n";
1643 }
1644 }
1645
VerifyObjectBody(ObjPtr<mirror::Object> obj)1646 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1647 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1648 return;
1649 }
1650
1651 // Ignore early dawn of the universe verifications.
1652 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1653 return;
1654 }
1655 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1656 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1657 CHECK(c != nullptr) << "Null class in object " << obj;
1658 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1659 CHECK(VerifyClassClass(c));
1660
1661 if (verify_object_mode_ > kVerifyObjectModeFast) {
1662 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1663 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1664 }
1665 }
1666
VerifyHeap()1667 void Heap::VerifyHeap() {
1668 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1669 auto visitor = [&](mirror::Object* obj) {
1670 VerifyObjectBody(obj);
1671 };
1672 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1673 // NO_THREAD_SAFETY_ANALYSIS.
1674 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1675 GetLiveBitmap()->Visit(visitor);
1676 };
1677 no_thread_safety_analysis();
1678 }
1679
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1680 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1681 // Use signed comparison since freed bytes can be negative when background compaction foreground
1682 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1683 // free list backed space, which may increase memory footprint due to padding and binning.
1684 RACING_DCHECK_LE(freed_bytes,
1685 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1686 // Note: This relies on 2s complement for handling negative freed_bytes.
1687 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1688 if (Runtime::Current()->HasStatsEnabled()) {
1689 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1690 thread_stats->freed_objects += freed_objects;
1691 thread_stats->freed_bytes += freed_bytes;
1692 // TODO: Do this concurrently.
1693 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1694 global_stats->freed_objects += freed_objects;
1695 global_stats->freed_bytes += freed_bytes;
1696 }
1697 }
1698
RecordFreeRevoke()1699 void Heap::RecordFreeRevoke() {
1700 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1701 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1702 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1703 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1704 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1705 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1706 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1707 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1708 bytes_freed) << "num_bytes_allocated_ underflow";
1709 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1710 }
1711
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1712 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1713 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1714 return rosalloc_space_;
1715 }
1716 for (const auto& space : continuous_spaces_) {
1717 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1718 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1719 return space->AsContinuousSpace()->AsRosAllocSpace();
1720 }
1721 }
1722 }
1723 return nullptr;
1724 }
1725
EntrypointsInstrumented()1726 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1727 instrumentation::Instrumentation* const instrumentation =
1728 Runtime::Current()->GetInstrumentation();
1729 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1730 }
1731
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1732 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1733 AllocatorType allocator,
1734 bool instrumented,
1735 size_t alloc_size,
1736 size_t* bytes_allocated,
1737 size_t* usable_size,
1738 size_t* bytes_tl_bulk_allocated,
1739 ObjPtr<mirror::Class>* klass) {
1740 bool was_default_allocator = allocator == GetCurrentAllocator();
1741 // Make sure there is no pending exception since we may need to throw an OOME.
1742 self->AssertNoPendingException();
1743 DCHECK(klass != nullptr);
1744
1745 StackHandleScope<1> hs(self);
1746 HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
1747
1748 auto send_object_pre_alloc =
1749 [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
1750 if (UNLIKELY(instrumented)) {
1751 AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
1752 if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
1753 l->PreObjectAllocated(self, h_klass, &alloc_size);
1754 }
1755 }
1756 };
1757 #define PERFORM_SUSPENDING_OPERATION(op) \
1758 [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
1759 ScopedAllowThreadSuspension ats; \
1760 auto res = (op); \
1761 send_object_pre_alloc(); \
1762 return res; \
1763 }()
1764
1765 // The allocation failed. If the GC is running, block until it completes, and then retry the
1766 // allocation.
1767 collector::GcType last_gc =
1768 PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
1769 // If we were the default allocator but the allocator changed while we were suspended,
1770 // abort the allocation.
1771 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1772 (!instrumented && EntrypointsInstrumented())) {
1773 return nullptr;
1774 }
1775 if (last_gc != collector::kGcTypeNone) {
1776 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1777 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1778 usable_size, bytes_tl_bulk_allocated);
1779 if (ptr != nullptr) {
1780 return ptr;
1781 }
1782 }
1783
1784 collector::GcType tried_type = next_gc_type_;
1785 const bool gc_ran = PERFORM_SUSPENDING_OPERATION(
1786 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone);
1787
1788 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1789 (!instrumented && EntrypointsInstrumented())) {
1790 return nullptr;
1791 }
1792 if (gc_ran) {
1793 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1794 usable_size, bytes_tl_bulk_allocated);
1795 if (ptr != nullptr) {
1796 return ptr;
1797 }
1798 }
1799
1800 // Loop through our different Gc types and try to Gc until we get enough free memory.
1801 for (collector::GcType gc_type : gc_plan_) {
1802 if (gc_type == tried_type) {
1803 continue;
1804 }
1805 // Attempt to run the collector, if we succeed, re-try the allocation.
1806 const bool plan_gc_ran = PERFORM_SUSPENDING_OPERATION(
1807 CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone);
1808 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1809 (!instrumented && EntrypointsInstrumented())) {
1810 return nullptr;
1811 }
1812 if (plan_gc_ran) {
1813 // Did we free sufficient memory for the allocation to succeed?
1814 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1815 usable_size, bytes_tl_bulk_allocated);
1816 if (ptr != nullptr) {
1817 return ptr;
1818 }
1819 }
1820 }
1821 // Allocations have failed after GCs; this is an exceptional state.
1822 // Try harder, growing the heap if necessary.
1823 mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1824 usable_size, bytes_tl_bulk_allocated);
1825 if (ptr != nullptr) {
1826 return ptr;
1827 }
1828 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1829 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1830 // VM spec requires that all SoftReferences have been collected and cleared before throwing
1831 // OOME.
1832 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1833 << " allocation";
1834 // TODO: Run finalization, but this may cause more allocations to occur.
1835 // We don't need a WaitForGcToComplete here either.
1836 DCHECK(!gc_plan_.empty());
1837 PERFORM_SUSPENDING_OPERATION(CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true));
1838 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1839 (!instrumented && EntrypointsInstrumented())) {
1840 return nullptr;
1841 }
1842 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1843 bytes_tl_bulk_allocated);
1844 if (ptr == nullptr) {
1845 const uint64_t current_time = NanoTime();
1846 switch (allocator) {
1847 case kAllocatorTypeRosAlloc:
1848 // Fall-through.
1849 case kAllocatorTypeDlMalloc: {
1850 if (use_homogeneous_space_compaction_for_oom_ &&
1851 current_time - last_time_homogeneous_space_compaction_by_oom_ >
1852 min_interval_homogeneous_space_compaction_by_oom_) {
1853 last_time_homogeneous_space_compaction_by_oom_ = current_time;
1854 HomogeneousSpaceCompactResult result =
1855 PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact());
1856 // Thread suspension could have occurred.
1857 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1858 (!instrumented && EntrypointsInstrumented())) {
1859 return nullptr;
1860 }
1861 switch (result) {
1862 case HomogeneousSpaceCompactResult::kSuccess:
1863 // If the allocation succeeded, we delayed an oom.
1864 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1865 usable_size, bytes_tl_bulk_allocated);
1866 if (ptr != nullptr) {
1867 count_delayed_oom_++;
1868 }
1869 break;
1870 case HomogeneousSpaceCompactResult::kErrorReject:
1871 // Reject due to disabled moving GC.
1872 break;
1873 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1874 // Throw OOM by default.
1875 break;
1876 default: {
1877 UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1878 << static_cast<size_t>(result);
1879 UNREACHABLE();
1880 }
1881 }
1882 // Always print that we ran homogeneous space compation since this can cause jank.
1883 VLOG(heap) << "Ran heap homogeneous space compaction, "
1884 << " requested defragmentation "
1885 << count_requested_homogeneous_space_compaction_.load()
1886 << " performed defragmentation "
1887 << count_performed_homogeneous_space_compaction_.load()
1888 << " ignored homogeneous space compaction "
1889 << count_ignored_homogeneous_space_compaction_.load()
1890 << " delayed count = "
1891 << count_delayed_oom_.load();
1892 }
1893 break;
1894 }
1895 default: {
1896 // Do nothing for others allocators.
1897 }
1898 }
1899 }
1900 #undef PERFORM_SUSPENDING_OPERATION
1901 // If the allocation hasn't succeeded by this point, throw an OOM error.
1902 if (ptr == nullptr) {
1903 ScopedAllowThreadSuspension ats;
1904 ThrowOutOfMemoryError(self, alloc_size, allocator);
1905 }
1906 return ptr;
1907 }
1908
SetTargetHeapUtilization(float target)1909 void Heap::SetTargetHeapUtilization(float target) {
1910 DCHECK_GT(target, 0.1f); // asserted in Java code
1911 DCHECK_LT(target, 1.0f);
1912 target_utilization_ = target;
1913 }
1914
GetObjectsAllocated() const1915 size_t Heap::GetObjectsAllocated() const {
1916 Thread* const self = Thread::Current();
1917 ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1918 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
1919 // us to suspend while we are doing SuspendAll. b/35232978
1920 gc::ScopedGCCriticalSection gcs(Thread::Current(),
1921 gc::kGcCauseGetObjectsAllocated,
1922 gc::kCollectorTypeGetObjectsAllocated);
1923 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1924 ScopedSuspendAll ssa(__FUNCTION__);
1925 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1926 size_t total = 0;
1927 for (space::AllocSpace* space : alloc_spaces_) {
1928 total += space->GetObjectsAllocated();
1929 }
1930 return total;
1931 }
1932
GetObjectsAllocatedEver() const1933 uint64_t Heap::GetObjectsAllocatedEver() const {
1934 uint64_t total = GetObjectsFreedEver();
1935 // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1936 if (Thread::Current() != nullptr) {
1937 total += GetObjectsAllocated();
1938 }
1939 return total;
1940 }
1941
GetBytesAllocatedEver() const1942 uint64_t Heap::GetBytesAllocatedEver() const {
1943 // Force the returned value to be monotonically increasing, in the sense that if this is called
1944 // at A and B, such that A happens-before B, then the call at B returns a value no smaller than
1945 // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
1946 // and total_bytes_freed_ever_ is incremented later.
1947 static std::atomic<uint64_t> max_bytes_so_far(0);
1948 uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
1949 uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire);
1950 current_bytes += GetBytesAllocated();
1951 do {
1952 if (current_bytes <= so_far) {
1953 return so_far;
1954 }
1955 } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
1956 current_bytes, std::memory_order_relaxed));
1957 return current_bytes;
1958 }
1959
1960 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)1961 static bool MatchesClass(mirror::Object* obj,
1962 Handle<mirror::Class> h_class,
1963 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
1964 mirror::Class* instance_class = obj->GetClass();
1965 CHECK(instance_class != nullptr);
1966 ObjPtr<mirror::Class> klass = h_class.Get();
1967 if (use_is_assignable_from) {
1968 return klass != nullptr && klass->IsAssignableFrom(instance_class);
1969 }
1970 return instance_class == klass;
1971 }
1972
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)1973 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
1974 bool use_is_assignable_from,
1975 uint64_t* counts) {
1976 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1977 for (size_t i = 0; i < classes.size(); ++i) {
1978 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
1979 ++counts[i];
1980 }
1981 }
1982 };
1983 VisitObjects(instance_counter);
1984 }
1985
GetInstances(VariableSizedHandleScope & scope,Handle<mirror::Class> h_class,bool use_is_assignable_from,int32_t max_count,std::vector<Handle<mirror::Object>> & instances)1986 void Heap::GetInstances(VariableSizedHandleScope& scope,
1987 Handle<mirror::Class> h_class,
1988 bool use_is_assignable_from,
1989 int32_t max_count,
1990 std::vector<Handle<mirror::Object>>& instances) {
1991 DCHECK_GE(max_count, 0);
1992 auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1993 if (MatchesClass(obj, h_class, use_is_assignable_from)) {
1994 if (max_count == 0 || instances.size() < static_cast<size_t>(max_count)) {
1995 instances.push_back(scope.NewHandle(obj));
1996 }
1997 }
1998 };
1999 VisitObjects(instance_collector);
2000 }
2001
GetReferringObjects(VariableSizedHandleScope & scope,Handle<mirror::Object> o,int32_t max_count,std::vector<Handle<mirror::Object>> & referring_objects)2002 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
2003 Handle<mirror::Object> o,
2004 int32_t max_count,
2005 std::vector<Handle<mirror::Object>>& referring_objects) {
2006 class ReferringObjectsFinder {
2007 public:
2008 ReferringObjectsFinder(VariableSizedHandleScope& scope_in,
2009 Handle<mirror::Object> object_in,
2010 int32_t max_count_in,
2011 std::vector<Handle<mirror::Object>>& referring_objects_in)
2012 REQUIRES_SHARED(Locks::mutator_lock_)
2013 : scope_(scope_in),
2014 object_(object_in),
2015 max_count_(max_count_in),
2016 referring_objects_(referring_objects_in) {}
2017
2018 // For Object::VisitReferences.
2019 void operator()(ObjPtr<mirror::Object> obj,
2020 MemberOffset offset,
2021 bool is_static ATTRIBUTE_UNUSED) const
2022 REQUIRES_SHARED(Locks::mutator_lock_) {
2023 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2024 if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
2025 referring_objects_.push_back(scope_.NewHandle(obj));
2026 }
2027 }
2028
2029 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
2030 const {}
2031 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
2032
2033 private:
2034 VariableSizedHandleScope& scope_;
2035 Handle<mirror::Object> const object_;
2036 const uint32_t max_count_;
2037 std::vector<Handle<mirror::Object>>& referring_objects_;
2038 DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
2039 };
2040 ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
2041 auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2042 obj->VisitReferences(finder, VoidFunctor());
2043 };
2044 VisitObjects(referring_objects_finder);
2045 }
2046
CollectGarbage(bool clear_soft_references,GcCause cause)2047 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2048 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2049 // last GC will not have necessarily been cleared.
2050 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references);
2051 }
2052
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2053 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2054 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2055 foreground_collector_type_ == kCollectorTypeCMS;
2056 }
2057
PerformHomogeneousSpaceCompact()2058 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2059 Thread* self = Thread::Current();
2060 // Inc requested homogeneous space compaction.
2061 count_requested_homogeneous_space_compaction_++;
2062 // Store performed homogeneous space compaction at a new request arrival.
2063 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2064 Locks::mutator_lock_->AssertNotHeld(self);
2065 {
2066 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2067 MutexLock mu(self, *gc_complete_lock_);
2068 // Ensure there is only one GC at a time.
2069 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2070 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2071 // count is non zero.
2072 // If the collector type changed to something which doesn't benefit from homogeneous space
2073 // compaction, exit.
2074 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2075 !main_space_->CanMoveObjects()) {
2076 return kErrorReject;
2077 }
2078 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2079 return kErrorUnsupported;
2080 }
2081 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2082 }
2083 if (Runtime::Current()->IsShuttingDown(self)) {
2084 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2085 // cause objects to get finalized.
2086 FinishGC(self, collector::kGcTypeNone);
2087 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2088 }
2089 collector::GarbageCollector* collector;
2090 {
2091 ScopedSuspendAll ssa(__FUNCTION__);
2092 uint64_t start_time = NanoTime();
2093 // Launch compaction.
2094 space::MallocSpace* to_space = main_space_backup_.release();
2095 space::MallocSpace* from_space = main_space_;
2096 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2097 const uint64_t space_size_before_compaction = from_space->Size();
2098 AddSpace(to_space);
2099 // Make sure that we will have enough room to copy.
2100 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2101 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2102 const uint64_t space_size_after_compaction = to_space->Size();
2103 main_space_ = to_space;
2104 main_space_backup_.reset(from_space);
2105 RemoveSpace(from_space);
2106 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2107 // Update performed homogeneous space compaction count.
2108 count_performed_homogeneous_space_compaction_++;
2109 // Print statics log and resume all threads.
2110 uint64_t duration = NanoTime() - start_time;
2111 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2112 << PrettySize(space_size_before_compaction) << " -> "
2113 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2114 << std::fixed << static_cast<double>(space_size_after_compaction) /
2115 static_cast<double>(space_size_before_compaction);
2116 }
2117 // Finish GC.
2118 // Get the references we need to enqueue.
2119 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2120 GrowForUtilization(semi_space_collector_);
2121 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2122 FinishGC(self, collector::kGcTypeFull);
2123 // Enqueue any references after losing the GC locks.
2124 clear->Run(self);
2125 clear->Finalize();
2126 {
2127 ScopedObjectAccess soa(self);
2128 soa.Vm()->UnloadNativeLibraries();
2129 }
2130 return HomogeneousSpaceCompactResult::kSuccess;
2131 }
2132
ChangeCollector(CollectorType collector_type)2133 void Heap::ChangeCollector(CollectorType collector_type) {
2134 // TODO: Only do this with all mutators suspended to avoid races.
2135 if (collector_type != collector_type_) {
2136 collector_type_ = collector_type;
2137 gc_plan_.clear();
2138 switch (collector_type_) {
2139 case kCollectorTypeCC: {
2140 if (use_generational_cc_) {
2141 gc_plan_.push_back(collector::kGcTypeSticky);
2142 }
2143 gc_plan_.push_back(collector::kGcTypeFull);
2144 if (use_tlab_) {
2145 ChangeAllocator(kAllocatorTypeRegionTLAB);
2146 } else {
2147 ChangeAllocator(kAllocatorTypeRegion);
2148 }
2149 break;
2150 }
2151 case kCollectorTypeSS: {
2152 gc_plan_.push_back(collector::kGcTypeFull);
2153 if (use_tlab_) {
2154 ChangeAllocator(kAllocatorTypeTLAB);
2155 } else {
2156 ChangeAllocator(kAllocatorTypeBumpPointer);
2157 }
2158 break;
2159 }
2160 case kCollectorTypeMS: {
2161 gc_plan_.push_back(collector::kGcTypeSticky);
2162 gc_plan_.push_back(collector::kGcTypePartial);
2163 gc_plan_.push_back(collector::kGcTypeFull);
2164 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2165 break;
2166 }
2167 case kCollectorTypeCMS: {
2168 gc_plan_.push_back(collector::kGcTypeSticky);
2169 gc_plan_.push_back(collector::kGcTypePartial);
2170 gc_plan_.push_back(collector::kGcTypeFull);
2171 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2172 break;
2173 }
2174 default: {
2175 UNIMPLEMENTED(FATAL);
2176 UNREACHABLE();
2177 }
2178 }
2179 if (IsGcConcurrent()) {
2180 concurrent_start_bytes_ =
2181 UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
2182 kMinConcurrentRemainingBytes);
2183 } else {
2184 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2185 }
2186 }
2187 }
2188
2189 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2190 class ZygoteCompactingCollector final : public collector::SemiSpace {
2191 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2192 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2193 : SemiSpace(heap, "zygote collector"),
2194 bin_live_bitmap_(nullptr),
2195 bin_mark_bitmap_(nullptr),
2196 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2197
BuildBins(space::ContinuousSpace * space)2198 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2199 bin_live_bitmap_ = space->GetLiveBitmap();
2200 bin_mark_bitmap_ = space->GetMarkBitmap();
2201 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2202 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2203 // Note: This requires traversing the space in increasing order of object addresses.
2204 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2205 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2206 size_t bin_size = object_addr - prev;
2207 // Add the bin consisting of the end of the previous object to the start of the current object.
2208 AddBin(bin_size, prev);
2209 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2210 };
2211 bin_live_bitmap_->Walk(visitor);
2212 // Add the last bin which spans after the last object to the end of the space.
2213 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2214 }
2215
2216 private:
2217 // Maps from bin sizes to locations.
2218 std::multimap<size_t, uintptr_t> bins_;
2219 // Live bitmap of the space which contains the bins.
2220 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2221 // Mark bitmap of the space which contains the bins.
2222 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2223 const bool is_running_on_memory_tool_;
2224
AddBin(size_t size,uintptr_t position)2225 void AddBin(size_t size, uintptr_t position) {
2226 if (is_running_on_memory_tool_) {
2227 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2228 }
2229 if (size != 0) {
2230 bins_.insert(std::make_pair(size, position));
2231 }
2232 }
2233
ShouldSweepSpace(space::ContinuousSpace * space ATTRIBUTE_UNUSED) const2234 bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override {
2235 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2236 // allocator.
2237 return false;
2238 }
2239
MarkNonForwardedObject(mirror::Object * obj)2240 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2241 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2242 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2243 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2244 mirror::Object* forward_address;
2245 // Find the smallest bin which we can move obj in.
2246 auto it = bins_.lower_bound(alloc_size);
2247 if (it == bins_.end()) {
2248 // No available space in the bins, place it in the target space instead (grows the zygote
2249 // space).
2250 size_t bytes_allocated, dummy;
2251 forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2252 if (to_space_live_bitmap_ != nullptr) {
2253 to_space_live_bitmap_->Set(forward_address);
2254 } else {
2255 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2256 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2257 }
2258 } else {
2259 size_t size = it->first;
2260 uintptr_t pos = it->second;
2261 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2262 forward_address = reinterpret_cast<mirror::Object*>(pos);
2263 // Set the live and mark bits so that sweeping system weaks works properly.
2264 bin_live_bitmap_->Set(forward_address);
2265 bin_mark_bitmap_->Set(forward_address);
2266 DCHECK_GE(size, alloc_size);
2267 // Add a new bin with the remaining space.
2268 AddBin(size - alloc_size, pos + alloc_size);
2269 }
2270 // Copy the object over to its new location.
2271 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2272 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2273 if (kUseBakerReadBarrier) {
2274 obj->AssertReadBarrierState();
2275 forward_address->AssertReadBarrierState();
2276 }
2277 return forward_address;
2278 }
2279 };
2280
UnBindBitmaps()2281 void Heap::UnBindBitmaps() {
2282 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2283 for (const auto& space : GetContinuousSpaces()) {
2284 if (space->IsContinuousMemMapAllocSpace()) {
2285 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2286 if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
2287 alloc_space->UnBindBitmaps();
2288 }
2289 }
2290 }
2291 }
2292
IncrementFreedEver()2293 void Heap::IncrementFreedEver() {
2294 // Counters are updated only by us, but may be read concurrently.
2295 // The updates should become visible after the corresponding live object info.
2296 total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
2297 + GetCurrentGcIteration()->GetFreedObjects()
2298 + GetCurrentGcIteration()->GetFreedLargeObjects(),
2299 std::memory_order_release);
2300 total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
2301 + GetCurrentGcIteration()->GetFreedBytes()
2302 + GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
2303 std::memory_order_release);
2304 }
2305
2306 #pragma clang diagnostic push
2307 #if !ART_USE_FUTEXES
2308 // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
2309 # pragma clang diagnostic ignored "-Wframe-larger-than="
2310 #endif
2311 // This has a large frame, but shouldn't be run anywhere near the stack limit.
PreZygoteFork()2312 void Heap::PreZygoteFork() {
2313 if (!HasZygoteSpace()) {
2314 // We still want to GC in case there is some unreachable non moving objects that could cause a
2315 // suboptimal bin packing when we compact the zygote space.
2316 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2317 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2318 // the trim process may require locking the mutator lock.
2319 non_moving_space_->Trim();
2320 }
2321 Thread* self = Thread::Current();
2322 MutexLock mu(self, zygote_creation_lock_);
2323 // Try to see if we have any Zygote spaces.
2324 if (HasZygoteSpace()) {
2325 return;
2326 }
2327 Runtime::Current()->GetInternTable()->AddNewTable();
2328 Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2329 VLOG(heap) << "Starting PreZygoteFork";
2330 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2331 // there.
2332 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2333 const bool same_space = non_moving_space_ == main_space_;
2334 if (kCompactZygote) {
2335 // Temporarily disable rosalloc verification because the zygote
2336 // compaction will mess up the rosalloc internal metadata.
2337 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2338 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2339 zygote_collector.BuildBins(non_moving_space_);
2340 // Create a new bump pointer space which we will compact into.
2341 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2342 non_moving_space_->Limit());
2343 // Compact the bump pointer space to a new zygote bump pointer space.
2344 bool reset_main_space = false;
2345 if (IsMovingGc(collector_type_)) {
2346 if (collector_type_ == kCollectorTypeCC) {
2347 zygote_collector.SetFromSpace(region_space_);
2348 } else {
2349 zygote_collector.SetFromSpace(bump_pointer_space_);
2350 }
2351 } else {
2352 CHECK(main_space_ != nullptr);
2353 CHECK_NE(main_space_, non_moving_space_)
2354 << "Does not make sense to compact within the same space";
2355 // Copy from the main space.
2356 zygote_collector.SetFromSpace(main_space_);
2357 reset_main_space = true;
2358 }
2359 zygote_collector.SetToSpace(&target_space);
2360 zygote_collector.SetSwapSemiSpaces(false);
2361 zygote_collector.Run(kGcCauseCollectorTransition, false);
2362 if (reset_main_space) {
2363 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2364 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2365 MemMap mem_map = main_space_->ReleaseMemMap();
2366 RemoveSpace(main_space_);
2367 space::Space* old_main_space = main_space_;
2368 CreateMainMallocSpace(std::move(mem_map),
2369 kDefaultInitialSize,
2370 std::min(mem_map.Size(), growth_limit_),
2371 mem_map.Size());
2372 delete old_main_space;
2373 AddSpace(main_space_);
2374 } else {
2375 if (collector_type_ == kCollectorTypeCC) {
2376 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2377 // Evacuated everything out of the region space, clear the mark bitmap.
2378 region_space_->GetMarkBitmap()->Clear();
2379 } else {
2380 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2381 }
2382 }
2383 if (temp_space_ != nullptr) {
2384 CHECK(temp_space_->IsEmpty());
2385 }
2386 IncrementFreedEver();
2387 // Update the end and write out image.
2388 non_moving_space_->SetEnd(target_space.End());
2389 non_moving_space_->SetLimit(target_space.Limit());
2390 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2391 }
2392 // Change the collector to the post zygote one.
2393 ChangeCollector(foreground_collector_type_);
2394 // Save the old space so that we can remove it after we complete creating the zygote space.
2395 space::MallocSpace* old_alloc_space = non_moving_space_;
2396 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2397 // the remaining available space.
2398 // Remove the old space before creating the zygote space since creating the zygote space sets
2399 // the old alloc space's bitmaps to null.
2400 RemoveSpace(old_alloc_space);
2401 if (collector::SemiSpace::kUseRememberedSet) {
2402 // Sanity bound check.
2403 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2404 // Remove the remembered set for the now zygote space (the old
2405 // non-moving space). Note now that we have compacted objects into
2406 // the zygote space, the data in the remembered set is no longer
2407 // needed. The zygote space will instead have a mod-union table
2408 // from this point on.
2409 RemoveRememberedSet(old_alloc_space);
2410 }
2411 // Remaining space becomes the new non moving space.
2412 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2413 &non_moving_space_);
2414 CHECK(!non_moving_space_->CanMoveObjects());
2415 if (same_space) {
2416 main_space_ = non_moving_space_;
2417 SetSpaceAsDefault(main_space_);
2418 }
2419 delete old_alloc_space;
2420 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2421 AddSpace(zygote_space_);
2422 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2423 AddSpace(non_moving_space_);
2424 constexpr bool set_mark_bit = kUseBakerReadBarrier
2425 && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
2426 if (set_mark_bit) {
2427 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2428 // safe since we mark all of the objects that may reference non immune objects as gray.
2429 zygote_space_->SetMarkBitInLiveObjects();
2430 }
2431
2432 // Create the zygote space mod union table.
2433 accounting::ModUnionTable* mod_union_table =
2434 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2435 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2436
2437 if (collector_type_ != kCollectorTypeCC) {
2438 // Set all the cards in the mod-union table since we don't know which objects contain references
2439 // to large objects.
2440 mod_union_table->SetCards();
2441 } else {
2442 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2443 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2444 // necessary to have marked since the zygote space may not refer to any objects not in the
2445 // zygote or image spaces at this point.
2446 mod_union_table->ProcessCards();
2447 mod_union_table->ClearTable();
2448
2449 // For CC we never collect zygote large objects. This means we do not need to set the cards for
2450 // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
2451 // The existing mod-union tables are only for image spaces and may only reference zygote and
2452 // image objects.
2453 for (auto& pair : mod_union_tables_) {
2454 CHECK(pair.first->IsImageSpace());
2455 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2456 accounting::ModUnionTable* table = pair.second;
2457 table->ClearTable();
2458 }
2459 }
2460 AddModUnionTable(mod_union_table);
2461 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
2462 if (collector::SemiSpace::kUseRememberedSet) {
2463 // Add a new remembered set for the post-zygote non-moving space.
2464 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2465 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2466 non_moving_space_);
2467 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2468 << "Failed to create post-zygote non-moving space remembered set";
2469 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2470 }
2471 }
2472 #pragma clang diagnostic pop
2473
FlushAllocStack()2474 void Heap::FlushAllocStack() {
2475 MarkAllocStackAsLive(allocation_stack_.get());
2476 allocation_stack_->Reset();
2477 }
2478
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2479 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2480 accounting::ContinuousSpaceBitmap* bitmap2,
2481 accounting::LargeObjectBitmap* large_objects,
2482 accounting::ObjectStack* stack) {
2483 DCHECK(bitmap1 != nullptr);
2484 DCHECK(bitmap2 != nullptr);
2485 const auto* limit = stack->End();
2486 for (auto* it = stack->Begin(); it != limit; ++it) {
2487 const mirror::Object* obj = it->AsMirrorPtr();
2488 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2489 if (bitmap1->HasAddress(obj)) {
2490 bitmap1->Set(obj);
2491 } else if (bitmap2->HasAddress(obj)) {
2492 bitmap2->Set(obj);
2493 } else {
2494 DCHECK(large_objects != nullptr);
2495 large_objects->Set(obj);
2496 }
2497 }
2498 }
2499 }
2500
SwapSemiSpaces()2501 void Heap::SwapSemiSpaces() {
2502 CHECK(bump_pointer_space_ != nullptr);
2503 CHECK(temp_space_ != nullptr);
2504 std::swap(bump_pointer_space_, temp_space_);
2505 }
2506
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2507 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2508 space::ContinuousMemMapAllocSpace* source_space,
2509 GcCause gc_cause) {
2510 CHECK(kMovingCollector);
2511 if (target_space != source_space) {
2512 // Don't swap spaces since this isn't a typical semi space collection.
2513 semi_space_collector_->SetSwapSemiSpaces(false);
2514 semi_space_collector_->SetFromSpace(source_space);
2515 semi_space_collector_->SetToSpace(target_space);
2516 semi_space_collector_->Run(gc_cause, false);
2517 return semi_space_collector_;
2518 }
2519 LOG(FATAL) << "Unsupported";
2520 UNREACHABLE();
2521 }
2522
TraceHeapSize(size_t heap_size)2523 void Heap::TraceHeapSize(size_t heap_size) {
2524 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2525 }
2526
2527 #if defined(__GLIBC__)
2528 # define IF_GLIBC(x) x
2529 #else
2530 # define IF_GLIBC(x)
2531 #endif
2532
GetNativeBytes()2533 size_t Heap::GetNativeBytes() {
2534 size_t malloc_bytes;
2535 #if defined(__BIONIC__) || defined(__GLIBC__)
2536 IF_GLIBC(size_t mmapped_bytes;)
2537 struct mallinfo mi = mallinfo();
2538 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2539 // and it is thread-safe.
2540 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2541 // Shouldn't happen, but glibc declares uordblks as int.
2542 // Avoiding sign extension gets us correct behavior for another 2 GB.
2543 malloc_bytes = (unsigned int)mi.uordblks;
2544 IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
2545 } else {
2546 malloc_bytes = mi.uordblks;
2547 IF_GLIBC(mmapped_bytes = mi.hblkhd;)
2548 }
2549 // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
2550 // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
2551 // However, malloc implementations seem to interpret hblkhd differently, namely as
2552 // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
2553 // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
2554 // previously helped, and which appears to use a reading of the spec compatible
2555 // with our adjustment.
2556 #if defined(__GLIBC__)
2557 if (mmapped_bytes > malloc_bytes) {
2558 malloc_bytes = mmapped_bytes;
2559 }
2560 #endif // GLIBC
2561 #else // Neither Bionic nor Glibc
2562 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2563 // disable GC triggering based on malloc().
2564 malloc_bytes = 1000;
2565 #endif
2566 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2567 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2568 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2569 // However it would change as pages are unmapped and remapped due to memory pressure, among
2570 // other things. It seems risky to trigger GCs as a result of such changes.
2571 }
2572
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2573 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2574 GcCause gc_cause,
2575 bool clear_soft_references) {
2576 Thread* self = Thread::Current();
2577 Runtime* runtime = Runtime::Current();
2578 // If the heap can't run the GC, silently fail and return that no GC was run.
2579 switch (gc_type) {
2580 case collector::kGcTypePartial: {
2581 if (!HasZygoteSpace()) {
2582 return collector::kGcTypeNone;
2583 }
2584 break;
2585 }
2586 default: {
2587 // Other GC types don't have any special cases which makes them not runnable. The main case
2588 // here is full GC.
2589 }
2590 }
2591 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2592 Locks::mutator_lock_->AssertNotHeld(self);
2593 if (self->IsHandlingStackOverflow()) {
2594 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2595 // space to run the GC.
2596 return collector::kGcTypeNone;
2597 }
2598 bool compacting_gc;
2599 {
2600 gc_complete_lock_->AssertNotHeld(self);
2601 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2602 MutexLock mu(self, *gc_complete_lock_);
2603 // Ensure there is only one GC at a time.
2604 WaitForGcToCompleteLocked(gc_cause, self);
2605 compacting_gc = IsMovingGc(collector_type_);
2606 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2607 if (compacting_gc && disable_moving_gc_count_ != 0) {
2608 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2609 return collector::kGcTypeNone;
2610 }
2611 if (gc_disabled_for_shutdown_) {
2612 return collector::kGcTypeNone;
2613 }
2614 collector_type_running_ = collector_type_;
2615 }
2616 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2617 ++runtime->GetStats()->gc_for_alloc_count;
2618 ++self->GetStats()->gc_for_alloc_count;
2619 }
2620 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2621
2622 DCHECK_LT(gc_type, collector::kGcTypeMax);
2623 DCHECK_NE(gc_type, collector::kGcTypeNone);
2624
2625 collector::GarbageCollector* collector = nullptr;
2626 // TODO: Clean this up.
2627 if (compacting_gc) {
2628 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2629 current_allocator_ == kAllocatorTypeTLAB ||
2630 current_allocator_ == kAllocatorTypeRegion ||
2631 current_allocator_ == kAllocatorTypeRegionTLAB);
2632 switch (collector_type_) {
2633 case kCollectorTypeSS:
2634 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2635 semi_space_collector_->SetToSpace(temp_space_);
2636 semi_space_collector_->SetSwapSemiSpaces(true);
2637 collector = semi_space_collector_;
2638 break;
2639 case kCollectorTypeCC:
2640 if (use_generational_cc_) {
2641 // TODO: Other threads must do the flip checkpoint before they start poking at
2642 // active_concurrent_copying_collector_. So we should not concurrency here.
2643 active_concurrent_copying_collector_ = (gc_type == collector::kGcTypeSticky) ?
2644 young_concurrent_copying_collector_ : concurrent_copying_collector_;
2645 DCHECK(active_concurrent_copying_collector_->RegionSpace() == region_space_);
2646 }
2647 collector = active_concurrent_copying_collector_;
2648 break;
2649 default:
2650 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2651 }
2652 if (collector != active_concurrent_copying_collector_) {
2653 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2654 if (kIsDebugBuild) {
2655 // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2656 temp_space_->GetMemMap()->TryReadable();
2657 }
2658 CHECK(temp_space_->IsEmpty());
2659 }
2660 gc_type = collector::kGcTypeFull; // TODO: Not hard code this in.
2661 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2662 current_allocator_ == kAllocatorTypeDlMalloc) {
2663 collector = FindCollectorByGcType(gc_type);
2664 } else {
2665 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2666 }
2667
2668 CHECK(collector != nullptr)
2669 << "Could not find garbage collector with collector_type="
2670 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2671 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2672 IncrementFreedEver();
2673 RequestTrim(self);
2674 // Collect cleared references.
2675 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2676 // Grow the heap so that we know when to perform the next GC.
2677 GrowForUtilization(collector, bytes_allocated_before_gc);
2678 LogGC(gc_cause, collector);
2679 FinishGC(self, gc_type);
2680 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2681 // otherwise we can deadlock.
2682 clear->Run(self);
2683 clear->Finalize();
2684 // Inform DDMS that a GC completed.
2685 Dbg::GcDidFinish();
2686
2687 old_native_bytes_allocated_.store(GetNativeBytes());
2688
2689 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2690 // deadlocks in case the JNI_OnUnload function does allocations.
2691 {
2692 ScopedObjectAccess soa(self);
2693 soa.Vm()->UnloadNativeLibraries();
2694 }
2695 return gc_type;
2696 }
2697
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2698 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2699 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2700 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2701 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2702 // (mutator time blocked >= long_pause_log_threshold_).
2703 bool log_gc = kLogAllGCs || gc_cause == kGcCauseExplicit;
2704 if (!log_gc && CareAboutPauseTimes()) {
2705 // GC for alloc pauses the allocating thread, so consider it as a pause.
2706 log_gc = duration > long_gc_log_threshold_ ||
2707 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2708 for (uint64_t pause : pause_times) {
2709 log_gc = log_gc || pause >= long_pause_log_threshold_;
2710 }
2711 }
2712 if (log_gc) {
2713 const size_t percent_free = GetPercentFree();
2714 const size_t current_heap_size = GetBytesAllocated();
2715 const size_t total_memory = GetTotalMemory();
2716 std::ostringstream pause_string;
2717 for (size_t i = 0; i < pause_times.size(); ++i) {
2718 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2719 << ((i != pause_times.size() - 1) ? "," : "");
2720 }
2721 LOG(INFO) << gc_cause << " " << collector->GetName()
2722 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
2723 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2724 << current_gc_iteration_.GetFreedLargeObjects() << "("
2725 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2726 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2727 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2728 << " total " << PrettyDuration((duration / 1000) * 1000);
2729 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2730 }
2731 }
2732
FinishGC(Thread * self,collector::GcType gc_type)2733 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2734 MutexLock mu(self, *gc_complete_lock_);
2735 collector_type_running_ = kCollectorTypeNone;
2736 if (gc_type != collector::kGcTypeNone) {
2737 last_gc_type_ = gc_type;
2738
2739 // Update stats.
2740 ++gc_count_last_window_;
2741 if (running_collection_is_blocking_) {
2742 // If the currently running collection was a blocking one,
2743 // increment the counters and reset the flag.
2744 ++blocking_gc_count_;
2745 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2746 ++blocking_gc_count_last_window_;
2747 }
2748 // Update the gc count rate histograms if due.
2749 UpdateGcCountRateHistograms();
2750 }
2751 // Reset.
2752 running_collection_is_blocking_ = false;
2753 thread_running_gc_ = nullptr;
2754 // Wake anyone who may have been waiting for the GC to complete.
2755 gc_complete_cond_->Broadcast(self);
2756 }
2757
UpdateGcCountRateHistograms()2758 void Heap::UpdateGcCountRateHistograms() {
2759 // Invariant: if the time since the last update includes more than
2760 // one windows, all the GC runs (if > 0) must have happened in first
2761 // window because otherwise the update must have already taken place
2762 // at an earlier GC run. So, we report the non-first windows with
2763 // zero counts to the histograms.
2764 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2765 uint64_t now = NanoTime();
2766 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2767 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2768 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2769
2770 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
2771 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
2772 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
2773 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
2774 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
2775 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
2776 }
2777
2778 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2779 // Record the first window.
2780 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
2781 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2782 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2783 // Record the other windows (with zero counts).
2784 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2785 gc_count_rate_histogram_.AddValue(0);
2786 blocking_gc_count_rate_histogram_.AddValue(0);
2787 }
2788 // Update the last update time and reset the counters.
2789 last_update_time_gc_count_rate_histograms_ =
2790 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2791 gc_count_last_window_ = 1; // Include the current run.
2792 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2793 }
2794 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2795 }
2796
2797 class RootMatchesObjectVisitor : public SingleRootVisitor {
2798 public:
RootMatchesObjectVisitor(const mirror::Object * obj)2799 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2800
VisitRoot(mirror::Object * root,const RootInfo & info)2801 void VisitRoot(mirror::Object* root, const RootInfo& info)
2802 override REQUIRES_SHARED(Locks::mutator_lock_) {
2803 if (root == obj_) {
2804 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2805 }
2806 }
2807
2808 private:
2809 const mirror::Object* const obj_;
2810 };
2811
2812
2813 class ScanVisitor {
2814 public:
operator ()(const mirror::Object * obj) const2815 void operator()(const mirror::Object* obj) const {
2816 LOG(ERROR) << "Would have rescanned object " << obj;
2817 }
2818 };
2819
2820 // Verify a reference from an object.
2821 class VerifyReferenceVisitor : public SingleRootVisitor {
2822 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)2823 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
2824 REQUIRES_SHARED(Locks::mutator_lock_)
2825 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2826 CHECK_EQ(self_, Thread::Current());
2827 }
2828
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2829 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
2830 REQUIRES_SHARED(Locks::mutator_lock_) {
2831 if (verify_referent_) {
2832 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
2833 }
2834 }
2835
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2836 void operator()(ObjPtr<mirror::Object> obj,
2837 MemberOffset offset,
2838 bool is_static ATTRIBUTE_UNUSED) const
2839 REQUIRES_SHARED(Locks::mutator_lock_) {
2840 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
2841 }
2842
IsLive(ObjPtr<mirror::Object> obj) const2843 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
2844 return heap_->IsLiveObjectLocked(obj, true, false, true);
2845 }
2846
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2847 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2848 REQUIRES_SHARED(Locks::mutator_lock_) {
2849 if (!root->IsNull()) {
2850 VisitRoot(root);
2851 }
2852 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2853 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2854 REQUIRES_SHARED(Locks::mutator_lock_) {
2855 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2856 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2857 }
2858
VisitRoot(mirror::Object * root,const RootInfo & root_info)2859 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
2860 REQUIRES_SHARED(Locks::mutator_lock_) {
2861 if (root == nullptr) {
2862 LOG(ERROR) << "Root is null with info " << root_info.GetType();
2863 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2864 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
2865 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2866 }
2867 }
2868
2869 private:
2870 // TODO: Fix the no thread safety analysis.
2871 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2872 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2873 NO_THREAD_SAFETY_ANALYSIS {
2874 if (ref == nullptr || IsLive(ref)) {
2875 // Verify that the reference is live.
2876 return true;
2877 }
2878 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
2879 *fail_count_ += 1;
2880 if (*fail_count_ == 1) {
2881 // Only print message for the first failure to prevent spam.
2882 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2883 }
2884 if (obj != nullptr) {
2885 // Only do this part for non roots.
2886 accounting::CardTable* card_table = heap_->GetCardTable();
2887 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2888 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2889 uint8_t* card_addr = card_table->CardFromAddr(obj);
2890 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2891 << offset << "\n card value = " << static_cast<int>(*card_addr);
2892 if (heap_->IsValidObjectAddress(obj->GetClass())) {
2893 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
2894 } else {
2895 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2896 }
2897
2898 // Attempt to find the class inside of the recently freed objects.
2899 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2900 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2901 space::MallocSpace* space = ref_space->AsMallocSpace();
2902 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2903 if (ref_class != nullptr) {
2904 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2905 << ref_class->PrettyClass();
2906 } else {
2907 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2908 }
2909 }
2910
2911 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2912 ref->GetClass()->IsClass()) {
2913 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
2914 } else {
2915 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2916 << ") is not a valid heap address";
2917 }
2918
2919 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2920 void* cover_begin = card_table->AddrFromCard(card_addr);
2921 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2922 accounting::CardTable::kCardSize);
2923 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2924 << "-" << cover_end;
2925 accounting::ContinuousSpaceBitmap* bitmap =
2926 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2927
2928 if (bitmap == nullptr) {
2929 LOG(ERROR) << "Object " << obj << " has no bitmap";
2930 if (!VerifyClassClass(obj->GetClass())) {
2931 LOG(ERROR) << "Object " << obj << " failed class verification!";
2932 }
2933 } else {
2934 // Print out how the object is live.
2935 if (bitmap->Test(obj)) {
2936 LOG(ERROR) << "Object " << obj << " found in live bitmap";
2937 }
2938 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2939 LOG(ERROR) << "Object " << obj << " found in allocation stack";
2940 }
2941 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2942 LOG(ERROR) << "Object " << obj << " found in live stack";
2943 }
2944 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2945 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2946 }
2947 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2948 LOG(ERROR) << "Ref " << ref << " found in live stack";
2949 }
2950 // Attempt to see if the card table missed the reference.
2951 ScanVisitor scan_visitor;
2952 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2953 card_table->Scan<false>(bitmap, byte_cover_begin,
2954 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2955 }
2956
2957 // Search to see if any of the roots reference our object.
2958 RootMatchesObjectVisitor visitor1(obj);
2959 Runtime::Current()->VisitRoots(&visitor1);
2960 // Search to see if any of the roots reference our reference.
2961 RootMatchesObjectVisitor visitor2(ref);
2962 Runtime::Current()->VisitRoots(&visitor2);
2963 }
2964 return false;
2965 }
2966
2967 Thread* const self_;
2968 Heap* const heap_;
2969 size_t* const fail_count_;
2970 const bool verify_referent_;
2971 };
2972
2973 // Verify all references within an object, for use with HeapBitmap::Visit.
2974 class VerifyObjectVisitor {
2975 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)2976 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
2977 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2978
operator ()(mirror::Object * obj)2979 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2980 // Note: we are verifying the references in obj but not obj itself, this is because obj must
2981 // be live or else how did we find it in the live bitmap?
2982 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
2983 // The class doesn't count as a reference but we should verify it anyways.
2984 obj->VisitReferences(visitor, visitor);
2985 }
2986
VerifyRoots()2987 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
2988 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2989 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
2990 Runtime::Current()->VisitRoots(&visitor);
2991 }
2992
GetFailureCount() const2993 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
2994 CHECK_EQ(self_, Thread::Current());
2995 return *fail_count_;
2996 }
2997
2998 private:
2999 Thread* const self_;
3000 Heap* const heap_;
3001 size_t* const fail_count_;
3002 const bool verify_referent_;
3003 };
3004
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3005 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3006 // Slow path, the allocation stack push back must have already failed.
3007 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3008 do {
3009 // TODO: Add handle VerifyObject.
3010 StackHandleScope<1> hs(self);
3011 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3012 // Push our object into the reserve region of the allocation stack. This is only required due
3013 // to heap verification requiring that roots are live (either in the live bitmap or in the
3014 // allocation stack).
3015 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3016 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3017 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3018 }
3019
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3020 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3021 ObjPtr<mirror::Object>* obj) {
3022 // Slow path, the allocation stack push back must have already failed.
3023 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3024 StackReference<mirror::Object>* start_address;
3025 StackReference<mirror::Object>* end_address;
3026 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3027 &end_address)) {
3028 // TODO: Add handle VerifyObject.
3029 StackHandleScope<1> hs(self);
3030 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3031 // Push our object into the reserve region of the allocaiton stack. This is only required due
3032 // to heap verification requiring that roots are live (either in the live bitmap or in the
3033 // allocation stack).
3034 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3035 // Push into the reserve allocation stack.
3036 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3037 }
3038 self->SetThreadLocalAllocationStack(start_address, end_address);
3039 // Retry on the new thread-local allocation stack.
3040 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3041 }
3042
3043 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3044 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3045 Thread* self = Thread::Current();
3046 Locks::mutator_lock_->AssertExclusiveHeld(self);
3047 // Lets sort our allocation stacks so that we can efficiently binary search them.
3048 allocation_stack_->Sort();
3049 live_stack_->Sort();
3050 // Since we sorted the allocation stack content, need to revoke all
3051 // thread-local allocation stacks.
3052 RevokeAllThreadLocalAllocationStacks(self);
3053 size_t fail_count = 0;
3054 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3055 // Verify objects in the allocation stack since these will be objects which were:
3056 // 1. Allocated prior to the GC (pre GC verification).
3057 // 2. Allocated during the GC (pre sweep GC verification).
3058 // We don't want to verify the objects in the live stack since they themselves may be
3059 // pointing to dead objects if they are not reachable.
3060 VisitObjectsPaused(visitor);
3061 // Verify the roots:
3062 visitor.VerifyRoots();
3063 if (visitor.GetFailureCount() > 0) {
3064 // Dump mod-union tables.
3065 for (const auto& table_pair : mod_union_tables_) {
3066 accounting::ModUnionTable* mod_union_table = table_pair.second;
3067 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3068 }
3069 // Dump remembered sets.
3070 for (const auto& table_pair : remembered_sets_) {
3071 accounting::RememberedSet* remembered_set = table_pair.second;
3072 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3073 }
3074 DumpSpaces(LOG_STREAM(ERROR));
3075 }
3076 return visitor.GetFailureCount();
3077 }
3078
3079 class VerifyReferenceCardVisitor {
3080 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3081 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3082 REQUIRES_SHARED(Locks::mutator_lock_,
3083 Locks::heap_bitmap_lock_)
3084 : heap_(heap), failed_(failed) {
3085 }
3086
3087 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3088 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3089 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3090 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3091
3092 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3093 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3094 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3095 NO_THREAD_SAFETY_ANALYSIS {
3096 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3097 // Filter out class references since changing an object's class does not mark the card as dirty.
3098 // Also handles large objects, since the only reference they hold is a class reference.
3099 if (ref != nullptr && !ref->IsClass()) {
3100 accounting::CardTable* card_table = heap_->GetCardTable();
3101 // If the object is not dirty and it is referencing something in the live stack other than
3102 // class, then it must be on a dirty card.
3103 if (!card_table->AddrIsInCardTable(obj)) {
3104 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3105 *failed_ = true;
3106 } else if (!card_table->IsDirty(obj)) {
3107 // TODO: Check mod-union tables.
3108 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3109 // kCardDirty - 1 if it didnt get touched since we aged it.
3110 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3111 if (live_stack->ContainsSorted(ref)) {
3112 if (live_stack->ContainsSorted(obj)) {
3113 LOG(ERROR) << "Object " << obj << " found in live stack";
3114 }
3115 if (heap_->GetLiveBitmap()->Test(obj)) {
3116 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3117 }
3118 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3119 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3120 << " in live stack";
3121
3122 // Print which field of the object is dead.
3123 if (!obj->IsObjectArray()) {
3124 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3125 CHECK(klass != nullptr);
3126 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3127 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3128 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3129 << field.PrettyField();
3130 break;
3131 }
3132 }
3133 } else {
3134 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3135 obj->AsObjectArray<mirror::Object>();
3136 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3137 if (object_array->Get(i) == ref) {
3138 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3139 }
3140 }
3141 }
3142
3143 *failed_ = true;
3144 }
3145 }
3146 }
3147 }
3148
3149 private:
3150 Heap* const heap_;
3151 bool* const failed_;
3152 };
3153
3154 class VerifyLiveStackReferences {
3155 public:
VerifyLiveStackReferences(Heap * heap)3156 explicit VerifyLiveStackReferences(Heap* heap)
3157 : heap_(heap),
3158 failed_(false) {}
3159
operator ()(mirror::Object * obj) const3160 void operator()(mirror::Object* obj) const
3161 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3162 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3163 obj->VisitReferences(visitor, VoidFunctor());
3164 }
3165
Failed() const3166 bool Failed() const {
3167 return failed_;
3168 }
3169
3170 private:
3171 Heap* const heap_;
3172 bool failed_;
3173 };
3174
VerifyMissingCardMarks()3175 bool Heap::VerifyMissingCardMarks() {
3176 Thread* self = Thread::Current();
3177 Locks::mutator_lock_->AssertExclusiveHeld(self);
3178 // We need to sort the live stack since we binary search it.
3179 live_stack_->Sort();
3180 // Since we sorted the allocation stack content, need to revoke all
3181 // thread-local allocation stacks.
3182 RevokeAllThreadLocalAllocationStacks(self);
3183 VerifyLiveStackReferences visitor(this);
3184 GetLiveBitmap()->Visit(visitor);
3185 // We can verify objects in the live stack since none of these should reference dead objects.
3186 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3187 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3188 visitor(it->AsMirrorPtr());
3189 }
3190 }
3191 return !visitor.Failed();
3192 }
3193
SwapStacks()3194 void Heap::SwapStacks() {
3195 if (kUseThreadLocalAllocationStack) {
3196 live_stack_->AssertAllZero();
3197 }
3198 allocation_stack_.swap(live_stack_);
3199 }
3200
RevokeAllThreadLocalAllocationStacks(Thread * self)3201 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3202 // This must be called only during the pause.
3203 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3204 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3205 MutexLock mu2(self, *Locks::thread_list_lock_);
3206 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3207 for (Thread* t : thread_list) {
3208 t->RevokeThreadLocalAllocationStack();
3209 }
3210 }
3211
AssertThreadLocalBuffersAreRevoked(Thread * thread)3212 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3213 if (kIsDebugBuild) {
3214 if (rosalloc_space_ != nullptr) {
3215 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3216 }
3217 if (bump_pointer_space_ != nullptr) {
3218 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3219 }
3220 }
3221 }
3222
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3223 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3224 if (kIsDebugBuild) {
3225 if (bump_pointer_space_ != nullptr) {
3226 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3227 }
3228 }
3229 }
3230
FindModUnionTableFromSpace(space::Space * space)3231 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3232 auto it = mod_union_tables_.find(space);
3233 if (it == mod_union_tables_.end()) {
3234 return nullptr;
3235 }
3236 return it->second;
3237 }
3238
FindRememberedSetFromSpace(space::Space * space)3239 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3240 auto it = remembered_sets_.find(space);
3241 if (it == remembered_sets_.end()) {
3242 return nullptr;
3243 }
3244 return it->second;
3245 }
3246
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3247 void Heap::ProcessCards(TimingLogger* timings,
3248 bool use_rem_sets,
3249 bool process_alloc_space_cards,
3250 bool clear_alloc_space_cards) {
3251 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3252 // Clear cards and keep track of cards cleared in the mod-union table.
3253 for (const auto& space : continuous_spaces_) {
3254 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3255 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3256 if (table != nullptr) {
3257 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3258 "ImageModUnionClearCards";
3259 TimingLogger::ScopedTiming t2(name, timings);
3260 table->ProcessCards();
3261 } else if (use_rem_sets && rem_set != nullptr) {
3262 DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
3263 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3264 rem_set->ClearCards();
3265 } else if (process_alloc_space_cards) {
3266 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3267 if (clear_alloc_space_cards) {
3268 uint8_t* end = space->End();
3269 if (space->IsImageSpace()) {
3270 // Image space end is the end of the mirror objects, it is not necessarily page or card
3271 // aligned. Align up so that the check in ClearCardRange does not fail.
3272 end = AlignUp(end, accounting::CardTable::kCardSize);
3273 }
3274 card_table_->ClearCardRange(space->Begin(), end);
3275 } else {
3276 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3277 // cards were dirty before the GC started.
3278 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3279 // -> clean(cleaning thread).
3280 // The races are we either end up with: Aged card, unaged card. Since we have the
3281 // checkpoint roots and then we scan / update mod union tables after. We will always
3282 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3283 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3284 VoidFunctor());
3285 }
3286 }
3287 }
3288 }
3289
3290 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3291 mirror::Object* MarkObject(mirror::Object* obj) override {
3292 return obj;
3293 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3294 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3295 }
3296 };
3297
PreGcVerificationPaused(collector::GarbageCollector * gc)3298 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3299 Thread* const self = Thread::Current();
3300 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3301 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3302 if (verify_pre_gc_heap_) {
3303 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3304 size_t failures = VerifyHeapReferences();
3305 if (failures > 0) {
3306 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3307 << " failures";
3308 }
3309 }
3310 // Check that all objects which reference things in the live stack are on dirty cards.
3311 if (verify_missing_card_marks_) {
3312 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3313 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3314 SwapStacks();
3315 // Sort the live stack so that we can quickly binary search it later.
3316 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3317 << " missing card mark verification failed\n" << DumpSpaces();
3318 SwapStacks();
3319 }
3320 if (verify_mod_union_table_) {
3321 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3322 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3323 for (const auto& table_pair : mod_union_tables_) {
3324 accounting::ModUnionTable* mod_union_table = table_pair.second;
3325 IdentityMarkHeapReferenceVisitor visitor;
3326 mod_union_table->UpdateAndMarkReferences(&visitor);
3327 mod_union_table->Verify();
3328 }
3329 }
3330 }
3331
PreGcVerification(collector::GarbageCollector * gc)3332 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3333 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3334 collector::GarbageCollector::ScopedPause pause(gc, false);
3335 PreGcVerificationPaused(gc);
3336 }
3337 }
3338
PrePauseRosAllocVerification(collector::GarbageCollector * gc ATTRIBUTE_UNUSED)3339 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3340 // TODO: Add a new runtime option for this?
3341 if (verify_pre_gc_rosalloc_) {
3342 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3343 }
3344 }
3345
PreSweepingGcVerification(collector::GarbageCollector * gc)3346 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3347 Thread* const self = Thread::Current();
3348 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3349 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3350 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3351 // reachable objects.
3352 if (verify_pre_sweeping_heap_) {
3353 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3354 CHECK_NE(self->GetState(), kRunnable);
3355 {
3356 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3357 // Swapping bound bitmaps does nothing.
3358 gc->SwapBitmaps();
3359 }
3360 // Pass in false since concurrent reference processing can mean that the reference referents
3361 // may point to dead objects at the point which PreSweepingGcVerification is called.
3362 size_t failures = VerifyHeapReferences(false);
3363 if (failures > 0) {
3364 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3365 << " failures";
3366 }
3367 {
3368 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3369 gc->SwapBitmaps();
3370 }
3371 }
3372 if (verify_pre_sweeping_rosalloc_) {
3373 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3374 }
3375 }
3376
PostGcVerificationPaused(collector::GarbageCollector * gc)3377 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3378 // Only pause if we have to do some verification.
3379 Thread* const self = Thread::Current();
3380 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3381 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3382 if (verify_system_weaks_) {
3383 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3384 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3385 mark_sweep->VerifySystemWeaks();
3386 }
3387 if (verify_post_gc_rosalloc_) {
3388 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3389 }
3390 if (verify_post_gc_heap_) {
3391 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3392 size_t failures = VerifyHeapReferences();
3393 if (failures > 0) {
3394 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3395 << " failures";
3396 }
3397 }
3398 }
3399
PostGcVerification(collector::GarbageCollector * gc)3400 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3401 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3402 collector::GarbageCollector::ScopedPause pause(gc, false);
3403 PostGcVerificationPaused(gc);
3404 }
3405 }
3406
RosAllocVerification(TimingLogger * timings,const char * name)3407 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3408 TimingLogger::ScopedTiming t(name, timings);
3409 for (const auto& space : continuous_spaces_) {
3410 if (space->IsRosAllocSpace()) {
3411 VLOG(heap) << name << " : " << space->GetName();
3412 space->AsRosAllocSpace()->Verify();
3413 }
3414 }
3415 }
3416
WaitForGcToComplete(GcCause cause,Thread * self)3417 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3418 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3419 MutexLock mu(self, *gc_complete_lock_);
3420 return WaitForGcToCompleteLocked(cause, self);
3421 }
3422
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3423 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3424 gc_complete_cond_->CheckSafeToWait(self);
3425 collector::GcType last_gc_type = collector::kGcTypeNone;
3426 GcCause last_gc_cause = kGcCauseNone;
3427 uint64_t wait_start = NanoTime();
3428 while (collector_type_running_ != kCollectorTypeNone) {
3429 if (self != task_processor_->GetRunningThread()) {
3430 // The current thread is about to wait for a currently running
3431 // collection to finish. If the waiting thread is not the heap
3432 // task daemon thread, the currently running collection is
3433 // considered as a blocking GC.
3434 running_collection_is_blocking_ = true;
3435 VLOG(gc) << "Waiting for a blocking GC " << cause;
3436 }
3437 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3438 // We must wait, change thread state then sleep on gc_complete_cond_;
3439 gc_complete_cond_->Wait(self);
3440 last_gc_type = last_gc_type_;
3441 last_gc_cause = last_gc_cause_;
3442 }
3443 uint64_t wait_time = NanoTime() - wait_start;
3444 total_wait_time_ += wait_time;
3445 if (wait_time > long_pause_log_threshold_) {
3446 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3447 << PrettyDuration(wait_time);
3448 }
3449 if (self != task_processor_->GetRunningThread()) {
3450 // The current thread is about to run a collection. If the thread
3451 // is not the heap task daemon thread, it's considered as a
3452 // blocking GC (i.e., blocking itself).
3453 running_collection_is_blocking_ = true;
3454 // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3455 // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3456 if (cause == kGcCauseForAlloc ||
3457 cause == kGcCauseForNativeAlloc ||
3458 cause == kGcCauseDisableMovingGc) {
3459 VLOG(gc) << "Starting a blocking GC " << cause;
3460 }
3461 }
3462 return last_gc_type;
3463 }
3464
DumpForSigQuit(std::ostream & os)3465 void Heap::DumpForSigQuit(std::ostream& os) {
3466 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3467 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3468 DumpGcPerformanceInfo(os);
3469 }
3470
GetPercentFree()3471 size_t Heap::GetPercentFree() {
3472 return static_cast<size_t>(100.0f * static_cast<float>(
3473 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3474 }
3475
SetIdealFootprint(size_t target_footprint)3476 void Heap::SetIdealFootprint(size_t target_footprint) {
3477 if (target_footprint > GetMaxMemory()) {
3478 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3479 << PrettySize(GetMaxMemory());
3480 target_footprint = GetMaxMemory();
3481 }
3482 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3483 }
3484
IsMovableObject(ObjPtr<mirror::Object> obj) const3485 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3486 if (kMovingCollector) {
3487 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3488 if (space != nullptr) {
3489 // TODO: Check large object?
3490 return space->CanMoveObjects();
3491 }
3492 }
3493 return false;
3494 }
3495
FindCollectorByGcType(collector::GcType gc_type)3496 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3497 for (auto* collector : garbage_collectors_) {
3498 if (collector->GetCollectorType() == collector_type_ &&
3499 collector->GetGcType() == gc_type) {
3500 return collector;
3501 }
3502 }
3503 return nullptr;
3504 }
3505
HeapGrowthMultiplier() const3506 double Heap::HeapGrowthMultiplier() const {
3507 // If we don't care about pause times we are background, so return 1.0.
3508 if (!CareAboutPauseTimes()) {
3509 return 1.0;
3510 }
3511 return foreground_heap_growth_multiplier_;
3512 }
3513
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3514 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3515 size_t bytes_allocated_before_gc) {
3516 // We know what our utilization is at this moment.
3517 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3518 const size_t bytes_allocated = GetBytesAllocated();
3519 // Trace the new heap size after the GC is finished.
3520 TraceHeapSize(bytes_allocated);
3521 uint64_t target_size, grow_bytes;
3522 collector::GcType gc_type = collector_ran->GetGcType();
3523 MutexLock mu(Thread::Current(), process_state_update_lock_);
3524 // Use the multiplier to grow more for foreground.
3525 const double multiplier = HeapGrowthMultiplier();
3526 if (gc_type != collector::kGcTypeSticky) {
3527 // Grow the heap for non sticky GC.
3528 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3529 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3530 << " target_utilization_=" << target_utilization_;
3531 grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
3532 grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
3533 target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
3534 next_gc_type_ = collector::kGcTypeSticky;
3535 } else {
3536 collector::GcType non_sticky_gc_type = NonStickyGcType();
3537 // Find what the next non sticky collector will be.
3538 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3539 if (use_generational_cc_) {
3540 if (non_sticky_collector == nullptr) {
3541 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3542 }
3543 CHECK(non_sticky_collector != nullptr);
3544 }
3545 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
3546
3547 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3548 // do another sticky collection next.
3549 // We also check that the bytes allocated aren't over the target_footprint, or
3550 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3551 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3552 // if the sticky GC throughput always remained >= the full/partial throughput.
3553 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3554 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3555 non_sticky_collector->GetEstimatedMeanThroughput() &&
3556 non_sticky_collector->NumberOfIterations() > 0 &&
3557 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3558 next_gc_type_ = collector::kGcTypeSticky;
3559 } else {
3560 next_gc_type_ = non_sticky_gc_type;
3561 }
3562 // If we have freed enough memory, shrink the heap back down.
3563 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3564 if (bytes_allocated + adjusted_max_free < target_footprint) {
3565 target_size = bytes_allocated + adjusted_max_free;
3566 grow_bytes = max_free_;
3567 } else {
3568 target_size = std::max(bytes_allocated, target_footprint);
3569 // The same whether jank perceptible or not; just avoid the adjustment.
3570 grow_bytes = 0;
3571 }
3572 }
3573 CHECK_LE(target_size, std::numeric_limits<size_t>::max());
3574 if (!ignore_target_footprint_) {
3575 SetIdealFootprint(target_size);
3576 // Store target size (computed with foreground heap growth multiplier) for updating
3577 // target_footprint_ when process state switches to foreground.
3578 // target_size = 0 ensures that target_footprint_ is not updated on
3579 // process-state switch.
3580 min_foreground_target_footprint_ =
3581 (multiplier <= 1.0 && grow_bytes > 0)
3582 ? bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_)
3583 : 0;
3584
3585 if (IsGcConcurrent()) {
3586 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3587 current_gc_iteration_.GetFreedLargeObjectBytes() +
3588 current_gc_iteration_.GetFreedRevokeBytes();
3589 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3590 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3591 CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3592 const size_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3593 bytes_allocated_before_gc;
3594 // Calculate when to perform the next ConcurrentGC.
3595 // Estimate how many remaining bytes we will have when we need to start the next GC.
3596 size_t remaining_bytes = bytes_allocated_during_gc;
3597 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3598 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3599 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3600 if (UNLIKELY(remaining_bytes > target_footprint)) {
3601 // A never going to happen situation that from the estimated allocation rate we will exceed
3602 // the applications entire footprint with the given estimated allocation rate. Schedule
3603 // another GC nearly straight away.
3604 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3605 }
3606 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3607 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3608 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3609 // right away.
3610 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3611 }
3612 }
3613 }
3614
ClampGrowthLimit()3615 void Heap::ClampGrowthLimit() {
3616 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3617 ScopedObjectAccess soa(Thread::Current());
3618 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3619 capacity_ = growth_limit_;
3620 for (const auto& space : continuous_spaces_) {
3621 if (space->IsMallocSpace()) {
3622 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3623 malloc_space->ClampGrowthLimit();
3624 }
3625 }
3626 if (collector_type_ == kCollectorTypeCC) {
3627 DCHECK(region_space_ != nullptr);
3628 // Twice the capacity as CC needs extra space for evacuating objects.
3629 region_space_->ClampGrowthLimit(2 * capacity_);
3630 }
3631 // This space isn't added for performance reasons.
3632 if (main_space_backup_.get() != nullptr) {
3633 main_space_backup_->ClampGrowthLimit();
3634 }
3635 }
3636
ClearGrowthLimit()3637 void Heap::ClearGrowthLimit() {
3638 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3639 && growth_limit_ < capacity_) {
3640 target_footprint_.store(capacity_, std::memory_order_relaxed);
3641 concurrent_start_bytes_ =
3642 UnsignedDifference(capacity_, kMinConcurrentRemainingBytes);
3643 }
3644 growth_limit_ = capacity_;
3645 ScopedObjectAccess soa(Thread::Current());
3646 for (const auto& space : continuous_spaces_) {
3647 if (space->IsMallocSpace()) {
3648 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3649 malloc_space->ClearGrowthLimit();
3650 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3651 }
3652 }
3653 // This space isn't added for performance reasons.
3654 if (main_space_backup_.get() != nullptr) {
3655 main_space_backup_->ClearGrowthLimit();
3656 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3657 }
3658 }
3659
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3660 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3661 ScopedObjectAccess soa(self);
3662 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3663 jvalue args[1];
3664 args[0].l = arg.get();
3665 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3666 // Restore object in case it gets moved.
3667 *object = soa.Decode<mirror::Object>(arg.get());
3668 }
3669
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,ObjPtr<mirror::Object> * obj)3670 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3671 bool force_full,
3672 ObjPtr<mirror::Object>* obj) {
3673 StackHandleScope<1> hs(self);
3674 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3675 RequestConcurrentGC(self, kGcCauseBackground, force_full);
3676 }
3677
3678 class Heap::ConcurrentGCTask : public HeapTask {
3679 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full)3680 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
3681 : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
Run(Thread * self)3682 void Run(Thread* self) override {
3683 gc::Heap* heap = Runtime::Current()->GetHeap();
3684 heap->ConcurrentGC(self, cause_, force_full_);
3685 heap->ClearConcurrentGCRequest();
3686 }
3687
3688 private:
3689 const GcCause cause_;
3690 const bool force_full_; // If true, force full (or partial) collection.
3691 };
3692
CanAddHeapTask(Thread * self)3693 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3694 Runtime* runtime = Runtime::Current();
3695 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3696 !self->IsHandlingStackOverflow();
3697 }
3698
ClearConcurrentGCRequest()3699 void Heap::ClearConcurrentGCRequest() {
3700 concurrent_gc_pending_.store(false, std::memory_order_relaxed);
3701 }
3702
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full)3703 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3704 if (CanAddHeapTask(self) &&
3705 concurrent_gc_pending_.CompareAndSetStrongSequentiallyConsistent(false, true)) {
3706 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
3707 cause,
3708 force_full));
3709 }
3710 }
3711
ConcurrentGC(Thread * self,GcCause cause,bool force_full)3712 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3713 if (!Runtime::Current()->IsShuttingDown(self)) {
3714 // Wait for any GCs currently running to finish.
3715 if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
3716 // If we can't run the GC type we wanted to run, find the next appropriate one and try
3717 // that instead. E.g. can't do partial, so do full instead.
3718 collector::GcType next_gc_type = next_gc_type_;
3719 // If forcing full and next gc type is sticky, override with a non-sticky type.
3720 if (force_full && next_gc_type == collector::kGcTypeSticky) {
3721 next_gc_type = NonStickyGcType();
3722 }
3723 if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
3724 for (collector::GcType gc_type : gc_plan_) {
3725 // Attempt to run the collector, if we succeed, we are done.
3726 if (gc_type > next_gc_type &&
3727 CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
3728 break;
3729 }
3730 }
3731 }
3732 }
3733 }
3734 }
3735
3736 class Heap::CollectorTransitionTask : public HeapTask {
3737 public:
CollectorTransitionTask(uint64_t target_time)3738 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3739
Run(Thread * self)3740 void Run(Thread* self) override {
3741 gc::Heap* heap = Runtime::Current()->GetHeap();
3742 heap->DoPendingCollectorTransition();
3743 heap->ClearPendingCollectorTransition(self);
3744 }
3745 };
3746
ClearPendingCollectorTransition(Thread * self)3747 void Heap::ClearPendingCollectorTransition(Thread* self) {
3748 MutexLock mu(self, *pending_task_lock_);
3749 pending_collector_transition_ = nullptr;
3750 }
3751
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3752 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3753 Thread* self = Thread::Current();
3754 desired_collector_type_ = desired_collector_type;
3755 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3756 return;
3757 }
3758 if (collector_type_ == kCollectorTypeCC) {
3759 // For CC, we invoke a full compaction when going to the background, but the collector type
3760 // doesn't change.
3761 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
3762 }
3763 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
3764 CollectorTransitionTask* added_task = nullptr;
3765 const uint64_t target_time = NanoTime() + delta_time;
3766 {
3767 MutexLock mu(self, *pending_task_lock_);
3768 // If we have an existing collector transition, update the targe time to be the new target.
3769 if (pending_collector_transition_ != nullptr) {
3770 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3771 return;
3772 }
3773 added_task = new CollectorTransitionTask(target_time);
3774 pending_collector_transition_ = added_task;
3775 }
3776 task_processor_->AddTask(self, added_task);
3777 }
3778
3779 class Heap::HeapTrimTask : public HeapTask {
3780 public:
HeapTrimTask(uint64_t delta_time)3781 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3782 void Run(Thread* self) override {
3783 gc::Heap* heap = Runtime::Current()->GetHeap();
3784 heap->Trim(self);
3785 heap->ClearPendingTrim(self);
3786 }
3787 };
3788
ClearPendingTrim(Thread * self)3789 void Heap::ClearPendingTrim(Thread* self) {
3790 MutexLock mu(self, *pending_task_lock_);
3791 pending_heap_trim_ = nullptr;
3792 }
3793
RequestTrim(Thread * self)3794 void Heap::RequestTrim(Thread* self) {
3795 if (!CanAddHeapTask(self)) {
3796 return;
3797 }
3798 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3799 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3800 // a space it will hold its lock and can become a cause of jank.
3801 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3802 // forking.
3803
3804 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3805 // because that only marks object heads, so a large array looks like lots of empty space. We
3806 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3807 // to utilization (which is probably inversely proportional to how much benefit we can expect).
3808 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3809 // not how much use we're making of those pages.
3810 HeapTrimTask* added_task = nullptr;
3811 {
3812 MutexLock mu(self, *pending_task_lock_);
3813 if (pending_heap_trim_ != nullptr) {
3814 // Already have a heap trim request in task processor, ignore this request.
3815 return;
3816 }
3817 added_task = new HeapTrimTask(kHeapTrimWait);
3818 pending_heap_trim_ = added_task;
3819 }
3820 task_processor_->AddTask(self, added_task);
3821 }
3822
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)3823 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
3824 size_t previous_num_bytes_freed_revoke =
3825 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
3826 // Check the updated value is less than the number of bytes allocated. There is a risk of
3827 // execution being suspended between the increment above and the CHECK below, leading to
3828 // the use of previous_num_bytes_freed_revoke in the comparison.
3829 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
3830 previous_num_bytes_freed_revoke + freed_bytes_revoke);
3831 }
3832
RevokeThreadLocalBuffers(Thread * thread)3833 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3834 if (rosalloc_space_ != nullptr) {
3835 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3836 if (freed_bytes_revoke > 0U) {
3837 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3838 }
3839 }
3840 if (bump_pointer_space_ != nullptr) {
3841 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3842 }
3843 if (region_space_ != nullptr) {
3844 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3845 }
3846 }
3847
RevokeRosAllocThreadLocalBuffers(Thread * thread)3848 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3849 if (rosalloc_space_ != nullptr) {
3850 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3851 if (freed_bytes_revoke > 0U) {
3852 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3853 }
3854 }
3855 }
3856
RevokeAllThreadLocalBuffers()3857 void Heap::RevokeAllThreadLocalBuffers() {
3858 if (rosalloc_space_ != nullptr) {
3859 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3860 if (freed_bytes_revoke > 0U) {
3861 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3862 }
3863 }
3864 if (bump_pointer_space_ != nullptr) {
3865 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3866 }
3867 if (region_space_ != nullptr) {
3868 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3869 }
3870 }
3871
IsGCRequestPending() const3872 bool Heap::IsGCRequestPending() const {
3873 return concurrent_gc_pending_.load(std::memory_order_relaxed);
3874 }
3875
RunFinalization(JNIEnv * env,uint64_t timeout)3876 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3877 env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3878 WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3879 static_cast<jlong>(timeout));
3880 }
3881
3882 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
3883 // different fractions of Java allocations.
3884 // For now, we essentially do not count old native allocations at all, so that we can preserve the
3885 // existing behavior of not limiting native heap size. If we seriously considered it, we would
3886 // have to adjust collection thresholds when we encounter large amounts of old native memory,
3887 // and handle native out-of-memory situations.
3888
3889 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
3890 static constexpr size_t kNewNativeDiscountFactor = 2;
3891
3892 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
3893 // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
3894 // running out of memory.
3895 static constexpr float kStopForNativeFactor = 4.0;
3896
3897 // Return the ratio of the weighted native + java allocated bytes to its target value.
3898 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
3899 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)3900 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
3901 // Collection check for native allocation. Does not enforce Java heap bounds.
3902 // With adj_start_bytes defined below, effectively checks
3903 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
3904 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
3905 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
3906 if (old_native_bytes > current_native_bytes) {
3907 // Net decrease; skip the check, but update old value.
3908 // It's OK to lose an update if two stores race.
3909 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
3910 return 0.0;
3911 } else {
3912 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
3913 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
3914 + old_native_bytes / kOldNativeDiscountFactor;
3915 size_t add_bytes_allowed = static_cast<size_t>(
3916 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
3917 size_t java_gc_start_bytes = is_gc_concurrent
3918 ? concurrent_start_bytes_
3919 : target_footprint_.load(std::memory_order_relaxed);
3920 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
3921 add_bytes_allowed / kNewNativeDiscountFactor);
3922 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
3923 / static_cast<float>(adj_start_bytes);
3924 }
3925 }
3926
CheckGCForNative(Thread * self)3927 inline void Heap::CheckGCForNative(Thread* self) {
3928 bool is_gc_concurrent = IsGcConcurrent();
3929 size_t current_native_bytes = GetNativeBytes();
3930 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
3931 if (UNLIKELY(gc_urgency >= 1.0)) {
3932 if (is_gc_concurrent) {
3933 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true);
3934 if (gc_urgency > kStopForNativeFactor
3935 && current_native_bytes > stop_for_native_allocs_) {
3936 // We're in danger of running out of memory due to rampant native allocation.
3937 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
3938 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
3939 }
3940 WaitForGcToComplete(kGcCauseForNativeAlloc, self);
3941 }
3942 } else {
3943 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
3944 }
3945 }
3946 }
3947
3948 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)3949 void Heap::NotifyNativeAllocations(JNIEnv* env) {
3950 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
3951 CheckGCForNative(ThreadForEnv(env));
3952 }
3953
3954 // Register a native allocation with an explicit size.
3955 // This should only be done for large allocations of non-malloc memory, which we wouldn't
3956 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3957 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3958 // Cautiously check for a wrapped negative bytes argument.
3959 DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
3960 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
3961 uint32_t objects_notified =
3962 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
3963 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
3964 || bytes > kCheckImmediatelyThreshold) {
3965 CheckGCForNative(ThreadForEnv(env));
3966 }
3967 }
3968
RegisterNativeFree(JNIEnv *,size_t bytes)3969 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
3970 size_t allocated;
3971 size_t new_freed_bytes;
3972 do {
3973 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
3974 new_freed_bytes = std::min(allocated, bytes);
3975 // We should not be registering more free than allocated bytes.
3976 // But correctly keep going in non-debug builds.
3977 DCHECK_EQ(new_freed_bytes, bytes);
3978 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
3979 allocated - new_freed_bytes));
3980 }
3981
GetTotalMemory() const3982 size_t Heap::GetTotalMemory() const {
3983 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
3984 }
3985
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3986 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3987 DCHECK(mod_union_table != nullptr);
3988 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3989 }
3990
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)3991 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
3992 // Compare rounded sizes since the allocation may have been retried after rounding the size.
3993 // See b/37885600
3994 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3995 (c->IsVariableSize() ||
3996 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
3997 RoundUp(byte_count, kObjectAlignment)))
3998 << "ClassFlags=" << c->GetClassFlags()
3999 << " IsClassClass=" << c->IsClassClass()
4000 << " byte_count=" << byte_count
4001 << " IsVariableSize=" << c->IsVariableSize()
4002 << " ObjectSize=" << c->GetObjectSize()
4003 << " sizeof(Class)=" << sizeof(mirror::Class)
4004 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4005 CHECK_GE(byte_count, sizeof(mirror::Object));
4006 }
4007
AddRememberedSet(accounting::RememberedSet * remembered_set)4008 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4009 CHECK(remembered_set != nullptr);
4010 space::Space* space = remembered_set->GetSpace();
4011 CHECK(space != nullptr);
4012 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4013 remembered_sets_.Put(space, remembered_set);
4014 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4015 }
4016
RemoveRememberedSet(space::Space * space)4017 void Heap::RemoveRememberedSet(space::Space* space) {
4018 CHECK(space != nullptr);
4019 auto it = remembered_sets_.find(space);
4020 CHECK(it != remembered_sets_.end());
4021 delete it->second;
4022 remembered_sets_.erase(it);
4023 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4024 }
4025
ClearMarkedObjects()4026 void Heap::ClearMarkedObjects() {
4027 // Clear all of the spaces' mark bitmaps.
4028 for (const auto& space : GetContinuousSpaces()) {
4029 if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
4030 space->GetMarkBitmap()->Clear();
4031 }
4032 }
4033 // Clear the marked objects in the discontinous space object sets.
4034 for (const auto& space : GetDiscontinuousSpaces()) {
4035 space->GetMarkBitmap()->Clear();
4036 }
4037 }
4038
SetAllocationRecords(AllocRecordObjectMap * records)4039 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4040 allocation_records_.reset(records);
4041 }
4042
VisitAllocationRecords(RootVisitor * visitor) const4043 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4044 if (IsAllocTrackingEnabled()) {
4045 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4046 if (IsAllocTrackingEnabled()) {
4047 GetAllocationRecords()->VisitRoots(visitor);
4048 }
4049 }
4050 }
4051
SweepAllocationRecords(IsMarkedVisitor * visitor) const4052 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4053 if (IsAllocTrackingEnabled()) {
4054 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4055 if (IsAllocTrackingEnabled()) {
4056 GetAllocationRecords()->SweepAllocationRecords(visitor);
4057 }
4058 }
4059 }
4060
AllowNewAllocationRecords() const4061 void Heap::AllowNewAllocationRecords() const {
4062 CHECK(!kUseReadBarrier);
4063 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4064 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4065 if (allocation_records != nullptr) {
4066 allocation_records->AllowNewAllocationRecords();
4067 }
4068 }
4069
DisallowNewAllocationRecords() const4070 void Heap::DisallowNewAllocationRecords() const {
4071 CHECK(!kUseReadBarrier);
4072 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4073 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4074 if (allocation_records != nullptr) {
4075 allocation_records->DisallowNewAllocationRecords();
4076 }
4077 }
4078
BroadcastForNewAllocationRecords() const4079 void Heap::BroadcastForNewAllocationRecords() const {
4080 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4081 // be set to false while some threads are waiting for system weak access in
4082 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4083 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4084 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4085 if (allocation_records != nullptr) {
4086 allocation_records->BroadcastForNewAllocationRecords();
4087 }
4088 }
4089
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4090 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4091 DCHECK(gc_stress_mode_);
4092 auto* const runtime = Runtime::Current();
4093 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4094 // Check if we should GC.
4095 bool new_backtrace = false;
4096 {
4097 static constexpr size_t kMaxFrames = 16u;
4098 MutexLock mu(self, *backtrace_lock_);
4099 FixedSizeBacktrace<kMaxFrames> backtrace;
4100 backtrace.Collect(/* skip_count= */ 2);
4101 uint64_t hash = backtrace.Hash();
4102 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4103 if (new_backtrace) {
4104 seen_backtraces_.insert(hash);
4105 }
4106 }
4107 if (new_backtrace) {
4108 StackHandleScope<1> hs(self);
4109 auto h = hs.NewHandleWrapper(obj);
4110 CollectGarbage(/* clear_soft_references= */ false);
4111 unique_backtrace_count_.fetch_add(1);
4112 } else {
4113 seen_backtrace_count_.fetch_add(1);
4114 }
4115 }
4116 }
4117
DisableGCForShutdown()4118 void Heap::DisableGCForShutdown() {
4119 Thread* const self = Thread::Current();
4120 CHECK(Runtime::Current()->IsShuttingDown(self));
4121 MutexLock mu(self, *gc_complete_lock_);
4122 gc_disabled_for_shutdown_ = true;
4123 }
4124
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4125 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4126 DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
4127 any_of(boot_image_spaces_.begin(),
4128 boot_image_spaces_.end(),
4129 [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4130 return space->HasAddress(obj.Ptr());
4131 }));
4132 return IsBootImageAddress(obj.Ptr());
4133 }
4134
IsInBootImageOatFile(const void * p) const4135 bool Heap::IsInBootImageOatFile(const void* p) const {
4136 DCHECK_EQ(IsBootImageAddress(p),
4137 any_of(boot_image_spaces_.begin(),
4138 boot_image_spaces_.end(),
4139 [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4140 return space->GetOatFile()->Contains(p);
4141 }));
4142 return IsBootImageAddress(p);
4143 }
4144
SetAllocationListener(AllocationListener * l)4145 void Heap::SetAllocationListener(AllocationListener* l) {
4146 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4147
4148 if (old == nullptr) {
4149 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4150 }
4151 }
4152
RemoveAllocationListener()4153 void Heap::RemoveAllocationListener() {
4154 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4155
4156 if (old != nullptr) {
4157 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4158 }
4159 }
4160
SetGcPauseListener(GcPauseListener * l)4161 void Heap::SetGcPauseListener(GcPauseListener* l) {
4162 gc_pause_listener_.store(l, std::memory_order_relaxed);
4163 }
4164
RemoveGcPauseListener()4165 void Heap::RemoveGcPauseListener() {
4166 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4167 }
4168
AllocWithNewTLAB(Thread * self,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4169 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4170 size_t alloc_size,
4171 bool grow,
4172 size_t* bytes_allocated,
4173 size_t* usable_size,
4174 size_t* bytes_tl_bulk_allocated) {
4175 const AllocatorType allocator_type = GetCurrentAllocator();
4176 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4177 DCHECK_GT(alloc_size, self->TlabSize());
4178 // There is enough space if we grow the TLAB. Lets do that. This increases the
4179 // TLAB bytes.
4180 const size_t min_expand_size = alloc_size - self->TlabSize();
4181 const size_t expand_bytes = std::max(
4182 min_expand_size,
4183 std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
4184 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4185 return nullptr;
4186 }
4187 *bytes_tl_bulk_allocated = expand_bytes;
4188 self->ExpandTlab(expand_bytes);
4189 DCHECK_LE(alloc_size, self->TlabSize());
4190 } else if (allocator_type == kAllocatorTypeTLAB) {
4191 DCHECK(bump_pointer_space_ != nullptr);
4192 const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
4193 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4194 return nullptr;
4195 }
4196 // Try allocating a new thread local buffer, if the allocation fails the space must be
4197 // full so return null.
4198 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
4199 return nullptr;
4200 }
4201 *bytes_tl_bulk_allocated = new_tlab_size;
4202 } else {
4203 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4204 DCHECK(region_space_ != nullptr);
4205 if (space::RegionSpace::kRegionSize >= alloc_size) {
4206 // Non-large. Check OOME for a tlab.
4207 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4208 space::RegionSpace::kRegionSize,
4209 grow))) {
4210 const size_t new_tlab_size = kUsePartialTlabs
4211 ? std::max(alloc_size, kPartialTlabSize)
4212 : gc::space::RegionSpace::kRegionSize;
4213 // Try to allocate a tlab.
4214 if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4215 // Failed to allocate a tlab. Try non-tlab.
4216 return region_space_->AllocNonvirtual<false>(alloc_size,
4217 bytes_allocated,
4218 usable_size,
4219 bytes_tl_bulk_allocated);
4220 }
4221 // Fall-through to using the TLAB below.
4222 } else {
4223 // Check OOME for a non-tlab allocation.
4224 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4225 return region_space_->AllocNonvirtual<false>(alloc_size,
4226 bytes_allocated,
4227 usable_size,
4228 bytes_tl_bulk_allocated);
4229 }
4230 // Neither tlab or non-tlab works. Give up.
4231 return nullptr;
4232 }
4233 } else {
4234 // Large. Check OOME.
4235 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4236 return region_space_->AllocNonvirtual<false>(alloc_size,
4237 bytes_allocated,
4238 usable_size,
4239 bytes_tl_bulk_allocated);
4240 }
4241 return nullptr;
4242 }
4243 }
4244 // Refilled TLAB, return.
4245 mirror::Object* ret = self->AllocTlab(alloc_size);
4246 DCHECK(ret != nullptr);
4247 *bytes_allocated = alloc_size;
4248 *usable_size = alloc_size;
4249 return ret;
4250 }
4251
GetVerification() const4252 const Verification* Heap::GetVerification() const {
4253 return verification_.get();
4254 }
4255
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4256 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4257 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4258 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4259 }
4260
4261 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4262 public:
TriggerPostForkCCGcTask(uint64_t target_time)4263 explicit TriggerPostForkCCGcTask(uint64_t target_time) : HeapTask(target_time) {}
Run(Thread * self)4264 void Run(Thread* self) override {
4265 gc::Heap* heap = Runtime::Current()->GetHeap();
4266 // Trigger a GC, if not already done. The first GC after fork, whenever it
4267 // takes place, will adjust the thresholds to normal levels.
4268 if (heap->target_footprint_.load(std::memory_order_relaxed) == heap->growth_limit_) {
4269 heap->RequestConcurrentGC(self, kGcCauseBackground, false);
4270 }
4271 }
4272 };
4273
PostForkChildAction(Thread * self)4274 void Heap::PostForkChildAction(Thread* self) {
4275 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4276 // max values to avoid GC during app launch.
4277 if (collector_type_ == kCollectorTypeCC && !IsLowMemoryMode()) {
4278 // Set target_footprint_ to the largest allowed value.
4279 SetIdealFootprint(growth_limit_);
4280 // Set concurrent_start_bytes_ to half of the heap size.
4281 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
4282 concurrent_start_bytes_ = std::max(target_footprint / 2, GetBytesAllocated());
4283
4284 GetTaskProcessor()->AddTask(
4285 self, new TriggerPostForkCCGcTask(NanoTime() + MsToNs(kPostForkMaxHeapDurationMS)));
4286 }
4287 }
4288
VisitReflectiveTargets(ReflectiveValueVisitor * visit)4289 void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
4290 VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
4291 art::ObjPtr<mirror::Class> klass(ref->GetClass());
4292 // All these classes are in the BootstrapClassLoader.
4293 if (!klass->IsBootStrapClassLoaded()) {
4294 return;
4295 }
4296 if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
4297 GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
4298 down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
4299 } else if (art::GetClassRoot<art::mirror::Field>() == klass) {
4300 down_cast<mirror::Field*>(ref)->VisitTarget(visit);
4301 } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
4302 down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
4303 } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
4304 down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
4305 } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
4306 down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
4307 }
4308 });
4309 }
4310
AddHeapTask(gc::HeapTask * task)4311 bool Heap::AddHeapTask(gc::HeapTask* task) {
4312 Thread* const self = Thread::Current();
4313 if (!CanAddHeapTask(self)) {
4314 return false;
4315 }
4316 GetTaskProcessor()->AddTask(self, task);
4317 return true;
4318 }
4319
4320 } // namespace gc
4321 } // namespace art
4322