1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <android/content/pm/IPackageManagerNative.h>
17 #include <android/util/ProtoOutputStream.h>
18 #include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
19 #include <binder/ActivityManager.h>
20 #include <binder/BinderService.h>
21 #include <binder/IServiceManager.h>
22 #include <binder/PermissionCache.h>
23 #include <binder/PermissionController.h>
24 #include <cutils/ashmem.h>
25 #include <cutils/misc.h>
26 #include <cutils/properties.h>
27 #include <hardware/sensors.h>
28 #include <hardware_legacy/power.h>
29 #include <log/log.h>
30 #include <openssl/digest.h>
31 #include <openssl/hmac.h>
32 #include <openssl/rand.h>
33 #include <sensor/SensorEventQueue.h>
34 #include <sensorprivacy/SensorPrivacyManager.h>
35 #include <utils/SystemClock.h>
36 
37 #include "BatteryService.h"
38 #include "CorrectedGyroSensor.h"
39 #include "GravitySensor.h"
40 #include "LinearAccelerationSensor.h"
41 #include "OrientationSensor.h"
42 #include "RotationVectorSensor.h"
43 #include "SensorFusion.h"
44 #include "SensorInterface.h"
45 
46 #include "SensorService.h"
47 #include "SensorDirectConnection.h"
48 #include "SensorEventAckReceiver.h"
49 #include "SensorEventConnection.h"
50 #include "SensorRecord.h"
51 #include "SensorRegistrationInfo.h"
52 
53 #include <ctime>
54 #include <inttypes.h>
55 #include <math.h>
56 #include <sched.h>
57 #include <stdint.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/types.h>
61 #include <unistd.h>
62 
63 #include <private/android_filesystem_config.h>
64 
65 namespace android {
66 // ---------------------------------------------------------------------------
67 
68 /*
69  * Notes:
70  *
71  * - what about a gyro-corrected magnetic-field sensor?
72  * - run mag sensor from time to time to force calibration
73  * - gravity sensor length is wrong (=> drift in linear-acc sensor)
74  *
75  */
76 
77 const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
78 uint8_t SensorService::sHmacGlobalKey[128] = {};
79 bool SensorService::sHmacGlobalKeyIsValid = false;
80 std::map<String16, int> SensorService::sPackageTargetVersion;
81 Mutex SensorService::sPackageTargetVersionLock;
82 AppOpsManager SensorService::sAppOpsManager;
83 
84 #define SENSOR_SERVICE_DIR "/data/system/sensor_service"
85 #define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
86 #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
87 
88 // Permissions.
89 static const String16 sDumpPermission("android.permission.DUMP");
90 static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
91 static const String16 sManageSensorsPermission("android.permission.MANAGE_SENSORS");
92 
SensorService()93 SensorService::SensorService()
94     : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
95       mWakeLockAcquired(false) {
96     mUidPolicy = new UidPolicy(this);
97     mSensorPrivacyPolicy = new SensorPrivacyPolicy(this);
98 }
99 
initializeHmacKey()100 bool SensorService::initializeHmacKey() {
101     int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
102     if (fd != -1) {
103         int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
104         close(fd);
105         if (result == sizeof(sHmacGlobalKey)) {
106             return true;
107         }
108         ALOGW("Unable to read HMAC key; generating new one.");
109     }
110 
111     if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
112         ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
113         return false;
114     }
115 
116     // We need to make sure this is only readable to us.
117     bool wroteKey = false;
118     mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
119     fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
120               S_IRUSR|S_IWUSR);
121     if (fd != -1) {
122         int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
123         close(fd);
124         wroteKey = (result == sizeof(sHmacGlobalKey));
125     }
126     if (wroteKey) {
127         ALOGI("Generated new HMAC key.");
128     } else {
129         ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
130               "after reboot.");
131     }
132     // Even if we failed to write the key we return true, because we did
133     // initialize the HMAC key.
134     return true;
135 }
136 
137 // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
enableSchedFifoMode()138 void SensorService::enableSchedFifoMode() {
139     struct sched_param param = {0};
140     param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
141     if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
142         ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
143     }
144 }
145 
onFirstRef()146 void SensorService::onFirstRef() {
147     ALOGD("nuSensorService starting...");
148     SensorDevice& dev(SensorDevice::getInstance());
149 
150     sHmacGlobalKeyIsValid = initializeHmacKey();
151 
152     if (dev.initCheck() == NO_ERROR) {
153         sensor_t const* list;
154         ssize_t count = dev.getSensorList(&list);
155         if (count > 0) {
156             ssize_t orientationIndex = -1;
157             bool hasGyro = false, hasAccel = false, hasMag = false;
158             uint32_t virtualSensorsNeeds =
159                     (1<<SENSOR_TYPE_GRAVITY) |
160                     (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
161                     (1<<SENSOR_TYPE_ROTATION_VECTOR) |
162                     (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
163                     (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
164 
165             for (ssize_t i=0 ; i<count ; i++) {
166                 bool useThisSensor=true;
167 
168                 switch (list[i].type) {
169                     case SENSOR_TYPE_ACCELEROMETER:
170                         hasAccel = true;
171                         break;
172                     case SENSOR_TYPE_MAGNETIC_FIELD:
173                         hasMag = true;
174                         break;
175                     case SENSOR_TYPE_ORIENTATION:
176                         orientationIndex = i;
177                         break;
178                     case SENSOR_TYPE_GYROSCOPE:
179                     case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
180                         hasGyro = true;
181                         break;
182                     case SENSOR_TYPE_GRAVITY:
183                     case SENSOR_TYPE_LINEAR_ACCELERATION:
184                     case SENSOR_TYPE_ROTATION_VECTOR:
185                     case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
186                     case SENSOR_TYPE_GAME_ROTATION_VECTOR:
187                         if (IGNORE_HARDWARE_FUSION) {
188                             useThisSensor = false;
189                         } else {
190                             virtualSensorsNeeds &= ~(1<<list[i].type);
191                         }
192                         break;
193                 }
194                 if (useThisSensor) {
195                     registerSensor( new HardwareSensor(list[i]) );
196                 }
197             }
198 
199             // it's safe to instantiate the SensorFusion object here
200             // (it wants to be instantiated after h/w sensors have been
201             // registered)
202             SensorFusion::getInstance();
203 
204             if (hasGyro && hasAccel && hasMag) {
205                 // Add Android virtual sensors if they're not already
206                 // available in the HAL
207                 bool needRotationVector =
208                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
209 
210                 registerSensor(new RotationVectorSensor(), !needRotationVector, true);
211                 registerSensor(new OrientationSensor(), !needRotationVector, true);
212 
213                 // virtual debugging sensors are not for user
214                 registerSensor( new CorrectedGyroSensor(list, count), true, true);
215                 registerSensor( new GyroDriftSensor(), true, true);
216             }
217 
218             if (hasAccel && hasGyro) {
219                 bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
220                 registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
221 
222                 bool needLinearAcceleration =
223                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
224                 registerSensor(new LinearAccelerationSensor(list, count),
225                                !needLinearAcceleration, true);
226 
227                 bool needGameRotationVector =
228                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
229                 registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
230             }
231 
232             if (hasAccel && hasMag) {
233                 bool needGeoMagRotationVector =
234                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
235                 registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
236             }
237 
238             // Check if the device really supports batching by looking at the FIFO event
239             // counts for each sensor.
240             bool batchingSupported = false;
241             mSensors.forEachSensor(
242                     [&batchingSupported] (const Sensor& s) -> bool {
243                         if (s.getFifoMaxEventCount() > 0) {
244                             batchingSupported = true;
245                         }
246                         return !batchingSupported;
247                     });
248 
249             if (batchingSupported) {
250                 // Increase socket buffer size to a max of 100 KB for batching capabilities.
251                 mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
252             } else {
253                 mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
254             }
255 
256             // Compare the socketBufferSize value against the system limits and limit
257             // it to maxSystemSocketBufferSize if necessary.
258             FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
259             char line[128];
260             if (fp != nullptr && fgets(line, sizeof(line), fp) != nullptr) {
261                 line[sizeof(line) - 1] = '\0';
262                 size_t maxSystemSocketBufferSize;
263                 sscanf(line, "%zu", &maxSystemSocketBufferSize);
264                 if (mSocketBufferSize > maxSystemSocketBufferSize) {
265                     mSocketBufferSize = maxSystemSocketBufferSize;
266                 }
267             }
268             if (fp) {
269                 fclose(fp);
270             }
271 
272             mWakeLockAcquired = false;
273             mLooper = new Looper(false);
274             const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
275             mSensorEventBuffer = new sensors_event_t[minBufferSize];
276             mSensorEventScratch = new sensors_event_t[minBufferSize];
277             mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
278             mCurrentOperatingMode = NORMAL;
279 
280             mNextSensorRegIndex = 0;
281             for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
282                 mLastNSensorRegistrations.push();
283             }
284 
285             mInitCheck = NO_ERROR;
286             mAckReceiver = new SensorEventAckReceiver(this);
287             mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
288             run("SensorService", PRIORITY_URGENT_DISPLAY);
289 
290             // priority can only be changed after run
291             enableSchedFifoMode();
292 
293             // Start watching UID changes to apply policy.
294             mUidPolicy->registerSelf();
295 
296             // Start watching sensor privacy changes
297             mSensorPrivacyPolicy->registerSelf();
298         }
299     }
300 }
301 
onUidStateChanged(uid_t uid,UidState state)302 void SensorService::onUidStateChanged(uid_t uid, UidState state) {
303     SensorDevice& dev(SensorDevice::getInstance());
304 
305     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
306     for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
307         if (conn->getUid() == uid) {
308             dev.setUidStateForConnection(conn.get(), state);
309         }
310     }
311 
312     for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
313         if (conn->getUid() == uid) {
314             // Update sensor subscriptions if needed
315             bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
316             conn->onSensorAccessChanged(hasAccess);
317         }
318     }
319 }
320 
hasSensorAccess(uid_t uid,const String16 & opPackageName)321 bool SensorService::hasSensorAccess(uid_t uid, const String16& opPackageName) {
322     Mutex::Autolock _l(mLock);
323     return hasSensorAccessLocked(uid, opPackageName);
324 }
325 
hasSensorAccessLocked(uid_t uid,const String16 & opPackageName)326 bool SensorService::hasSensorAccessLocked(uid_t uid, const String16& opPackageName) {
327     return !mSensorPrivacyPolicy->isSensorPrivacyEnabled()
328         && isUidActive(uid) && !isOperationRestrictedLocked(opPackageName);
329 }
330 
registerSensor(SensorInterface * s,bool isDebug,bool isVirtual)331 const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
332     int handle = s->getSensor().getHandle();
333     int type = s->getSensor().getType();
334     if (mSensors.add(handle, s, isDebug, isVirtual)){
335         mRecentEvent.emplace(handle, new SensorServiceUtil::RecentEventLogger(type));
336         return s->getSensor();
337     } else {
338         return mSensors.getNonSensor();
339     }
340 }
341 
registerDynamicSensorLocked(SensorInterface * s,bool isDebug)342 const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
343     return registerSensor(s, isDebug);
344 }
345 
unregisterDynamicSensorLocked(int handle)346 bool SensorService::unregisterDynamicSensorLocked(int handle) {
347     bool ret = mSensors.remove(handle);
348 
349     const auto i = mRecentEvent.find(handle);
350     if (i != mRecentEvent.end()) {
351         delete i->second;
352         mRecentEvent.erase(i);
353     }
354     return ret;
355 }
356 
registerVirtualSensor(SensorInterface * s,bool isDebug)357 const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
358     return registerSensor(s, isDebug, true);
359 }
360 
~SensorService()361 SensorService::~SensorService() {
362     for (auto && entry : mRecentEvent) {
363         delete entry.second;
364     }
365     mUidPolicy->unregisterSelf();
366     mSensorPrivacyPolicy->unregisterSelf();
367 }
368 
dump(int fd,const Vector<String16> & args)369 status_t SensorService::dump(int fd, const Vector<String16>& args) {
370     String8 result;
371     if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
372         result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
373                 IPCThreadState::self()->getCallingPid(),
374                 IPCThreadState::self()->getCallingUid());
375     } else {
376         bool privileged = IPCThreadState::self()->getCallingUid() == 0;
377         if (args.size() > 2) {
378            return INVALID_OPERATION;
379         }
380         ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
381         SensorDevice& dev(SensorDevice::getInstance());
382         if (args.size() == 2 && args[0] == String16("restrict")) {
383             // If already in restricted mode. Ignore.
384             if (mCurrentOperatingMode == RESTRICTED) {
385                 return status_t(NO_ERROR);
386             }
387             // If in any mode other than normal, ignore.
388             if (mCurrentOperatingMode != NORMAL) {
389                 return INVALID_OPERATION;
390             }
391 
392             mCurrentOperatingMode = RESTRICTED;
393             // temporarily stop all sensor direct report and disable sensors
394             disableAllSensorsLocked(&connLock);
395             mWhiteListedPackage.setTo(String8(args[1]));
396             return status_t(NO_ERROR);
397         } else if (args.size() == 1 && args[0] == String16("enable")) {
398             // If currently in restricted mode, reset back to NORMAL mode else ignore.
399             if (mCurrentOperatingMode == RESTRICTED) {
400                 mCurrentOperatingMode = NORMAL;
401                 // enable sensors and recover all sensor direct report
402                 enableAllSensorsLocked(&connLock);
403             }
404             if (mCurrentOperatingMode == DATA_INJECTION) {
405                resetToNormalModeLocked();
406             }
407             mWhiteListedPackage.clear();
408             return status_t(NO_ERROR);
409         } else if (args.size() == 2 && args[0] == String16("data_injection")) {
410             if (mCurrentOperatingMode == NORMAL) {
411                 dev.disableAllSensors();
412                 status_t err = dev.setMode(DATA_INJECTION);
413                 if (err == NO_ERROR) {
414                     mCurrentOperatingMode = DATA_INJECTION;
415                 } else {
416                     // Re-enable sensors.
417                     dev.enableAllSensors();
418                 }
419                 mWhiteListedPackage.setTo(String8(args[1]));
420                 return NO_ERROR;
421             } else if (mCurrentOperatingMode == DATA_INJECTION) {
422                 // Already in DATA_INJECTION mode. Treat this as a no_op.
423                 return NO_ERROR;
424             } else {
425                 // Transition to data injection mode supported only from NORMAL mode.
426                 return INVALID_OPERATION;
427             }
428         } else if (args.size() == 1 && args[0] == String16("--proto")) {
429             return dumpProtoLocked(fd, &connLock);
430         } else if (!mSensors.hasAnySensor()) {
431             result.append("No Sensors on the device\n");
432             result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
433         } else {
434             // Default dump the sensor list and debugging information.
435             //
436             timespec curTime;
437             clock_gettime(CLOCK_REALTIME, &curTime);
438             struct tm* timeinfo = localtime(&(curTime.tv_sec));
439             result.appendFormat("Captured at: %02d:%02d:%02d.%03d\n", timeinfo->tm_hour,
440                                 timeinfo->tm_min, timeinfo->tm_sec, (int)ns2ms(curTime.tv_nsec));
441             result.append("Sensor Device:\n");
442             result.append(SensorDevice::getInstance().dump().c_str());
443 
444             result.append("Sensor List:\n");
445             result.append(mSensors.dump().c_str());
446 
447             result.append("Fusion States:\n");
448             SensorFusion::getInstance().dump(result);
449 
450             result.append("Recent Sensor events:\n");
451             for (auto&& i : mRecentEvent) {
452                 sp<SensorInterface> s = mSensors.getInterface(i.first);
453                 if (!i.second->isEmpty()) {
454                     if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
455                         i.second->setFormat("normal");
456                     } else {
457                         i.second->setFormat("mask_data");
458                     }
459                     // if there is events and sensor does not need special permission.
460                     result.appendFormat("%s: ", s->getSensor().getName().string());
461                     result.append(i.second->dump().c_str());
462                 }
463             }
464 
465             result.append("Active sensors:\n");
466             SensorDevice& dev = SensorDevice::getInstance();
467             for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
468                 int handle = mActiveSensors.keyAt(i);
469                 if (dev.isSensorActive(handle)) {
470                     result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
471                             getSensorName(handle).string(),
472                             handle,
473                             mActiveSensors.valueAt(i)->getNumConnections());
474                 }
475             }
476 
477             result.appendFormat("Socket Buffer size = %zd events\n",
478                                 mSocketBufferSize/sizeof(sensors_event_t));
479             result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
480                     "not held");
481             result.appendFormat("Mode :");
482             switch(mCurrentOperatingMode) {
483                case NORMAL:
484                    result.appendFormat(" NORMAL\n");
485                    break;
486                case RESTRICTED:
487                    result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
488                    break;
489                case DATA_INJECTION:
490                    result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
491             }
492             result.appendFormat("Sensor Privacy: %s\n",
493                     mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
494 
495             const auto& activeConnections = connLock.getActiveConnections();
496             result.appendFormat("%zd active connections\n", activeConnections.size());
497             for (size_t i=0 ; i < activeConnections.size() ; i++) {
498                 result.appendFormat("Connection Number: %zu \n", i);
499                 activeConnections[i]->dump(result);
500             }
501 
502             const auto& directConnections = connLock.getDirectConnections();
503             result.appendFormat("%zd direct connections\n", directConnections.size());
504             for (size_t i = 0 ; i < directConnections.size() ; i++) {
505                 result.appendFormat("Direct connection %zu:\n", i);
506                 directConnections[i]->dump(result);
507             }
508 
509             result.appendFormat("Previous Registrations:\n");
510             // Log in the reverse chronological order.
511             int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
512                 SENSOR_REGISTRATIONS_BUF_SIZE;
513             const int startIndex = currentIndex;
514             do {
515                 const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
516                 if (SensorRegistrationInfo::isSentinel(reg_info)) {
517                     // Ignore sentinel, proceed to next item.
518                     currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
519                         SENSOR_REGISTRATIONS_BUF_SIZE;
520                     continue;
521                 }
522                 result.appendFormat("%s\n", reg_info.dump().c_str());
523                 currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
524                         SENSOR_REGISTRATIONS_BUF_SIZE;
525             } while(startIndex != currentIndex);
526         }
527     }
528     write(fd, result.string(), result.size());
529     return NO_ERROR;
530 }
531 
532 /**
533  * Dump debugging information as android.service.SensorServiceProto protobuf message using
534  * ProtoOutputStream.
535  *
536  * See proto definition and some notes about ProtoOutputStream in
537  * frameworks/base/core/proto/android/service/sensor_service.proto
538  */
dumpProtoLocked(int fd,ConnectionSafeAutolock * connLock) const539 status_t SensorService::dumpProtoLocked(int fd, ConnectionSafeAutolock* connLock) const {
540     using namespace service::SensorServiceProto;
541     util::ProtoOutputStream proto;
542     proto.write(INIT_STATUS, int(SensorDevice::getInstance().initCheck()));
543     if (!mSensors.hasAnySensor()) {
544         return proto.flush(fd) ? OK : UNKNOWN_ERROR;
545     }
546     const bool privileged = IPCThreadState::self()->getCallingUid() == 0;
547 
548     timespec curTime;
549     clock_gettime(CLOCK_REALTIME, &curTime);
550     proto.write(CURRENT_TIME_MS, curTime.tv_sec * 1000 + ns2ms(curTime.tv_nsec));
551 
552     // Write SensorDeviceProto
553     uint64_t token = proto.start(SENSOR_DEVICE);
554     SensorDevice::getInstance().dump(&proto);
555     proto.end(token);
556 
557     // Write SensorListProto
558     token = proto.start(SENSORS);
559     mSensors.dump(&proto);
560     proto.end(token);
561 
562     // Write SensorFusionProto
563     token = proto.start(FUSION_STATE);
564     SensorFusion::getInstance().dump(&proto);
565     proto.end(token);
566 
567     // Write SensorEventsProto
568     token = proto.start(SENSOR_EVENTS);
569     for (auto&& i : mRecentEvent) {
570         sp<SensorInterface> s = mSensors.getInterface(i.first);
571         if (!i.second->isEmpty()) {
572             i.second->setFormat(privileged || s->getSensor().getRequiredPermission().isEmpty() ?
573                     "normal" : "mask_data");
574             const uint64_t mToken = proto.start(service::SensorEventsProto::RECENT_EVENTS_LOGS);
575             proto.write(service::SensorEventsProto::RecentEventsLog::NAME,
576                     std::string(s->getSensor().getName().string()));
577             i.second->dump(&proto);
578             proto.end(mToken);
579         }
580     }
581     proto.end(token);
582 
583     // Write ActiveSensorProto
584     SensorDevice& dev = SensorDevice::getInstance();
585     for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
586         int handle = mActiveSensors.keyAt(i);
587         if (dev.isSensorActive(handle)) {
588             token = proto.start(ACTIVE_SENSORS);
589             proto.write(service::ActiveSensorProto::NAME,
590                     std::string(getSensorName(handle).string()));
591             proto.write(service::ActiveSensorProto::HANDLE, handle);
592             proto.write(service::ActiveSensorProto::NUM_CONNECTIONS,
593                     int(mActiveSensors.valueAt(i)->getNumConnections()));
594             proto.end(token);
595         }
596     }
597 
598     proto.write(SOCKET_BUFFER_SIZE, int(mSocketBufferSize));
599     proto.write(SOCKET_BUFFER_SIZE_IN_EVENTS, int(mSocketBufferSize / sizeof(sensors_event_t)));
600     proto.write(WAKE_LOCK_ACQUIRED, mWakeLockAcquired);
601 
602     switch(mCurrentOperatingMode) {
603         case NORMAL:
604             proto.write(OPERATING_MODE, OP_MODE_NORMAL);
605             break;
606         case RESTRICTED:
607             proto.write(OPERATING_MODE, OP_MODE_RESTRICTED);
608             proto.write(WHITELISTED_PACKAGE, std::string(mWhiteListedPackage.string()));
609             break;
610         case DATA_INJECTION:
611             proto.write(OPERATING_MODE, OP_MODE_DATA_INJECTION);
612             proto.write(WHITELISTED_PACKAGE, std::string(mWhiteListedPackage.string()));
613             break;
614         default:
615             proto.write(OPERATING_MODE, OP_MODE_UNKNOWN);
616     }
617     proto.write(SENSOR_PRIVACY, mSensorPrivacyPolicy->isSensorPrivacyEnabled());
618 
619     // Write repeated SensorEventConnectionProto
620     const auto& activeConnections = connLock->getActiveConnections();
621     for (size_t i = 0; i < activeConnections.size(); i++) {
622         token = proto.start(ACTIVE_CONNECTIONS);
623         activeConnections[i]->dump(&proto);
624         proto.end(token);
625     }
626 
627     // Write repeated SensorDirectConnectionProto
628     const auto& directConnections = connLock->getDirectConnections();
629     for (size_t i = 0 ; i < directConnections.size() ; i++) {
630         token = proto.start(DIRECT_CONNECTIONS);
631         directConnections[i]->dump(&proto);
632         proto.end(token);
633     }
634 
635     // Write repeated SensorRegistrationInfoProto
636     const int startIndex = mNextSensorRegIndex;
637     int curr = startIndex;
638     do {
639         const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[curr];
640         if (SensorRegistrationInfo::isSentinel(reg_info)) {
641             // Ignore sentinel, proceed to next item.
642             curr = (curr + 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE;
643             continue;
644         }
645         token = proto.start(PREVIOUS_REGISTRATIONS);
646         reg_info.dump(&proto);
647         proto.end(token);
648         curr = (curr + 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE;
649     } while (startIndex != curr);
650 
651     return proto.flush(fd) ? OK : UNKNOWN_ERROR;
652 }
653 
disableAllSensors()654 void SensorService::disableAllSensors() {
655     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
656     disableAllSensorsLocked(&connLock);
657 }
658 
disableAllSensorsLocked(ConnectionSafeAutolock * connLock)659 void SensorService::disableAllSensorsLocked(ConnectionSafeAutolock* connLock) {
660     SensorDevice& dev(SensorDevice::getInstance());
661     for (const sp<SensorDirectConnection>& conn : connLock->getDirectConnections()) {
662         bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
663         conn->onSensorAccessChanged(hasAccess);
664     }
665     dev.disableAllSensors();
666     // Clear all pending flush connections for all active sensors. If one of the active
667     // connections has called flush() and the underlying sensor has been disabled before a
668     // flush complete event is returned, we need to remove the connection from this queue.
669     for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
670         mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
671     }
672 }
673 
enableAllSensors()674 void SensorService::enableAllSensors() {
675     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
676     enableAllSensorsLocked(&connLock);
677 }
678 
enableAllSensorsLocked(ConnectionSafeAutolock * connLock)679 void SensorService::enableAllSensorsLocked(ConnectionSafeAutolock* connLock) {
680     // sensors should only be enabled if the operating state is not restricted and sensor
681     // privacy is not enabled.
682     if (mCurrentOperatingMode == RESTRICTED || mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
683         ALOGW("Sensors cannot be enabled: mCurrentOperatingMode = %d, sensor privacy = %s",
684               mCurrentOperatingMode,
685               mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
686         return;
687     }
688     SensorDevice& dev(SensorDevice::getInstance());
689     dev.enableAllSensors();
690     for (const sp<SensorDirectConnection>& conn : connLock->getDirectConnections()) {
691         bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
692         conn->onSensorAccessChanged(hasAccess);
693     }
694 }
695 
696 
697 // NOTE: This is a remote API - make sure all args are validated
shellCommand(int in,int out,int err,Vector<String16> & args)698 status_t SensorService::shellCommand(int in, int out, int err, Vector<String16>& args) {
699     if (!checkCallingPermission(sManageSensorsPermission, nullptr, nullptr)) {
700         return PERMISSION_DENIED;
701     }
702     if (in == BAD_TYPE || out == BAD_TYPE || err == BAD_TYPE) {
703         return BAD_VALUE;
704     }
705     if (args[0] == String16("set-uid-state")) {
706         return handleSetUidState(args, err);
707     } else if (args[0] == String16("reset-uid-state")) {
708         return handleResetUidState(args, err);
709     } else if (args[0] == String16("get-uid-state")) {
710         return handleGetUidState(args, out, err);
711     } else if (args.size() == 1 && args[0] == String16("help")) {
712         printHelp(out);
713         return NO_ERROR;
714     }
715     printHelp(err);
716     return BAD_VALUE;
717 }
718 
getUidForPackage(String16 packageName,int userId,uid_t & uid,int err)719 static status_t getUidForPackage(String16 packageName, int userId, /*inout*/uid_t& uid, int err) {
720     PermissionController pc;
721     uid = pc.getPackageUid(packageName, 0);
722     if (uid <= 0) {
723         ALOGE("Unknown package: '%s'", String8(packageName).string());
724         dprintf(err, "Unknown package: '%s'\n", String8(packageName).string());
725         return BAD_VALUE;
726     }
727 
728     if (userId < 0) {
729         ALOGE("Invalid user: %d", userId);
730         dprintf(err, "Invalid user: %d\n", userId);
731         return BAD_VALUE;
732     }
733 
734     uid = multiuser_get_uid(userId, uid);
735     return NO_ERROR;
736 }
737 
handleSetUidState(Vector<String16> & args,int err)738 status_t SensorService::handleSetUidState(Vector<String16>& args, int err) {
739     // Valid arg.size() is 3 or 5, args.size() is 5 with --user option.
740     if (!(args.size() == 3 || args.size() == 5)) {
741         printHelp(err);
742         return BAD_VALUE;
743     }
744 
745     bool active = false;
746     if (args[2] == String16("active")) {
747         active = true;
748     } else if ((args[2] != String16("idle"))) {
749         ALOGE("Expected active or idle but got: '%s'", String8(args[2]).string());
750         return BAD_VALUE;
751     }
752 
753     int userId = 0;
754     if (args.size() == 5 && args[3] == String16("--user")) {
755         userId = atoi(String8(args[4]));
756     }
757 
758     uid_t uid;
759     if (getUidForPackage(args[1], userId, uid, err) != NO_ERROR) {
760         return BAD_VALUE;
761     }
762 
763     mUidPolicy->addOverrideUid(uid, active);
764     return NO_ERROR;
765 }
766 
handleResetUidState(Vector<String16> & args,int err)767 status_t SensorService::handleResetUidState(Vector<String16>& args, int err) {
768     // Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
769     if (!(args.size() == 2 || args.size() == 4)) {
770         printHelp(err);
771         return BAD_VALUE;
772     }
773 
774     int userId = 0;
775     if (args.size() == 4 && args[2] == String16("--user")) {
776         userId = atoi(String8(args[3]));
777     }
778 
779     uid_t uid;
780     if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
781         return BAD_VALUE;
782     }
783 
784     mUidPolicy->removeOverrideUid(uid);
785     return NO_ERROR;
786 }
787 
handleGetUidState(Vector<String16> & args,int out,int err)788 status_t SensorService::handleGetUidState(Vector<String16>& args, int out, int err) {
789     // Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
790     if (!(args.size() == 2 || args.size() == 4)) {
791         printHelp(err);
792         return BAD_VALUE;
793     }
794 
795     int userId = 0;
796     if (args.size() == 4 && args[2] == String16("--user")) {
797         userId = atoi(String8(args[3]));
798     }
799 
800     uid_t uid;
801     if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
802         return BAD_VALUE;
803     }
804 
805     if (mUidPolicy->isUidActive(uid)) {
806         return dprintf(out, "active\n");
807     } else {
808         return dprintf(out, "idle\n");
809     }
810 }
811 
printHelp(int out)812 status_t SensorService::printHelp(int out) {
813     return dprintf(out, "Sensor service commands:\n"
814         "  get-uid-state <PACKAGE> [--user USER_ID] gets the uid state\n"
815         "  set-uid-state <PACKAGE> <active|idle> [--user USER_ID] overrides the uid state\n"
816         "  reset-uid-state <PACKAGE> [--user USER_ID] clears the uid state override\n"
817         "  help print this message\n");
818 }
819 
820 //TODO: move to SensorEventConnection later
cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection> & connection,sensors_event_t const * buffer,const int count)821 void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
822         sensors_event_t const* buffer, const int count) {
823     for (int i=0 ; i<count ; i++) {
824         int handle = buffer[i].sensor;
825         if (buffer[i].type == SENSOR_TYPE_META_DATA) {
826             handle = buffer[i].meta_data.sensor;
827         }
828         if (connection->hasSensor(handle)) {
829             sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
830             // If this buffer has an event from a one_shot sensor and this connection is registered
831             // for this particular one_shot sensor, try cleaning up the connection.
832             if (si != nullptr &&
833                 si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
834                 si->autoDisable(connection.get(), handle);
835                 cleanupWithoutDisableLocked(connection, handle);
836             }
837 
838         }
839    }
840 }
841 
threadLoop()842 bool SensorService::threadLoop() {
843     ALOGD("nuSensorService thread starting...");
844 
845     // each virtual sensor could generate an event per "real" event, that's why we need to size
846     // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
847     // aggressive, but guaranteed to be enough.
848     const size_t vcount = mSensors.getVirtualSensors().size();
849     const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
850     const size_t numEventMax = minBufferSize / (1 + vcount);
851 
852     SensorDevice& device(SensorDevice::getInstance());
853 
854     const int halVersion = device.getHalDeviceVersion();
855     do {
856         ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
857         if (count < 0) {
858             if(count == DEAD_OBJECT && device.isReconnecting()) {
859                 device.reconnect();
860                 continue;
861             } else {
862                 ALOGE("sensor poll failed (%s)", strerror(-count));
863                 break;
864             }
865         }
866 
867         // Reset sensors_event_t.flags to zero for all events in the buffer.
868         for (int i = 0; i < count; i++) {
869              mSensorEventBuffer[i].flags = 0;
870         }
871         ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
872 
873         // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
874         // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
875         // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
876         // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
877         // releasing the wakelock.
878         uint32_t wakeEvents = 0;
879         for (int i = 0; i < count; i++) {
880             if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
881                 wakeEvents++;
882             }
883         }
884 
885         if (wakeEvents > 0) {
886             if (!mWakeLockAcquired) {
887                 setWakeLockAcquiredLocked(true);
888             }
889             device.writeWakeLockHandled(wakeEvents);
890         }
891         recordLastValueLocked(mSensorEventBuffer, count);
892 
893         // handle virtual sensors
894         if (count && vcount) {
895             sensors_event_t const * const event = mSensorEventBuffer;
896             if (!mActiveVirtualSensors.empty()) {
897                 size_t k = 0;
898                 SensorFusion& fusion(SensorFusion::getInstance());
899                 if (fusion.isEnabled()) {
900                     for (size_t i=0 ; i<size_t(count) ; i++) {
901                         fusion.process(event[i]);
902                     }
903                 }
904                 for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
905                     for (int handle : mActiveVirtualSensors) {
906                         if (count + k >= minBufferSize) {
907                             ALOGE("buffer too small to hold all events: "
908                                     "count=%zd, k=%zu, size=%zu",
909                                     count, k, minBufferSize);
910                             break;
911                         }
912                         sensors_event_t out;
913                         sp<SensorInterface> si = mSensors.getInterface(handle);
914                         if (si == nullptr) {
915                             ALOGE("handle %d is not an valid virtual sensor", handle);
916                             continue;
917                         }
918 
919                         if (si->process(&out, event[i])) {
920                             mSensorEventBuffer[count + k] = out;
921                             k++;
922                         }
923                     }
924                 }
925                 if (k) {
926                     // record the last synthesized values
927                     recordLastValueLocked(&mSensorEventBuffer[count], k);
928                     count += k;
929                     // sort the buffer by time-stamps
930                     sortEventBuffer(mSensorEventBuffer, count);
931                 }
932             }
933         }
934 
935         // handle backward compatibility for RotationVector sensor
936         if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
937             for (int i = 0; i < count; i++) {
938                 if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
939                     // All the 4 components of the quaternion should be available
940                     // No heading accuracy. Set it to -1
941                     mSensorEventBuffer[i].data[4] = -1;
942                 }
943             }
944         }
945 
946         // Cache the list of active connections, since we use it in multiple places below but won't
947         // modify it here
948         const std::vector<sp<SensorEventConnection>> activeConnections = connLock.getActiveConnections();
949 
950         for (int i = 0; i < count; ++i) {
951             // Map flush_complete_events in the buffer to SensorEventConnections which called flush
952             // on the hardware sensor. mapFlushEventsToConnections[i] will be the
953             // SensorEventConnection mapped to the corresponding flush_complete_event in
954             // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
955             mMapFlushEventsToConnections[i] = nullptr;
956             if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
957                 const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
958                 SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
959                 if (rec != nullptr) {
960                     mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
961                     rec->removeFirstPendingFlushConnection();
962                 }
963             }
964 
965             // handle dynamic sensor meta events, process registration and unregistration of dynamic
966             // sensor based on content of event.
967             if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
968                 if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
969                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
970                     const sensor_t& dynamicSensor =
971                             *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
972                     ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
973                           handle, dynamicSensor.type, dynamicSensor.name);
974 
975                     if (mSensors.isNewHandle(handle)) {
976                         const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
977                         sensor_t s = dynamicSensor;
978                         // make sure the dynamic sensor flag is set
979                         s.flags |= DYNAMIC_SENSOR_MASK;
980                         // force the handle to be consistent
981                         s.handle = handle;
982 
983                         SensorInterface *si = new HardwareSensor(s, uuid);
984 
985                         // This will release hold on dynamic sensor meta, so it should be called
986                         // after Sensor object is created.
987                         device.handleDynamicSensorConnection(handle, true /*connected*/);
988                         registerDynamicSensorLocked(si);
989                     } else {
990                         ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
991                     }
992                 } else {
993                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
994                     ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
995 
996                     device.handleDynamicSensorConnection(handle, false /*connected*/);
997                     if (!unregisterDynamicSensorLocked(handle)) {
998                         ALOGE("Dynamic sensor release error.");
999                     }
1000 
1001                     for (const sp<SensorEventConnection>& connection : activeConnections) {
1002                         connection->removeSensor(handle);
1003                     }
1004                 }
1005             }
1006         }
1007 
1008         // Send our events to clients. Check the state of wake lock for each client and release the
1009         // lock if none of the clients need it.
1010         bool needsWakeLock = false;
1011         for (const sp<SensorEventConnection>& connection : activeConnections) {
1012             connection->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
1013                     mMapFlushEventsToConnections);
1014             needsWakeLock |= connection->needsWakeLock();
1015             // If the connection has one-shot sensors, it may be cleaned up after first trigger.
1016             // Early check for one-shot sensors.
1017             if (connection->hasOneShotSensors()) {
1018                 cleanupAutoDisabledSensorLocked(connection, mSensorEventBuffer, count);
1019             }
1020         }
1021 
1022         if (mWakeLockAcquired && !needsWakeLock) {
1023             setWakeLockAcquiredLocked(false);
1024         }
1025     } while (!Thread::exitPending());
1026 
1027     ALOGW("Exiting SensorService::threadLoop => aborting...");
1028     abort();
1029     return false;
1030 }
1031 
getLooper() const1032 sp<Looper> SensorService::getLooper() const {
1033     return mLooper;
1034 }
1035 
resetAllWakeLockRefCounts()1036 void SensorService::resetAllWakeLockRefCounts() {
1037     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
1038     for (const sp<SensorEventConnection>& connection : connLock.getActiveConnections()) {
1039         connection->resetWakeLockRefCount();
1040     }
1041     setWakeLockAcquiredLocked(false);
1042 }
1043 
setWakeLockAcquiredLocked(bool acquire)1044 void SensorService::setWakeLockAcquiredLocked(bool acquire) {
1045     if (acquire) {
1046         if (!mWakeLockAcquired) {
1047             acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
1048             mWakeLockAcquired = true;
1049         }
1050         mLooper->wake();
1051     } else {
1052         if (mWakeLockAcquired) {
1053             release_wake_lock(WAKE_LOCK_NAME);
1054             mWakeLockAcquired = false;
1055         }
1056     }
1057 }
1058 
isWakeLockAcquired()1059 bool SensorService::isWakeLockAcquired() {
1060     Mutex::Autolock _l(mLock);
1061     return mWakeLockAcquired;
1062 }
1063 
threadLoop()1064 bool SensorService::SensorEventAckReceiver::threadLoop() {
1065     ALOGD("new thread SensorEventAckReceiver");
1066     sp<Looper> looper = mService->getLooper();
1067     do {
1068         bool wakeLockAcquired = mService->isWakeLockAcquired();
1069         int timeout = -1;
1070         if (wakeLockAcquired) timeout = 5000;
1071         int ret = looper->pollOnce(timeout);
1072         if (ret == ALOOPER_POLL_TIMEOUT) {
1073            mService->resetAllWakeLockRefCounts();
1074         }
1075     } while(!Thread::exitPending());
1076     return false;
1077 }
1078 
recordLastValueLocked(const sensors_event_t * buffer,size_t count)1079 void SensorService::recordLastValueLocked(
1080         const sensors_event_t* buffer, size_t count) {
1081     for (size_t i = 0; i < count; i++) {
1082         if (buffer[i].type == SENSOR_TYPE_META_DATA ||
1083             buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
1084             buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
1085             continue;
1086         }
1087 
1088         auto logger = mRecentEvent.find(buffer[i].sensor);
1089         if (logger != mRecentEvent.end()) {
1090             logger->second->addEvent(buffer[i]);
1091         }
1092     }
1093 }
1094 
sortEventBuffer(sensors_event_t * buffer,size_t count)1095 void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
1096     struct compar {
1097         static int cmp(void const* lhs, void const* rhs) {
1098             sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
1099             sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
1100             return l->timestamp - r->timestamp;
1101         }
1102     };
1103     qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
1104 }
1105 
getSensorName(int handle) const1106 String8 SensorService::getSensorName(int handle) const {
1107     return mSensors.getName(handle);
1108 }
1109 
isVirtualSensor(int handle) const1110 bool SensorService::isVirtualSensor(int handle) const {
1111     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1112     return sensor != nullptr && sensor->isVirtual();
1113 }
1114 
isWakeUpSensorEvent(const sensors_event_t & event) const1115 bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
1116     int handle = event.sensor;
1117     if (event.type == SENSOR_TYPE_META_DATA) {
1118         handle = event.meta_data.sensor;
1119     }
1120     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1121     return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
1122 }
1123 
getIdFromUuid(const Sensor::uuid_t & uuid) const1124 int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
1125     if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
1126         // UUID is not supported for this device.
1127         return 0;
1128     }
1129     if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
1130         // This sensor can be uniquely identified in the system by
1131         // the combination of its type and name.
1132         return -1;
1133     }
1134 
1135     // We have a dynamic sensor.
1136 
1137     if (!sHmacGlobalKeyIsValid) {
1138         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
1139         ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
1140         return 0;
1141     }
1142 
1143     // We want each app author/publisher to get a different ID, so that the
1144     // same dynamic sensor cannot be tracked across apps by multiple
1145     // authors/publishers.  So we use both our UUID and our User ID.
1146     // Note potential confusion:
1147     //     UUID => Universally Unique Identifier.
1148     //     UID  => User Identifier.
1149     // We refrain from using "uid" except as needed by API to try to
1150     // keep this distinction clear.
1151 
1152     auto appUserId = IPCThreadState::self()->getCallingUid();
1153     uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
1154     memcpy(uuidAndApp, &uuid, sizeof(uuid));
1155     memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
1156 
1157     // Now we use our key on our UUID/app combo to get the hash.
1158     uint8_t hash[EVP_MAX_MD_SIZE];
1159     unsigned int hashLen;
1160     if (HMAC(EVP_sha256(),
1161              sHmacGlobalKey, sizeof(sHmacGlobalKey),
1162              uuidAndApp, sizeof(uuidAndApp),
1163              hash, &hashLen) == nullptr) {
1164         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
1165         ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
1166         return 0;
1167     }
1168 
1169     int32_t id = 0;
1170     if (hashLen < sizeof(id)) {
1171         // We never expect this case, but out of paranoia, we handle it.
1172         // Our 'id' length is already quite small, we don't want the
1173         // effective length of it to be even smaller.
1174         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
1175         ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
1176         return 0;
1177     }
1178 
1179     // This is almost certainly less than all of 'hash', but it's as secure
1180     // as we can be with our current 'id' length.
1181     memcpy(&id, hash, sizeof(id));
1182 
1183     // Note at the beginning of the function that we return the values of
1184     // 0 and -1 to represent special cases.  As a result, we can't return
1185     // those as dynamic sensor IDs.  If we happened to hash to one of those
1186     // values, we change 'id' so we report as a dynamic sensor, and not as
1187     // one of those special cases.
1188     if (id == -1) {
1189         id = -2;
1190     } else if (id == 0) {
1191         id = 1;
1192     }
1193     return id;
1194 }
1195 
makeUuidsIntoIdsForSensorList(Vector<Sensor> & sensorList) const1196 void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
1197     for (auto &sensor : sensorList) {
1198         int32_t id = getIdFromUuid(sensor.getUuid());
1199         sensor.setId(id);
1200     }
1201 }
1202 
getSensorList(const String16 &)1203 Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
1204     char value[PROPERTY_VALUE_MAX];
1205     property_get("debug.sensors", value, "0");
1206     const Vector<Sensor>& initialSensorList = (atoi(value)) ?
1207             mSensors.getUserDebugSensors() : mSensors.getUserSensors();
1208     Vector<Sensor> accessibleSensorList;
1209     for (size_t i = 0; i < initialSensorList.size(); i++) {
1210         Sensor sensor = initialSensorList[i];
1211         accessibleSensorList.add(sensor);
1212     }
1213     makeUuidsIntoIdsForSensorList(accessibleSensorList);
1214     return accessibleSensorList;
1215 }
1216 
getDynamicSensorList(const String16 & opPackageName)1217 Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
1218     Vector<Sensor> accessibleSensorList;
1219     mSensors.forEachSensor(
1220             [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
1221                 if (sensor.isDynamicSensor()) {
1222                     if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
1223                         accessibleSensorList.add(sensor);
1224                     } else {
1225                         ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
1226                               sensor.getName().string(),
1227                               sensor.getRequiredPermission().string(),
1228                               sensor.getRequiredAppOp());
1229                     }
1230                 }
1231                 return true;
1232             });
1233     makeUuidsIntoIdsForSensorList(accessibleSensorList);
1234     return accessibleSensorList;
1235 }
1236 
createSensorEventConnection(const String8 & packageName,int requestedMode,const String16 & opPackageName)1237 sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
1238         int requestedMode, const String16& opPackageName) {
1239     // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
1240     if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
1241         return nullptr;
1242     }
1243 
1244     Mutex::Autolock _l(mLock);
1245     // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
1246     // operating in DI mode.
1247     if (requestedMode == DATA_INJECTION) {
1248         if (mCurrentOperatingMode != DATA_INJECTION) return nullptr;
1249         if (!isWhiteListedPackage(packageName)) return nullptr;
1250     }
1251 
1252     uid_t uid = IPCThreadState::self()->getCallingUid();
1253     pid_t pid = IPCThreadState::self()->getCallingPid();
1254 
1255     String8 connPackageName =
1256             (packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
1257     String16 connOpPackageName =
1258             (opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
1259     sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
1260             requestedMode == DATA_INJECTION, connOpPackageName));
1261     if (requestedMode == DATA_INJECTION) {
1262         mConnectionHolder.addEventConnectionIfNotPresent(result);
1263         // Add the associated file descriptor to the Looper for polling whenever there is data to
1264         // be injected.
1265         result->updateLooperRegistration(mLooper);
1266     }
1267     return result;
1268 }
1269 
isDataInjectionEnabled()1270 int SensorService::isDataInjectionEnabled() {
1271     Mutex::Autolock _l(mLock);
1272     return (mCurrentOperatingMode == DATA_INJECTION);
1273 }
1274 
createSensorDirectConnection(const String16 & opPackageName,uint32_t size,int32_t type,int32_t format,const native_handle * resource)1275 sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
1276         const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
1277         const native_handle *resource) {
1278     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
1279 
1280     // No new direct connections are allowed when sensor privacy is enabled
1281     if (mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
1282         ALOGE("Cannot create new direct connections when sensor privacy is enabled");
1283         return nullptr;
1284     }
1285 
1286     struct sensors_direct_mem_t mem = {
1287         .type = type,
1288         .format = format,
1289         .size = size,
1290         .handle = resource,
1291     };
1292     uid_t uid = IPCThreadState::self()->getCallingUid();
1293 
1294     if (mem.handle == nullptr) {
1295         ALOGE("Failed to clone resource handle");
1296         return nullptr;
1297     }
1298 
1299     // check format
1300     if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
1301         ALOGE("Direct channel format %d is unsupported!", format);
1302         return nullptr;
1303     }
1304 
1305     // check for duplication
1306     for (const sp<SensorDirectConnection>& connection : connLock.getDirectConnections()) {
1307         if (connection->isEquivalent(&mem)) {
1308             ALOGE("Duplicate create channel request for the same share memory");
1309             return nullptr;
1310         }
1311     }
1312 
1313     // check specific to memory type
1314     switch(type) {
1315         case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
1316             if (resource->numFds < 1) {
1317                 ALOGE("Ashmem direct channel requires a memory region to be supplied");
1318                 android_errorWriteLog(0x534e4554, "70986337");  // SafetyNet
1319                 return nullptr;
1320             }
1321             int fd = resource->data[0];
1322             if (!ashmem_valid(fd)) {
1323                 ALOGE("Supplied Ashmem memory region is invalid");
1324                 return nullptr;
1325             }
1326 
1327             int size2 = ashmem_get_size_region(fd);
1328             // check size consistency
1329             if (size2 < static_cast<int64_t>(size)) {
1330                 ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
1331                       size, size2);
1332                 return nullptr;
1333             }
1334             break;
1335         }
1336         case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
1337             // no specific checks for gralloc
1338             break;
1339         default:
1340             ALOGE("Unknown direct connection memory type %d", type);
1341             return nullptr;
1342     }
1343 
1344     native_handle_t *clone = native_handle_clone(resource);
1345     if (!clone) {
1346         return nullptr;
1347     }
1348 
1349     sp<SensorDirectConnection> conn;
1350     SensorDevice& dev(SensorDevice::getInstance());
1351     int channelHandle = dev.registerDirectChannel(&mem);
1352 
1353     if (channelHandle <= 0) {
1354         ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
1355     } else {
1356         mem.handle = clone;
1357         conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
1358     }
1359 
1360     if (conn == nullptr) {
1361         native_handle_close(clone);
1362         native_handle_delete(clone);
1363     } else {
1364         // add to list of direct connections
1365         // sensor service should never hold pointer or sp of SensorDirectConnection object.
1366         mConnectionHolder.addDirectConnection(conn);
1367     }
1368     return conn;
1369 }
1370 
setOperationParameter(int32_t handle,int32_t type,const Vector<float> & floats,const Vector<int32_t> & ints)1371 int SensorService::setOperationParameter(
1372             int32_t handle, int32_t type,
1373             const Vector<float> &floats, const Vector<int32_t> &ints) {
1374     Mutex::Autolock _l(mLock);
1375 
1376     if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
1377         return PERMISSION_DENIED;
1378     }
1379 
1380     bool isFloat = true;
1381     bool isCustom = false;
1382     size_t expectSize = INT32_MAX;
1383     switch (type) {
1384         case AINFO_LOCAL_GEOMAGNETIC_FIELD:
1385             isFloat = true;
1386             expectSize = 3;
1387             break;
1388         case AINFO_LOCAL_GRAVITY:
1389             isFloat = true;
1390             expectSize = 1;
1391             break;
1392         case AINFO_DOCK_STATE:
1393         case AINFO_HIGH_PERFORMANCE_MODE:
1394         case AINFO_MAGNETIC_FIELD_CALIBRATION:
1395             isFloat = false;
1396             expectSize = 1;
1397             break;
1398         default:
1399             // CUSTOM events must only contain float data; it may have variable size
1400             if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
1401                     ints.size() ||
1402                     sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
1403                     handle < 0) {
1404                 return BAD_VALUE;
1405             }
1406             isFloat = true;
1407             isCustom = true;
1408             expectSize = floats.size();
1409             break;
1410     }
1411 
1412     if (!isCustom && handle != -1) {
1413         return BAD_VALUE;
1414     }
1415 
1416     // three events: first one is begin tag, last one is end tag, the one in the middle
1417     // is the payload.
1418     sensors_event_t event[3];
1419     int64_t timestamp = elapsedRealtimeNano();
1420     for (sensors_event_t* i = event; i < event + 3; i++) {
1421         *i = (sensors_event_t) {
1422             .version = sizeof(sensors_event_t),
1423             .sensor = handle,
1424             .type = SENSOR_TYPE_ADDITIONAL_INFO,
1425             .timestamp = timestamp++,
1426             .additional_info = (additional_info_event_t) {
1427                 .serial = 0
1428             }
1429         };
1430     }
1431 
1432     event[0].additional_info.type = AINFO_BEGIN;
1433     event[1].additional_info.type = type;
1434     event[2].additional_info.type = AINFO_END;
1435 
1436     if (isFloat) {
1437         if (floats.size() != expectSize) {
1438             return BAD_VALUE;
1439         }
1440         for (size_t i = 0; i < expectSize; ++i) {
1441             event[1].additional_info.data_float[i] = floats[i];
1442         }
1443     } else {
1444         if (ints.size() != expectSize) {
1445             return BAD_VALUE;
1446         }
1447         for (size_t i = 0; i < expectSize; ++i) {
1448             event[1].additional_info.data_int32[i] = ints[i];
1449         }
1450     }
1451 
1452     SensorDevice& dev(SensorDevice::getInstance());
1453     for (sensors_event_t* i = event; i < event + 3; i++) {
1454         int ret = dev.injectSensorData(i);
1455         if (ret != NO_ERROR) {
1456             return ret;
1457         }
1458     }
1459     return NO_ERROR;
1460 }
1461 
resetToNormalMode()1462 status_t SensorService::resetToNormalMode() {
1463     Mutex::Autolock _l(mLock);
1464     return resetToNormalModeLocked();
1465 }
1466 
resetToNormalModeLocked()1467 status_t SensorService::resetToNormalModeLocked() {
1468     SensorDevice& dev(SensorDevice::getInstance());
1469     status_t err = dev.setMode(NORMAL);
1470     if (err == NO_ERROR) {
1471         mCurrentOperatingMode = NORMAL;
1472         dev.enableAllSensors();
1473     }
1474     return err;
1475 }
1476 
cleanupConnection(SensorEventConnection * c)1477 void SensorService::cleanupConnection(SensorEventConnection* c) {
1478     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
1479     const wp<SensorEventConnection> connection(c);
1480     size_t size = mActiveSensors.size();
1481     ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
1482     for (size_t i=0 ; i<size ; ) {
1483         int handle = mActiveSensors.keyAt(i);
1484         if (c->hasSensor(handle)) {
1485             ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
1486             sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1487             if (sensor != nullptr) {
1488                 sensor->activate(c, false);
1489             } else {
1490                 ALOGE("sensor interface of handle=0x%08x is null!", handle);
1491             }
1492             c->removeSensor(handle);
1493         }
1494         SensorRecord* rec = mActiveSensors.valueAt(i);
1495         ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
1496         ALOGD_IF(DEBUG_CONNECTIONS,
1497                 "removing connection %p for sensor[%zu].handle=0x%08x",
1498                 c, i, handle);
1499 
1500         if (rec && rec->removeConnection(connection)) {
1501             ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
1502             mActiveSensors.removeItemsAt(i, 1);
1503             mActiveVirtualSensors.erase(handle);
1504             delete rec;
1505             size--;
1506         } else {
1507             i++;
1508         }
1509     }
1510     c->updateLooperRegistration(mLooper);
1511     mConnectionHolder.removeEventConnection(connection);
1512     BatteryService::cleanup(c->getUid());
1513     if (c->needsWakeLock()) {
1514         checkWakeLockStateLocked(&connLock);
1515     }
1516 
1517     {
1518         Mutex::Autolock packageLock(sPackageTargetVersionLock);
1519         auto iter = sPackageTargetVersion.find(c->mOpPackageName);
1520         if (iter != sPackageTargetVersion.end()) {
1521             sPackageTargetVersion.erase(iter);
1522         }
1523     }
1524 
1525     SensorDevice& dev(SensorDevice::getInstance());
1526     dev.notifyConnectionDestroyed(c);
1527 }
1528 
cleanupConnection(SensorDirectConnection * c)1529 void SensorService::cleanupConnection(SensorDirectConnection* c) {
1530     Mutex::Autolock _l(mLock);
1531 
1532     SensorDevice& dev(SensorDevice::getInstance());
1533     dev.unregisterDirectChannel(c->getHalChannelHandle());
1534     mConnectionHolder.removeDirectConnection(c);
1535 }
1536 
getSensorInterfaceFromHandle(int handle) const1537 sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
1538     return mSensors.getInterface(handle);
1539 }
1540 
enable(const sp<SensorEventConnection> & connection,int handle,nsecs_t samplingPeriodNs,nsecs_t maxBatchReportLatencyNs,int reservedFlags,const String16 & opPackageName)1541 status_t SensorService::enable(const sp<SensorEventConnection>& connection,
1542         int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
1543         const String16& opPackageName) {
1544     if (mInitCheck != NO_ERROR)
1545         return mInitCheck;
1546 
1547     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1548     if (sensor == nullptr ||
1549         !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
1550         return BAD_VALUE;
1551     }
1552 
1553     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
1554     if (mCurrentOperatingMode != NORMAL
1555            && !isWhiteListedPackage(connection->getPackageName())) {
1556         return INVALID_OPERATION;
1557     }
1558 
1559     SensorRecord* rec = mActiveSensors.valueFor(handle);
1560     if (rec == nullptr) {
1561         rec = new SensorRecord(connection);
1562         mActiveSensors.add(handle, rec);
1563         if (sensor->isVirtual()) {
1564             mActiveVirtualSensors.emplace(handle);
1565         }
1566 
1567         // There was no SensorRecord for this sensor which means it was previously disabled. Mark
1568         // the recent event as stale to ensure that the previous event is not sent to a client. This
1569         // ensures on-change events that were generated during a previous sensor activation are not
1570         // erroneously sent to newly connected clients, especially if a second client registers for
1571         // an on-change sensor before the first client receives the updated event. Once an updated
1572         // event is received, the recent events will be marked as current, and any new clients will
1573         // immediately receive the most recent event.
1574         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
1575             auto logger = mRecentEvent.find(handle);
1576             if (logger != mRecentEvent.end()) {
1577                 logger->second->setLastEventStale();
1578             }
1579         }
1580     } else {
1581         if (rec->addConnection(connection)) {
1582             // this sensor is already activated, but we are adding a connection that uses it.
1583             // Immediately send down the last known value of the requested sensor if it's not a
1584             // "continuous" sensor.
1585             if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
1586                 // NOTE: The wake_up flag of this event may get set to
1587                 // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
1588 
1589                 auto logger = mRecentEvent.find(handle);
1590                 if (logger != mRecentEvent.end()) {
1591                     sensors_event_t event;
1592                     // Verify that the last sensor event was generated from the current activation
1593                     // of the sensor. If not, it is possible for an on-change sensor to receive a
1594                     // sensor event that is stale if two clients re-activate the sensor
1595                     // simultaneously.
1596                     if(logger->second->populateLastEventIfCurrent(&event)) {
1597                         event.sensor = handle;
1598                         if (event.version == sizeof(sensors_event_t)) {
1599                             if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
1600                                 setWakeLockAcquiredLocked(true);
1601                             }
1602                             connection->sendEvents(&event, 1, nullptr);
1603                             if (!connection->needsWakeLock() && mWakeLockAcquired) {
1604                                 checkWakeLockStateLocked(&connLock);
1605                             }
1606                         }
1607                     }
1608                 }
1609             }
1610         }
1611     }
1612 
1613     if (connection->addSensor(handle)) {
1614         BatteryService::enableSensor(connection->getUid(), handle);
1615         // the sensor was added (which means it wasn't already there)
1616         // so, see if this connection becomes active
1617         mConnectionHolder.addEventConnectionIfNotPresent(connection);
1618     } else {
1619         ALOGW("sensor %08x already enabled in connection %p (ignoring)",
1620             handle, connection.get());
1621     }
1622 
1623     // Check maximum delay for the sensor.
1624     nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
1625     if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
1626         samplingPeriodNs = maxDelayNs;
1627     }
1628 
1629     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1630     if (samplingPeriodNs < minDelayNs) {
1631         samplingPeriodNs = minDelayNs;
1632     }
1633 
1634     ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
1635                                 "rate=%" PRId64 " timeout== %" PRId64"",
1636              handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
1637 
1638     status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
1639                                  maxBatchReportLatencyNs);
1640 
1641     // Call flush() before calling activate() on the sensor. Wait for a first
1642     // flush complete event before sending events on this connection. Ignore
1643     // one-shot sensors which don't support flush(). Ignore on-change sensors
1644     // to maintain the on-change logic (any on-change events except the initial
1645     // one should be trigger by a change in value). Also if this sensor isn't
1646     // already active, don't call flush().
1647     if (err == NO_ERROR &&
1648             sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
1649             rec->getNumConnections() > 1) {
1650         connection->setFirstFlushPending(handle, true);
1651         status_t err_flush = sensor->flush(connection.get(), handle);
1652         // Flush may return error if the underlying h/w sensor uses an older HAL.
1653         if (err_flush == NO_ERROR) {
1654             rec->addPendingFlushConnection(connection.get());
1655         } else {
1656             connection->setFirstFlushPending(handle, false);
1657         }
1658     }
1659 
1660     if (err == NO_ERROR) {
1661         ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
1662         err = sensor->activate(connection.get(), true);
1663     }
1664 
1665     if (err == NO_ERROR) {
1666         connection->updateLooperRegistration(mLooper);
1667 
1668         if (sensor->getSensor().getRequiredPermission().size() > 0 &&
1669                 sensor->getSensor().getRequiredAppOp() >= 0) {
1670             connection->mHandleToAppOp[handle] = sensor->getSensor().getRequiredAppOp();
1671         }
1672 
1673         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
1674                 SensorRegistrationInfo(handle, connection->getPackageName(),
1675                                        samplingPeriodNs, maxBatchReportLatencyNs, true);
1676         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1677     }
1678 
1679     if (err != NO_ERROR) {
1680         // batch/activate has failed, reset our state.
1681         cleanupWithoutDisableLocked(connection, handle);
1682     }
1683     return err;
1684 }
1685 
disable(const sp<SensorEventConnection> & connection,int handle)1686 status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
1687     if (mInitCheck != NO_ERROR)
1688         return mInitCheck;
1689 
1690     Mutex::Autolock _l(mLock);
1691     status_t err = cleanupWithoutDisableLocked(connection, handle);
1692     if (err == NO_ERROR) {
1693         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1694         err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
1695 
1696     }
1697     if (err == NO_ERROR) {
1698         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
1699                 SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
1700         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1701     }
1702     return err;
1703 }
1704 
cleanupWithoutDisable(const sp<SensorEventConnection> & connection,int handle)1705 status_t SensorService::cleanupWithoutDisable(
1706         const sp<SensorEventConnection>& connection, int handle) {
1707     Mutex::Autolock _l(mLock);
1708     return cleanupWithoutDisableLocked(connection, handle);
1709 }
1710 
cleanupWithoutDisableLocked(const sp<SensorEventConnection> & connection,int handle)1711 status_t SensorService::cleanupWithoutDisableLocked(
1712         const sp<SensorEventConnection>& connection, int handle) {
1713     SensorRecord* rec = mActiveSensors.valueFor(handle);
1714     if (rec) {
1715         // see if this connection becomes inactive
1716         if (connection->removeSensor(handle)) {
1717             BatteryService::disableSensor(connection->getUid(), handle);
1718         }
1719         if (connection->hasAnySensor() == false) {
1720             connection->updateLooperRegistration(mLooper);
1721             mConnectionHolder.removeEventConnection(connection);
1722         }
1723         // see if this sensor becomes inactive
1724         if (rec->removeConnection(connection)) {
1725             mActiveSensors.removeItem(handle);
1726             mActiveVirtualSensors.erase(handle);
1727             delete rec;
1728         }
1729         return NO_ERROR;
1730     }
1731     return BAD_VALUE;
1732 }
1733 
setEventRate(const sp<SensorEventConnection> & connection,int handle,nsecs_t ns,const String16 & opPackageName)1734 status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
1735         int handle, nsecs_t ns, const String16& opPackageName) {
1736     if (mInitCheck != NO_ERROR)
1737         return mInitCheck;
1738 
1739     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1740     if (sensor == nullptr ||
1741         !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
1742         return BAD_VALUE;
1743     }
1744 
1745     if (ns < 0)
1746         return BAD_VALUE;
1747 
1748     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1749     if (ns < minDelayNs) {
1750         ns = minDelayNs;
1751     }
1752 
1753     return sensor->setDelay(connection.get(), handle, ns);
1754 }
1755 
flushSensor(const sp<SensorEventConnection> & connection,const String16 & opPackageName)1756 status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
1757         const String16& opPackageName) {
1758     if (mInitCheck != NO_ERROR) return mInitCheck;
1759     SensorDevice& dev(SensorDevice::getInstance());
1760     const int halVersion = dev.getHalDeviceVersion();
1761     status_t err(NO_ERROR);
1762     Mutex::Autolock _l(mLock);
1763     // Loop through all sensors for this connection and call flush on each of them.
1764     for (int handle : connection->getActiveSensorHandles()) {
1765         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1766         if (sensor == nullptr) {
1767             continue;
1768         }
1769         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
1770             ALOGE("flush called on a one-shot sensor");
1771             err = INVALID_OPERATION;
1772             continue;
1773         }
1774         if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
1775             // For older devices just increment pending flush count which will send a trivial
1776             // flush complete event.
1777             if (!connection->incrementPendingFlushCountIfHasAccess(handle)) {
1778                 ALOGE("flush called on an inaccessible sensor");
1779                 err = INVALID_OPERATION;
1780             }
1781         } else {
1782             if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
1783                 err = INVALID_OPERATION;
1784                 continue;
1785             }
1786             status_t err_flush = sensor->flush(connection.get(), handle);
1787             if (err_flush == NO_ERROR) {
1788                 SensorRecord* rec = mActiveSensors.valueFor(handle);
1789                 if (rec != nullptr) rec->addPendingFlushConnection(connection);
1790             }
1791             err = (err_flush != NO_ERROR) ? err_flush : err;
1792         }
1793     }
1794     return err;
1795 }
1796 
canAccessSensor(const Sensor & sensor,const char * operation,const String16 & opPackageName)1797 bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
1798         const String16& opPackageName) {
1799     // Check if a permission is required for this sensor
1800     if (sensor.getRequiredPermission().length() <= 0) {
1801         return true;
1802     }
1803 
1804     const int32_t opCode = sensor.getRequiredAppOp();
1805     const int32_t appOpMode = sAppOpsManager.checkOp(opCode,
1806             IPCThreadState::self()->getCallingUid(), opPackageName);
1807     bool appOpAllowed = appOpMode == AppOpsManager::MODE_ALLOWED;
1808     int targetSdkVersion = getTargetSdkVersion(opPackageName);
1809 
1810     bool canAccess = false;
1811     if (targetSdkVersion > 0 && targetSdkVersion <= __ANDROID_API_P__ &&
1812             (sensor.getType() == SENSOR_TYPE_STEP_COUNTER ||
1813              sensor.getType() == SENSOR_TYPE_STEP_DETECTOR)) {
1814         // Allow access to step sensors if the application targets pre-Q, which is before the
1815         // requirement to hold the AR permission to access Step Counter and Step Detector events
1816         // was introduced.
1817         canAccess = true;
1818     } else if (hasPermissionForSensor(sensor)) {
1819         // Ensure that the AppOp is allowed, or that there is no necessary app op for the sensor
1820         if (opCode < 0 || appOpAllowed) {
1821             canAccess = true;
1822         }
1823     }
1824 
1825     if (canAccess) {
1826         sAppOpsManager.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName);
1827     } else {
1828         ALOGE("%s %s a sensor (%s) without holding %s", String8(opPackageName).string(),
1829               operation, sensor.getName().string(), sensor.getRequiredPermission().string());
1830     }
1831 
1832     return canAccess;
1833 }
1834 
hasPermissionForSensor(const Sensor & sensor)1835 bool SensorService::hasPermissionForSensor(const Sensor& sensor) {
1836     bool hasPermission = false;
1837     const String8& requiredPermission = sensor.getRequiredPermission();
1838 
1839     // Runtime permissions can't use the cache as they may change.
1840     if (sensor.isRequiredPermissionRuntime()) {
1841         hasPermission = checkPermission(String16(requiredPermission),
1842                 IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
1843     } else {
1844         hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
1845     }
1846     return hasPermission;
1847 }
1848 
getTargetSdkVersion(const String16 & opPackageName)1849 int SensorService::getTargetSdkVersion(const String16& opPackageName) {
1850     Mutex::Autolock packageLock(sPackageTargetVersionLock);
1851     int targetSdkVersion = -1;
1852     auto entry = sPackageTargetVersion.find(opPackageName);
1853     if (entry != sPackageTargetVersion.end()) {
1854         targetSdkVersion = entry->second;
1855     } else {
1856         sp<IBinder> binder = defaultServiceManager()->getService(String16("package_native"));
1857         if (binder != nullptr) {
1858             sp<content::pm::IPackageManagerNative> packageManager =
1859                     interface_cast<content::pm::IPackageManagerNative>(binder);
1860             if (packageManager != nullptr) {
1861                 binder::Status status = packageManager->getTargetSdkVersionForPackage(
1862                         opPackageName, &targetSdkVersion);
1863                 if (!status.isOk()) {
1864                     targetSdkVersion = -1;
1865                 }
1866             }
1867         }
1868         sPackageTargetVersion[opPackageName] = targetSdkVersion;
1869     }
1870     return targetSdkVersion;
1871 }
1872 
checkWakeLockState()1873 void SensorService::checkWakeLockState() {
1874     ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
1875     checkWakeLockStateLocked(&connLock);
1876 }
1877 
checkWakeLockStateLocked(ConnectionSafeAutolock * connLock)1878 void SensorService::checkWakeLockStateLocked(ConnectionSafeAutolock* connLock) {
1879     if (!mWakeLockAcquired) {
1880         return;
1881     }
1882     bool releaseLock = true;
1883     for (const sp<SensorEventConnection>& connection : connLock->getActiveConnections()) {
1884         if (connection->needsWakeLock()) {
1885             releaseLock = false;
1886             break;
1887         }
1888     }
1889     if (releaseLock) {
1890         setWakeLockAcquiredLocked(false);
1891     }
1892 }
1893 
sendEventsFromCache(const sp<SensorEventConnection> & connection)1894 void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
1895     Mutex::Autolock _l(mLock);
1896     connection->writeToSocketFromCache();
1897     if (connection->needsWakeLock()) {
1898         setWakeLockAcquiredLocked(true);
1899     }
1900 }
1901 
isWhiteListedPackage(const String8 & packageName)1902 bool SensorService::isWhiteListedPackage(const String8& packageName) {
1903     return (packageName.contains(mWhiteListedPackage.string()));
1904 }
1905 
isOperationRestrictedLocked(const String16 & opPackageName)1906 bool SensorService::isOperationRestrictedLocked(const String16& opPackageName) {
1907     if (mCurrentOperatingMode == RESTRICTED) {
1908         String8 package(opPackageName);
1909         return !isWhiteListedPackage(package);
1910     }
1911     return false;
1912 }
1913 
registerSelf()1914 void SensorService::UidPolicy::registerSelf() {
1915     ActivityManager am;
1916     am.registerUidObserver(this, ActivityManager::UID_OBSERVER_GONE
1917             | ActivityManager::UID_OBSERVER_IDLE
1918             | ActivityManager::UID_OBSERVER_ACTIVE,
1919             ActivityManager::PROCESS_STATE_UNKNOWN,
1920             String16("android"));
1921 }
1922 
unregisterSelf()1923 void SensorService::UidPolicy::unregisterSelf() {
1924     ActivityManager am;
1925     am.unregisterUidObserver(this);
1926 }
1927 
onUidGone(__unused uid_t uid,__unused bool disabled)1928 void SensorService::UidPolicy::onUidGone(__unused uid_t uid, __unused bool disabled) {
1929     onUidIdle(uid, disabled);
1930 }
1931 
onUidActive(uid_t uid)1932 void SensorService::UidPolicy::onUidActive(uid_t uid) {
1933     {
1934         Mutex::Autolock _l(mUidLock);
1935         mActiveUids.insert(uid);
1936     }
1937     sp<SensorService> service = mService.promote();
1938     if (service != nullptr) {
1939         service->onUidStateChanged(uid, UID_STATE_ACTIVE);
1940     }
1941 }
1942 
onUidIdle(uid_t uid,__unused bool disabled)1943 void SensorService::UidPolicy::onUidIdle(uid_t uid, __unused bool disabled) {
1944     bool deleted = false;
1945     {
1946         Mutex::Autolock _l(mUidLock);
1947         if (mActiveUids.erase(uid) > 0) {
1948             deleted = true;
1949         }
1950     }
1951     if (deleted) {
1952         sp<SensorService> service = mService.promote();
1953         if (service != nullptr) {
1954             service->onUidStateChanged(uid, UID_STATE_IDLE);
1955         }
1956     }
1957 }
1958 
addOverrideUid(uid_t uid,bool active)1959 void SensorService::UidPolicy::addOverrideUid(uid_t uid, bool active) {
1960     updateOverrideUid(uid, active, true);
1961 }
1962 
removeOverrideUid(uid_t uid)1963 void SensorService::UidPolicy::removeOverrideUid(uid_t uid) {
1964     updateOverrideUid(uid, false, false);
1965 }
1966 
updateOverrideUid(uid_t uid,bool active,bool insert)1967 void SensorService::UidPolicy::updateOverrideUid(uid_t uid, bool active, bool insert) {
1968     bool wasActive = false;
1969     bool isActive = false;
1970     {
1971         Mutex::Autolock _l(mUidLock);
1972         wasActive = isUidActiveLocked(uid);
1973         mOverrideUids.erase(uid);
1974         if (insert) {
1975             mOverrideUids.insert(std::pair<uid_t, bool>(uid, active));
1976         }
1977         isActive = isUidActiveLocked(uid);
1978     }
1979     if (wasActive != isActive) {
1980         sp<SensorService> service = mService.promote();
1981         if (service != nullptr) {
1982             service->onUidStateChanged(uid, isActive ? UID_STATE_ACTIVE : UID_STATE_IDLE);
1983         }
1984     }
1985 }
1986 
isUidActive(uid_t uid)1987 bool SensorService::UidPolicy::isUidActive(uid_t uid) {
1988     // Non-app UIDs are considered always active
1989     if (uid < FIRST_APPLICATION_UID) {
1990         return true;
1991     }
1992     Mutex::Autolock _l(mUidLock);
1993     return isUidActiveLocked(uid);
1994 }
1995 
isUidActiveLocked(uid_t uid)1996 bool SensorService::UidPolicy::isUidActiveLocked(uid_t uid) {
1997     // Non-app UIDs are considered always active
1998     if (uid < FIRST_APPLICATION_UID) {
1999         return true;
2000     }
2001     auto it = mOverrideUids.find(uid);
2002     if (it != mOverrideUids.end()) {
2003         return it->second;
2004     }
2005     return mActiveUids.find(uid) != mActiveUids.end();
2006 }
2007 
isUidActive(uid_t uid)2008 bool SensorService::isUidActive(uid_t uid) {
2009     return mUidPolicy->isUidActive(uid);
2010 }
2011 
registerSelf()2012 void SensorService::SensorPrivacyPolicy::registerSelf() {
2013     SensorPrivacyManager spm;
2014     mSensorPrivacyEnabled = spm.isSensorPrivacyEnabled();
2015     spm.addSensorPrivacyListener(this);
2016 }
2017 
unregisterSelf()2018 void SensorService::SensorPrivacyPolicy::unregisterSelf() {
2019     SensorPrivacyManager spm;
2020     spm.removeSensorPrivacyListener(this);
2021 }
2022 
isSensorPrivacyEnabled()2023 bool SensorService::SensorPrivacyPolicy::isSensorPrivacyEnabled() {
2024     return mSensorPrivacyEnabled;
2025 }
2026 
onSensorPrivacyChanged(bool enabled)2027 binder::Status SensorService::SensorPrivacyPolicy::onSensorPrivacyChanged(bool enabled) {
2028     mSensorPrivacyEnabled = enabled;
2029     sp<SensorService> service = mService.promote();
2030     if (service != nullptr) {
2031         if (enabled) {
2032             service->disableAllSensors();
2033         } else {
2034             service->enableAllSensors();
2035         }
2036     }
2037     return binder::Status::ok();
2038 }
2039 
ConnectionSafeAutolock(SensorService::SensorConnectionHolder & holder,Mutex & mutex)2040 SensorService::ConnectionSafeAutolock::ConnectionSafeAutolock(
2041         SensorService::SensorConnectionHolder& holder, Mutex& mutex)
2042         : mConnectionHolder(holder), mAutolock(mutex) {}
2043 
2044 template<typename ConnectionType>
getConnectionsHelper(const SortedVector<wp<ConnectionType>> & connectionList,std::vector<std::vector<sp<ConnectionType>>> * referenceHolder)2045 const std::vector<sp<ConnectionType>>& SensorService::ConnectionSafeAutolock::getConnectionsHelper(
2046         const SortedVector<wp<ConnectionType>>& connectionList,
2047         std::vector<std::vector<sp<ConnectionType>>>* referenceHolder) {
2048     referenceHolder->emplace_back();
2049     std::vector<sp<ConnectionType>>& connections = referenceHolder->back();
2050     for (const wp<ConnectionType>& weakConnection : connectionList){
2051         sp<ConnectionType> connection = weakConnection.promote();
2052         if (connection != nullptr) {
2053             connections.push_back(std::move(connection));
2054         }
2055     }
2056     return connections;
2057 }
2058 
2059 const std::vector<sp<SensorService::SensorEventConnection>>&
getActiveConnections()2060         SensorService::ConnectionSafeAutolock::getActiveConnections() {
2061     return getConnectionsHelper(mConnectionHolder.mActiveConnections,
2062                                 &mReferencedActiveConnections);
2063 }
2064 
2065 const std::vector<sp<SensorService::SensorDirectConnection>>&
getDirectConnections()2066         SensorService::ConnectionSafeAutolock::getDirectConnections() {
2067     return getConnectionsHelper(mConnectionHolder.mDirectConnections,
2068                                 &mReferencedDirectConnections);
2069 }
2070 
addEventConnectionIfNotPresent(const sp<SensorService::SensorEventConnection> & connection)2071 void SensorService::SensorConnectionHolder::addEventConnectionIfNotPresent(
2072         const sp<SensorService::SensorEventConnection>& connection) {
2073     if (mActiveConnections.indexOf(connection) < 0) {
2074         mActiveConnections.add(connection);
2075     }
2076 }
2077 
removeEventConnection(const wp<SensorService::SensorEventConnection> & connection)2078 void SensorService::SensorConnectionHolder::removeEventConnection(
2079         const wp<SensorService::SensorEventConnection>& connection) {
2080     mActiveConnections.remove(connection);
2081 }
2082 
addDirectConnection(const sp<SensorService::SensorDirectConnection> & connection)2083 void SensorService::SensorConnectionHolder::addDirectConnection(
2084         const sp<SensorService::SensorDirectConnection>& connection) {
2085     mDirectConnections.add(connection);
2086 }
2087 
removeDirectConnection(const wp<SensorService::SensorDirectConnection> & connection)2088 void SensorService::SensorConnectionHolder::removeDirectConnection(
2089         const wp<SensorService::SensorDirectConnection>& connection) {
2090     mDirectConnections.remove(connection);
2091 }
2092 
lock(Mutex & mutex)2093 SensorService::ConnectionSafeAutolock SensorService::SensorConnectionHolder::lock(Mutex& mutex) {
2094     return ConnectionSafeAutolock(*this, mutex);
2095 }
2096 
2097 } // namespace android
2098