1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 
19 #include <android-base/stringprintf.h>
20 #include <cutils/compiler.h>
21 #include <ui/Region.h>
22 #include <ui/Transform.h>
23 #include <utils/String8.h>
24 
25 namespace android {
26 namespace ui {
27 
Transform()28 Transform::Transform() {
29     reset();
30 }
31 
Transform(const Transform & other)32 Transform::Transform(const Transform&  other)
33     : mMatrix(other.mMatrix), mType(other.mType) {
34 }
35 
Transform(uint32_t orientation,int w,int h)36 Transform::Transform(uint32_t orientation, int w, int h) {
37     set(orientation, w, h);
38 }
39 
40 Transform::~Transform() = default;
41 
42 static const float EPSILON = 0.0f;
43 
isZero(float f)44 bool Transform::isZero(float f) {
45     return fabs(f) <= EPSILON;
46 }
47 
absIsOne(float f)48 bool Transform::absIsOne(float f) {
49     return isZero(fabs(f) - 1.0f);
50 }
51 
operator ==(const Transform & other) const52 bool Transform::operator==(const Transform& other) const {
53     return mMatrix[0][0] == other.mMatrix[0][0] && mMatrix[0][1] == other.mMatrix[0][1] &&
54             mMatrix[0][2] == other.mMatrix[0][2] && mMatrix[1][0] == other.mMatrix[1][0] &&
55             mMatrix[1][1] == other.mMatrix[1][1] && mMatrix[1][2] == other.mMatrix[1][2] &&
56             mMatrix[2][0] == other.mMatrix[2][0] && mMatrix[2][1] == other.mMatrix[2][1] &&
57             mMatrix[2][2] == other.mMatrix[2][2];
58     ;
59 }
60 
operator *(const Transform & rhs) const61 Transform Transform::operator * (const Transform& rhs) const
62 {
63     if (CC_LIKELY(mType == IDENTITY))
64         return rhs;
65 
66     Transform r(*this);
67     if (rhs.mType == IDENTITY)
68         return r;
69 
70     // TODO: we could use mType to optimize the matrix multiply
71     const mat33& A(mMatrix);
72     const mat33& B(rhs.mMatrix);
73           mat33& D(r.mMatrix);
74     for (size_t i = 0; i < 3; i++) {
75         const float v0 = A[0][i];
76         const float v1 = A[1][i];
77         const float v2 = A[2][i];
78         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
79         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
80         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
81     }
82     r.mType |= rhs.mType;
83 
84     // TODO: we could recompute this value from r and rhs
85     r.mType &= 0xFF;
86     r.mType |= UNKNOWN_TYPE;
87     return r;
88 }
89 
operator =(const Transform & other)90 Transform& Transform::operator=(const Transform& other) {
91     mMatrix = other.mMatrix;
92     mType = other.mType;
93     return *this;
94 }
95 
operator [](size_t i) const96 const vec3& Transform::operator [] (size_t i) const {
97     return mMatrix[i];
98 }
99 
tx() const100 float Transform::tx() const {
101     return mMatrix[2][0];
102 }
103 
ty() const104 float Transform::ty() const {
105     return mMatrix[2][1];
106 }
107 
sx() const108 float Transform::sx() const {
109     return mMatrix[0][0];
110 }
111 
sy() const112 float Transform::sy() const {
113     return mMatrix[1][1];
114 }
115 
reset()116 void Transform::reset() {
117     mType = IDENTITY;
118     for(size_t i = 0; i < 3; i++) {
119         vec3& v(mMatrix[i]);
120         for (size_t j = 0; j < 3; j++)
121             v[j] = ((i == j) ? 1.0f : 0.0f);
122     }
123 }
124 
set(float tx,float ty)125 void Transform::set(float tx, float ty)
126 {
127     mMatrix[2][0] = tx;
128     mMatrix[2][1] = ty;
129     mMatrix[2][2] = 1.0f;
130 
131     if (isZero(tx) && isZero(ty)) {
132         mType &= ~TRANSLATE;
133     } else {
134         mType |= TRANSLATE;
135     }
136 }
137 
set(float a,float b,float c,float d)138 void Transform::set(float a, float b, float c, float d)
139 {
140     mat33& M(mMatrix);
141     M[0][0] = a;    M[1][0] = b;
142     M[0][1] = c;    M[1][1] = d;
143     M[0][2] = 0;    M[1][2] = 0;
144     mType = UNKNOWN_TYPE;
145 }
146 
set(uint32_t flags,float w,float h)147 status_t Transform::set(uint32_t flags, float w, float h)
148 {
149     if (flags & ROT_INVALID) {
150         // that's not allowed!
151         reset();
152         return BAD_VALUE;
153     }
154 
155     Transform H, V, R;
156     if (flags & ROT_90) {
157         // w & h are inverted when rotating by 90 degrees
158         std::swap(w, h);
159     }
160 
161     if (flags & FLIP_H) {
162         H.mType = (FLIP_H << 8) | SCALE;
163         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
164         mat33& M(H.mMatrix);
165         M[0][0] = -1;
166         M[2][0] = w;
167     }
168 
169     if (flags & FLIP_V) {
170         V.mType = (FLIP_V << 8) | SCALE;
171         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
172         mat33& M(V.mMatrix);
173         M[1][1] = -1;
174         M[2][1] = h;
175     }
176 
177     if (flags & ROT_90) {
178         const float original_w = h;
179         R.mType = (ROT_90 << 8) | ROTATE;
180         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
181         mat33& M(R.mMatrix);
182         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
183         M[0][1] = 1;    M[1][1] = 0;
184     }
185 
186     *this = (R*(H*V));
187     return NO_ERROR;
188 }
189 
transform(const vec2 & v) const190 vec2 Transform::transform(const vec2& v) const {
191     vec2 r;
192     const mat33& M(mMatrix);
193     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
194     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
195     return r;
196 }
197 
transform(const vec3 & v) const198 vec3 Transform::transform(const vec3& v) const {
199     vec3 r;
200     const mat33& M(mMatrix);
201     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
202     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
203     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
204     return r;
205 }
206 
transform(int x,int y) const207 vec2 Transform::transform(int x, int y) const
208 {
209     return transform(vec2(x,y));
210 }
211 
makeBounds(int w,int h) const212 Rect Transform::makeBounds(int w, int h) const
213 {
214     return transform( Rect(w, h) );
215 }
216 
transform(const Rect & bounds,bool roundOutwards) const217 Rect Transform::transform(const Rect& bounds, bool roundOutwards) const
218 {
219     Rect r;
220     vec2 lt( bounds.left,  bounds.top    );
221     vec2 rt( bounds.right, bounds.top    );
222     vec2 lb( bounds.left,  bounds.bottom );
223     vec2 rb( bounds.right, bounds.bottom );
224 
225     lt = transform(lt);
226     rt = transform(rt);
227     lb = transform(lb);
228     rb = transform(rb);
229 
230     if (roundOutwards) {
231         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]})));
232         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]})));
233         r.right  = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]})));
234         r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]})));
235     } else {
236         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
237         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
238         r.right  = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
239         r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
240     }
241 
242     return r;
243 }
244 
transform(const FloatRect & bounds) const245 FloatRect Transform::transform(const FloatRect& bounds) const
246 {
247     vec2 lt(bounds.left, bounds.top);
248     vec2 rt(bounds.right, bounds.top);
249     vec2 lb(bounds.left, bounds.bottom);
250     vec2 rb(bounds.right, bounds.bottom);
251 
252     lt = transform(lt);
253     rt = transform(rt);
254     lb = transform(lb);
255     rb = transform(rb);
256 
257     FloatRect r;
258     r.left = std::min({lt[0], rt[0], lb[0], rb[0]});
259     r.top = std::min({lt[1], rt[1], lb[1], rb[1]});
260     r.right = std::max({lt[0], rt[0], lb[0], rb[0]});
261     r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]});
262 
263     return r;
264 }
265 
transform(const Region & reg) const266 Region Transform::transform(const Region& reg) const
267 {
268     Region out;
269     if (CC_UNLIKELY(type() > TRANSLATE)) {
270         if (CC_LIKELY(preserveRects())) {
271             Region::const_iterator it = reg.begin();
272             Region::const_iterator const end = reg.end();
273             while (it != end) {
274                 out.orSelf(transform(*it++));
275             }
276         } else {
277             out.set(transform(reg.bounds()));
278         }
279     } else {
280         int xpos = static_cast<int>(floorf(tx() + 0.5f));
281         int ypos = static_cast<int>(floorf(ty() + 0.5f));
282         out = reg.translate(xpos, ypos);
283     }
284     return out;
285 }
286 
type() const287 uint32_t Transform::type() const
288 {
289     if (mType & UNKNOWN_TYPE) {
290         // recompute what this transform is
291 
292         const mat33& M(mMatrix);
293         const float a = M[0][0];
294         const float b = M[1][0];
295         const float c = M[0][1];
296         const float d = M[1][1];
297         const float x = M[2][0];
298         const float y = M[2][1];
299 
300         bool scale = false;
301         uint32_t flags = ROT_0;
302         if (isZero(b) && isZero(c)) {
303             if (a<0)    flags |= FLIP_H;
304             if (d<0)    flags |= FLIP_V;
305             if (!absIsOne(a) || !absIsOne(d)) {
306                 scale = true;
307             }
308         } else if (isZero(a) && isZero(d)) {
309             flags |= ROT_90;
310             if (b>0)    flags |= FLIP_V;
311             if (c<0)    flags |= FLIP_H;
312             if (!absIsOne(b) || !absIsOne(c)) {
313                 scale = true;
314             }
315         } else {
316             // there is a skew component and/or a non 90 degrees rotation
317             flags = ROT_INVALID;
318         }
319 
320         mType = flags << 8;
321         if (flags & ROT_INVALID) {
322             mType |= UNKNOWN;
323         } else {
324             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
325                 mType |= ROTATE;
326             if (flags & FLIP_H)
327                 mType ^= SCALE;
328             if (flags & FLIP_V)
329                 mType ^= SCALE;
330             if (scale)
331                 mType |= SCALE;
332         }
333 
334         if (!isZero(x) || !isZero(y))
335             mType |= TRANSLATE;
336     }
337     return mType;
338 }
339 
inverse() const340 Transform Transform::inverse() const {
341     // our 3x3 matrix is always of the form of a 2x2 transformation
342     // followed by a translation: T*M, therefore:
343     // (T*M)^-1 = M^-1 * T^-1
344     Transform result;
345     if (mType <= TRANSLATE) {
346         // 1 0 0
347         // 0 1 0
348         // x y 1
349         result = *this;
350         result.mMatrix[2][0] = -result.mMatrix[2][0];
351         result.mMatrix[2][1] = -result.mMatrix[2][1];
352     } else {
353         // a c 0
354         // b d 0
355         // x y 1
356         const mat33& M(mMatrix);
357         const float a = M[0][0];
358         const float b = M[1][0];
359         const float c = M[0][1];
360         const float d = M[1][1];
361         const float x = M[2][0];
362         const float y = M[2][1];
363 
364         const float idet = 1.0f / (a*d - b*c);
365         result.mMatrix[0][0] =  d*idet;
366         result.mMatrix[0][1] = -c*idet;
367         result.mMatrix[1][0] = -b*idet;
368         result.mMatrix[1][1] =  a*idet;
369         result.mType = mType;
370 
371         vec2 T(-x, -y);
372         T = result.transform(T);
373         result.mMatrix[2][0] = T[0];
374         result.mMatrix[2][1] = T[1];
375     }
376     return result;
377 }
378 
getType() const379 uint32_t Transform::getType() const {
380     return type() & 0xFF;
381 }
382 
getOrientation() const383 uint32_t Transform::getOrientation() const
384 {
385     return (type() >> 8) & 0xFF;
386 }
387 
preserveRects() const388 bool Transform::preserveRects() const
389 {
390     return (getOrientation() & ROT_INVALID) ? false : true;
391 }
392 
asMatrix4() const393 mat4 Transform::asMatrix4() const {
394     // Internally Transform uses a 3x3 matrix since the transform is meant for
395     // two-dimensional values. An equivalent 4x4 matrix means inserting an extra
396     // row and column which adds as an identity transform on the third
397     // dimension.
398 
399     mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element
400 
401     m[0][0] = mMatrix[0][0];
402     m[0][1] = mMatrix[0][1];
403     m[0][2] = 0.f;
404     m[0][3] = mMatrix[0][2];
405 
406     m[1][0] = mMatrix[1][0];
407     m[1][1] = mMatrix[1][1];
408     m[1][2] = 0.f;
409     m[1][3] = mMatrix[1][2];
410 
411     m[2][0] = 0.f;
412     m[2][1] = 0.f;
413     m[2][2] = 1.f;
414     m[2][3] = 0.f;
415 
416     m[3][0] = mMatrix[2][0];
417     m[3][1] = mMatrix[2][1];
418     m[3][2] = 0.f;
419     m[3][3] = mMatrix[2][2];
420 
421     return m;
422 }
423 
dump(std::string & out,const char * name) const424 void Transform::dump(std::string& out, const char* name) const {
425     using android::base::StringAppendF;
426 
427     type(); // Ensure the information in mType is up to date
428 
429     const uint32_t type = mType;
430     const uint32_t orient = type >> 8;
431 
432     StringAppendF(&out, "%s 0x%08x (", name, orient);
433 
434     if (orient & ROT_INVALID) {
435         out.append("ROT_INVALID ");
436     } else {
437         if (orient & ROT_90) {
438             out.append("ROT_90 ");
439         } else {
440             out.append("ROT_0 ");
441         }
442         if (orient & FLIP_V) out.append("FLIP_V ");
443         if (orient & FLIP_H) out.append("FLIP_H ");
444     }
445 
446     StringAppendF(&out, ") 0x%02x (", type);
447 
448     if (!(type & (SCALE | ROTATE | TRANSLATE))) out.append("IDENTITY ");
449     if (type & SCALE) out.append("SCALE ");
450     if (type & ROTATE) out.append("ROTATE ");
451     if (type & TRANSLATE) out.append("TRANSLATE ");
452 
453     out.append(")\n");
454 
455     for (size_t i = 0; i < 3; i++) {
456         StringAppendF(&out, "    %.4f  %.4f  %.4f\n", static_cast<double>(mMatrix[0][i]),
457                       static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i]));
458     }
459 }
460 
dump(const char * name) const461 void Transform::dump(const char* name) const {
462     std::string out;
463     dump(out, name);
464     ALOGD("%s", out.c_str());
465 }
466 
467 }  // namespace ui
468 }  // namespace android
469